Podcast: Play in new window | Download ()
Further reading:
200-Year-Old ‘Monster Larva’ Mystery Solved
‘Snakeworm’ mystery yields species new to science
Hearkening back to the hazelworm
Show transcript:
Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.
A few weeks ago when I was researching big eels, I remembered the mystery eel larva we talked about back in episode 49, and that led me down a fun rabbit hole about other mystery larvae.
Let’s start with that eel larva. Eel larvae can be extremely hard to tell apart, so as a catchall term every eel larva is called a leptocephalus. They’re flattened side to side, which is properly referred to as laterally compressed, and transparent, shaped roughly like a slender leaf, with a tiny head at the front. Depending on the species, an eel may remain in its larval form for more than a year, much longer than most other fish, and when it does metamorphose into its next life stage, it usually grows much longer than its larval form. For instance, the larvae of conger eels are only about 4 inches long, or 10 cm, while an adult conger can grow up to 10 feet long, or 3 meters.
On January 31, 1930, a Danish research ship caught an eel larva 900 feet deep, or about 275 meters, off the coast of South Africa. But the larva was over 6 feet long, or 1.85 meters!
Scientists boggled at the thought that this larva might grow into an eel more than 50 feet long, or 15 meters, raising the possibility that this unknown eel might be the basis of many sea serpent sightings.
The larva was preserved and has been studied extensively. In 1958, a similar eel larva was caught off of New Zealand. It and the 1930 specimen were determined to belong to the same species, which was named Leptocephalus giganteus.
In 1966, two more of the larvae were discovered in the stomach of a western Atlantic lancet fish. They were much smaller than the others, though—only four inches and eleven inches long, or 10 cm and 28 cm respectively. Other than size, they were pretty much identical to Leptocephalus giganteus.
The ichthyologist who examined them determined that the larvae were probably not true eels at all, but larvae of a fish called the spiny eel. Deep-sea spiny eels look superficially like eels but aren’t closely related, and while they do have a larval form that resembles that of a true eel, they’re much different in one important way. Spiny eel larvae grow larger than the adults, then shrink a little when they develop into their mature form. The six-foot eel larva was actually a spiny eel larva that was close to metamorphosing into its adult form.
Not everyone agrees that Leptocephalus giganteus is a spiny eel. Some think it belongs to the genus Coloconger, also called worm eels, which are true eels but which have large larvae that only grow to the same size as adults. But worm eels don’t grow much bigger than about two feet long, or 61 cm. If the mystery larvae does belong to the genus Coloconger, it’s probably a new species. Until scientists identify an adult Leptocephalus giganteus, we can’t know for sure.
Another mystery larva is Planctosphaera pelagica, which sits all alone in its own class because the only thing it resembles are acorn worms, but scientists are pretty sure it isn’t the larva of an acorn worm. It’s not much to look at, since the larva is just a little barrel-shaped blob that grows about 25 mm across. This sounds small compared to the eel larva we just discussed, but it’s actually quite large compared to similar larvae. Acorn worm larvae are usually only about a millimeter long.
Planctosphaera has been classified as a hemichordate, which are related to echinoderms but which show bilateral symmetry instead of radial symmetry. Hemichordates are also closely related to chordates, which include all vertebrates. They’re marine animals that resemble worms but aren’t worms, so it’s likely that Planctosphaera is also wormlike as an adult.
Planctosphaera isn’t encountered very often by scientists. It has limited swimming abilities and mostly floats around near the surface of the open ocean, eating tiny food particles. One suggestion is that it might actually be the larva of a known species, but one where an occasional larva just never metamorphoses into an adult. It just grows and grows until something eats it. So far, attempts to sequence DNA from a Planctosphaera hasn’t succeeded and attempts to raise one to maturity in captivity hasn’t worked either.
Some people have estimated that an adult Planctosphaera might be a type of acorn worm that can grow nine feet long, or 2.75 meters, which isn’t out of the realm of possibility. The largest species of acorn worm known is Balanoglossus gigas, which can grow almost six feet long, or 1.8 meters, and not only is it bioluminescent, its body contains a lot of iodine, so it smells like medicine. It lives in mucus-lined burrows on the sea floor.
Another mystery larva is Facetotecta, which have been found in shallow areas in many oceans around the world. Unlike the other larvae we’ve talked about, they’re genuinely tiny, measured in micrometers, and eleven species have been described. They all have a cephalic shield, meaning a little dome over the head, and scientists have been able to observe several phases of their development but not the adult form. The juvenile form was observed and it looked kind of like a tiny slug with nonfunctioning eyes and weak muscles.
Scientists speculate that facetotecta may actually be the larva of an endoparasite that infests some marine animals. That would explain why no adult form has been identified. Genetic testing has confirmed that Facetotecta is related to a group of parasitic crustaceans.
DNA has solved some mysteries of what larvae belong to which adults. For instance, Cerataspis monstrosa, a larval crustacean that was first described in 1828. It’s over a cm long, pinkish-purple in color with stalked eyes, little swimming leg-like appendages, and neon blue horn-like structures on its head and back which act as armor. The armor doesn’t help too much against big animals like dolphins and tuna, which love to eat it, and in fact that’s where it was initially discovered, in the digestive tract of a dolphin. But scientists had no idea what the monstrous larva eventually grew up to be.
In 2012 the mystery was solved when a team of scientists compared the monster larva’s DNA to that of lots of various types of shrimp, since the larva had long been suspected to be a type of shrimp. It turns out that it’s the larval form of a rare deep-sea aristeid shrimp that can grow up to 9 inches long, or 23 cm.
Let’s finish with another solved mystery, this one from larvae found on land. In 2007, someone sent photos and a bag of little dead worms to Derek Sikes at the University of Alaska Museum. Usually when someone sends you a bag of dead worms, they’re giving you an obscure but distressing message, but Sikes was curator of the insect collection and he was happy to get a bag of mystery worms.
The worms had been collected from an entire column of the creatures that had been crawling over each other so that the group looked like a garden hose on the ground. Sikes thought they were probably fly larvae but he had never heard of larvae traveling in a column. If you’ve listened to the hazelworm episode from August 2018, you might have an idea. The hazelworm was supposed to be a snake or even a dragon that was only seen in times of unrest. It turns out that it the larvae of some species of fungus gnat travel together in long, narrow columns that really do look like a moving snake. But that’s in Europe, not Alaska.
Sikes examined the larvae, but since they were dead he couldn’t guess what type of insect they would grow up to be. Luckily, a few months later he got a call from a forester who had spotted a column of the same worms crossing a road. Sikes got there in time to witness the phenomenon himself.
The larvae were only a few millimeters long each, but there were so many of them that the column stretched right across the road into the forest. He collected some of them carefully and took them back to the museum, where he tended them in hopes that they would pupate successfully.
This they did, and the insects that emerged were a little larger than fruit flies and were black in color. Sikes identified them as fungus gnats, but when he consulted fungus gnat experts in Germany and Japan, they were excited to report that they didn’t recognize the Alaskan gnats. It was a new species, which Sikes described in late 2023. His summer students helped name the species, Sciara serpens, which are better known now as snakeworm gnats. He and his co-authors think the larvae form columns when they cross surfaces like roads and rocks, to help minimize contacting the dry ground. Fungus gnats live in moist areas with lots of organic matter, like forest leaf litter and the edges of ponds.
So the next time you see a huge long snake crossing the road, don’t panic. It might just be a whole lot of tiny, tiny larvae looking for a new home.
Thanks for your support, and thanks for listening!
BONUS: here’s the Hazelworm episode too!
The hazelworm today is a type of reptile, although called the slow worm, blind worm, or deaf adder. It lives in Eurasia, and while it looks like a snake, it’s actually a legless lizard. It can even drop and regrow its tail like a lizard if threatened. It spends most of its time underground in burrows or underneath leaf litter or under logs. It grows almost 2 feet long, or 50 cm, and is brown. Females sometimes have blue racing stripes while males may have blue spots. It eats slugs, worms, and other small animals, so is good for the garden.
But that kind of hazelworm isn’t what we’re talking about here. Back in the middle ages in central Europe, especially in parts of the Alps, there were stories of a big dragonlike serpent that lived in areas where hazel bushes were common. Like its slow-worm namesake, it lived most of its life underground, especially twined around the roots of the hazel. Instead of scales, it had a hairy skin and was frequently white in color. It was supposed to be the same type of snake that had tempted Adam and Eve in the Garden of Eden.
It had a lot of names besides hazelworm, including white worm for its color, paradise worm for its supposed history in the Garden of Eden, and even war worm. That one was because it was only supposed to show itself just before a war broke out.
People really believed it existed, although stories about it sound more like folklore. For instance, anyone who ate hazelworm flesh was supposed to become immortal. It was also supposed to suck milk from dairy cows and spread poison.
Some accounts said it was enormous, as big around as a man’s thigh and some 18 feet long, or 5.5 meters. Sometimes it was even supposed to have feet, or have various bright colors. Sometimes drawings showed wings.
There does seem to be some confusion about stories of the hazelworm and of the tatzelwurm, especially in older accounts. But unlike the tatzelwurm, the mystery of the hazelworm has been solved for a long time—long enough that knowledge of the animal has dropped out of folklore.
Back in the 1770s, a physician named August C. Kuehn pointed out that hazelworm sightings matched up with a real animal…but not a snake. Not even any kind of reptile. Not a fish or a bird or a mammal. Nope, he pointed at the fungus gnat.
The fungus gnat is about 8 mm long and eats decaying plant matter and fungus. You know, sort of exactly not like an 18-foot hairy white snake.
But the larvae of some species of fungus gnat are called army worms. The larvae have white, gray, or brown bodies and black heads, and travel in long, wide columns that do look like a moving snake, especially if seen in poor light or in the distance. I’ve watched videos online of these processions and they are horrifying! They’re also rare, so it’s certainly possible that even people who have lived in one rural area their whole life had never seen an armyworm procession. Naturally, they’d assume they were seeing a monstrous hairy snake of some kind, because that’s what it looks like.
Sightings of smaller hazelworms may be due to the caterpillar of the pine processionary moth, which also travels in a line nose to tail, which looks remarkably like a long, thin, hairy snake. Don’t touch those caterpillars, by the way. They look fuzzy and cute but their hairs can cause painful reactions when touched.
The adult moths lay their eggs in pine trees and when the eggs hatch the larvae eat pine needles and can cause considerable damage to the trees. They overwinter in silk tents, then leave the trees in spring and travel in a snaky conga line to eat pine needles. Eventually they burrow underground to pupate. They emerge from their cocoons as adult moths, mate, lay eggs, and die, all within one day.