Episode 243: Bats and Rats

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Don’t forget the Kickstarter, as if I’d let you forget it: https://www.kickstarter.com/projects/kateshaw/beyond-bigfoot-and-nessie

Let’s pre-game Halloween and monster month with an episode about some Halloween-y bats and rats! Thanks to Connor for the suggestion!

Further reading:

Meet Myotis nimaensis

Hyorhinomys stuempkei: New Genus, Species of Shrew Rat Discovered in Indonesia

Fish-eating Myotis

The orange-furred bat is Halloween colored!

The hog-nosed rat has a little piggy nose and VAMPIRE FANGS:

The fish-eating bat has humongous clawed feet:

The crested rat does not look poisonous but it is:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re getting ready for October by talking about a bat suggested by Connor, along with another type of bat and two rats. It’s the bats and rats episode ushering us into Monster Month with style!

Don’t forget that our Kickstarter for the Strange Animals Podcast book goes live in just over a week! I know, it hasn’t even started yet and I’m already shouting all about it, but I’m excited! There’s a link in the show notes if you want to click through and bookmark that page.

Also, I have a correction from our recent squirrel episode. Nicholas wrote to let me know that vitiligo isn’t actually a genetic condition, although some people are genetically slightly more likely to develop it. I think that’s what caused my confusion. Vitiligo can be caused by a number of things, but it’s still true that you can’t catch it from someone. I’ll include a more in-depth correction in next year’s updates episode.

Okay, let’s start this episode off with Connor’s suggestion. Connor told me about a newly discovered bat called Myotis nimbaensis, and it’s not just any old bat. It’s a Halloween bat! Its body is orange and its wing membranes are black. It’s called the orange-furred bat and it lives in the Nimba Mountains of Guinea in West Africa.

The orange-furred bat was only discovered in 2018, when a team of scientists was exploring abandoned mine shafts in the mountains, looking for the critically endangered Lamotte’s roundleaf bat. The team was surveying the bats in cooperation with a mining company and conservation groups, because they needed to know where the bats were so the old mine shafts could be repaired before they fell in and squished all the bats.

Then one of the team saw a bat no one recognized. It was orange and fluffy with big ears and tiny black dot eyes, and its wings were black. They sent a picture of the bat to an expert named Nancy Simmons, and Dr. Simmons knew immediately that it was something out of the ordinary. Sure enough, it’s a species unknown to science. The team described the bat in 2021.

Next, let’s talk about a rat. It was also discovered recently, in this case in 2013 and described in 2015. It’s usually called the hog-nosed rat. It lives in a single part of a single small island in South Asia, specifically in North Sulawesi, Indonesia. This is one of the same places where the babirusa lives, if you remember episode 218.

The hog-nosed rat is a rodent but it’s not actually that closely related to other rats and mice. It’s even been assigned to its own genus. It’s a soft brown-gray on its back and white underneath, with big ears, a very long tail, and a pink nose that does actually look a lot like a little piggy nose. Its eyes are small but its incisors are extremely long and sharp. In fact, they look like vampire fangs!

In 2013, a team of scientists was studying rodents living in the area. To do this they would put special traps out at night and check them in the morning. This isn’t a regular rat trap that kills rats, of course, but a box that keeps the rodent safe inside so it can be examined before being released again. One day they checked a trap and inside was a rodent no one recognized. Surprise rat!

So, what does the hog-nosed rat eat with those vicious fangs? Earthworms and beetle grubs! Terrifying, I know.

Next, let’s learn about another bat, Myotis vivesi. It’s called the fish-eating bat or the Mexican fishing bat. It lives around the Gulf of California on the west coast of North America, mostly on small islands. It’s brown on top, white or cream-colored underneath, and it has big ears because it’s a bat. Almost all bats have big ears.

Fish eating is unusual in bats, and marine fish eating is even more unusual. Only one other species of bat, the fisherman bat of Central and South America, catches marine fish regularly, but the two species belong to completely different families. The Mexican fishing bat’s closest relatives don’t eat fish at all.

Because it lives exclusively around the ocean and feeds mostly on fish and crustaceans, although it will occasionally eat insects and algae, the Mexican fishing bat has other unusual adaptations. It drinks seawater instead of fresh water, for one thing. During the day it hides in crevices in rocks, sometimes in cliffs but more often in the rocky ground. It actually wriggles its way about three feet underground, or a meter, where it’s dark and cool.

Why are we talking about this particular bat in our pre-October episode? Because it has humongous feet with long, pointy claws. The bat itself is only about 5 ½ inches long, or 14 cm, but its feet are almost an inch long, or 2.5 cm. It uses its big feet to snag tiny fish out of the water.

We’ll finish with another rodent, the maned rat, or African crested rat. It doesn’t actually look much like a rat, since its tail is furry and it has a short, blunt muzzle sort of like a porcupine’s face. It’s mostly gray and black with white-tipped hairs that make it look frosty, and it has a crest of longer hairs along its back. It also has white stripes along its sides. It grows about 14 inches long, or 36 cm, not counting its thick, furry tail.

The crested rat mostly eats plants, especially fruit and leaves, but will sometimes eat insects and meat too. Its stomach is divided into multiple chambers and is more like a ruminant’s stomach than a rodent’s, which allows it to use a form of foregut fermentation to digest plant material more efficiently.

Also, the African crested rat is POISONOUS.

The crested rat chews on the bark of the poison arrow tree, which contains toxins that can kill most animals. The crested rat isn’t affected by the toxins, though. After it chews the bark, it licks the long hairs of its crest, which are unusually absorbent. The hairs absorb the poison-filled spit so that any animal that tries to take a bite of African crested rat gets sick or even dies. It probably also tastes terrible but that’s just a guess.

The poison arrow tree is a type of milkweed, and most plants in this family contain toxins. North American milkweed plants are the ones that monarch butterfly caterpillars eat, and the caterpillars absorb toxins from the milkweed that keep birds and other animals from eating them. Researchers aren’t sure how the crested rat keeps from getting sick from the toxins, but one theory is that its stomach contains specialized bacteria that break down the toxins.

If an African crested rat feels threatened, it will raise its crest of long hairs. The crest actually parts down the middle of the back, exposing the white section of the hair and warning predators away.

In case you’re too scared by this poisonous fuzzy rodent, you can relax knowing that the African crested rat is a sociable animal that makes purring sounds while it grooms its family members. Just don’t lick it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 242: Snakes with Nose Horns

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Check out our Kickstarter pre-launch page!!

Thanks to Max for suggesting the rhinoceros viper! We’ll learn about that one and several other snakes with nose horns this week.

The rhino viper, AKA the butterfly viper because of its beautiful colors and pattern:

The rhino viper has nose horns (photo by Balázs Buzás):

The West African Gaboon viper (Bitis rhinoceros), AKA the other rhino viper:

The rhinoceros snake, AKA the Vietnamese longnose snake (photo taken by me! That’s why it’s kind of blurry!):

The nose-horned viper is a beautiful snake:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Just a reminder about our Kickstarter for the Strange Animals Podcast book! Check the show notes for a link if you want to look at the preliminary cover and maybe bookmark the page for when we go live in just two weeks!!

This week we’ll learn about the rhino viper, which was suggested by Max, who at the time was almost eight years old but that was so long ago I bet Max is eight now or maybe nine or ten. Maybe thirty.

The rhinoceros viper lives in forests in parts of western and central Africa, and can grow three and a half feet long, or 107 cm. It’s a heavy chonk of a snake but it’s beautifully colored, with big triangular blotches and smaller markings of red, yellow, black, and blue or green. If you look at one on a white background it stands out, but on the forest floor where it lives, with dead leaves and plants all around, it blends right in. It has rough scales that make it look bristly, called keeled scales. The rhino viper’s scales are so strongly keeled that they can cut your hand if you pet it. It’s not a good idea to pet wild snakes anyway.

The rhino viper’s scientific name is Bitis nasicornis. At first I thought it was pronounced like “bite us,” which I thought was hilarious, and I was disappointed to find that it’s pronounced “bit-us,” although that’s actually funny too. Actually it’s pronounced “bit-is.” It’s spelled B-I-T-I-S. Nasicornis means nose horn, and it definitely has horns on its nose. It has a pair of horns, in fact, side by side, and they stick up and slightly forward. Some rhino vipers even have three nose horns. They’re not true horns, though. Instead they’re made of modified scales. They’re bendy like scales too.

The rhino viper mostly eats rodents but will also eat frogs, birds, and other small animals if it can catch them. It’s an ambush hunter, meaning it hides among fallen leaves and waits for an animal to come too close. Most of the time it moves slowly, but when it strikes, it does so very quickly, in less than a quarter of a second. It has relatively mild venom, although some other Bitis species have venom that’s deadly to humans.

The rhino viper spends most of its time on the ground, but it can climb trees if it wants to. The end of its blunt tail is even partially prehensile, meaning it can curl around branches to help it hang on. This is the closest thing to a hand that snakes have. It can also swim well.

Sometimes the rhino viper is called the butterfly viper because of its colorful markings, and to stop people from confusing it with another closely related snake called Bitis rhinoceros. Rhinoceros also means nose-horn, by the way. B. rhinoceros is also called the West African Gaboon viper because it lives in West Africa. It looks similar to the other rhino viper with a similar pattern but in more neutral tones of brown and tan. It’s sort of a more sophisticated-looking rhino viper. It also has a pair of nose horns but they’re smaller and generally point up and slightly back.

All snakes in the genus Bitis have a threat display that has earned them the name puff adder, although that’s also the name of a specific species, Bitis arietans, that’s extremely venomous. Some people call the various species of hognose snake found in North America puff adders too because of its behavior when it feels threatened. The hognose snake flattens its neck and raises its head so that it looks like a cobra, all the while hissing in a way that sounds like it’s puffing air in and out. Snakes in the genus Bitis have a similarly impressive display. It appears to inflate and deflate as it hisses loudly, as though you’re being warned away by a bicycle tire innertube with keeled scales and nose horns. This is what it sounds like when a puff adder puffs and hisses:

[snake hissing sounds]

Vipers of all kinds are members of the family Viperidae, which includes a whole lot of venomous snakes from many parts of the world. Vipers have fangs that are so long, they’re actually hinged so they can fit in the mouth. Each fang is attached to a small bone that can rotate forward and back to extend and refold the fangs. Most of the time the viper’s fangs are folded down along the sides of the mouth, protected by a sheath of skin. When it’s ready to bite, either in defense or to kill prey, the viper extends its fangs, but because the fangs are delicate and easily broken, the snake waits to extend its fangs until the last possible moment.

The fangs are also hollow and are connected to venom glands located behind the eyes. That’s why so many vipers have triangular heads, because the venom glands take up extra space at the back of the head. The venom glands are equipped with tiny muscles that the snake contracts to send venom flowing through the fangs and into the bite wound, and it can control how much venom it injects, if any.

Vipers in the genus Bitis have especially long fangs with powerful bites, so that many animals die from the bite itself and not the venom. The reason that snakes inject venom into small prey that it could easily kill and swallow without venom is that the venom begins the digestion process. Most snakes don’t actually have very efficient digestive systems, so by having venom that not only kills its prey but starts digesting it before the snake even swallows it, vipers can extract more nutrients from their food.

The rhino viper and the other rhino viper aren’t the only snakes with nose horns. The rhinoceros snake isn’t a viper but it does have a nose horn—in this case just one nose horn, which grows from the tip of the nose and points straight forward. It’s also called the rhinoceros ratsnake or the Vietnamese longnose snake. It lives in rainforests in northern Vietnam and southern China and spends almost all of its time in trees. Adults are a lovely pale green or blue-green. It can grow over five feet long, or 1.6 m, and is a slender, active snake that mostly eats rodents and other small animals.

Another snake with a nose horn is the nose-horned viper. This one lives in parts of southern Europe and the Middle East, and it’s also called the sand viper. Since lots of vipers live in sandy areas but not all vipers have nose horns, I don’t know how you could possibly look at this snake and decide to call it a sand viper and not a nose-horned viper. Also, it doesn’t live in the sand. It likes rocky areas and can sometimes be found in old stone walls where it has lots of crevices to hide in. It eats small animals, including rodents, lizards and other snakes, large insects like centipedes, and the occasional bird.

The nose-horned viper can grow over three feet long, or about a meter. Individuals can be gray-brown, reddish-brown, coppery-red, dark red, or pale brown, and it has a darker zigzag pattern. Like most vipers it’s a chonky, fairly slow-moving snake. Its nose horn points upward in some subspecies, forward in others.

That brings us to the big question: what are these nose horns used for? Why do these snakes have nose horns at all?

The answer is: we don’t know. They’re soft and bendy, made of scales, so they can’t be used as weapons, not that a four-foot-long snake with massive fangs and deadly venom needs to poke at predators with a little nose horn. They’re probably just for display, but only the snake knows for sure.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 241: Weird and Wonderful Squirrels

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Our pre-launch Kickstarter page! You can see what the book cover will look like!

Thanks to Liesbet and Enzo for their suggestions this week! Let’s learn about squirrels!

Further reading:

Project Squirrel

Interspecies Breeding Is Responsible for Some Squirrels’ Black Coloring

The Indian giant squirrel, without filter (left) and with filter (right):

Some variable squirrels (see lots more at iNaturalist):

The Eastern gray squirrel:

The Eurasian red squirrel:

The fox squirrel:

White Eastern gray squirrels (photos taken from the White and Albino Squirrel Research Initiative):

A white variable squirrel spotted in Thailand (picture found here):

The African pygmy squirrel:

The least pygmy squirrel of Asia:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s finally the squirrel episode! Both Liesbet and Enzo have suggested squirrels as a topic, and Enzo specifically asked about white squirrels, hybrid squirrels, and squirrels in danger. We’re going to cover all those, and also a few squirrel mysteries!

First, though, a quick note to say that the Kickstarter campaign for the Strange Animals Podcast book is definitely going to happen NEXT MONTH! It’ll go live in early October 2021. Don’t worry, I’ll let you know when so you can go pre-order a copy of the book if you want, and in fact I think I’ll do a bonus episode the first day of the Kickstarter. If you want to get an email to remind you when the campaign launches, there’s a link in the show notes to the pre-launch page where you can request an email notification on launch. You can also see what the book cover will look like! Now, on to the squirrels.

The animal we generally just call a squirrel is specifically a tree squirrel, as opposed to ground squirrels. Tree squirrels are arboreal, which means they live in trees, although they spend plenty of time on the ground too. Squirrels mostly eat nuts and seeds, including acorns and the seeds inside pine cones, but will also eat berries, flowers and buds, tree bark and sap, fungus, and sometimes insects, bird eggs, and even baby birds. Squirrels are rodents and are active in the daytime.

Squirrels can be helpful to trees even though they eat tree nuts, because most species bury nuts to dig up and eat later. The squirrel doesn’t always remember where it hid all its nuts, and in spring the buried nuts sprout and grow into new trees. Some species also hide nuts in caches, often in holes in trees.

A squirrel sleeps in a nest made of dead leaves and sticks it builds in the branches of a tree. The nest is called a drey and it’s lined on the inside with moss, grass, and other soft, warm material. A mother squirrel will line the nest with some of her fur right before her babies are born, so the nest is especially soft and warm. Some species also nest in old woodpecker holes. In winter when it’s cold, several squirrels may share the same drey to stay warm, but squirrels are usually solitary. They don’t hibernate, but like most of us, they sleep more in winter and are less active.

Most people know what a squirrel looks like, because it’s such a common animal throughout most of the world. Some squirrel species get used to humans and often live in people’s yards and in city parks. A tree squirrel has a long, fluffy tail, a long, slender body, relatively short legs, small ears, and large eyes. It’s usually gray or brown and sometimes has spots or stripes.

Some tree squirrels look different from the squirrels you may be used to, depending on where you live. Squirrels of the genus Ratufa are called giant squirrels and they’re the size of domestic cats. They live in parts of Asia, especially southeast Asia. The Indian giant squirrel lives in India, and not only is it especially big, up to 20 inches long, or 50 cm, not counting its long tail, it’s brightly colored. Different individuals and subspecies can have different shades of fur, although the belly and front legs are usually cream-colored. The rest of the body can be tan, dark brown, black, cream-colored, rusty-red, or even a dark maroon color. You may have seen pictures online of brightly colored giant squirrels, and while those are real pictures of real animals, the photographer used a filter that enhances the colors to make them look even brighter than they really are.

The Indian giant squirrel and its close relations eat fruit, nuts, flowers, and other plant material, and hardly ever come down from the tall trees where they live.

Another colorful squirrel is the variable squirrel, which also lives in southeast Asia. It’s on the small side for a tree squirrel, less than 9 inches long at most, or 22 cm, not counting the tail. There are over a dozen subspecies that vary in color and pattern, and some researchers think there may be enough differences that it’s actually more than one species of closely related squirrel. It’s a member of a genus called “beautiful squirrels,” because so many species in the genus have pretty markings. Some variable squirrels are white underneath and red-brown above, with little pointed ears outlined in white, and a reddish tail. Some are glossy black with red markings. Others can be gray, black, orangey-red, reddish-brown, brown, or white with various patterns and markings. It’s so pretty that it’s been introduced in places like Japan, Singapore, Italy, and the Philippines, where it can be an invasive species.

The eastern gray squirrel of eastern North America has also been introduced to other areas where it’s become an invasive species. It was introduced to the UK in 1876 and because it’s a large, aggressive species, the native Eurasian red squirrel has been driven almost to extinction in Britain. It’s still doing fine in the rest of its range, though. Habitat loss is also a factor in the red squirrel’s declining numbers, but the gray squirrel certainly isn’t helping.

The gray squirrel also carries a disease called the squirrel parapoxvirus that causes squirrelpox. Don’t worry, only squirrels can catch it. The gray squirrel is mostly immune to the disease, but the red squirrel isn’t. If an infected gray squirrel is bitten by a mosquito that then bites a red squirrel, the red squirrel can catch squirrelpox from the mosquito bite.

The red squirrel is a reddish-brown in color with tufts on its ears, and in winter it grows a thick undercoat to keep it warm. It also generally looks more gray in winter. Some populations of red squirrel in parts of Europe are black, or nearly black, although it still has a white belly. The red squirrel only grows up to about 9 inches long, or 23 cm, much smaller than the eastern gray squirrel, which can grow up to 12 inches long, or 30 cm. Those lengths don’t include the tail. The red squirrel generally prefers fir trees while the gray squirrel prefers deciduous trees, especially oaks, but the gray squirrel will steal food from the red squirrel no matter what kind of food it is.

In its native range in eastern North America, the eastern gray squirrel often lives alongside other species of squirrel. In 1997 an evolutionary behavioral ecologist named Joel Brown noticed that there are two species of squirrel that live in Chicago, Illinois, a large city in the middle of the gray squirrel’s range. The gray squirrel shares the city with the fox squirrel, which is about the same size and looks very similar to the gray squirrel but is more of a rusty-red color. Dr. Brown noticed that the gray squirrel mostly lives in wealthy neighborhoods while the fox squirrel mostly lives in neighborhoods where people don’t have as much money, and he wanted to figure out why.

Dr. Brown started Project Squirrel to study the mystery. The program teaches people how to tell the difference between the two species so they can report what kind of squirrels they see and where they see them. Right away he started noticing patterns. Fox squirrels live in areas where there are more predators, including feral and free-roaming dogs and cats, urban foxes and coyotes, and hawks. Gray squirrels prefer areas where there aren’t as many predators. Dr. Brown thinks it’s because the fox squirrels are bolder and on average a little larger than gray squirrels, which tend to be more shy. He even noticed a change in his own neighborhood when gray squirrels started becoming more numerous, a shift that happened right after a local leash law went into effect, meaning that fewer pets were running loose.

Project Squirrel has since expanded. There’s an app and everything if you want to take part as a citizen scientist and help solve squirrel mysteries.

Another small squirrel mystery is white squirrels. In August of 2021, just last month as this episode goes live, we had a Q&A episode where we talked about the black squirrels Connor was seeing in Michigan. Those black squirrels turned out to be melanistic eastern gray squirrels. Are white squirrels albino animals or is there something else going on?

Albinism is due to a genetic anomaly that causes an individual to lack pigment. That means its fur or hair is pure white and its skin looks pink because the lack of pigment means its blood shows through and makes it look pink. Its eyes will look red or pink for the same reason, although in some animals the eyes are pale blue instead. Humans with albinism have pale blue eyes.

But most white squirrels have dark eyes and may appear pale brown or gray instead of pure white. Instead of albinism, these squirrels are leucistic. Leucism is related to albinism but instead of a lack of pigment, a leucistic animal has reduced pigment. Sometimes the reduced pigment happens all over the body, sometimes in patches. A leucistic animal often has ordinary colored eyes and skin but pale or white fur. In some domestic species of animal, leucism is bred for or happens frequently in a population, like piebald horses and cows with white spots. It’s a common enough condition that I’ve actually seen leucistic birds while birdwatching. Humans can sometimes show a type of leucism called vitiligo that usually develops in adults, where patches of skin lose their pigment over time. It’s most noticeable on people with dark skin but it also happens to people with light skin. You can’t catch vitiligo from someone else; it’s just a genetic anomaly. Unfortunately, sometimes people who develop the condition get treated badly by others, because people are often afraid of things they don’t understand. Now you know what it is and you can share that knowledge when you need to.

In squirrels, individuals with white fur are usually in more danger from predators. Everything likes to eat squirrels, which is why most squirrel species are gray or reddish-brown as camouflage against tree trunks and branches. A white squirrel shows up like a flashing sign saying, “Snacktime!” As a result, squirrels with white fur are rare to start with and usually don’t live long enough to pass their genes along to the next generation—but in some places, they’re much more common.

In many towns in the United States and Canada, white squirrels are not just common, most squirrels are white. Some towns have white squirrel festivals as a way to promote local pride and bring tourists to the area. Why do some places have white squirrels while most don’t, and why are all the white squirrel populations in North America?

It’s all back to the eastern gray squirrel again. Most squirrel species don’t have a gene that can cause leucism, but the eastern gray squirrel does. Other squirrel species can be albinistic since that’s a genetic anomaly that can happen in any animal, but it’s the eastern gray squirrel that shows leucism most commonly. The closely related fox squirrel also sometimes exhibits leucism.

Some towns have high populations of white squirrels because people think they’re neat. If the white squirrels are in a protected area, like a city park or a college campus, there are fewer predators to start with. People who like the squirrels will leave food out for them and make sure no one hurts them, and as a result the squirrels survive to have babies. Since leucism is a genetic condition, the babies of white squirrels are more likely to be white too.

Remember the variable squirrel we talked about earlier in the episode? Some of them exhibit leucism too, usually a pale brown-white all over with dark eyes.

One thing I learned about black squirrels after last month’s Q&A episode is that some black squirrels are hybrids of eastern gray and fox squirrels. The two species are closely related and often live in the same areas, so it’s not surprising that they sometimes interbreed. Hybrid babies may inherit a genetic variant found in fox squirrels that gives them darker fur. Some researchers think that all gray squirrels with black fur may have inherited the gene for black fur color from fox squirrels in their ancestry.

For the most part, though, tree squirrels don’t hybridize very often, probably because in most places, only one species predominates in any given area. Grey squirrels and Eurasian red squirrels belong to different genera and subfamilies, so aren’t very closely related although their habitats sometimes overlap.

Enzo specifically asked about squirrels in danger, and I’m happy to report that most squirrel species are actually doing just fine. Squirrels are adaptable and can learn to live around humans. As long as they have trees to live in and enough food to support a population, they’re okay. The main danger most squirrels face is habitat loss, especially logging and clear-cutting of forests to build houses or businesses.

A subspecies of fox squirrel called the Delmarva fox squirrel was put on the endangered species list in 1967. It’s native to areas of northeastern North America. It’s about the size of the eastern gray squirrel, which it resembles since it’s gray with a white belly, although it’s usually a more silvery gray in color. By 1967 its population had declined by 90% from habitat loss and overhunting. A conservation plan put in place in 1979 focused on protecting the squirrel’s remaining habitat, restoring its habitat wherever possible, and monitoring the population carefully. The program was such a success that in 2015, the Delmarva fox squirrel was removed from the endangered species list. It’s yet another reminder that protecting an animal’s habitat is just as important as protecting the animal itself. The Delmarva fox squirrel now only lives on the eastern coasts of Maryland and Virginia, a much smaller range than before, so continued conservation efforts are in place to keep it safe and healthy.

Let’s finish with the smallest tree squirrel known, the African pygmy squirrel. It lives in tropical rainforests in parts of western and central Africa. It only grows 5.5 inches long, or 14 cm, and that includes its tail! That’s the size of a mouse. We don’t actually know a whole lot about the African pygmy squirrel, but we do know that it’s an omnivore. This is unusual for squirrels, even though most squirrel species will eat the occasional insect or bird egg. The African pygmy squirrel eats insects regularly as well as fruit, bark, and other plant materials. Unlike most squirrels, it doesn’t store food.

The African pygmy squirrel is the same size as the least pygmy squirrel that lives on three islands in southeast Asia. We know even less about the least pygmy squirrel than we do the African pygmy squirrel…or I guess you could say we know the least about the least pygmy squirrel.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 240: The End of the Dinosaurs

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Here we go. It’s the big one, the Cretaceous-Paleogene extinction event!

Further reading:

How Birds Survived the Asteroid Impact That Wiped Out the Dinosaurs

How an asteroid ended the age of dinosaurs

Extinction event that wiped out dinosaurs cleared way for frogs

How life blossomed after the dinosaurs died

66-million-year-old deathbed linked to dinosaur-killing meteor

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Here it is, the extinction event episode that everyone’s been waiting for, or at least that everyone knows about. It’s the one that killed off the dinosaurs and ushered in the age of mammals. It’s probably the one we know most about and it’s certainly the one we have the most paintings of, usually of a T. rex staring into the sky at an approaching comet.

In episode 227 we talked about the end-Permian extinction event, which took place about 250 million years ago. The Cretaceous-Paleogene extinction event, or end-Cretaceous, took place just over 66 million years ago, which means that for almost 200 million years there was more or less smooth sailing in the world. Dinosaurs evolved during that time, and I think we can all agree that dinosaurs are fascinating animals.

The largest terrestrial animals ever to live were dinosaurs, specifically the sauropods. Sauropods were just unimaginably huge. They were like walking buildings that ate plants, and even that doesn’t give a good idea of their size. Some sauropods had extremely long tails as well as very long necks, which increased their length. Right now the largest sauropod known was probably Argentinosaurus that might have grown as long as 118 feet, or 36 meters, but paleontologists keep finding bigger and bigger sauropods. Some sauropods had extremely long necks that they held up like a giraffe. The tallest was probably Barosaurus, estimated as being 72 feet tall, or 22 meters. And we won’t even get into estimates of how much these massive animals weighed. They make the biggest elephant that ever lived look like a toy elephant.

Sauropods ate plants, with the low-necked species eating low-growing plants and the high-necked species eating tree leaves, although even saying that much is controversial. There’s a lot we don’t know about sauropods in general, since most sauropod fossils are incomplete and many species are only known from one or a few bones. But we do know some surprising things about sauropods. We have a lot of sauropod tracks, which helps us understand how their feet looked and whether they had claws, but it also tells us that some species of sauropod traveled in herds. Paleontologists do generally agree that many sauropods migrated, since animals that big would soon exhaust all the food in one area if they didn’t.

Sauropods were extremely successful and lived all over the world. There were plenty of sauropods alive 66 ½ million years ago, and then…there were no sauropods alive ever again.

These days, there’s so much evidence that a massive asteroid killed off the dinosaurs that pretty much everyone agrees, but when the idea was first proposed in 1980, it was extremely controversial. When I was a kid I remember reading dinosaur books that still said the extinction of the dinosaurs was a mystery but that many scientists thought it was due to disease or volcanoes.

The asteroid strike hypothesis was proposed by the physicist Luis Alvarez and his son, Walter. They worked with a small team of other scientists, including two chemists, Helen Michel and Frank Asaro, to investigate a strange anomaly in rock strata. Rocks dating to the end of the Cretaceous period and the beginning of the Paleogene period are separated by a thin layer of clay that’s visible throughout the world, or at least wherever the rocks remain and can be examined. It’s called the Cretaceous-Paleogene boundary, or K-Pg boundary, although in older books and websites it’s called the K-T boundary. It occurred just over 66 million years ago. The Alvarezes were curious about this layer, and during their investigations they found out that the clay is full of an element called iridium.

Iridium is a silvery-white metal chemically related to platinum, and it’s rare. At least, it’s rare on Earth. It’s a common component of asteroids, which was one of the main reasons why the Alvarezes came to their hypothesis that the K-Pg boundary was the result of a massive asteroid impact. Other scientists had made similar suggestions in the decade or so leading up to the Alvarezes’ theory, but the iridium discovery provided the proof everyone wanted.

Iridium wasn’t the only thing found in the K-Pg boundary layer, either. There were other platinum-group metals present in high concentrations—much higher than found on Earth, and in fact these elements are referred to as rare-earth metals for that reason. In some places, the K-Pg boundary contains grains of shocked quartz and microtektites. We’ll discuss those in a minute.

As we’ve discussed before in various episodes, the earth’s surface is always moving around. It’s slow to us, with continents moving around at the same dizzying speed that our fingernails grow, but over millions of years that adds up. Continents move around and crash into each other, forming new mountain ranges that then wear down to plains, and where continental plates pull apart or push together the crust can weaken and allow magma to erupt through as volcanoes. Ocean levels rise and fall. In other words, a crater made 66 million years ago might have disappeared as all this geologic activity goes on.

But then, we found the crater. The crater.

The Chicxulub crater is in Mexico, specifically the Yucatán Peninsula at the southern portion of the Gulf of Mexico. You can’t see it when you’re walking around because it’s buried under 2,000 feet of soil, or 600 meters, that has built up over the last 66 million years. Two geophysicists found it in the 1970s while surveying for petroleum, but it wasn’t until 1990 that they were able to verify that it was a crater. Asteroid impacts leave clues behind that the geophysicists recognized.

The first clue is shocked quartz. Quartz is a common crystalline mineral throughout the world, and it has a certain structure that’s familiar to geologists. In shocked quartz, that structure has been deformed by intense pressure, but not high temperature. It was first noticed after nuclear bomb tests, and after that scientists recognized it in meteor craters.

The second clue is little pieces of glass called tektites. They’re different from obsidian, which is a type of glass formed by volcanic activity. Tektites are usually shaped like droplets or little blobs, but sometimes they’re round. They’re only found around big impact sites and only for relatively recent meteor impacts, because they don’t last forever.

The Chicxulub crater is actually kind of old for its tektites to still be around, except for two things. First, the tiniest tektites, the microtektites, ended up in the K-Pg boundary layer, as I mentioned earlier. Second, we actually have a fossil site in North Dakota, in the middle of North America up near Canada, that seems to date to literally the day of the asteroid impact, and there are tektites all over the site, including clogging the gills of fish. The tektites match the chemical signatures of the Chicxulub crater so we know that’s where they came from.

Before we talk about the North Dakota fossil bed, let’s discuss what exactly happened on the day the asteroid hit the earth. Because we’ve found the asteroid’s crater, we know a lot about the asteroid itself. Most researchers estimate that it was about 6 miles across, or 10 km. It approached the earth at an angle, traveling about 12 km a second. That’s 7.5 miles per second. It hit the earth right on the coast, partly in the ocean, partly on land, forming a crater about 110 miles across, or 180 km, and 12 miles deep, or 19 km.

The asteroid smashed into the Earth so fast that it was completely buried in about the time it takes you to blink. There really wasn’t time for any dinosaurs to look up and wonder what that bright light was, because the time between the asteroid entering earth’s atmosphere and smashing into the earth was maybe five seconds.

The megatsunami resulting from the impact would have been unbelievably huge. Waves may have been a mile high, or over 1.5 km. The initial impact would have thrown water more than 7.5 miles into the air, or 12 km, and when that water fell back down it would have set up another megatsunami. Not only that, the impact actually shook the whole earth like a massive earthquake, which caused landslides all over the place and set up even more tsunamis. It’s like shaking a snowglobe to watch the fake snow swirl around and around, only instead of fake snow it was ocean.

At the same time, everything near the impact site was instantly on fire. It was on fire because the asteroid was traveling so fast that it was glowing white-hot with incandescent heat just from pushing against air molecules, and when it hit the Earth, all that heat had to go somewhere. Also, everything exploded. The water exploded up and outward, the land exploded up and outward. A lot of water turned instantly to steam. The asteroid itself disintegrated and tiny bits of it were carried high into the atmosphere along with ash, dust, molten glass created by the blast, and anything else that was nearby and not instantly incinerated.

The shockwaves from the impact acted as a magnitude 12 earthquake, with follow-up shocks estimated at about magnitude 9 occurring across the entire planet. Volcanoes erupted as a result, pumping even more ash and gases into the atmosphere. All the trees were flattened for about 930 miles around the impact, or 1500 km.

Within a few hours of the impact, fireballs of molten rock and glass were falling across the world, setting fires on land and heating the surface of the ocean to boiling temperature in many areas. And it was already getting really dark as the massive amounts of debris and dust and ash and smoke and everything else spread across the earth.

Okay, deep breath. This happened a long, long time ago and most animals died so quickly they didn’t feel anything. Look out the window if you’re feeling stressed and see how calm it is? Maybe it’s raining where you live or maybe it’s night-time and you can hear frogs or crickets calling, maybe an owl if you’re lucky. It might be daytime and you can hear cars passing by, or a dog barking somewhere, people talking. Whew. Okay, back we go to that awful day 66 million years ago, back to the fossil site found in North Dakota.

Back then, the middle of North America was a shallow sea. The first tsunami wave was probably 30 feet tall, or 9 meters, when it reached the mouth of a river emptying into the sea. It pushed the river backwards and washed hundreds of freshwater fish onto a sand bar. To add insult to injury, or just injury to injury, while the fish were stranded and flopping around trying to get back in the water, globs of molten glass and rocks rained down on them. Then another wave pushed up the river and covered the dead and dying fish with a lot of sand and sediment, which preserved them.

The site was discovered in 2013 and the findings were published in 2019. It’s not just fish at the site, although there are unbelievable numbers of fish. There are also tree trunks and branches that show evidence of burning, ammonites and other marine animals that were washed up the river, even part of a triceratops and a hadrosaur. One charred trunk is covered in amber, which is fossilized tree resin. The amber is full of tektites, which were caught in the resin when it was soft.

Every time I say tektite I think of those spidery things in Zelda, which makes this whole situation seem even worse.

None of the animals at the site show evidence of being eaten by anything. Some researchers estimate that the event took place less than an hour after the asteroid impact. There’s also a layer of clay on top of the sediment that contains high levels of iridium.

In all, roughly 75% of all life on earth went extinct following the asteroid impact. Many animals that survived the immediate aftermath of the impact died out months or years later, and many more scraped along for hundreds or thousands of years before finally going extinct. The massive amounts of dust and ash in the atmosphere blocked sunlight for the next several years or even longer, which means plants died throughout the world. Poisonous gases in the atmosphere led to acid rain that killed more plants and animals. The ocean temperature dropped considerably, as did the overall temperature of the earth, leading to freezing temperatures that would have killed off even more animals. Deep-sea animals fared better than most, but many plankton went extinct very soon after the impact and that meant animals that ate the plankton also went extinct.

But, of course, not everything went extinct. If it had, I wouldn’t be recording this episode and you wouldn’t be listening to it. Awful as it sounds, the Cretaceous-Paleogene extinction event wasn’t nearly as bad as the end-Permian extinction. Full recovery is estimated to have taken as much as 9 million years, when it took 50 million years for the earth to fully recover from the end-Permian extinction.

One thing that isn’t generally known is that things had been getting rough on earth for a couple of million years before the asteroid hit. Some species were already in decline due to climate change. The asteroid just made everything intensely worse.

The first plants to recolonize the blasted wastelands were ferns, lots and lots and lots of ferns. Ferns are tough plants and thrive in areas where nothing else can grow, and ferns grow quickly and provide food for lots of animals. Within a hundred years of the impact the world was carpeted with ferns.

Some dinosaurs did survive, of course, but we call them birds. They would have looked very birdlike even 66 million years ago. Most birds that survived were ones that lived on the ground instead of in trees. Researchers think many birds survived because they were able to eat seeds, which would have remained as a food source even after the plants that dropped the seeds had all died. Insects and other invertebrates that eat rotting leaves would have been just fine, and many birds could find and eat them too.

Mammals also survived the asteroid impact, of course. Look, here we are! We’ve done quite well for ourselves. 66 million years ago most mammals were small and rodent-like, and the ones that survived probably mostly lived in burrows and ate seeds and other plant material or small animals like insects.

Surprisingly, frogs did really well after the asteroid impact. Frogs are small and can survive in small microhabitats. While most of the frogs in North America went extinct, plenty of frogs survived in other parts of the world that weren’t so close to the impact site, and as soon as conditions improved, more species evolved than ever before. That’s why frogs across the world look so similar. They may not all be closely related, but they all faced the same environmental pressures at the same time.

Once plants started to recover, things took a turn for the better as birds, fish, mammals, reptiles, amphibians, insects, and other animal groups suddenly didn’t have to watch out for dinosaurs or the other big predators that had gone extinct. Sauropods and other giant herbivores weren’t eating up all the plants. Life evolved rapidly to fill the available ecological niches, and animals started getting bigger and bigger.

In late 2019, scientists released details of a fossil site found in Colorado, in the western United States. It has an unbroken record of rocks dating from before the asteroid impact to about a million years afterwards. It gives us an excellent record of the changes that took place.

In the years after the impact, there’s not a lot to see, just lots of ferns and some rat-sized mammals. Within 200,000 years palm forests had replaced the ferns and cat-sized mammals were common. By 400,000 years after the impact, plants and trees with nuts evolved and many mammals were the size of dogs. By 700,000 years after, the relatives of modern bean and pea plants appeared, forests were varied and healthy, and the mammals were the size of wolves or bigger. There were animals other than mammals too, including a five-foot-long crocodilian, or 1.5 meters, with teeth adapted to crush turtle shells.

The ancestors of whales evolved about 50 million years ago around what is now India and its neighbors, when a little animal called Indohyus spent a lot of time in the water. It was about the size of a raccoon, which it resembled in some ways, except that its bones were unusually heavy for its size. This helped it stay underwater without effort. The hippopotamus has the same kind of heavy bones for the same reason, and Indohyus was actually related to the hippo’s distant ancestor. Within five million years, descendants of animals like Indohyus were fully aquatic and looked a lot like dolphins with small legs. As whales got bigger and faster, predators evolved too, including the largest shark that ever lived, Megalodon. The first baleen whales evolved around 25 million years ago and ultimately grew to the gigantic sizes of some of the whales alive today.

Every time you feel sad that you’ll never see a real live dinosaur like a sauropod, remember that you live at the same time as the undisputed largest animal that has ever lived, the blue whale. It can grow up to 98 feet long, or 30 meters, and possibly longer. That’s as long as a ten-story building is high. It’s twice the length of Megalodon! If you have the money and time, you can actually charter a boat that will take you out to look at blue whales because they’re still alive!

I guarantee you that millions upon millions of years from now, in some far-distant future that we can’t even imagine, there will be scientists who study whales and write whatever those future people use as books, and there will be young people who read those books and look longingly at drawings of whales. They’ll know about dinosaurs, sure, and those will always be popular, but it’ll be the whales that really catch people’s imagination. There will be the far-future equivalent of movies where people successfully clone whales or bring them back from the past, and the details will be all wrong but no one will know because no one in that far future time will actually know what whales really look like! But you know, and that is the most amazing fact I can ever share with you.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!