Episode 280: Lesser-Known Sharks

Thanks to Tobey and Janice this week for their suggestions of lesser-known sharks!

Further reading/watching:

CREATURE FEATURE: The Spinner Shark [this site has a great video of spinner sharks spinning up out of the water!]

Acanthorhachis, a new genus of shark from the Carboniferous (Westfalian) of Yorkshire, England

150 Year Old Fossil Mystery Solved [note: it is not actually solved]

The cartoon-eyed spurdog shark:

The spinner shark spinning out of the water:

The spinner shark not spinning (photo by Andy Murch):

A Listracanthus spine:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about three sharks you may have never heard of before! The first was suggested by my aunt Janice and the second by listener Tobey. The third is a mystery from the fossil record.

You may have heard about the findings of a study published in November of 2021, with headlines like “Venomous sharks invade the Thames!” My aunt Janice sent me a link to an article like this. Nobody is invading anything, though. The sharks belong where they are. It was their absence for decades that was a problem, and the study discovered that they’re back.

The Thames is a big river in southern England that empties into the North Sea near London. Because it flows through such a huge city, it’s pretty badly polluted despite attempts in the last few decades to clean it up. It was so polluted by the 1950s, in fact, that it was declared biologically dead. But after a lot of effort by conservationists, fish and other animals have moved back into the river and lots of birds now visit it too. It also doesn’t smell as bad as it used to. One of the fish now found again in the Thames is a small shark called the spurdog, or spiny dogfish.

The spurdog lives in many parts of the world, mostly in shallow water just off the coast, although it’s been found in deep water too. A big female can grow almost three feet long, or 85 cm, while males are smaller. It’s a bottom dweller that eats whatever animals it finds on the sea floor, including crabs, sea cucumbers, and shrimp, and it will also eat jellyfish, squid, and fish when it can catch them. It’s even been known to hunt in packs.

It’s gray-brown in color with little white spots, and it has large eyes that kind of look like the eyes of a cartoon shark. It also has a spine in front of each of its two dorsal fins, which can inject venom into potential predators. The venom isn’t deadly to humans but would definitely hurt, so please don’t try to pet a spurdog shark. If the shark feels threatened, it curls its body around into a sort of shark donut shape, which allows it to jab its spines into whatever is trying to grab it.

The spurdog used to be really common, and was an important food for many people. But so many of them were and are caught to be ground into fertilizer or used in pet food that they’re now considered vulnerable worldwide and critically endangered around Europe, where their numbers have dropped by 95% in the last few decades. It’s now a protected species in many areas.

The female spurdog retains her fertilized eggs in her body like a lot of sharks do. The eggs hatch inside her and the babies develop further before she gives birth to them and they swim off on their own. It takes up to two years before a pup is ready to be born, and females don’t reach maturity until they’re around 16 years old, so it’s going to take a long time for the species to bounce back from nearly being wiped out. Fortunately, the spurdog can live almost 70 years and possibly longer, if it’s not killed and ground up to fertilize someone’s lawn. The sharks like to give birth in shallow water around the mouths of rivers, where the water is well oxygenated and there’s lots of small food for their babies to eat, which is why they’ve moved back into the Thames.

Next, Tobey suggested we talk about the spinner shark. It’s much bigger than the spurdog, sometimes growing as much as 10 feet long, or 3 meters. It lives in warm, shallow coastal water throughout much of the world. It has a pointy snout and is brown-gray with black tips on its tail and fins, and in fact it looks so much like the blacktip shark that it can be hard to tell the two species apart unless you get a really good look. It and the blacktip shark also share a unique feeding strategy that gives the spinner shark its name.

The shark eats a lot of fish, especially small fish that live in schools. When the spinner shark comes across a school of fish, it swims beneath it, then upward quickly through the school. As it swims it spins around and around like an American football, but unlike a football it bites and swallows fish as it goes. It can move so fast that it often shoots right out of the water, still spinning, up to 20 feet, or 6 meters, before falling back into the ocean. The blacktip shark sometimes does this too, but the spinner shark is an expert at this maneuver.

There’s a link in the show notes to a page where you can watch a video of spinner sharks spinning out of the water and flopping back down. It’s amazing and hilarious. Tobey mentioned that the spinner shark is an acrobatic shark, and it certainly is! It’s like a ballet dancer or figure skater, but with a lot more teeth. And fewer legs.

Because spinner sharks mainly eat fish, along with cephalopods, they almost never attack humans because they don’t consider humans to be food. Humans consider the spinner shark food, though, and they’re listed as vulnerable due to overhunting and habitat loss.

We’ll finish with a mystery shark. I’ve had Listracanthus on my ideas list for a couple of years, hoping that new information would come to light, but let’s go ahead and talk about it now. It’s too awesome to wait any longer.

We know very little about Listracanthus even though it was around for at least 75 million years, since it’s an early shark or shark relative with a cartilaginous skeleton. Cartilage doesn’t fossilize very well compared to bone, so we don’t have much of an idea of what the shark looked like. What we do have are spines that grew all over the fish and that probably made it look like it was covered with bristles or even weird feathers. The spines are a type of denticle that could be up to 4 inches long, or 10 cm. They weren’t just spines, though. They were spines that had smaller spines growing from their sides, sort of like a feather has a main shaft with smaller shafts growing from the sides.

The spines are fairly common in the fossil record from parts of North America, dating from about 326 million years ago to about 251 million years ago. Listracanthus was closely related to another spiny shark-like fish, Acanthorhachis, whose spines have been found in parts of Europe and who lived around 310 million years ago, but whose spines are less than 3 inches long at most, or 7 cm.

Some researchers think the spines were only present on parts of the shark, maybe just the head or down the back, but others think the sharks were covered with the spines. Many times, lots and lots of the spines are found together and probably belong to a single individual whose body didn’t fossilize, only its spines. Some researchers even think that the flattened denticles from a shark or shark relation called Petrodus, which is found in the same areas at the same times as Listracanthus, might actually be Listracanthus belly denticles.

The spines probably pointed backwards toward the tail, which would reduce drag as the fish swam, and they might have been for display or for protection from predators, or of course both. The main parts of the spine were also hollow and there’s evidence there were capillaries inside, so they might have had a chemosensory or electrosensory function too.

Modern sharks have denticles that make their skin rough, sort of like sandpaper. One modern shark, the sandy dogfish, Scyliorhinus canicula, which is common in shallow water off the coasts of western Europe and northern Africa, and in the Mediterranean, has especially rough denticles on its tail. They aren’t precisely spines, but they’re more than just little rough patches. The sandy dogfish is a small, slender shark that barely grows more than about three feet long, or about a meter, and it eats anything it can catch. Young dogfish especially like small crustaceans, and sometimes they catch an animal that’s too big to swallow whole. In that case, the shark sticks the animal on the denticles near its tail, which anchors it in place so it can tear bite-sized pieces off. Some other sharks do this too, so it’s possible that Listracanthus and its relations may have used its spines for similar behavior.

We don’t know much about these sharks because all we have are their spines. Only one probable specimen has been found, by a paleontologist named Rainer Zangerl. Dr. Zangerl found the remains of an eel-like shark in Indiana that was covered in spines, but unfortunately as the rock dried out after being uncovered, the fossil literally disintegrated into dust.

In August of 2019, a fossil hunter posted on an online forum for fossil enthusiasts to say he’d found a Listracanthus specimen. He posted pictures, although since the fossil hasn’t been prepared it isn’t much to look at. It’s just an undulating bump down a piece of shale that kind of looks like a dead snake. Fortunately, the man in question, who goes by RCFossils, knew instantly what he’d found. He also knew better than to try to clean it up himself. Instead, he’s been working on trying to find a professional interested in taking the project on. In May of 2022 he posted again to say he’d managed to get an X-ray of the fossil, which shows a backbone but no sign of a skull. He’s having trouble finding anyone who has the time and interest in studying the fossil, but hopefully he’ll find someone soon and we’ll all learn more about this mysterious pointy shark.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 261: Walking Fish

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to my brother Richard for suggesting one of the fish we talk about this week–fish that can walk! (Sort of.)

Further watching:

Video of a gurnard walking

Further reading:

Walking shark moves with ping-pong paddle fins

Walking sharks discovered in the tropics

The Hawaiian seamoth (the yellowy one is a larval seamoth, the brighter one with the snoot the same fish as a juvenile, both pictures by Frank Baensch from this site):

 

The slender seamoth (an adult, photo from this site):

A flying gurnard with its “wings” extended:

A flying gurnard with its “wings” folded, standing on its walking rays:

An eastern spiny gurnard standing on its walking rays:

A mudskipper’s frog-like face:

Mudskippers on land:

Walking sharks:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at some weird fish, specifically fish that use their fins to walk. Well, sort of walk. Thanks to my brother Richard for suggesting one of these fish.

Before we get started, let’s learn the terms for a fish’s two main pairs of fins. Different types of fish have different numbers and locations of fins, of course, but in this episode we’re focusing on the pectoral fins and the pelvic fins. Pectoral fins are the main fins in most fish, the ones near the front on each side. If a fish had arms, that’s roughly where its arms would be. The pelvic fins are near the tail on either side, roughly where its legs would be if fish had legs. If you remember that people lift weights with their arms to develop their pectoral muscles in the chest, you can remember where pectoral fins are, and if you remember that Elvis Presley was sometimes called Elvis the Pelvis because he danced by shaking his hips, you can remember where the pelvic fins are.

So, let’s start with the seamoth, which lives in shallow tropical waters of the Indo-Pacific Ocean and the Red Sea, including around Australia. We don’t know enough about it to know if it’s endangered or not, but since it’s considered a medicine in some parts of Asia, it’s caught to sell as an aquarium fish, and its habitat is increasingly impacted by bottom trawling and coastal development, it probably isn’t doing great. It’s never been especially common and doesn’t reproduce very quickly. Researchers think it may even be a social fish that forms a pair bond with its mate, since pairs are often found together.

The seamoth doesn’t even look that much like a fish at first glance. It’s covered with bony plates that act as armor, including bony rings around its tail. It even has to shed its skin as it grows larger.

The seamoth has a long, pointed snout with a tiny mouth underneath, but it can protrude its mouth out of its…mouth–okay that doesn’t make sense. Basically it’s able to extend its mouth into a tube that it uses like a straw to slurp up worms and other small animals from the sea floor.

It can change colors to match its surroundings too. If all this makes you think of seahorses and pipefish, the seamoth is related to both, but it looks very different because of its fins.

The seamoth’s pectoral fins are so large they resemble wings, and its modified pelvic fins are stiff and more fingerlike than fin-like so that it can walk across the sea floor with them. It spends most of its time walking on the sea floor, only swimming when it feels threatened and has to move faster. Sometimes a seamoth will cover itself with sand to hide from a predator. During breeding season, males develop brightly colored patterns on their pectoral fins.

The seamoth is a small fish, with the largest species growing about five inches long, or 13 cm. One species of seamoth, the little dragonfish, sheds its armor in one big piece—not just once or twice a year, but as often as every five days or so when it needs to rid itself of parasites. Its body is flattened but broad, which makes it look kind of like a piece of shell from above.

The flying gurnard is similar in some ways. It lives in warm coastal waters where it spends most of its time on the sea floor, looking for small animals to eat. We’ve talked about it before, in episode 101, but let’s go over it again in case like me you haven’t listened to episode 101 since it came out over three years ago.

The flying gurnard is a bulky fish that grows more than a foot and a half long, or 50 cm. It has a face sort of like a frog’s and can be reddish, brown, or greenish, with spots and patches of other colors. But most importantly, its pectoral fins are extremely large, looking more like fan-like wings than fins. The so-called wings are shimmery, semi-transparent, and lined with bright blue. They sort of look like butterfly wings and can be more than 8 inches long, or 20 cm. The fins actually have two parts, a smaller section in front and the larger wing-like section behind. The front section is stiff and makes the fish able to walk along the sea floor. It’s possible the flying gurnard can also use its wing-like fins to glide above the water for short distances like a flying fish, but at the moment we don’t know for sure.

The flying gurnard hasn’t traditionally been recognized as being related to the seamoth despite their similarities, but DNA studies suggest that they might actually be related after all. The flying gurnard may be related to the true gurnards, too. Both the flying gurnard and the true gurnard have a special muscle that beats against the swim bladder to make a drumming sound, and they look and act alike in many other ways too.

The gurnard is the fish my brother Richard recommended. There are actually a lot of different gurnards and they’re all kind of weird. Gurnards in the family Triglidae are bottom dwellers that grow around 16 inches long, or 40 cm. Some species have armor plates that make their heads so strong that a gurnard will occasionally ram snorkelers with its forehead if they get too close. Like the flying gurnard, the gurnard has pectoral fins that are divided into a front section and a rear section, with the rear section being larger and the front section highly modified, called walking rays, used by the fish to walk across the sea floor.

Walking rays look more like long, thin, stiff fingers than a fish’s fins, although they’re also bendy. The gurnard has three walking rays on each side of the body, and they have special muscles that allow the fish to actually use them as little legs. It’s really disturbing to watch an otherwise pretty ordinary fish crawl forward on what look like invertebrate legs.

The mudskipper is another fish that uses its fins to walk, but not like the fish we just talked about. Instead of having walking rays, its pectoral fins are muscular and allow it to climb out of the water and onto land. In fact, it can climb into low branches and can even jump.

It’s so good at living on land the mudskipper is actually considered semi-aquatic. It lives in mudflats, mangrove swamps, the mouths of rivers where they empty into the ocean, and along the coast, although it prefers water that’s less salty than the ocean but more salty than ordinary freshwater. It only lives in tropical and subtropical areas because it needs high humidity to absorb oxygen through its skin and the lining of its mouth and throat.

The mudskipper is a fish, but it looks an awful lot like a frog in some ways, due to convergent evolution. It has a wide mouth and froglike eyes at the top of its head and will often float just under the water with its eyes above water, looking for insects it can catch. The largest species grows about a foot long, or 30 cm, and while it has some scales, its body is coated with a layer of mucus to help it retain moisture. It spends most of the day on land, hunting for insects and other small animals. Not only can it absorb oxygen through its skin, it keeps water in its gill chambers to keep the gills wet too. It even has a little dimple under its eye that holds water, that helps keep its eyes moist.

The mudskipper also takes a big mouthful of water with it when it climbs on land, but not to breathe. It uses the water to hunt with. When it encounters an insect or other small animal on land, it carefully rotates its mouth–you heard me right, it can rotate its mouth–so that it’s just above the animal. Then it spits out the mouthful of water onto the insect and immediately sucks the water back into its mouth, carrying the insect with it. When it catches an animal underwater, it opens its big mouth quickly, causing suction that sucks the animal right into its mouth that way. It also has sharp teeth, so when an animal is in its mouth, it’s not getting out again.

The mudskipper’s pectoral fins look like little arms, complete with an elbow. The elbow is actually a joint between the radial bones, which in most fish are hidden within the body but which stick out of the mudskipper’s sides a short distance, and the actual fins. This helps it move around on land more easily. Its pelvic fins are also shaped in such a way that they act as little suction cups on land.

Another bottom-dwelling fish that uses its fins to walk on the sea floor is the walking shark. There are several species known but they’re not very big, only around four feet long at most, or 107 cm. It lives in shallow coastal waters, often around reefs, and spends most of the time swimming just above the sea floor or using its pectoral and pelvic fins to walk on the sea floor while it searches for small animals to eat. It doesn’t walk like gurnards do, and it doesn’t skip or climb the way mudskippers do. Instead, it wriggles like a salamander as it uses its fins to push itself along.

At least one species of walking shark can also walk on land. That’s right: land shark. Don’t worry, it’s harmless to humans. (Still: land shark.) Because the walking shark often lives in really shallow water, including in tidal pools that sometimes dry up completely between high tides, it has to be able to reach water by walking on land. The walking shark can also survive in water with low oxygen content for short periods of time. Four newly identified species of walking shark were announced in January 2020, all from around New Guinea and northern Australia.

The really interesting thing is that the walking shark’s pectoral and pelvic fins are different from other shark fins. Not only are they strongly muscled, they can rotate to make it easier for the shark to use them as legs. Researchers think that this type of locomotion may have given rise to land animals in our far, far-distant ancestors. In other words, we’re all land sharks if you think about it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 229: Blue Ghosts and Vanishing Sharks

Sign up for our mailing list!

I got to meet some listeners this week to see the synchronous fireflies, so thanks to Shannon, Diana, Derek, and Autumn for hanging out with me! This week we’ll learn about a different kind of lightning bug as well as a shark mystery!

Derek’s photography, Enchanting Ectotherms

Further reading:

A shark mystery millions of years in the making

I suspect this is a doctored image but it’s gorgeous so here it is anyway, supposedly some blue ghost fireflies:

This is a real photo, no photoshop, taken by Derek Wheaton during our trip. The long line of light in the middle is a blue ghost moving with its light on during a long exposure:

A synchronous firefly on Derek’s hand (photo by Derek Wheaton):

A tiny blue ghost firefly on Derek’s hand (photo by Derek Wheaton):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. It’s been an amazing week for me because I got to take some people to see our local synchronous fireflies! The fireflies put on a brilliant show for us and the weather was perfect, and it was so much fun to meet Shannon and Diana! Then, two nights later, I also took Derek and Autumn out to see the fireflies. In between, I started research on the blue ghost firefly, since I had originally thought it was just another name for the synchronous firefly, but it’s not. So this week we’re going to learn about the blue ghost firefly, along with some interesting breaking news about a shark mystery.

The blue ghost firefly only lives in parts of the eastern and central United States. In most places it’s rare, but like the synchronous fireflies that all flash together, the blue ghost fireflies are actually pretty common in the southern Appalachian Mountains. The reason why people don’t see them more often is that these days, most people don’t spend much time in the woods at night.

Like other fireflies, the blue ghost lives in forests with deep leaf litter where there’s a lot of moisture in the ground. The female lays her eggs in the leaf litter and when the eggs hatch, the larval fireflies eat tiny insects and other invertebrates like snails.

The blue ghost firefly is different from other firefly species in several ways. First, it doesn’t flash. The male stays lighted up for around a minute at a time while he flies low over the ground watching for a female to light up too. Its glow also appears bluish-white to human eyes, at least in the distance and when it’s really dark out. Up close, it looks yellow-green like other firefly lights. Researchers think it only looks blue because of the way human eyes perceive color in low light.

In the daytime, blue ghost fireflies don’t look like much. They’re small, around 7 mm long, and males are all brown. The females don’t have wings, and in fact they never metamorphose into the adult form and still look like larvae as adults. The female crawls to the end of a twig or blade of grass and glows to attract a mate.

When I was doing my research to learn about blue ghost fireflies, I kept seeing articles comparing its size to a grain of rice. I looked up the average size of a grain of rice, and that’s where I got 7 mm. I didn’t think too much about it.

When Shannon, Diana, and I were watching the synchronous fireflies, we noticed some fireflies that didn’t flash, just stayed glowing while they drifted along low over the forest floor. After I started researching blue ghost fireflies, I realized that was what had seen! So I was especially excited to go back out with Derek and Autumn and confirm it.

Derek works for a nonprofit that breeds endangered fish for conservation projects, which is awesome, but he’s also a photographer, so he brought his camera to try and get pictures and video of the fireflies. His photographs are amazing so if you want to see them I’ve linked to his Facebook page, EnchantingEctotherms, in the show notes. He does a lot of snorkeling so a lot of the animals he photographs are fish or other water animals like turtles and snakes, and he gives information about them in his posts.

Anyway, he wanted to get close-up pictures of a synchronous firefly and a blue ghost firefly, so we all spent some time trying to catch one of each—gently, of course, and without leaving the trail. We didn’t want to hurt ourselves in the dark or disturb the fireflies’ habitat. Derek caught a synchronous firefly first, and it looks like an ordinary firefly that I’m used to, the common eastern firefly, which grows to about 14 mm long. That’s half an inch long. Then, eventually, he also caught a blue ghost. It was so small that at first we thought he might have caught some other beetle by accident, until we looked more closely and saw the telltale head shape of a lightning bug. I took a photo myself and put it in the show notes so you can see just how small it is.

From my own observation, the blue ghosts are much dimmer than other fireflies, which makes sense since they’re so much smaller. The light does look faintly blue-white in the distance, but when it’s closer to you it looks like an ordinary firefly’s light. They do indeed fly very low to the ground while lit up, but they’re also cautious. We had trouble catching one because when we got too close, the firefly would fly down to the ground and put his light out.

Naturally, after photographing our lightning bugs we let them go again. I’m happy to report that the synchronous fireflies have expanded their range a lot since I first stumbled across them about ten years ago, and the blue ghosts seem reasonably common too. They live in a protected area of our local watershed so they’ll be safe and sound forever, hopefully.

This is good, because blue ghosts in particular are vulnerable to habitat loss. Since the female can’t fly, she can’t travel far to lay her eggs. During mating season, some state and national parks in the southern Appalachians close some trails to protect the blue ghost and other fireflies, especially from light pollution from flashlights.

The synchronous fireflies and blue ghosts are only active for a few weeks in June, which is their mating season. We’ll probably be just about at the end of this year’s display by the time you hear this, but if you’re going to be in East Tennessee and want to go out and see them with me next summer, just let me know. As we talked about in episode 180, they only live a few minutes’ walk away from a small parking lot but no one but me seems to know about them.

Next, let’s learn about a shark mystery that’s 19 million years old but that scientists only learned about recently. This month, June of 2021, a team of researchers published results of a shark study in the journal Science. The team had decided to graph the number and diversity of shark species known from the fossil record so they’d have a baseline to compare modern shark diversity to. But they discovered something really surprising.

Nineteen million years ago, there were over ten times as many sharks in the oceans as there are today. They were an important part of the ocean’s ecosystems, especially in the open ocean. And then…they disappear from the fossil record. Over 90% of the world’s sharks died, with shark diversity decreasing by more than 70%. Not only that, sharks never fully recovered from whatever happened.

So what did happen? We don’t know yet. There was a small extinction event called the Middle Miocene extinction peak five million years after the sharks vanished, which researchers think was due to global cooling leading to climate change. The cooling period was caused by a lot of factors, but a big cause was changes in ocean currents and air currents as the continents moved into new positions. Before that, though, the world was comfortably warm for millions of years and the shark population was overall quite stable. Researchers have found no reason why sharks suddenly started dying in such huge numbers, especially in the open ocean instead of in coastal waters.

The leader of the study, Elizabeth Sibert, says that there might have been a climate event of some kind that was disastrous to sharks but that was over relatively quickly, leaving very little evidence behind except for the fossil remains of way more sharks than usual and a lack of sharks afterwards.

Other scientific teams have already started studying the open ocean ecosystem from 19 million years ago and earlier for clues as to what happened, whether other animals were affected, and why sharks never regained their supremacy in the world’s oceans afterwards. That’s how science works: someone makes a discovery and that inspires lots of new studies, which lead to more discoveries. When we do learn more about the great shark die-off of the Miocene, I will keep you posted.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way, and don’t forget to join our mailing list. There’s a link in the show notes.

Thanks for listening!

 

Episode 227: The Great Dying

Sign up for our mailing list!

It’s another extinction event episode! This one’s about the end-Permian AKA the Permian-Triassic AKA the GREAT DYING.

Further Reading:

Ancient mini-sharks lived longer than thought

Lystrosaurus’s fossilized skeleton:

Lystrosaurus may have looked something like this but I hope not:

This artist’s rendition of lystrosaurus looks a little less horrific but it might not be any more accurate:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s time for our next extinction event episode, and this week it’s the big one. Not the extinction event that killed the dinosaurs, but one you may not have heard of, one that almost destroyed all life on earth. I mean, obviously it didn’t and things are fine now, but it was touch and go there for a while. It’s the Permian-Triassic extinction event, or end-Permian, which took place just over 250 million years ago. It was so bad that scientists who aren’t given to hyperbole refer to it as the Great Dying.

Don’t worry, we won’t talk about extinction the whole time. We’ll also learn about some interesting animals that survived the extinction event and did just fine afterwards.

We have a better idea of what happened at the end of the Permian than we have about the earlier extinction events we talked about in episodes 205 and 214. Right about 252 million years ago, something caused a massive volcanic eruptive event in what is now Siberia. Some researchers speculate that the cause of the volcanic eruptions may have been a huge asteroid impact on the other side of the Earth, which was so powerful that it caused magma to move away from the impact like water sloshing in a jostled glass. The magma rose up toward the earth’s crust and eventually through it onto the surface.

The result was probably the largest volcanic event in the last half-billion years and it continued for an estimated two million years. Most of the eruptions were probably pretty low-key, just runny lava pouring out of vents in the ground, but there was just so much of it. Lava covered almost a million square miles of land, or 2.6 million square km. Ash and toxic gases from some eruptions also ended up high in the atmosphere, but one big problem was that the lava poured through sediments full of organic material in the process of turning into coal. Lava, of course, is molten rock and it’s incredibly hot. It’s certainly hot enough to burn a bunch of young coal beds, which added more ash and toxic gases to the air—so much ash that shallow water throughout the entire world became choked with ash.

The carbon dioxide released by all that burning coal caused severe ocean acidification and ocean anoxia—a lack of oxygen in the water. But it gets worse! A lot of lava erupted into the ocean right at the continental shelf, where the shallow coastal water becomes much deeper. This is exactly the place where you find methane deposits in the sediments on the ocean floor. When those deposits were suddenly disturbed by lava flowing into them, all the methane in the formerly tranquil depths was released and bubbled to the surface. Methane is a powerful greenhouse gas, meaning that if a whole lot of it ends up in the atmosphere in a short amount of time, it can cause rapid global warming—much faster than that caused by carbon dioxide. This global warming would have happened after a period of global cooling due to reduced sunlight reaching the earth through ash clouds, which lasted long enough and was severe enough that sea levels dropped as glaciers formed. Then everything heated way, way up. The ice caps melted, which may have led to a stagnation of ocean currents. This in turn would have contributed to the water’s anoxicity and toxicity. The average temperature of the ocean would have increased by almost 15 degrees Fahrenheit, or 8 degrees Celsius. Atmospheric warming may have been as much as 68 degrees Fahrenheit in places, or 20 degrees Celsius. That’s not the average temperature of the world, that’s the temperature increase.

So, basically, everything was terrible and it happened very quickly in geologic terms. A 2018 study found that everything looked pretty much fine for the 30,000 years leading up to the great dying. Some researchers even think the initial extinction event might have taken place over just a few centuries.

Marine animals were affected the most, especially marine invertebrates. Trilobites and placoderms went extinct, eurypterids went extinct, and corals went extinct until about 14 million years later when modern corals developed. Some researchers estimate that 95% of all marine species went extinct.

Things were better on land, but not that much better. At the end of the Permian, life was good on land and it was especially good for insects because of the high percentage of oxygen in the air and the variety of plant life in huge swamps around the supercontinent Pangaea. The largest insects that ever lived were buzzing around in the Permian. This included an order of insects called Meganisoptera, or griffinflies. Griffinflies looked like dragonflies and may be related to them. Some species had a wingspan 28 inches across, or 71 cm. The arthropod Anthopleura, sometimes called the giant millipede, lived in the Permian too. Some species grew six feet long, or 2.5 meters, and were about 18 inches wide, or 45 cm. It looked like a millipede but had even more legs. It probably looked scary, but it only ate plants as far as we know.

Instead of actively breathing the way most vertebrates do, most invertebrates use a passive system to absorb oxygen from the air. This is great when there’s a lot of oxygen. When the level of oxygen drops, though, the largest species can’t absorb enough oxygen to function and die out rapidly. That’s one reason why you don’t have to worry about spiders the size of bears. So all the large invertebrates and a lot of the smaller ones went extinct as oxygen was replaced with carbon dioxide, methane, and other toxic gases in the atmosphere.

The acid rain caused by toxic gases and the reduced sunlight caused by ash in the atmosphere also killed off plants. Forests died, so that the fossil record during and after the extinction event contains massive amounts of fungal spores from fungi that decompose trees. Some researchers think all of the world’s trees died. Forests disappeared for some four million years. Since trees absorb carbon dioxide from the atmosphere and release oxygen, the lack of trees made oxygen levels drop even more.

Animals that depended on forests to survive also went extinct, including about two-thirds of all amphibians, reptiles, and therapsids. Therapsids were proto-mammals and it’s a good thing they didn’t all die out because they eventually gave rise to mammals.

Everything I’ve described sounds so incredibly bad, you may be wondering how anything survived. One stroke of luck was probably the size of Pangaea. That was the supercontinent made up of most of the world’s landmasses all smushed together. Before the extinction event, the middle of Pangaea was probably pretty dry with swampier climates around the edges. After the extinction event, the interior of the supercontinent was the safest place to be.

One of the most common land animals after the extinction event was a herbivore called Lystrosaurus. Lystrosaurus was a therapsid, and it was nothing exciting to look at unless you were also a lystrosaurus. Some species were the size of a cat while some were much larger, up to 8 feet long, or 2.5 m. It had a short snout, a short tail, and a semi-sprawling gait. A lizard walks with its legs stuck out to the sides, while a dog or cat or pig walks with its legs underneath its body. Lystrosaurus was somewhere between the two.

It probably lived in burrows that it dug with its strong front legs. While it had a pair of tusks that grew down from the upper jaw, those were its only teeth. Instead it probably had a turtle-like beak that helped it bite off pieces of vegetation.

Lystrosaurus lived in the central part of Pangaea, in what is now Asia, Antarctica, South Africa, and eastern Europe back when all those areas were all scrunched up close together. It survived the extinction event and expanded its range, and for millions of years it was almost the only big land animal in the world. It had almost no predators because they’d all gone extinct, and it had very few competitors for food because they’d all gone extinct. Lystrosaurus made up 90% of all land vertebrates for millions of years.

How did it survive when so many other animals died out? There are several theories, but the most important factor was probably its lack of specialization. It could survive on any kind of plant instead of needing to feed on specific species of plant. There’s also evidence that it could enter a torpor similar to hibernation where its metabolism slowed way down. This would have been a literal lifesaver during the time when the air and water were toxic and very little plant life survived. Lystrosaurus could hunker down in its burrow for long stretches of time, then come out and find enough food and water to keep it going for another stretch of torpor.

Just imagine the world back then, after the initial extinction event but before the world had recovered—say, a million years after the volcanic activity stopped. Picture a series of gentle rolling hills dotted with grazing animals. It’s peaceful and very open because there are no trees. Grass hasn’t evolved yet so the ground is covered in fern-like plants from the genus Dicroidium, which lives in dry conditions. As you look closer with your mind’s eye, you realize that every single one of those grazing animals—thousands of them visible in every direction—are the same kind of animal that looks sort of like a fuzzy pig with a stumpy lizard tail, clawed feet, and a turtle’s beak. Lystrosaurus, living the good life.

In the ocean, the situation was similar. The shallows were toxic waste dumps of ash where the water had so little oxygen that nothing could survive. But the deeper ocean was still livable for some animals.

For a long time, scientists thought a group of early sharks called cladodontomorphs had gone extinct during the great dying. Their distinctive teeth had been common in the fossil record, but after the extinction event they disappeared. Cladodontomorphs only grew about a foot long at most, or 30 cm, and may have had a weird-shaped dorsal fin that pointed forward. They lived in shallow coastal waters. You know, the worst possible place to be 252 million years ago.

Then palaeontologists found some of those teeth in rocks that were in much deeper water 135 million years ago. It turns out the little sharks had survived the extinction event by moving into the open ocean where conditions were better. And they didn’t just survive, they lasted for another 120 million years.

So let’s break it down. It was probably four million years before trees developed again from different plants. It was some 14 million years before coral reefs could rebuild as modern corals developed after their cousins went extinct. It took 30 million years for terrestrial vertebrates to recover from the great dying and 50 million years for all the ocean’s ecosystems to fully recover. That’s a colossally long time. But it did recover.

So what animals arose once the recovery was well underway? Icthyosaurs. Archosaurs, which eventually evolved into pterosaurs, crocodilians, dinosaurs, and birds. And therapsids that eventually gave rise to modern mammals.

I don’t usually tease the following week’s show, but next week we’re going to learn about some weird and interesting animals that developed in the early to mid Triassic, after the extinction event was over and life started evolving in new directions. As I’ve said in the previous extinction event episodes: no matter how bad things get, there’s always going to be some little animal stumping along out of the carnage to get on with the business of surviving and thriving.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 216: Gentle Giant Sharks

Let’s learn about some of the biggest sharks in the sea–but not sharks that want to eat you!

Further reading:

‘Winged’ eagle shark soared through oceans 93 million years ago

Manta-like planktivorous sharks in Late Cretaceous oceans

Before giant plankton-eating sharks, there were giant plankton-eating sharks

An artist’s impression of the eagle shark (Aquilolamna milarcae):

Manta rays:

A manta ray with its mouth closed and cephalic fins rolled up:

Pseudomegachasma’s tooth sitting on someone’s thumbnail (left, photo by E.V. Popov) and a Megachasma (megamouth) tooth on someone’s fingers (right):

The megamouth shark. I wonder where its name came from?

The basking shark, also with a mega mouth:

The whale shark:

Leedsichthys problematicus (not a shark):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at some huge, weird sharks, but they’re not what you may expect when you hear the word shark. Welcome to the strange world of giant filter feeders!

This episode is inspired by an article in the brand new issue of Science, which you may have heard about online. A new species of shark is described in that issue, called the eagle shark because of the shape of its pectoral fins. They’re long and slender like wings.

The fossil was discovered in 2012 in northeastern Mexico, but not by paleontologists. It came to light in a limestone quarry, where apparently a quarry worker found it. What happened to it at that point isn’t clear, but it was put up for sale. The problem is that Mexico naturally wants fossils found in Mexico to stay in Mexico, and the authors of the study are not Mexican. One of the authors has a history of shady dealings with fossil smugglers too. On the other hand, the fossil has made its way back to Mexico at last and will soon be on display at a new museum in Nuevo León.

Fossils from this quarry are often extremely well preserved, and the eagle shark is no exception. Sharks don’t fossilize well since a shark’s skeleton is made of cartilage except for its teeth, but not only is the eagle shark’s skeleton well preserved, we even have an impression of its soft tissue.

The eagle shark was just slightly shorter than 5 ½ feet long, or 1.65 meters. Its tail looks like an ordinary shark tail but that’s the only ordinary thing about it. The head is short and wide, without the long snout that most sharks have, it doesn’t appear to have dorsal or pelvic fins, and its pectoral fins, as I mentioned a minute ago, are really long. How long? From the tip of one pectoral fin to the other measures 6.2 feet, or 1.9 meters. That’s longer than the whole body.

Researchers think the eagle shark was a filter feeder. Its mouth would have been wide to engulf more water, which it then filtered through gill rakers or some other structure that separated tiny animals from the water. It expelled the water through its gills and swallowed the food.

The eagle shark would have been a relatively slow swimmer. It glided through the water, possibly flapping its long fins slowly in a method called suspension feeding, sometimes called underwater flight. If this makes you think of manta rays, you are exactly correct. The eagle shark occupied the same ecological niche that manta rays do today, and the similarities in body form are due to convergent evolution. Rays and sharks are closely related, but the eagle shark and the manta ray evolved suspension feeding separately. In fact, the eagle shark lived 93 million years ago, 30 million years before the first manta remains appear in the fossil record.

The eagle shark lived in the Western Interior Seaway, a shallow sea that stretched from what is now the Gulf of Mexico straight up through the middle of North America. Because it’s the only specimen found so far, we don’t know when it went extinct, but researchers suspect it died out 65 million years ago at the same time as the non-avian dinosaurs. We also don’t have any preserved teeth, which makes it hard to determine what sharks it was most closely related to. Hopefully more specimens will turn up soon.

Now that we’ve mentioned the manta ray, let’s talk about it briefly even though it’s not a shark. It is big, though, and it’s a filter feeder. If you’ve never seen one before, they’re hard to describe. If it had gone extinct before humans started looking at fossils scientifically, we’d be as astounded by it as we are about the eagle shark—maybe even moreso because it’s so much bigger. Its body is sort of diamond-shaped, with a blunt head and short tail, but elongated fins that are broad at the base but end in drawn-out points.

Manta rays are measured in width, sometimes called a wingspan since their long fins resemble wings that allow it to fly underwater. There are two species of manta ray, and even the smaller one has a wingspan of 18 feet, or 5.5 meters. The larger species can grow 23 feet across, or 7 meters. Some other rays are filter feeders too, all of them closely related to the manta.

The manta ray lives in warm oceans, where it eats zooplankton. Its mouth is wide and when it’s feeding it moves forward with its mouth open, letting water flow into the mouth and through the gills. Gill rakers collect tiny food, which the manta ray swallows. It has a pair of fins on either side of the mouth that are sometimes called horns, but which are properly called cephalic fins. Cephalic just means “on the head.” These fins help direct water into the mouth. When a manta ray isn’t feeding, it closes its mouth just like any other shark, folding its shallow jaw shut. For years I thought it closed its mouth by folding the cephalic fins over it, but that’s not the case, although it does roll the fins up into little points. The manta ray is mostly black with a white belly, but some individuals have white markings on the back and black speckles and splotches underneath. We talked about some mysteries associated with its coloring in episode 96.

The eagle shark isn’t the only filter feeding shark. The earliest known is Pseudomegachasma, the false megamouth, which lived around 100 million years ago. It was only described in 2015 after some tiny shark teeth were found in Russia. The teeth looked like those of the modern megamouth shark, although they’re probably not related. The teeth are only a few millimeters long but that’s the same size as teeth from the megamouth shark, and the megamouth grows 18 feet long, or 5.5 m.

Despite its size, the megamouth shark wasn’t discovered until 1976, and it was only found by complete chance. On November 15 of that year, a U.S. Navy research ship off the coast of Hawaii pulled up its sea anchors. Sea anchors aren’t like the anchors you may be thinking of, the big metal ones that drop to the ocean’s bottom to keep a ship stationary. A sea anchor is more like an underwater parachute for ships. It’s attached to the ship with a long rope on one end, and opens up just like a parachute underwater. The tip of the parachute has another rope attached with a float on top. When the navy ship brought up its sea anchors, an unlucky shark was tangled up in one of them. The shark was over 14 ½ feet long, or 4 ½ m, and didn’t look like any shark anyone had ever seen.

The shark was hauled on board and the navy consulted marine biologists around the country. No one knew what the shark was. It wasn’t just new to science, it was radically different from all other sharks known. Since then, only about 100 megamouth sharks have ever been sighted, so very little is known about it even now.

The megamouth is dark brown in color with a white belly, a wide head and body, and a large, wide mouth. The inside of its lower lip is a pale silvery color that reflects light, although researchers aren’t sure if it acts as a lure for the tiny plankton it eats, or if it’s a way for megamouths to identify each other. It’s sluggish and spends most of its time in deep water, although it comes closer to the surface at night.

The basking shark is even bigger than the megamouth. It can grow up to 36 feet long, or 11 meters. It’s so big it’s sometimes mistaken for the great white shark, but it has a humongous wide mouth and unusually long gill slits, and, of course, its teeth are teensy. It’s usually dark brown or black, white underneath, and while it spends a lot of its time feeding at the surface of the ocean, in cold weather it spends most of its time in deep water. In summer, basking sharks gather in small groups to breed, and sometimes will engage in slow, ponderous courtship dances that involve swimming in circles nose to tail.

But the biggest filter feeder shark alive today, and possibly alive ever, is the whale shark. It gets its name because it is literally as large as some whales. It can grow up to 62 feet long, or 18.8 meters, and potentially longer.

The whale shark is remarkably pretty. It’s dark gray with a white belly, and its body is covered with little white or pale gray spots that look like stars on a night sky. Its mouth is extremely large and wide, and its small eyes are low on the head and point downward. Not only can it retract its eyeballs into their sockets, the eyeballs actually have little armored denticles to protect them from damage. The body also has denticles, plus the whale shark’s skin is six inches thick, or 15 cm.

The whale shark lives in warm water and migrates long distances. It mostly feeds near the surface although it sometimes dives deeply to find plankton. It filters water differently from the megamouth and basking sharks, which use gill rakers. The whale shark has sieve-like filter pads instead. The whale shark doesn’t need to move to feed, either. It can gulp water into its mouth by opening and closing its jaws, unlike the other living filter feeders we’ve talked about so far.

We talked about the whale shark a lot in episode 87, if you want to know more about it.

All these sharks are completely harmless to humans, but unfortunately humans are dangerous to the sharks. Even though they’re all protected, they’re vulnerable to getting tangled in nets, killed by ships running over them, and killed by poachers.

One interesting thing about these three massive filter feeding sharks is their teeth. They all have tiny teeth, but the mystery is why they have teeth at all. Their teeth aren’t just tiny, they have a LOT of teeth, more than ordinary sharks do. It’s the same for the filter feeding rays. They have hundreds of teensy teeth that the animals don’t use for anything, as far as researchers can tell. One theory is that the babies may use their teeth before they’re born. All of the living filter feeders we’ve talked about, including manta rays, give birth to live pups instead of laying eggs. The eggs are retained in the mother’s body while they grow, and she can have numerous babies growing at different stages of development at the same time. The babies have to eat something while they’re developing, once the yolk in the egg is depleted, and unlike mammals, fish don’t nourish their babies through umbilical cords. Some researchers think the growing sharks eat the mother’s unfertilized eggs, and to do that they need teeth to grab hold of slippery eggs. That still doesn’t explain why adults retain the teeth and even replace them throughout their lives just like other sharks. Since all of the filter feeders have teeth although they’re not related, the teeth must confer some benefit.

So, why are these filter feeders so enormous? Many baleen whales are enormous too, and baleen whales are also filter feeders. Naturally, filter feeders need large mouths so they can take in more water and filter more food out of it. As a species evolves a larger mouth, it also evolves a larger body, and this has some useful side effects. A large animal retains heat even if it’s not actually warm-blooded. A giant fish can live comfortably in cold water as a result. Filter feeding also requires much less effort than chasing other animals, so a giant filter feeder has plenty of energy for a relatively low intake of food. And, of course, the larger an animal is, the fewer predators it has because there aren’t all that many giant predators. At a certain point, an adult giant animal literally has no predators. Nothing attacks an adult blue whale, not even the biggest shark living today. Even a really big great white shark isn’t going to bite a blue whale. The blue whale would just bump the shark out of the way and probably go, “HEY, STOP IT, THAT TICKLES.” The exception, of course, is humans, who used to kill blue whales, but you know what I mean.

Let’s finish with a filter feeder that isn’t a shark. It’s not even closely related to sharks. It’s a ray-finned fish that lived around 165 million years ago, Leedsichthys problematicus. Despite not being related to sharks and being a member of what are called bony fish, its skeleton is partially made of cartilage, so fossilized specimens are incomplete, which is why it was named problematicus. Because the fragmented fossils are a problem. I’m genuinely not making this up to crack a dad joke, that’s exactly why it got its name. One specimen is made up of 1,133 pieces, disarticulated. That means the pieces are all jumbled up. Worst puzzle ever. Remains of Leedsichthys have been found in Europe and South America.

As a result, we’re not completely sure how big Leedsichthys was. The most widely accepted length is 50 feet long, or 16 meters. If that’s anywhere near correct, it would make it the largest ray-finned fish that ever lived, as far as we know. It might have been much larger than that, though, possibly as long as 65 feet, or 20 meters.

Leedsichthys had a big head with a mouth that could open extremely wide, which shouldn’t surprise you. Its gills had gill rakers that it used to filter plankton from the water. And we’re coming back around to where we started, because like the eagle shark, Leedsichthys had long, narrow pectoral fins. Some palaeontologists think it had a pair of smaller pelvic fins right behind the pectoral fins instead of near the tail, but other palaeontologists think it had no pelvic fins at all. Because we don’t have a complete specimen, there’s still a lot we don’t know about Leedsichthys.

The first Leedsichthys specimen was found in 1886 in a loam pit in England, by a man whose last name was Leeds, if you’re wondering where that part of the name came from. A geologist examined the remains and concluded that they were part of (wait for it) a type of stegosaur called Omosaurus. Two years later the famous early palaeontologist Othniel Marsh examined the fossils, probably rolled his eyes, and identified them as parts of a really big fish skull.

In 1899, more fossils turned up in the same loam pits and were bought by the University of Cambridge. IA palaeontologist examined them and determined that they were (wait for it) the tail spikes of Omosaurus. Leeds pointed out that nope, they were dorsal fin rays of a giant fish, which by that time had been named Leedsichthys problematicus.

In 1982, some amateur palaeontologists excavated some fossils in Germany, but they were also initially identified as a type of stegosaur—not Omosaurus this time, though. Lexovisaurus. I guess this particular giant fish really has been a giant problem.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 168: The Longest Lived

This week let’s take a look at some animals (and other living organisms) that live the longest!

This isn’t Methuselah itself (scientists aren’t saying which tree it is, to keep it safe), but it’s a bristlecone pine:

The Jaya Sri Maha Bodhi, a sacred fig tree in Sri Lanka, planted in 288 BCE by a king:

Some trees of the quaking aspen colony called Pando:

Glass sponges (this one’s called the Venus Flower Basket):

Further reading:

Glass sponge as a living climate archive

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at the world’s longest lived animals and other organisms. We’re straying into plant territory a little bit here, but I think you’ll agree that this is some fascinating information.

The oldest human whose age we can verify was a French woman who lived to be 122 years old, plus 164 days. Her name was Jeanne Calment and she came from a long-lived family. Her brother lived to the age of 97. Jeanne was born in 1875 and didn’t die until 1997. But the sad thing is, she outlived her entire family. She had a daughter who died of a lung disease called pleurisy at only 36 years old—in fact, on her 36th birthday—and her only grandson died in a car wreck in his late 30s. Jeanne remained healthy physically and mentally until nearly the end of her life, although she had always had poor eyesight.

It’s not all that rare for humans to live past the age of 100, but it is rare for anyone to live to age 110 or beyond. But other animals have average lifespans that are much, much longer than that of humans.

In episode 163 we talked about the Greenland shark, which can live for hundreds of years. The oldest Greenland shark examined was possibly as old as 512 years old, and the sharks may live much longer than that. It’s actually the longest-lived vertebrate known.

No one’s sure which terrestrial vertebrate lives the longest, but it’s probably a tortoise. Giant tortoises are famous for their longevity, routinely living beyond age 100 and sometimes more than 200 years old. The difficulty of verifying a tortoise’s age is that to humans, tortoises all look pretty much alike and we don’t always know exactly when a particular tortoise was hatched. Plus, of course, we know even less about tortoises in the wild than we do ones kept in captivity. But probably the oldest known is an Aldabra giant tortoise that may have been 255 years old when it died in 2006. We talked about giant tortoises in episode 95.

But for the really long-lived creatures, we have to look at the plant world. The oldest individual tree whose age we know for certain is a Great Basin bristlecone pine called Methuselah. Methuselah lives in the Inyo National Forest in the White Mountains in California, which of course is on the west coast of North America. In 1957 a core sample was taken from it and other bristlecone pines that grow in what’s called the ancient bristlecone pine forest. Many trees show growth rings in the trunk that make a pattern that’s easy to count, so the tree’s age is easy to determine as long as you have someone who is patient enough to count all the rings. Well, Methuselah was 4,789 years old in 1957. It probably germinated in 2833 BCE. Other trees in the forest were nearly as old, with at least one possibly older, but the sample from that older tree is lost and no one’s sure where the tree the sample came from is.

Another bristlecone pine, called the Prometheus Tree, germinated even earlier than Methuselah, probably in 2880 BCE, but it’s now dead. A grad student cut it down in 1964, possibly by accident—stories vary and no one actually knows why he cut the tree down. The bristlecone pine is now a protected species.

There are other trees estimated to be as old as Methuselah. This includes a yew in North Wales that may be 5,000 years old and is probably at least 4,000 years old, and a cypress in Iran that’s at least 2,000 years old and possibly 5,000 years old. Sequoyahs from western North America, baobabs from Africa, and kauri trees from New Zealand are all documented to live over a thousand years and possibly many thousands of years.

In at least one case, a sacred fig tree in Sri Lanka, we know exactly when the tree was planted. A Buddhist nun brought a branch of the original sacred fig tree, the one that the Buddha was sitting under when he achieved enlightenment, to Sri Lanka and presented it to King Devanampiya Tissa. He planted the branch in the royal park in 288 BCE, where it grew into a tree which remains in the park to this day, more than 2,000 years later. It’s cared for by Buddhists monks and people come from all over Sri Lanka to visit the tree. If this sounds a little too good to be true, the easiest way to grow a sacred fig is to use a cutting from another tree. The cutting will root and grow into a new tree.

Not all trees are individuals. You may not know this and I didn’t either until recently. Some trees grow as colonies. The most well known tree colony is called Pando, made up of quaking aspens that live in Utah in North America. While the individual trees are only around 130 years old on average, Pando itself has been alive for an estimated 80,000 years. Each tree is a male clone and all the trees are connected by a root system that covers 106 acres, or 43 hectares. Because its root system is so huge and deep, Pando is able to survive forest fires that kill all other trees. Pando’s trees die, but afterwards the roots just send up shoots that grow into new trees. Researchers estimate that it’s been 10,000 years since Pando’s trees actually flowered. Unfortunately, Pando is currently threatened by humans stopping the forest fires that otherwise would kill off rival trees, and threatened by grazing livestock that kill off young trees before they can become established.

Pando isn’t the only quaking aspen colony known, though. There are a number of smaller colonies in western North America. Researchers think it’s an adaptation to frequent forest fires and a semi-arid climate that makes it harder for seedlings to grow. Quaking aspens that live in northeastern North America, where the climate is much wetter, grow from seeds instead of forming colonies.

Other species of tree form colonies too, including a spruce tree in Sweden whose root system dates to nearly 10,000 years ago and a pine colony in Tasmania that is about the same age but with individual trees that are themselves 3,000 years old. Not all long-lived plant colonies are trees, though. A colony of sea grass in the Mediterranean may be as much as 200,000 years old although it may be only 12,000 years old, researchers aren’t sure.

I could go on and on about long-lived plants, but let’s get back to the animals. If the Greenland shark is the longest lived vertebrate known, what’s the longest lived invertebrate? Here’s your reminder that a vertebrate is an animal with some form of spine, while an invertebrate has no spine.

Many invertebrates that live in the ocean have long lifespans. Corals of various kinds can live for thousands of years, for instance. The ocean quahog, a type of clam that lives in the North Atlantic Ocean, grows very slowly compared to other clams. It isn’t fully mature until it’s nearly six years old, and populations that live in cold water can live a long time. Sort of like tree rings, the age of a clam can be determined by counting the growth rings on its shell, and a particular clam dredged up from the coast of Iceland in 2006 was discovered to be 507 years old. Its age was double-checked by carbon-14 dating of the shell, which verified that it was indeed just over 500 years old when it was caught and died. Researchers aren’t sure how long the quahog can live, but it’s a safe bet that there are some alive today that are older than 507 years, possibly a lot older.

But the invertebrate that probably lives the longest is the glass sponge. It’s found throughout the world’s oceans, but is especially common in cold waters of the Northern Pacific and Antarctic. It usually grows up to about a foot tall, or 30 cm, although some species grow larger, and is roughly shaped like a vase. Most species are white or pale in color. In some places the sponges fuse together to form reefs, with the largest found so far 65 feet tall, or 20 meters, and nearly four and a half miles long, or 7 km.

The glass sponge is a simple creature with a lattice-like skeleton made of silica covered with porous tissue. It anchors itself to a rock or the ocean floor, frequently in deep water, and as water flows through the openings in its body, it filters microscopic food out. So it basically lives a very slow, very plant-like existence.

One glass sponge, Monorhaphis chuni, anchors itself to the sea floor with a long basal spicule that looks like a stem. This stem can be over nine feet long, or 3 m. It needs to be long because it lives in deep water where there’s a lot of soft sediment at the bottom. In 1986 the skeleton of a dead Monorhaphis was collected from the East China Sea so it could be studied. Since a glass sponge adds layers of skeleton to its basal spicule every year as it grows, you guessed it, the layers can be counted just like tree rings—although it requires an electron microscope to count since the layers are very small. The sponge was determined to be about 11,000 years old when it died. Researchers are able to determine local ocean temperature changes from year to year by studying the rings, just as tree rings give us information about local climate.

Let’s finish with something called an endolith. An endolith isn’t a particular animal or even a group of related animals. An endolith is an organism that lives inside a rock or other rock-like substance, such as coral. Some are fungi, some lichens, some amoebas, some bacteria, and various other organisms, many of them single-celled and all of them very small if not microscopic. Some live in tiny cracks in a rock, some live in porous rocks that have space between grains of mineral, some bore into the rock. Many are considered extremophiles, living in rocks inside Antarctic permafrost, at the tops of the highest mountains, in the abyssal depths of the oceans, and at least two miles, or 3 km, below the earth’s surface.

Various endoliths live on different minerals, including potassium, sulfur, and iron. Some endoliths even eat other endoliths. We don’t know a whole lot about them, but studies of endoliths found in soil deep beneath the ocean’s floor suggest that they grow extremely slowly. Like, from one generation to the next could be as long as 10,000 years, with the oldest endoliths potentially being millions of years old—even as old as the sediment itself, which dates to 100 million years old.

That is way older than Jeanne Calment and all those trees.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 163: Three Weird Fish

Thanks to Nathan for his suggestions! This week we’re going to learn about three strange and interesting fish!

A northern snakehead:

A giant snakehead:

A Greenland shark, fish of mystery:

The upside-down catfish is indeed upside down a lot of the time (this is actually a picture of Synodontis nigriventris, closely related to the upside-down catfish we talk about in the episode):

An ancient Egyptian upside-down catfish pendant that ladies wore in their hair:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We haven’t done a fish episode in a while, so this week let’s learn about three weird fish. Thanks to Nathan for suggesting the first two fish, the snakehead and the Greenland shark.

The snakehead is a freshwater fish that gets its name because while it’s an ordinary-looking fish for the most part, it has a flattened head that looks a little bit like a snake’s. Different species of snakehead look different in other ways, of course, so let’s examine a couple of typical species.

The northern snakehead is native to Asia, but it’s been introduced into other parts of the world by accident or as a food fish. It’s one of the largest species, with reports of some specimens growing up to five feet long, or 1.5 meters. It’s usually no more than three feet long, though, or 1 meter. It’s brown with darker blotches and has sharp teeth that it uses to catch fish, frogs, and other small animals.

Like other snakeheads, the northern snakehead can breathe air and survive out of water for several days as long as it stays damp. Young snakeheads can even wriggle considerable distances on land to find water. It likes stagnant or slow-moving water.

Because it’s a fierce predator that can find its way to new waterways, introduced snakeheads are invasive species that can cause havoc to populations of native fish. The northern snakehead has been introduced into many waterways in the United States in the last twenty years, as a result of people releasing unwanted aquarium fish and accidental release of snakeheads in fish-farming operations. Since snakeheads reach mature age quickly and females can lay thousands of eggs at a time, snakeheads are illegal to own in many places now and release snakeheads into the wild is even more against the law.

The giant snakehead also grows up to five feet long, or 1.5 m, and is from parts of southeast Asia. Young giant snakeheads are red, but when they grow up they’re black and white with a thick black stripe down each side. It’s also been introduced into a lot of places as a food fish and a game fish, but since it’s a tropical species it can’t survive colder weather and isn’t as invasive as a result, at least not outside of tropical and subtropical areas.

The giant snakehead can be aggressive, though, especially when it’s guarding its nest. Both parents act as guards of the eggs and the newly hatched babies, which follow their mother around wherever she goes. That’s actually really cute.

Next let’s talk about the Greenland shark. We covered it briefly in episode 74, about colossal squid and the things that eat them, but mostly we talked about its close relative the sleeper shark. The Greenland shark is similar in some ways but it’s much bigger than the sleeper shark. It lives in the North Atlantic and Arctic Oceans where the water is barely warmer than the freezing point and it grows up to 24 feet long, or 7.3 meters, with females being larger than males.

But despite how enormous it is, it’s not a shark you need to worry about. First of all, what are you doing swimming in water that cold? Second, the Greenland shark is a slow swimmer, no more than about 1 ½ miles per hour, or 2.6 km/h. You can walk faster than that without even trying. You can probably dog-paddle faster than that.

And yet, the Greenland shark manages to eat seals and fish and other animals that move quickly. Since no one’s actually observed a Greenland shark hunting, no one knows how they catch prey. Some researchers speculate that it sneaks up on sleeping seals and grabs them. It also eats a lot of carrion, including dead moose and reindeer and polar bears that fall into the water and drown. One shark was found with an entire reindeer in its stomach.

The Greenland shark spends winter in shallow water where it’s warmer, but in summer it spends more time in deep water. At least one submersible observed a Greenland shark 7,200 feet below the surface of the ocean, or 2,200 meters. Occasionally a Greenland shark travels more widely, usually in deep water where the water is cold. In 2013 one was caught by researchers in the Gulf of Mexico, which is way far away from the Arctic. It was swimming at over 5,700 feet deep, or 1,750 meters.

The Greenland shark is adapted to the cold and pressure of the deep sea in many ways. Its blood contains three types of hemoglobin, which help it absorb as much oxygen as possible from water that’s poorly oxygenated to start with. Its muscles and other tissues contain high levels of urea and other compounds that increase its buoyancy, so that it doesn’t need to work as hard to stay in one place. But the presence of urea in its muscles means that the Greenland shark not only tastes horrible, it’s toxic. In Iceland Greenland sharks are considered a delicacy, but only after the toxins have been removed from the meat by long treatment. This includes burying it in the ground for weeks, partially fermenting it, and drying it for several months afterwards. Most people don’t bother and any commercial fishing boats that catch Greenland sharks just toss them back overboard.

The Greenland shark has a very slow metabolism and grows extremely slowly too. That’s okay, though, because it lives a very long time. A VERY long time. The biggest Greenland sharks may be as much as 600 years old. Researchers examine the crystals in dead Greenland shark eyeballs to determine when they were hatched.

And speaking of Greenland shark eyeballs…some of you know where this is going. I hope you’re not eating grapes or anything right now. There’s a type of copepod, a crustacean, that acts as a parasite of the Greenland shark and the Pacific sleeper shark, its close relative. The copepod grows to about an inch long, or 28 mm, and attaches itself to the shark’s cornea, which is part of the eyeball. This impairs the shark’s vision but it doesn’t seem to care and it doesn’t seem to have any trouble finding food.

Okay let’s stop talking about that. Our third and final weird fish for this episode is a type of catfish that’s sometimes kept in aquariums. It’s called the upside-down catfish.

There are actually a number of closely-related catfish known as upside-down catfish, but the one we’ll talk about today is Synodontis batensoda. It lives in parts of Africa in marshy areas and slow-moving water. It grows to a little over a foot and a half long, or 50 cm, and eats plankton, algae, mollusks, insects and larvae, and crustaceans.

But the upside-down catfish gets its name from its habit of swimming upside down. Because it’s kept as an aquarium fish so often, many people assume that the upside-down swimming is something it developed because it’s kept in an enclosed aquarium habitat. But that’s actually not the case.

The catfish used to be well-known in Egypt, and there’s even an Egyptian tomb carving depicting a catfish swimming upside down, dating to the Middle Kingdom around 4,000 years ago. The upside-down catfish was often depicted in jewelry, too, including hair ornaments so beautifully made that the species of catfish can be determined. Young women in Egypt traditionally wore fish ornaments to decorate their braids. There’s a story about one young woman who was helping row a king across a lake when her fish pendant fell into the water. She stopped rowing, naturally, which messed up the other rowers. The king wanted to know why the boat had stopped, and when the woman explained, he offered to give her a new fish pendant. But no, she said, she wanted that one, the one that was now at the bottom of the lake. But the king had a magician who said no problem, and caused the water to fold back like a blanket, exposing the lake’s bottom so the pendant could be retrieved. I didn’t make that story up, either. It’s from the Westcar Papyrus that dates to around the 17th century BCE.

So why does the upside-down catfish swim upside down? Like other catfish, its mouth is angled downward so it can find food in the mud at the bottom of the water. So when it wants to grab an insect on the water’s surface, or eat algae off the bottom of a submerged leaf, it can only do so by turning upside down.

So that’s it for this week’s episode. I don’t know what else to say because I’m just sitting here trying to imagine how I’d manage if someone told me I had to swim upside down. But then, I can barely swim right side up. Good job, upside-down catfish!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes for as little as one dollar a month.

Thanks for listening!

Episode 153: The White River Monster

Let’s start out the new year with a bona fide mystery animal, the White River Monster from Arkansas! Is it a real animal? If so, is it a known animal or something new to science? If it’s a known animal, what could it be? Lots of questions, maybe a few answers! Happy new year!

Further listening:

MonsterTalk

The not exactly useful picture supposedly of the White River Monster, taken in 1971:

A northern elephant seal, AKA Mr. Blobby:

A Florida manatee:

A bull shark:

Two bottlenose dolphins:

An alligator gar (below) and a human (above):

Alligator gar WEIRD FISH FACE:

Gulf sturgeon:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

If you’ve listened to the final episode of 2019 last week, you’ll remember it was about some mystery water animals of various kinds. Well, I’ve got another water mystery for you today to start off the new year, the White River monster. I heard about this one in a recent episode of MonsterTalk, which is a great podcast I recommend if you don’t already listen to it.

The White River is in North America, originating in the mountains in northwestern Arkansas and flowing from there through Missouri, then back into Arkansas where it joins the Mississippi River. In 1915 a man near the small town of Newport, in the central Ozarks region of Arkansas, saw an enormous animal with gray skin in the river.

A few other people saw it too, but it wasn’t until July of 1937 that things really heated up. The monster returned, and this time a lot of people saw it. News of it hit the local papers and spread throughout the country, and people started showing up to look for it. Some people came prepared to kill or catch it while others just wanted to see it.

Estimates of the monster’s size varied quite a bit. A man named Bramlett Bateman, who owned a lot of the farmland along that stretch of the river, was quoted in several newspaper articles. He described the monster as being the length of three cars in one article, but in another his estimate was smaller, only 12 feet long, or 3.7 m, and four or five feet wide, or 1.2 to 1.5 meters. But it doesn’t seem that he or anyone else got a really good look at it.

It was described by numerous people as being gray-skinned. Bateman said it had “the skin of an elephant…with the face of a catfish.” I dug into as many original newspaper articles as I could find without actually paying for access to them, and very few of them have a real description of the animal. The only description given in a New York Times article from July 23, 1937 is this:

“Half a dozen eye-witnesses…reported seeing a great creature rise to the surface at rare intervals, float silently for a few minutes and then submerge, making its presence known only by occasional snorts that bubbled up from the bottom.”

Another article quotes Bateman as saying he saw the monster “lolling on the surface of the water.”

Bateman decided he was going to blow the monster up with dynamite. What is it about people whose go-to solution to seeing an unidentified animal is to throw dynamite in the water? The local authorities said, uh no, you cannot just throw dynamite into the river, but other people brought machine guns and other weapons and patrolled the river looking for the monster. A plan to make a giant net and catch the monster petered out when people found out that making and deploying a net that big is expensive and difficult.

The monster was mostly reported in an eddy of the river that stretched for about a mile and was unusually deep, about 60 feet deep, or 18 meters. The river is about 75 feet wide at that point, or 23 meters. The Newport Chamber of Commerce hired a diver from Memphis named Charles B. Brown, who brought an eight-foot harpoon with him when he descended into the river. He didn’t find anything, but the tourists had fun.

Suggestions as to what the monster might be ranged from a sunken boat that sometimes bobbed briefly to the surface to a monstrous catfish. Many people were convinced it was a huge fish of some kind, especially an alligator gar.

Eventually sightings tapered off and the excitement died down until June of 1971, when it started being seen again. Again the size estimates were all over the place, with one witness saying it was the size of a boxcar, which would be about 50 feet long, or 15 meters, and 9 feet wide, or 2.8 meters. Another witness said it was only 20 feet long, or 6 meters. Some witnesses said it had smooth skin that looked like it was peeling all over, had a bone sticking out of its forehead, and it made sounds that one witness described as similar to both a horse’s neigh and a cow’s moo. On July 5, 1971, three-toed tracks 14 inches long, or 36 cm, were also found on an island together with crushed plants that showed a huge animal had come out of the water.

This time, at least, no one tried to dynamite or even net the monster. Instead, in 1973 Arkansas passed a law creating the White River Monster Refuge along that section of the river, to protect the monster. But no one has seen it since.

There is a photo of the monster taken in 1971, but it’s a blurry Polaroid that was reproduced in a newspaper and the original lost. The photo was taken by a man named Cloyce Warren, who was out fishing with two friends. Warren said it had “a spiny ridged backbone and [was] splashing all around.”

So what could the White River Monster be? Is it a misidentified known animal, a completely unknown animal, or just a hoax?

Obviously people are seeing something in that part of the White River. But it’s reportedly so big that if there was a population living anywhere in the river, it would be spotted all the time. So maybe it’s an animal that only sometimes strays into the White River and actually lives in the much larger Mississippi River—or even in the Gulf of Mexico, where it sometimes swims upriver.

Cryptozoologists and other interested people have made suggestions over the years. One suggestion is that it’s an elephant seal. The northern elephant seal is an enormous animal, although it’s nowhere near 50 feet long. The male is much larger than the female, up to 16 feet long, or 4.8 meters, and bulky with blubber that keeps it warm when diving deeply for food in the Pacific Ocean where it lives.

But wait, the Pacific Ocean? You mean it doesn’t live in the Gulf of Mexico?

Nope, the endangered elephant seal only lives in the Pacific. And the Pacific Ocean is separated from the Gulf of Mexico by a whole lot of the North American continent.

A man named Joe Nickell, who’s a paranormal investigator and who was interviewed on MonsterTalk episode 204, has suggested the White River Monster is a manatee—specifically the Florida manatee, which is a subspecies of West Indian manatee. In the winter it mostly lives around Florida but in summer many individuals travel widely. It’s sometimes found as far north as Massachusetts along the Atlantic coast, and as far west as Texas in the Gulf of Mexico.

The manatee is large, up to 15 feet long, or 4.6 meters, with females being somewhat larger than males. Its skin is gray but since it moves slowly, it can look mottled in color due to algae growing on its skin, and it sometimes also has barnacles stuck to it the way some whales do. It has a pair of front flippers with three or four toenails, no hind legs, and a paddle-like tail. It eats plants and only plants, and is completely harmless to humans, fish, and other animals. Also because it moves slowly and spends a lot of time at the surface, since it’s a mammal and has to breathe air, it’s vulnerable to being injured by boats.

In the 1970s there were only a few hundred manatees alive and it nearly went extinct. It was listed as an endangered species and after a lot of effort by a lot of different conservation groups, it’s now only considered threatened. So while people might recognize a manatee these days, back in the 1970s it was practically unknown everywhere except southern Florida since it was so rare. And in the decades before 1971, people didn’t travel as much and didn’t know much about increasingly rare animals that didn’t live in their particular part of the world.

In other words, it’s completely possible that people from Arkansas would see a manatee in 1915, 1937, and 1971 and not know what it was. But could a manatee really travel that far from the ocean and survive?

The Mississippi River empties into the Gulf of Mexico in Louisiana in the United States. Texas is to the west of Louisiana, then Mississippi, Alabama, and Florida to the east. In other words, it’s well within the known range of the Florida manatee. Manatees are known to sometimes travel up the Mississippi. This happened most recently in October of 2016 when a manatee traveled as far as Memphis, Tennessee before it was found dead in a small lake connected to the river. That’s a distance of 720 miles, or 1,158 km, and that was with wildlife officials trying to capture it to return it to the Gulf. That same year a manatee also traveled as far as Rhode Island along the Atlantic coast. Memphis is actually much farther up the Mississippi than the White River is, so if the manatee had branched off into the White River it might have led to new sightings of the White River Monster.

The manatee can live in fresh water perfectly well. One species, the Amazonian manatee, is a fully freshwater animal that never leaves the South American rivers where it lives. But despite its size, the manatee doesn’t have a lot of blubber or fat to keep it warm. The farther away it travels from warm water, the more likely it is to die of cold.

But while an errant manatee might explain some White River Monster sightings, it doesn’t fit with all of them. Other animals from the Gulf of Mexico sometimes find their way up the Mississippi too. It’s a huge river, and since an ocean animal doesn’t understand what a river is, it doesn’t know it’s never going to reach the ocean again unless it turns around. Most marine animals can’t survive for long in fresh water, but some animals, like the manatee, can tolerate fresh water much better. That’s also the case for the bull shark.

In 1937, the same year the White River Monster was spotted for the second time, a five-foot bull shark, or 1.5 meters, was caught in Illinois, which is even farther upstream from the Gulf of Mexico than Tennessee and Arkansas. Bull sharks live throughout much of the world’s oceans in warmer water near coasts and are often found in rivers and lakes, although they don’t live as long in fresh water as they do in salt water. The largest bull shark ever measured was 13 feet long, or 4 meters, so a large one is about the size of a manatee.

Occasionally a dolphin travels up the Mississippi River, but marine dolphins can’t survive for long in fresh water and will die soon if they can’t make their way back to the ocean. A dolphin in fresh water starts to develop skin lesions and then the skin begins to peel, leading to bacterial infection and death. Remember that some witnesses in 1971 described the White River Monster as a gray animal with peeling skin.

Nine different species of dolphin and many species of whale live in the Gulf of Mexico. Of those, only the bottlenose dolphin lives close to the coast and is usually the species that accidentally travels into fresh water and can’t find its way out. The bottlenose dolphin isn’t any larger than the manatee, up to about 13 feet long, or 4 meters.

1971 was an active hurricane year, including the category 5 Hurricane Edith that killed 37 people in mid-September. Marine animals that can travel quickly, like dolphins and sharks, will flee to calmer waters when a hurricane approaches, and while that usually means out to sea, it wouldn’t be out of the question for a frightened dolphin or other large marine animal to make its way into the Mississippi by accident ahead of a hurricane, especially a hurricane as big as Edith.

Another possible identity for the White River Monster is one that was suggested in 1937, the alligator gar. It’s a freshwater fish that lives throughout the Mississippi River and other rivers and lakes in the southern United States and parts of northern Mexico. The alligator gar gets its name because of its toothy jaws, which do resemble an alligator’s, and it can grow up to ten feet long, or 3 meters. It’s a really weird fish and eventually I’ll probably do a full episode on it and its relatives, just as I have a full episode planned about the manatee. It has gills like other fish, but it can also breathe air through its swim bladder, which is lined with lots of blood vessels that absorb oxygen. Every so often an alligator gar will come to the surface and gulp air to replenish the oxygen in its swim bladder, so it would be seen at the surface briefly but periodically as was described by many witnesses. This is also the case for the manatee and dolphin, who breathe air.

The alligator gar is an ambush predator, which means it waits in the water without moving much at all until an animal approaches. Then it shoots forward and grabs it. It mostly eats small fish, invertebrates of various kinds, and waterfowl like ducks.

The final possibility of the White River Monster’s identity is the gulf sturgeon. It’s a subspecies of the Atlantic sturgeon that lives in the Gulf of Mexico, although it’s also known from various rivers in the southeastern United States. The reason it’s found in rivers is that the gulf sturgeon is anadromous [a-NADro-mus], the term for a fish that migrates from the ocean into fresh water to spawn. The salmon is the most famous anadromous fish, which fights its way upriver to spawn and then die. In the case of the gulf sturgeon, it hatches in fresh water and lives there for the first two years or so of its life before making its way downstream to the ocean. Then it returns to freshwater to spawn every spring, usually the same river where it was hatched, and goes back to the ocean in autumn.

The gulf sturgeon fits a lot of the descriptions of the White River Monster sightings. It’s covered with five rows of scutes that project from the back and sides in a sort of low sawtooth pattern, which fits the “spiny ridged backbone” that Cloyce Warren reported seeing in 1971, and its elongated snout has sensory barbels like a catfish, which matches Bramlett Bateman’s 1937 description of the monster having the face of a catfish. It’s gray, gray-green, or brownish in color with a lighter belly, and it can grow up to 15 feet long, or 4.5 meters, although most are about half that length.

The gulf sturgeon usually migrates in groups, but occasionally one can get separated from its group and find its way into a stretch of water by itself. It also doesn’t eat much during the summer when it’s in freshwater. In the winter it lives just off the coast in shallow water, where it’s a bottom feeder. It sucks up invertebrates from the sea floor, feeling for them with their barbels. It gains lots of weight during the winter and then loses it all in the summer. Sturgeons do sometimes jump out of the water, especially in summer–as much as fix feet out of the water. No one’s sure why. Also during the summer, the sturgeon makes a sound like a creaky hinge.

I think it’s probable that the White River Monster sightings are of more than one type of animal, and while we can make an educated guess as to which animals might have been spotted and misidentified, we can’t know for sure. So while at least some of the sightings may have been of a manatee or a gulf sturgeon or another of the animals we talked about today, there’s also the possibility that something else occasionally swims up the Mississippi from the Gulf and into the White River. Hopefully, next time the White River Monster appears, someone gets a really good look at it and some good pictures so we know for sure.

This is what a sturgeon sounds like, by the way:

[sturgeon creaky sound]

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 152: The Freshwater Seahorse and Other Mystery Water Animals

This week let’s look at some (mostly) smaller mystery animals associated with water! Thanks to Richard J., Janice, and Simon for the suggestions!

Further reading:

What Was the Montauk Monster?

The black-striped pipefish. Also, that guy has REALLY BIG FINGERTIPS:

The Pondicherry shark, not looking very happy:

A ratfish. What BIG EYES you have!

The hoodwinker sunfish, weird and serene:

The Montauk monster, looking very sad and dead:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Let’s finish off the year with an episode about a few mystery animals, specifically a few mystery animals associated with water. Thanks to Richard, Janice, and Simon for the suggestions!

We’ll start off with a mystery suggested by Richard J, but not the Richard J. who is my brother. A different Richard J. Apparently half the people who listen to my podcast are named Richard, and that’s just fine with me.

Richard wanted to know if there are there such things as freshwater seahorses. We’ve talked about seahorses before in episode 130, but seahorses are definitely marine animals. That means they only live in the ocean. But Richard said he’d heard about a population of seahorses native to Lake Titicaca in Bolivia, which is in South America. I put it on my suggestions list, but Richard was on the case. He sent me a link to an article looking into the mystery, which got me really intrigued, so I bumped it to the top of my list. Because I can do that. It’s my podcast.

Freshwater seahorses are supposedly known in the Mekong River and in Lake Titicaca, and sometimes you’ll see reference to the scientific name Hippocampus titicacanesis. But that’s actually not an official scientific name. There’s no type specimen and no published description. Hippocampus is the generic name for many seahorse species, but like I said, they’re all marine animals and there’s no evidence that any live in freshwater at all. Another scientific name supposedly used for the Mekong freshwater seahorse is Hippocampus aimei, but that’s a rejected name for a seahorse named Hippocampus spinosissimus, the hedgehog seahorse. It does live in parts of the Indo-Pacific Ocean, including around Australia, especially in coral reefs, and sometimes in the brackish water at the Mekong River’s mouth, but not in fresh water.

On the other hand, there’s no reason why a seahorse couldn’t adapt to freshwater living. A few of its close relatives have. There are a few species of freshwater pipefish, and in the world of aquarium enthusiasts they are actually sometimes called freshwater seahorses. The pipefish looks like a seahorse that’s been straightened out, and most of them are marine animals. But some have adapted to freshwater habitats.

This includes the black-striped pipefish, which is found off the coasts of much of Europe but which also lives in the mouths of rivers. At some point it got introduced into the Volga River and liked it so much it has started to expand into other freshwater lakes and rivers in Europe.

The pipefish is closely related to the seahorse, but while it does have bony plates like a seahorse, it’s a flexible fish. It swims more like a snake than a fish, and it can anchor itself to vegetation just like a seahorse by wrapping its tail around it. It mostly eats tiny crustaceans and newly hatched fish, since it swallows its food whole. It usually hides in vegetation until a tiny animal swims near, and then it uses its tube-shaped mouth like a straw to suck in water along with the animal. Just like the seahorse, the male pipefish has a brooding pouch and takes care of the eggs after the female deposits them in his pouch.

So where did the rumor that seahorses live in the Mekong come from? The Mekong is a river in southeast Asia that runs through at least six countries, including China, Thailand, Cambodia, and Vietnam. Parts of it are hard to navigate due to waterfalls and rapids, but it’s used as a shipping route and there are lots of people who live along the river. Like all rivers, it’s home to many interesting animals, including a type of giant softshell turtle that can grow up to six feet long, or 1.8 meters, a type of otter, a bunch of enormous fish, including three species of catfish that can grow up to almost ten feet long, or 3 meters, and a giant freshwater stingray that can grow up to 16 feet long, or 5 meters, and of course lots more animals that aren’t as big or as impressive, but which are still important to the river’s biodiversity. But there’s no evidence of seahorses anywhere throughout the Mekong’s 2700 mile length, or 4,350 km.

But there is a hint about where the rumor of a Mekong seahorse could have come from. One researcher named Heiko Bleher chased down the type specimens of the supposed Mekong seahorse in a Paris museum, which were collected in the early 20th century by a man named Roule. Roule got them in Laos from a fisherman who had nailed the dried seahorses to his fishing hut. The fisherman told Roule the seahorses were from the Mekong, but when they were further studied in 1999 Roule’s specimens were discovered to actually be specimens of Hippocampus spinosissimus and Hippocampus barbouri. Both are marine fish but do sometimes live in brackish water at the mouth of the Mekong. So the fisherman wasn’t lying, but Roule misunderstood what he meant.

As for the freshwater seahorse supposedly found in Lake Titicaca, that one’s less easy to explain. Titicaca is a freshwater lake in South America, specifically in the Andes Mountains on the border of Bolivia and Peru. It’s the largest lake in South America and is far, far above the ocean’s surface—12,507 feet above sea level, in fact, or 3,812 meters. It’s also extremely deep, 932 feet deep in some areas, or 284 meters. It’s home to many species of animal that live nowhere else in the world. Why couldn’t it be home to a freshwater seahorse too?

Titicaca was formed when a massive earthquake some 25 million years ago essentially shoved two mountains apart, leaving a gap—although technically it’s two gaps connected with a narrow strait. Over the centuries rainwater, snowmelt, and streams gradually filled the gaps, and these days five rivers and many streams from higher in the mountains feed water into the lake. Water leaves the lake by the River Desaguadero and flows into two other lakes, but those lakes aren’t connected to the sea. Sometimes they dry up completely. So Titicaca isn’t connected to the ocean and never was, and even if it was, seahorses are weak swimmers and would never be able to venture up a river 12,000 feet above sea level. Some 90% of all fish in the lake are found nowhere else in the world. There’s just simply no way a population of seahorses could have gotten into the lake in the first place, even if they could survive there.

That doesn’t mean there aren’t any freshwater seahorses out there ready to be discovered, of course. But I don’t think you’re going to find any in Lake Titicaca. And I have no idea how the rumor got started that any live there.

From a tiny seahorse let’s move on to a small shark, another topic suggested by Richard J. The Pondicherry shark grows to about 3.3 feet, or 1 meter, and once lived throughout the Indo-Pacific, especially in coastal waters. It’s considered critically endangered, but it’s so rare these days that we hardly know anything about it except that it’s harmless to humans, eats small fish and other small animals, and was once common. But until the mid-2010s, scientists were starting to worry it was already extinct. Then in 2016 two different Pondicherry sharks were photographed in two different places—and not where anyone had expected to find it. Some tourists took a photo of one in a river called the Menik and a freshwater fish survey camera caught a photo of one in the Kumbuk River. Both rivers are in Sri Lanka. Since then researchers have spotted a few more. The shark is protected, and hopefully the excitement around the shark’s rediscovery has helped people in the area learn about it so they know not to bother it. Some sharks tolerate fresh water and brackish water quite well, so it’s not surprising that the Pondicherry shark has moved into the rivers where it has less competition from commercial fishing boats.

Our next water mystery is actually not really a mystery, just a really strange-looking fish related to sharks. This one was suggested by my aunt Janice who doesn’t actually listen to the podcast but who likes to send me links to strange animal articles that she comes across on the internet. This one is called Chimaera Monstrosa, sometimes called the rat fish.

The rat fish mostly lives in the deep sea, although it’s sometimes seen in shallower water, and can grow up to 5 feet long, or 1.5 meters. It’s mostly brown but has white markings. Its body looks more or less like a regular plump shark-like fish, but it has great big round green eyes, relatively long pectoral fins, and a very long tail that tapers to a point. The tail gives it its common name, since it kind of resembles a rat’s tail. It eats whatever it can catch on the ocean floor, including crustaceans and echinoderms.

Ratfish, and other chimaeriformes, are most closely related to sharks, and like sharks they have skeletons that are made of cartilage instead of bone. Since they’re rarely seen and look really weird, every so often someone catches one and posts about it online, and then my aunt sends me a link. They are really interesting fish, though.

Simon also sent me an article about an interesting fish a while back, the hoodwinker sunfish. We talked about the sunfish, or mola mola, in episode 96. The hoodwinker sunfish, or mola tecta, was only discovered in 2017 despite its large size. So far it’s known to live in the South Pacific around New Zealand, Australia, South Africa, and Chile, but only off the southernmost parts of those countries. But in early 2019 one washed up in Southern California.

The mystery sunfish was measured at almost 7 feet long, or 2.1 meters. An intern at the University of California at Santa Barbara found it, but didn’t know what it was. But once photos of the fish were posted online, two experts from Australia recognized it immediately—but because it showed up so far out of its known range, they were cautious about IDing it from just a photo. That’s despite the fact that one of the experts, Marianne Nyegaard, was actually the person who named the species. She asked for samples and more photos, and when she got the results, it really was a hoodwinker sunfish. But what was it doing in the warm waters of the northern Pacific instead of the cold southern waters? No one knows except the sunfish.

Let’s finish with another mystery animal you may have heard of. On July 12 or 13, 2008, depending on which source you consult, three friends visited Ditch Plains Beach, two miles away from the little town of Montauk in New York state in eastern North America. It was a hot day and the beach was crowded, and when the three noticed people gathered around something, they went to look too. There they saw a weird dead animal that had obviously washed ashore. One of the three took a picture of it, which appeared in the local papers and then the local TV news along with an interview with the three. From there it went viral and was dubbed the Montauk monster.

The monster was about the size of a cat, but with shorter legs and a chunkier body, and a relatively short tail. It didn’t have much hair but it did have sharp teeth, and the front part of its skull was exposed so that it almost looked like it had a beak. Its front paws were elongated with long fingers, almost like little hands.

So what was the monster? People all over the world made guesses, everything from a sea turtle without a shell to a diseased dog or just a hoax. Some people thought it was a mutant animal that had been created in a lab on one of the nearby islands, escaped, and died trying to swim to the mainland.

But while no one knows what happened to the animal’s body, scientists have studied the photo and determined that it was probably a dead raccoon that had been washed into the ocean. The waves had tumbled the animal’s body around through the sand long enough to rub off most of its remaining fur and some of its facial features, and then it washed ashore during the next high tide. It was also somewhat bloated due to gases building up inside during decomposition. It’s the animal’s teeth and paws that made the identification possible, since both match a raccoon’s exactly. Remember that raccoons have clever front paws that help them open locking trash bins, as we learned in episode 138.

So the Montauk monster isn’t actually a mystery, except what happened to it, but don’t be discouraged. There are still lots of genuinely mysterious animals in the ocean, from misplaced sunfish to creatures no one has ever seen yet. Maybe you’ll be the one to discover them.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at Patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 151: Fossils with other fossils inside

Thanks to Pranav who suggested this week’s amazing topic, animals that fossilized with the remains of their last meal inside!

Indrasaurus with a lizard inside. Yum!

Baryonyx:

Rhamphorhynchus (left, with long wing bones) and its Fish of Doom (right):

The fish within a fish fossil is a reminder to chew your food instead of swallowing it alive where it can kill you:

The turducken of fossils! A snake with a lizard inside with a bug inside!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a listener suggestion from Pranav, who has sent me so many amazing suggestions that he has his own page on the ideas spreadsheet. When he emailed me about this one, he just suggested cool fossils, but the links he provided had a really interesting theme that I never would have thought about on my own. This week we’re going to learn about some fossil animals that have fossils of their last meal inside them!

We’ll start with a recent discovery of a new microraptor species, Indrasaurus wangi, which lived about 120 million years ago. It was an interesting animal to start with, because it had arms that were very similar to bird wings, although with claws, but its hind legs also had long feathers that made it almost like a four-winged animal. It was found in 2003 in northeastern China, but when researchers were studying it in 2019 they found something amazing. Not only did it have an entire lizard skeleton where its stomach once was, showing us that it swallowed its prey whole, the lizard itself was a species new to science.

We know what else Indrasaurus ate because more Indrasaurus fossils have been found in the area, many of them so well preserved that its fossilized stomach contents have been preserved too. It ate mammals, birds, lizards, and fish—basically anything it could catch.

Another species that was similar to Indrasaurus, called Anchiornis, also called a four-winged bird-like dinosaur, was found with what appears to be a gastric pellet in its throat. The pellet contains the bones of more than one lizard and was probably ready to be horked up the way many carnivorous birds still regurgitate pellets made up of the indigestible parts of their prey, like bones, scales, and fur.

The fossilized remains of food inside a fossilized organism has a term, of course. It’s called a consumulite. It’s a type of bromalite, which is a broader term for any food or former food found in a fossilized organism’s digestive tract. The term bromalite also includes coprolites, which are fossilized poops.

Naturally, it requires a high degree of preservation for consumulites to form, and a high degree of skill to reveal the often tiny and delicate preserved details. And consumulites are important because they let us know exactly what the animal was eating.

Consumulites aren’t limited to prey animals, either. A small armored dinosaur, a type of ankylosaur, called Kunbarrasaurus, which lived around 115 million years ago in what is now Australia, was a herbivore. The type specimen of the species, which was described in 2015, was incredibly well preserved—almost the entire skeleton, most of its body armor, and the contents of its stomach. Paleontologists can determine not just what kinds of plants it had eaten—which include ferns and seeds—but how it was processing its food. Most herbivorous dinosaurs swallowed leaves and other plant parts whole, then crushed the food in a powerful gizzard or gizzard-like organ along with rocks or grit. The rocks helped break up the plant material, and we have lots of these rocks associated with fossilized dinosaurs. The rocks are called gastroliths and are usually worn smooth. But Kunbarrasaurus didn’t have any gastroliths, and the plant material was so well preserved that researchers could see the cut ends of the plants where Kunbarrasaurus had bitten them. And all the pieces were small. Kunbarrasaurus therefore probably chewed its food, which meant it also probably had lips and cheeks of some kind to help keep the food in its mouth while it was chewing.

Another example of an animal with a consumulite that helped solve a mystery about its diet is Baryonyx. Baryonyx is a type of spinosaurid, a theropod dinosaur that grew at least 33 feet long, or 10 meters. It was discovered in 1983 in Surrey, England, and was described in 1986. It lived around 125 million years ago. It walked on its hind legs and probably used its arms to tear its prey into bite-sized pieces, because its first finger had a huge claw 12 inches long, or 31 cm.

But its skull was the real puzzle. Most theropods are meat-eaters, although a few evolved to eat plants. But Baryonyx had a long, relatively slender snout with a lot of close-growing teeth, and a sort of bulb at the end of its snout called a rosette. It looks more like the skull of a crocodilian called a gharial than a theropod. But as far as anyone knew when Baryonyx was discovered, there were no fish-eating theropods.

Until 1997, that is, when paleontologists studying Baryonyx spotted some overlooked details. In addition to a gastrolith in its belly area, they found some fish scales and teeth that showed evidence of being damaged by digestive acids. It probably hunted by wading through shallow water like a heron, catching fish and other animals with its long toothy snout.

It’s not just dinosaurs that are found with consumulites. Animals of all kinds eat all the time, so as long as the conditions are right to fossilize the remains of an animal, there’s a chance that whatever food was in the digestive tract might fossilize too. For instance, the same part of China that has yielded amazingly well preserved feathered dinosaurs has also produced other animals—including a carnivorous mammal called Repenomamus that grew more than three feet long, or one meter. I think we’ve talked about Repenomamus before, because we have evidence that it actually ate dinosaurs—at least baby ones, or it might have scavenged already dead dinosaurs. Either way, it lived around 125 million years ago and was shaped sort of like a badger with a long tail, although it wasn’t related at all to badgers or any other modern mammal. It probably laid eggs like monotremes still do. The reason we know what Repenomamus ate is because one specimen was found with pieces of a young Psittacosaurus in its stomach.

In at least one case it’s hard to tell which animal should be considered the eater and which should be considered the eaten. A fossil slab found in Southern Germany and described in 2012 contains a Rhamphorhynchus associated with two different fish.

Rhamphorhynchus lived around 150 million years ago and was a type of pterosaur with a long tail. Its wingspan was about six feet across, or 1.8 meters. It mostly ate fish, which it probably caught not by flying down to grab fish out of the water, like eagles do, but by floating like a goose and diving for fish. It had large feet and short legs, which would have helped it take off from the water just like a goose.

A fish that lived at the same time as Rhamphorhynchus was called Aspidorhynchus, and it grew up to two feet long, or 60 cm. It had long jaws filled with teeth, with the upper jaw, or rostrum, extending into a pointy spike.

In the fossil found in Germany, a Rhamphorhynchus has a small fish in its throat that it had probably just caught. While it was still swallowing it, an Aspidorhynchus fish attacked! But things obviously went wrong for everyone involved. Researchers suggest that the fish’s rostrum cut right through the flying membrane of Rhamphorhynchus’s left wing. The fish bit down but its teeth became tangled in the tissue. It started thrashing to free itself and Rhamphorhynchus was thrashing around too trying to get away, which only got them more tangled up together. The fish dived, drowning Rhamphorhynchus, and the weight of its body dragged Aspidorhynchus into deep water where there wasn’t enough oxygen for it to survive. It died too, and its heavier body lay partially across Rhamphorhynchus, holding it down so it wouldn’t drift away. The fossil shows Rhamphorynchus, Aspidorhynchus, and the tiny fish that Rhamphorhynchus never did get to finish swallowing.

Another fish, Cimolichthys, lived around 75 or 80 million years ago and grew a little over six feet long, or two meters. Its body was heavily armored by large scutes and it had several rows of teeth. It may have been related to modern salmon. It lived in what is now North America and Europe, and ate fish and squid. We know it ate fish and squid because, of course, we have the remains of various last meals found with preserved fossil Cimolichthys. For instance, one specimen was found with the internal shell of a cephalopod lodged in its throat. Researchers suspect the fish had tried to swallow a Tusoteuthis that was too big to fit down its throat. The Tusoteuthis got stuck and blocked the flow of water over the fish’s gills, basically drowning it. Tusoteuthis, by the way, could possibly grow up to 36 feet long, or 11 meters, although that depends on whether it had long feeding tentacles like modern squid or not. If it didn’t have long feeding tentacles, it was probably only about 19 feet long, or 6 meters, which is pretty darn big anyway. I wouldn’t want to have to swallow that thing whole. Not even if it was deep-fried first.

Another fish called Xiphactinus, which grew up to 20 feet long, or 6 meters, lived in the late Cretaceous period. It died out at the same time as the non-avian dinosaurs. It had massive fangs and was a terrifying predator, but sometimes that backfires. The fossil of a 13 foot, or 4 meter, Xiphactinus was found with a 6 foot long, or 1.8 meter, fish called Gillicus inside it. Paleontologists think Xiphactinus swallowed its prey whole, which thrashed around so much inside it that it ruptured an organ and killed the predator fish. Both fish sank to the bottom of the shallow Western Interior Seaway in North America until it was discovered in 1952.

Let’s finish with two even more incredible fossils. In 2008 paleontologists found a fossilized freshwater shark they dated to 250 million years ago. Right before it died, it had eaten two animals called temnospondyls. Temnospondyls were common animals, with many species found throughout the world, and researchers still aren’t sure if they were the ancestors of modern amphibians or a similar type of animal that died out without any descendants. One of the temnospondyls that the shark ate had the well digested remains of a spiny fish in its stomach.

But a few years later researchers in Germany found something even better. It’s a fossilized snake called a Palaeopython, related to boas. It was about three feet long, or one meter, and was still young. If it had lived to grow up, it would have doubled in size. It lived in trees but also hunted along the edges of rivers and lakes. About 48 million years ago, this particular snake caught a lizard that’s related to modern basilisk lizards. It swallowed the lizard headfirst. But then the snake died, possibly asphyxiated by a cloud of carbon dioxide from the volcanic lake nearby. We have a lot of incredibly detailed fossils from that lake, known as the Messel Pit.

Researchers aren’t sure how the snake made it into the lake. Maybe it was already in the shallow water when it died, or on the bank, and a wave washed it into the water. Maybe the wave was actually what killed the snake, washing it into the lake where it drowned. However it died, it sank into deep water and was covered in sediment that preserved it. Then, 48 million years later, paleontologists found it.

When the fossil was cleaned and prepared for study, researchers found that the lizard was preserved inside it. But there was another surprise inside the lizard! Right before it had been eaten by the snake, the lizard had eaten an insect. And the insect was so well preserved that researchers could tell it had an iridescent exoskeleton.

If I was fossilized right now, paleontologists from the far future would find a lot of chocolate in my stomach. Happy holidays to everyone, whatever your reason for celebrating at this time of year!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!