Episode 342: Giant Snails and Giant Crabs

Thanks to Tobey and Anbo for their suggestions this week! We’re going to learn about some giant invertebrates!

Further reading:

The Invasive Giant African Land Snail Has Been Spotted in Florida

A very big shell:

The giant African snail is pretty darn giant [photo from article linked above]:

The largest giant spider crab ever measured, and a person:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some giant invertebrates, suggested by Tobey and Anbo. Maybe they’re not as big as dinosaurs or whales, but they’re surprisingly big compared to most invertebrates.

Let’s start with Tobey’s suggestion, about a big gastropod. Gastropods include slugs and snails, and while Tobey suggested the African trumpet snail specifically, I couldn’t figure out which species of snail it is. But it did lead me to learning a lot about some really big snails.

The very biggest snail known to be alive today is called the Australian trumpet snail, Syrinx aruanus. This isn’t the kind of snail you’d find in your garden, though. It’s a sea snail that lives in shallow water off the coast of northern Australia, around Papua New Guinea, and other nearby areas. It has a coiled shell that’s referred to as spindle-shaped, because the coils form a point like the spindle of a tower. It’s a pretty common shape for sea snails and you’ve undoubtedly seen this kind of seashell before if you’ve spent any time on the beach. But unless you live in the places where the Australian trumpet lives, you probably haven’t seen a seashell this size. The Australian trumpet’s shell can grow up to three feet long, or 91 cm. Not only is this a huge shell, the snail itself is really heavy. It can weigh as much as 31 lbs, or 14 kg, which is as heavy as a good-sized dog.

The snail eats worms, but not just any old worms. If you remember episode 289, you might remember that Australia is home to the giant beach worm, a polychaete worm that burrows in the sand between high and low tide marks. It can grow as much as 8 feet long, or 2.4 meters, and probably longer. Well, that’s the type of worm the Australian trumpet likes to eat, along with other worms. The snail extends a proboscis into the worm’s burrow to reach the worm, but although I’ve tried to find out how it actually captures the worm in order to eat it, this seems to be a mystery. Like other gastropods, the Australian trumpet eats by scraping pieces of food into its mouth using a radula. That’s a tongue-like structure studded with tiny sharp teeth, and the Australian trumpet has a formidable radula. Some other sea snails, especially cone snails, are able to paralyze or outright kill prey by injecting it with venom via a proboscis, so it’s possible the Australian trumpet does too. The Australian trumpet is related to cone snails, although not very closely.

Obviously, we know very little about the Australian trumpet, even though it’s not hard to find. The trouble is that its an edible snail to humans and humans also really like those big shells and will pay a lot for them. In some areas people have hunted the snail to extinction, but we don’t even know how common it is overall to know if it’s endangered or not.

Tobey may have been referring to the giant African snail, which is probably the largest living land snail known. There are several snails that share the name “giant African snail,” and they’re all big, but the biggest is Lissachatina fulica. It can grow more than 8 inches long, or 20 cm, and its conical shell is usually brown and white with pretty banding in some of the whorls. It looks more like the shell of a sea snail than a land snail, but the shell is incredibly tough.

The giant African snail is an invasive species in many areas. Not only will it eat plants down to nothing, it will also eat stucco and concrete for the minerals they contain. It even eats sand, cardboard, certain rocks, bones, and sometimes other African giant snails, presumably when it runs out of trees and houses to eat. It can spread diseases to plants, animals, and humans, which is a problem since it’s also edible.

Like many snails, the African giant snail is a simultaneous hermaphrodite, meaning it can produce both sperm and eggs. It can’t self-fertilize its own eggs, but after mating a snail can keep any unused sperm alive in its body for up to two years, using it to fertilize eggs during that whole time, and it can lay up to 200 eggs five or six times a year. In other words, it only takes a single snail to produce a wasteland of invasive snails in a very short amount of time.

In June 2023, some African giant snails were found near Miami, Florida and officials placed the whole area under agricultural quarantine. That means no one can move any soil or plants out of the area without permission, since that could cause the snails to spread to other places. Meanwhile, officials are working to eradicate the snails. Other parts of Florida are also under the same quarantine after the snails were found the year before. Sometimes when people go on vacation in the Caribbean they bring back garden plants, without realizing that the soil in the pot contains giant African snail eggs, because the giant African snail is also an invasive species throughout the Caribbean.

Next, Anbo wanted to learn about the giant spider crab, also called the Japanese spider crab because it lives in the Pacific Ocean around Japan. It is indeed a type of crab, which is a crustacean, which is an arthropod, and it has the largest legspan of any arthropod known. Its body can grow 16 inches across, or 40 cm, and it can weigh as much as 42 pounds, or 19 kg, which is almost as big as the biggest lobster. But its legs are really really really long. Really long! It can have a legspan of 12 feet across, or 3.7 meters! That includes the claws at the end of its front legs. Most individual crabs are much smaller, but since crustaceans continue to grow throughout their lives, and the giant spider crab can probably live to be 100 years old, there’s no reason why some crabs couldn’t be even bigger than 12 feet across. Its long legs are delicate, though, and it’s rare to find an old crab that hasn’t had an injury to at least one leg.

The giant spider crab is orange with white spots, sort of like a koi fish but in crab form. Its carapace is also bumpy and spiky. You wouldn’t think a crab this size would need to worry about predators, but it’s actually eaten by large octopuses. The crab sticks small organisms like sponges and kelp to its carapace to help camouflage it.

The giant spider crab is considered a delicacy in some places, which has led to overfishing. It’s now protected in Japan, where people are only allowed to catch the crabs during part of the year. This allows the crabs to safely mate and lay eggs.

There’s another species called the European spider crab that has long legs, but it’s nowhere near the size of the giant spider crab. Its carapace width is barely 8 ½ inches across, or 22 cm, and its legs are about the same length. Remember that the giant spider crab’s legs can be up to six feet long each, or 1.8 meters. While the European spider crab does resemble the giant spider crab in many ways, it’s actually not closely related to it. They two species belong to separate families.

The giant spider crab spends most of its time in deep water, although in mating season it will come into shallower water. It uses its long legs to walk around on the sea floor, searching for food. It’s an omnivore that eats pretty much anything it can find, including plants, dead animals, and algae, but it will also use its claws to open mollusk shells and eat the animals inside. It prefers rocky areas of the sea floor, since its bumpy carapace blends in well among rocks.

Scientists report that the giant spider crab is mostly good-natured, even though it looks scary. Some big aquariums keep giant spider crabs, and the aquarium workers say the same thing. But it does have strong claws, and if it feels threatened it can seriously injure divers. I shouldn’t need to remind you not to pester a crab with a 12-foot legspan.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 338: Updates 6 and an Arboreal Clam!?!

This week we have our annual updates and corrections episode, and at the end of the episode we’ll learn about a really weird clam I didn’t even think was real at first.

Thanks to Simon and Anbo for sending in some corrections!

Further reading:

Lessons on transparency from the glass frog

Hidden, never-before-seen penguin colony spotted from space

Rare wild asses spotted near China-Mongolia border

Aye-Ayes Use Their Elongated Fingers to Pick Their Nose

Homo sapiens likely arose from multiple closely related populations

Scientists Find Earliest Evidence of Hominins Cooking with Fire

153,000-Year-Old Homo sapiens Footprint Discovered in South Africa

Newly-Discovered Tyrannosaur Species Fills Gap in Lineage Leading to Tyrannosaurus rex

Earth’s First Vertebrate Superpredator Was Shorter and Stouter than Previously Thought

252-Million-Year-Old Insect-Damaged Leaves Reveal First Fossil Evidence of Foliar Nyctinasty

The other paleo diet: Rare discovery of dinosaur remains preserved with its last meal

The Mongolian wild ass:

The giant barb fish [photo from this site]:

Enigmonia aenigmatica, AKA the mangrove jingle shell, on a leaf:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week is our annual updates and corrections episode, but we’ll also learn about the mangrove jingle shell, a clam that lives in TREES. A quick reminder that this isn’t a comprehensive updates episode, because that would take 100 years to prepare and would be hours and hours long, and I don’t have that kind of time. It’s just whatever caught my eye during the last year that I thought was interesting.

First, we have a few corrections. Anbo emailed me recently with a correction from episode 158. No one else caught this, as far as I can remember. In that episode I said that geckos don’t have eyelids, and for the most part that’s true. But there’s one family of geckos that does have eyelids, Eublepharidae. This includes the leopard gecko, and that lines up with Anbo’s report of having a pet leopard gecko who definitely blinked its eyes. This family of geckos are sometimes even called eyelid geckos. Also, Anbo, I apologize for mispronouncing your name in last week’s episode about shrimp.

After episode 307, about the coquí and glass frogs, Simon pointed out that Hawaii doesn’t actually have any native frogs or amphibians at all. It doesn’t even have any native reptiles unless you count sea snakes and sea turtles. The coqui frog is an invasive species introduced by humans, and because it has no natural predators in Hawaii it has disrupted the native ecosystem in many places, eating all the available insects. Three of the Hawaiian islands remain free of the frogs, and conservationists are working to keep it that way while also figuring out ways to get them off of the other islands. Simon also sent me the chapter of the book he’s working on that talks about island frogs, and I hope the book is published soon because it is so much fun to read!

Speaking of frogs, one week after episode 307, an article about yet another way the glass frog is able to hide from predators was published in Science. When a glass frog is active, its blood is normal, but when it settles down to sleep, the red blood cells in its blood collect in its liver. The liver is covered with teensy guanine crystals that scatter light, which hides the red color from view. That makes the frog look even more green and leaf-like!

We’ve talked about penguins in several episodes, and emperor penguins specifically in episode 78. The emperor penguin lives in Antarctica and is threatened by climate change as the earth’s climate warms and more and more ice melts. We actually don’t know all that much about the emperor penguin because it lives in a part of the world that’s difficult for humans to explore. In December 2022, a geologist named Peter Fretwell was studying satellite photos of Antarctica to measure the loss of sea ice when he noticed something strange. Some of the ice had brown stains.

Dr Fretwell knew exactly what those stains were: emperor penguin poop. When he obtained higher-resolution photos, he was able to zoom in and see the emperor penguins themselves. But this wasn’t a colony he knew about. It was a completely undiscovered colony.

In episode 292 we talked about a mystery animal called the kunga, and in that episode we also talked a lot about domestic and wild donkeys. We didn’t cover the Mongolian wild ass in that one, but it’s very similar to wild asses in other parts of the world. It’s also called the Mongolian khulan. It used to be a lot more widespread than it is now, but these days it only lives in southern Mongolia and northern China. It’s increasingly threatened by habitat loss, climate change, and poaching, even though it’s a protected animal in both Mongolia and China.

In February of 2023, a small herd of eight Mongolian wild asses were spotted along the border of both countries, in a nature reserve. A local herdsman noticed them first and put hay out to make sure the donkeys had enough to eat. The nature reserve has a water station for wild animals to drink from, and has better grazing these days after grassland ecology measures were put into place several years ago.

In episode 233 we talked about the aye-aye of Madagascar, which has weird elongated fingers. Its middle finger is even longer and much thinner than the others, which it uses to pull invertebrates from under tree bark and other tiny crevices. Well, in October of 2022 researchers studying aye-ayes started documenting another use for this long thin finger. The aye-ayes used it to pick their noses. It wasn’t just one aye-aye that wasn’t taught good manners, it was widespread. And I hope you’re not snacking while I tell you this, the aye-aye would then lick its finger clean. Yeah. But the weirdest thing is that the aye-aye’s thin finger is so long that it can potentially reach right through the nose right down into the aye-aye’s throat.

It’s pretty funny and gross, but wondering why some animals pick their noses is a valid scientific question. A lot of apes and monkeys pick their noses, as do humans (not that we admit it most of the time), and now we know aye-ayes do too. The aye-aye is a type of lemur and therefore a primate, but it’s not very closely related to apes and monkeys. Is this just a primate habit or is it only seen in primates because we have fingers that fit into our nostrils? Would all mammals pick their nose if they had fingers that would fit up in there? Sometimes if you have a dried snot stuck in your nose, it’s uncomfortable, but picking your nose can also spread germs if your fingers are dirty. So it’s still a mystery why the aye-aye does it.

A recent article in Nature suggests that Homo sapiens, our own species, may have evolved not from a single species of early human but from the hybridization of several early human species. We already know that humans interbred with Neandertals and Denisovans, but we’re talking about hybridization that happened long before that between hominin species that were even more closely related.

The most genetically diverse population of humans alive today are the Nama people who live in southern Africa, and the reason they’re so genetically diverse is that their ancestors have lived in that part of Africa since humans evolved. Populations that migrated away from the area, whether to different parts of Africa or other parts of the world, had a smaller gene pool to draw from as they moved farther and farther away from where most humans lived.

Now, a new genetic study of modern Nama people has looked at changes in DNA that indicate the ancestry of all humans. The results suggest that before about 120,000 to 135,000 years ago, there was more than one species of human, but that they were all extremely closely related. Since these were all humans, even though they were ancient humans and slightly different genetically, it’s probable that the different groups traded with each other or hunted together, and undoubtedly people from different groups fell in love just the way people do today. Over the generations, all this interbreeding resulted in one genetically stable population of Homo sapiens that has led to modern humans that you see everywhere today. To be clear, as I always point out, no matter where people live or what they look like, all people alive today are genetically human, with only minor variations in our genetic makeup. It’s just that the Nama people still retain a lot of clues about our very distant ancestry that other populations no longer show.

To remind everyone how awesome out distant ancestors were, here’s one new finding of how ancient humans lived. We know that early humans and Neandertals were cooking their food at least 170,000 years ago, but recently archaeologists found the remains of an early hominin settlement in what is now Israel where people were cooking fish 780,000 years ago. There were different species of fish remains found along with the remains of cooking fires, and some of the fish are ones that have since gone extinct. One was a carp-like fish called the giant barb that could grow 10 feet long, or 3 meters.

In other ancient human news, the oldest human footprint was discovered recently in South Africa. You’d think that we would have lots of ancient human footprints, but that’s actually not the case when it comes to footprints more than 50,000 years old. There are only 14 human footprints older than that, although there are older footprints found made by ancestors of modern humans. The newly discovered footprint dates to 153,000 years ago.

It wouldn’t be an updates episode without mentioning Tyrannosaurus rex. In late 2022 a newly discovered tyrannosaurid was described. It lived about 76 million years ago in what is now Montana in the United States, and while it wasn’t as big as T. rex, it was still plenty big. It probably stood about seven feet high at the hip, or a little over 2 meters, and might have been 30 feet long, or 9 meters. It probably wasn’t a direct ancestor of T. rex, just a closely related cousin, although we don’t know for sure yet. It’s called Daspletosaurus wilsoni and it shows some traits that are found in older Tyrannosaur relations but some that were more modern at the time.

Dunkleosteus is one of a number of huge armored fish that lived in the Devonian period, about 360 million years ago. We talked about it way back in episode 33, back in 2017, and at that time paleontologists thought Dunkleosteus terrelli might have grown over 30 feet long, or 9 meters. It had a heavily armored head but its skeleton was made of cartilage like a shark’s, and cartilage doesn’t generally fossilize, so while we have well-preserved head plates, we don’t know much about the rest of its body.

With the publication in early 2023 of a new study about dunkleosteus’s size, we’re pretty sure that 30 feet was a huge overestimation. It was probably less than half that length, maybe up to 13 feet long, or almost 4 meters. Previous size estimates used sharks as size models, but dunkleosteus would have been shaped more like a tuna. Maybe you think of tuna as a fish that makes a yummy sandwich, but tuna are actually huge and powerful predators that can grow up to 10 feet long, or 3 meters. Tuna are also much heavier and bigger around than sharks, and that was probably true for dunkleosteus too. The study’s lead even says dunkleosteus was built like a wrecking ball, and points out that it was probably the biggest animal alive at the time. I’m also happy to report that people have started calling it chunk-a-dunk.

We talked about trace fossils in episode 103. Scientists can learn a lot from trace fossils, which is a broad term that encompasses things like footprints, burrows, poops, and even toothmarks. Recently a new study looked at insect damage on leaves dating back 252 million years and learned something really interesting. Some modern plants fold up their leaves at night, called foliar nyctinasty, which is sometimes referred to as sleeping. The plant isn’t asleep in the same way that an animal falls asleep, but “sleeping” is a lot easier to say than foliar nyctinasty. Researchers didn’t know if folding leaves at night was a modern trait or if it’s been around for a long time in some plants. Lots of fossilized leaves are folded over, but we can’t tell if that happened after the leaf fell off its plant or after the plant died.

Then a team of paleontologists from China and Sweden studying insect damage to leaves noticed that some leaves had identical damage on both sides, exactly as though the leaf had been folded and an insect had eaten right through it. That’s something that happens in modern plants when they’re asleep and the leaves are folded closed.

The team looked at fossilized leaves from a group of trees called gigantopterids, which lived between 300 and 250 million years ago. They’re extinct now but were advanced plants at the time, some of the earliest flowering plants. They also happen to have really big leaves that often show insect damage. The team determined that the trees probably did fold their leaves while sleeping.

In episode 151 we talked about fossils found with other fossils inside them. Basically it’s when a fossil is so well preserved that the contents of the dead animal’s digestive system are preserved. This is incredibly rare, naturally, but recently a new one was discovered.

Microraptor was a dinosaur that was only about the size of a modern crow, one of the smallest dinosaurs, and it probably looked a lot like a weird bird. It could fly, although probably not very well compared to modern birds, and in addition to front legs that were modified to form wings, its back legs also had long feathers to form a second set of wings.

Several exceptionally well preserved Microraptor fossils have been discovered in China, some of them with parts of their last meals in the stomach area, including a fish, a bird, and a lizard, so we knew they were generalist predators when it came to what they would eat. Now we have another Microraptor fossil with the fossilized foot of a mammal in the place where the dinosaur’s stomach once was. So we know that Microraptor ate mammals as well as anything else it could catch, although we don’t know what kind of mammal this particular leg belonged to. It may be a new species.

Let’s finish with the mangrove jingle shell. I’ve had it on the list for a long time with a lot of question marks after it. It’s a clam that lives in trees, and I actually thought it might be an animal made up for an April fool’s joke. But no, it’s a real clam that really does live in trees.

The mangrove jingle shell lives on the mangrove tree. Mangroves are adapted to live in brackish water, meaning a mixture of fresh and salt water, or even fully salt water. They mostly live in tropical or subtropical climates along coasts, and especially like to live in waterways where there’s a tide. The tide brings freshly oxygenated water to its roots. A mangrove tree needs oxygen to survive just like animals do, but it has trouble getting enough through its roots when they’re underwater. Its root system is extensive and complicated, with special types of roots that help it stay upright when the tide goes out and special roots called pneumatophores, which stick up above the water or soil and act as straws, allowing the tree to absorb plenty of oxygen from the air even when the rest of the root system is underwater. These pneumatophores are sometimes called knees, but different species of mangrove have different pneumatophore shapes and sizes.

One interesting thing about the mangrove tree is that its seeds actually sprout while they’re still attached to the parent tree. When it’s big enough, the seedling drops off its tree into the water and can float around for a long time before it finds somewhere to root. If can even survive drying out for a year or more.

The mangrove jingle shell clam lives in tropical areas of the Indo-Pacific Ocean, and is found throughout much of coastal southeast Asia all the way down to parts of Australia. It grows a little over one inch long, or 3 cm, and like other clams it finds a place to anchor itself so that water flows past it all the time and it can filter tiny food particles from the water. It especially likes intertidal areas, which happens to be the same area that mangroves especially like.

Larval jingle shells can swim, but they need to find somewhere solid to anchor themselves as they mature. When a larva finds a mangrove root, it attaches itself and grows a domed shell. If it finds a mangrove leaf, since mangrove branches often trail into the water, it attaches itself to the underside and grows a flatter shell. Clams attached to leaves are lighter in color than clams attached to roots or branches. Fortunately, the mangrove is an evergreen tree that doesn’t drop its leaves every year.

So there you have it. Arboreal clams! Not a hoax or an April fool’s joke.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 336: The Turtle Ant and the Alien Butt Spider

Thanks to Kari for suggesting this week’s topics! Definitely check out her book Butt or Face?, which is funny and has lots of animal information!

Further reading:

Butt or Face? by Kari Lavelle

GBIF: Araneus praesignis [the spider pictures below come from this site]

The turtle ant’s body is flattened and the soldier caste ants have specialized head shapes to block the nest entrances:

The alien butt spider has a butt that looks like an alien’s face!

The alien butt spider hides during the day in its leaf fort:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two really weird invertebrates suggested by Kari. One of these two animals is her favorite and the other is a weird ant from a book she wrote. Kari’s full name is Kari Lavelle and her book is for kids, called Butt or Face? It actually releases tomorrow as this episode goes live, so if you’re listening to this episode on Monday, July 10, 2023, you still have time to preorder the book, or you can just wait a day and run out to your local bookstore or library to get a copy.

Kari was nice enough to send me a copy of the book and it’s really funny and interesting. It’s partly a game where you look at a picture and decide whether it shows an animal’s butt or its face. It’s a lot harder than you’d think! You make your guess and turn the page to find out if you’re right and learn about the animal. It’s very fun and I actually guessed wrong on one animal, but I’m not telling you which one. There’s a link in the show notes if you want to learn more about the book and maybe order a copy for yourself.

Anyway, let’s talk about the ant first, because it’s actually one I’ve had on the list to talk about for a while. I was really excited to see it in Kari’s book. It’s called the turtle ant, sometimes called the “door head” ant. That gives you a clue as to whether its picture in the book features its butt or its face.

The turtle ant is any of the well over 100 species of ant in the genus Cephalotes, which are native to the Americas. Most live in Central and South America, especially in tropical and subtropical areas. Almost all species live in trees, nesting in cavities originally made by beetle larvae.

For the most part, turtle ants are pretty typical compared to other ant species. They have a generalized diet, eating pretty much anything they find. This includes plant material, dead insects and other animals they find, bird poop, nectar, and even pollen in some species. Each colony has a single queen that mates with multiple males and lays all the eggs for the colony. Worker ants tend the eggs and larvae, gather food, and keep the colony clean. But as in some other ants, many species of turtle ant have a soldier caste. These are worker ants who are specialized to defend the nest. We talked about army ants recently, in episode 328, and also back in episode 185, and army ant soldiers have massive sharp mandibles that can inflict painful bites. But the turtle ant soldiers don’t have sharp mandibles and aren’t aggressive. They have one job, and that job is to stand at the nest’s entrances and stop them up with their heads, only moving when another ant needs to get through.

As a result, turtle ant soldiers have weird-shaped heads. The head shape varies from species to species, with some looking more normal and some being heavily armored and strangely shaped. Well, they’re not strangely shaped except in comparison to an ordinary ant head. They’re shaped exactly right to do the job they’ve evolved to do, be a door. In some species, the top of the soldier’s head is completely round and flattened, just the right size and shape to block the entrance.

Turtle ants have another ability that they share with some other ants. If an ant falls from the twig or branch it’s climbing on, instead of just falling to the ground, it can glide back to the tree trunk. Turtle ants have flattened bodies, which helps catch the air like a tiny ant-shaped parachute. Unlike other ants that do this, which glide head-first, the turtle ant glides abdomen-first. It uses its legs and head to adjust which way it’s gliding, and most of the time it lands safely on the tree trunk.

There are undoubtedly more turtle ant species than we know about so far, and we actually don’t know very much about most of the species we have discovered. Most turtle ants live in trees, and that makes them hard to study.

There’s actually a spider called the ant-mimicking crab spider that eats turtle ants. It looks so much like a turtle ant worker that it can get close to the actual ants before it’s recognized as a predator, at which point it has a good chance of grabbing an ant to eat before the ant can run away. But that’s not actually the type of spider we’re talking about next.

The other animal we’re talking about today isn’t one from the book, it just happens to be one of Kari’s favorite animals *cough*sequel*cough*. It’s called the alien butt spider and it is completely awesome, as you can tell from the name.

The alien butt spider lives in Queensland, Australia, and it gets its name because—maybe you should just guess. I’ll wait.

Yes, you’re right! The abdomen of the spider has black or dark blue-green markings that look for all the world like the face of a tiny space alien from a movie. The spider itself is mostly green and very small, with a big female only growing about 8 mm long, although its legspan can be 20 mm across. Males are smaller, mostly because the male has a much smaller abdomen.

Its scientific name is Bijoaraneus praesignis, changed in December 2021 from Araneus praesignis. It’s also called the outstanding orbweaver or green orbweaver. Like many spiders, especially orbweavers, it’s mostly active at night. It spins a big round web that looks like the kind you see on Halloween decorations, because that’s the kind of web most orbweavers make, and at night it waits on or near the web for an insect to get stuck in it. During the day, though, the alien butt spider needs to hide. It makes what’s called a retreat in a leaf that’s partially closed or curled. The spider spins a thick layer of silk across the edges of the leaf that turns it into basically a little leaf fort, then crawls inside. The underside of the spider is plain greenish-yellow with no markings, so it’s hard to see against the leaf, especially through the layer of silk.

The spider’s abdomen is green with a yellow or white pattern on top, with black eye spots visible from the rear. The eye spots show up really well against the yellow or white pattern. But the spider also has black markings at the front of its abdomen, which also look like eyespots from some angles. The rest of its body is green, greeny-yellow, and brown, which helps it blend into leafy backgrounds.

Naturally, the alien butt spider is not actually trying to look like an alien. That’s something humans have decided it looks like because it’s green and the eyespots are so large. The spider just wants potential predators to see the eyespots and think, “Darn, that animal already saw me so I can’t sneak up on it. I won’t waste my energy trying to grab it.” Or maybe, “Uh oh, look at the size of that animal’s eyes! I must be looking at the head of a very large animal that might eat me, plus it’s looking right at me. I’d better run.”

Even though it looks kind of spooky, the alien butt spider is completely harmless to humans. We also don’t know much about it, so while it seems to be a common spider within its range, we don’t know for sure if it’s potentially endangered. It’s best to leave this little alien alone no matter how cute it is (and it is very cute).

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 331: Ompax, the Mystery Fish

This week we have a mystery fish from Australia, the ompax!

Main source consulted:

Whitley, G. P. (1933). Ompax spatuloides Castelnau, a Mythical Australian Fish. The American Naturalist, 67(713), 563–567. http://www.jstor.org/stable/2456813

The fateful Ompax drawing:

The freshwater longtom (picture by Barry Hutchins):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

For the Patreon episode this month, we had a bird mystery from Queensland, Australia. While I was researching it I came across this mystery fish, also from Queensland.

In 1872, a man named Karl Staiger visited the town of Gayndah as part of his job. He was a chemist, but he also had an interest in nature and years later he worked for the Queensland Museum. One morning in Gayndah he went to breakfast and was served a strange-looking fish—so strange-looking that he asked what it was. He was told it was a very rare fish found in the nearby Burnett River.

Staiger was interested enough that he asked the road inspector, presumably one of his coworkers, to draw the fish for him. But the drawing wasn’t made until after Staiger ate the fish. It was his breakfast and he was hungry and, as he wrote later, he didn’t know he should have at least saved the head for study. Presumably he also didn’t want his breakfast to get cold while the drawing was being made.

The road inspector was a careful artist although he wasn’t a naturalist himself, so he did what he could to draw the fish accurately from the remains of Staiger’s meal. According to the drawing, the fish had a long, flattened rostrum that looked a little like a very long, thin duckbill, big scales on its body, and a fin that went all the way around the edges of the tail starting about halfway down the back, which appeared to be connected dorsal, caudal, and ventral fins. Its pectoral fins were small, and its eyes were also small and near the top of its head. The fish was brown in color and about 18 inches long, or 46 cm.

Staiger eventually wrote to a French naturalist and sent him the drawing. The French naturalist has about 500 names and titles, usually shortened to something like Francis de Laporte de Castelnau. I’m going to call him Francis because obviously I can’t pronounce any of those names properly.

Francis saw at a glance that the fish was unlike anything he’d ever seen before. He suspected it didn’t just deserve its own genus but its own family. Staiger had reported what he’d been told, that the fish was known from a particular part of the Burnett River, and he’d also mentioned that it lived in the same area as another strange fish, the Australian lungfish.

The Australian lungfish had only been described a few years before, in 1870, and it’s a very big fish. It can grow up to 5 feet long, or 1.5 meters, and is greenish in color. It has big overlapping scales on its body and four strong fins that look more like flippers than ordinary fish fins, which it uses to stand and walk on the bottom of the river. Its tail comes to a single rounded point and it has tooth plates instead of regular teeth, which it uses to crush the small animals it eats. It also has a single lung in addition to gills, and like other lungfish it comes to the surface every so often to replace the air in its lung. When it’s especially active it will breathe at the surface more often. The ability to breathe air allows it to survive in water with low oxygen.

Francis noted that there were some similarities between the new fish and the Australian lungfish, but he thought it was more likely to be related to the alligator gar of North America. It had the same type of scales as the alligator gar. He also noted that its duckbill rostrum resembled the rostrum of the American paddlefish, which is similarly shaped but even longer than the new fish’s, but that the rest of the new fish was very different from the paddlefish.

Francis described the new fish in 1879 and gave it the name Ompax spatuloides, but as early as 1881 some fish experts wondered if the original drawing was misleading. They pointed out that the fish wasn’t drawn by someone with a knowledge of fish and that it had already been cooked and eaten, so the details might be completely wrong.

As it happens, the details were completely wrong, but not in a way anyone expected.

There’s actually some confusion as to whether the drawing of the fish was made before or after Staiger ate it, but it doesn’t actually matter after all. In 1930, an article in the Sydney Bulletin claimed that Ompax was a hoax to fool Staiger, made up of a lungfish head, a mullet body, and an eel tail.

The 1930 article isn’t available online, but one published in 1933 is, and it quotes the 1930 article. The 1933 article appears in a periodical called The American Naturalist and discusses the history of Ompax from start to finish, which is where most of our information comes from. The article finishes by pointing out that the Ompax’s head can’t have been made from a lungfish head unless a platypus bill or something like that was added, and suggests that the head might actually have been that of a fish of the family Belonidae. These are commonly called needlefish because they have long thin rostrums lined with teeth.

Needlefish are long, slender fish that resemble gars, although gars are native to North America and mostly live in freshwater. Needlefish live throughout much of the world’s oceans although some do live in brackish or freshwater. The needlefish swims near the surface of the water and will leap out of the water at high speed to jump obstacles like floating logs or boats. Since needlefish rostrums really do have a sharp point like a needle, it sometimes badly injures or even kills people who are fishing in boats by accidentally stabbing them.

One species, the freshwater longtom, is not only found in Australian rivers, it’s found in Queensland and occasionally even in the Burnett River. Its rostrum is the right size and shape to be the Ompax’s rostrum, while the platypus’s so-called duckbill is much too large to match the drawing. The freshwater longtom can grow almost three feet long, or about 85 cm, but is usually much smaller than that.

Like most needlefish, the freshwater longtom eats small fish, insects, and crustaceans. Also like other needlefish, it has no stomach. It swallows its prey whole and instead of the food going into its stomach, it just goes directly into its intestines, which excrete an enzyme called trypsin that breaks down proteins so they can be absorbed. This isn’t as efficient as stomach acids, but it also takes less energy to digest food this way.

The freshwater longtom’s dorsal and anal fins are long but fairly low and set well back on its body. Its pectoral fins are very small. While it does have an ordinary-looking tail fin, this might easily appear different after being cooked. And the longtom is edible, although it has a lot of thin bones that make it difficult to eat. Its bones are also green in color, which can be offputting to some people. Some needlefish also have greenish meat.

Staiger didn’t recount any details about the edibility and taste and texture of the fish he ate, so we don’t know if he actually ate a mullet that had a needlefish head and an eel tail stuck to it. The sea mullet and the sand mullet are both common fish around Australia and considered excellent eating fish. But if there really was that much of an eel’s tail stuck onto the fish’s body, you’d think Staiger would have noticed the difference in meat texture. The eels found in Australia are edible and considered a delicacy, but they wouldn’t look or taste the same as the rest of the fish.

The only reason we know the Ompax fish was a hoax is because of the 1930 article written by someone who called himself Waranbini. Waranbini’s article was published 58 years after the fish was served to Staiger for his breakfast.

I think the only hoax here was the 1930 article. I think Waranbini, whoever he was, looked at the picture, thought, “That looks like someone stuck three different types of animal together,” and wrote his article.

I think Staiger was actually served a freshwater longtom, and I think the people who served it to him were sincere that it was a rare fish. It is rare in the Burnett River. Staiger wasn’t an ichthyologist, nor was the man who drew the fish. They did the best they could, and Francis did the best he could to decipher from Staiger’s notes and the drawing what the fish was.

So from this we can learn three important things: Don’t use a drawing of a cooked and possibly mostly eaten fish to describe a new species, don’t assume people in the olden days were stupid, and don’t trust anonymous newspaper articles with no sources listed.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 325: The Burrunjor

We have merch available again!

Thanks to Will for suggesting this week’s topic, the burrunjor!

Muttaburrasaurus had a big nose [picture by Matt Martyniuk (Dinoguy2) – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3909643]:

The “rock art” that Rex Gilroy “found”:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Recently, Will suggested we learn about an Australian cryptid called the burrunjor. As it happens, this is a short chapter in my book Beyond Bigfoot & Nessie: Lesser-Known Mystery Animals from Around the World, which is available to buy if you haven’t already. I’ve updated it a little from the chapter, so even if you have the book I think you’ll find this a fun episode.

Dinosaurs once lived in what is now Australia, just as they lived throughout the rest of the world. Similar to the southwestern United States reports of little living dinosaurs that we talked about in episode 252, some people in northern Australia report seeing living dinosaurs running around on their hind legs—but these dinosaurs aren’t so little.

The burrunjor, as it’s called, is often described as looking like a Tyrannosaurus rex. Mostly, though, people don’t actually see it. Instead, they hear roaring or bellowing and later see the tracks of a large, three-toed animal that was walking on its hind legs.

One Australian dinosaur that people mention when trying to solve the mystery of the burrunjor is Muttaburrasaurus. It was an ornithopod that grew up to 26 feet long, or 8 meters. It walked on its hind legs and had a big bump on the top of its muzzle that made its head shape unusual. No one’s sure what the bump was for, but some scientists speculate it might have been a resonant chamber so the animal could produce loud calls to attract a mate. Other scientists think it might have just been for display. Or, of course, it might have been both—or something else entirely. None of the Australian dinosaur sightings mention a big bump on the dinosaur’s nose. Muttaburrasaurus also had four toes on its hind feet, not three, and it disappeared from the fossil record about 103 million years ago. It also probably ate plants, not meat.

Another suggestion is that the burrunjor is a megaraptorid that survived from the late Cretaceous. These dinosaurs looked like theropods but with longer, more robust arms. Most scientists these days group them with the theropods. Most of the known specimens are from what is now South America, but two species are known from Australia, Australovenator and Rapator.

Australovenator is estimated as growing up to 20 feet long, or 6 meters, and probably stood about the same height as a tall human. It was a fast runner and relatively lightly built. It disappeared from the fossil record around 95 million years ago, not that we have very many bones in the first place. We only know Rapator from a single bone dated to 96 million years ago. It was probably related to Australovenator, although some paleontologists think Australovenator and Rapator are the same dinosaur. Either way, it’s doubtful that any of these animals survived the extinction event that killed off all the other non-avian dinosaurs.

“Burrunjor” is supposed to be a word used by ancient Aboriginal people to describe a monstrous lizard that eats kangaroos. But in actuality, Burrunjor is the name of a trickster demigod in the local Arnhem Aboriginal tradition and has nothing to do with reptiles or monsters. The Aboriginal rock art supposedly depicting a dinosaur-like creature doesn’t resemble other rock art in the region and isn’t recognized by researchers or Aboriginal people as being authentic.

All accounts of the burrunjor trace back to a single source, an Australian paranormal writer named Rex Gilroy. Gilroy was the one who “discovered” the rock art of a supposed dinosaur and none of the sightings he reports appear in local newspapers. The first mention of the word burrunjor referring to a monster appears in 1995, when Gilroy’s book Mysterious Australia was first published. According to Gilroy, the most recent burrunjor sighting is from 1985, when a family driving to Roper River reported seeing a feather-covered dinosaur that was 20 feet long, or 6 meters. But again, that report doesn’t appear in the newspapers, just in Gilroy’s books.

Gilroy’s burrunjor is probably a hoax, but there is a big lizard in Australia that sometimes stands on its hind legs. Monitor lizards live throughout Australia and are often called goannas. The largest Australian species can grow over 8 feet long, or 2.5 meters. All monitor lizards, including the Komodo dragon that lives in Indonesia, can stand on their hind legs. The lizard does this to get a better look at the surrounding area. It uses its tail as a prop to keep it stable and can’t actually walk on its hind legs, but an 8-foot lizard standing on its hind legs might look like a dinosaur from a distance.

An even bigger monitor lizard, called Megalania, lived in Australia until at least 50,000 years ago and maybe much more recently. It’s possible that Aboriginal Australians lived alongside it, although there’s no evidence for this either way. (Unless you count the evidence that that would be really really cool.)

Megalania is considered the largest terrestrial lizard known. Dinosaurs weren’t lizards and crocodilians aren’t either, but monitor lizards are. We don’t have any complete fossils of Megalania but its total length, including its tail, is estimated to be as much as 23 feet long, or 7 meters. This is more than twice the length of the Komodo dragon, the largest lizard alive today and a close relation. Like the Komodo dragon, Megalania was probably venomous.

As for Rex Gilroy, he recently passed away at the age of 79 and his books about the burrunjor are out of print. Rest in peace, burrunjor man.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 319: The Phascogale

Thanks to Kristie for suggesting this week’s topic, the phascogale!

Further reading:

Red-tailed phascogales (all photos below come from this site)

Sleeping phascogale:

Wide-awake phascogales:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Ages ago, Kristie suggested I look up the phascogale, a really cute Australian animal. It’s definitely adorable and a little bit weird, so let’s learn about it this week!

Like most mammals that live in Australia, the phascogale is a marsupial. That means that the babies are born very early, then finish developing in their mother’s pouch. In this case, though, the phascogale mother doesn’t have a real pouch. Instead, when the mother is pregnant she develops what’s called a pseudo-pouch. Pseudo means false, so it’s not really a pouch although it resembles one. The pseudo-pouch is made up of folds of skin that develop around the mother’s teats, which protects the babies and keeps them warm. Since every baby needs its own teat at this stage, and the mother only has eight teats, if more than eight babies are born, the extra ones die.

The babies stay in the pseudo-pouch for about a month and a half, at which point they’re big enough that the mother can’t carry them around anymore. She makes a nest for them in a hollow tree, where they stay for another several months. She leaves them in the nest while she finds food, but comes back periodically to take care of them.

The phascogale is silvery-gray or gray-brown with a long tail that’s fluffy and black toward the end. It looks sort of like a mouse or rat with a long nose and a squirrel-like tail that’s almost as long as its body. It’s almost as big as a squirrel, up to about 10 inches long not including its tail, or 26 cm. Despite its resemblance to a rodent, the phascogale isn’t related to rodents at all. Rodents are placental mammals, not marsupial mammals.

The phascogale is nocturnal and mostly eats insects and spiders, but it will eat birds and mice too. It especially likes to eat cockroaches, yum. It mostly lives in trees although it will also hunt on the ground or in low brush, and it can jump long distances.

During the day the phascogale sleeps in a little hollow in a tree. It actually enters torpor while it’s asleep in order to save energy, which means it lowers its metabolic rate and its body temperature. But it can rev itself up again in only a few minutes when it needs to.

The strangest thing about the phascogale is that after mating season the males die. Mating season takes place over about three weeks in mid-winter, during which time a female may mate with several males. She’s able to store sperm in her body until she’s ready to have babies several months later, at which point she uses the stored sperm to fertilize her eggs. As a result, babies born in a single litter may have different fathers.

The males expend so much energy during these three weeks of mating season that they die of stress-related illnesses. In captivity, where the males can be treated by a veterinarian, a male who survives his first mating season can live as long as three years, but he doesn’t mate again. The female usually only has one litter of babies in her life even if she lives for several years.

The phascogale is closely related to the antechinus, which looks similar but has a skinny tail instead of a fluffy one. Antechinus males also die after mating season, while females give birth to tiny babies who latch onto a teat in the pseudo-pouch and stay there while they continue to develop, just like phascogales. Unlike phascogales, though, which always have eight teats, female antechinuses have different numbers of teats. How many teats a female has depends on where she lives. (Just a reminder, the word teats is another word for nipples.) Populations that live in areas where there’s plenty of food have more nipples, up to 13 but usually 12 at most. Populations that live in areas where it’s hard to find enough food have as few as 6 nipples. Producing milk for 12 or 13 babies requires a lot of energy, so females with more nipples can only survive and successfully raise that many babies when they have plenty of food. Females with only 6 nipples can survive on less food while still producing enough milk for six babies.

It seems strange that phascogale and antechinus males die after mating, but from an evolutionary standpoint, it makes sense. Both these animals are small and very likely to end up eaten by a larger animal. Odds are good that any given male won’t live long enough to see a second mating season anyway, so instead of conserving energy to stay alive, he expends all his energy during his first mating season to make sure he passes his genes along to the next generation.

One last interesting fact about the phascogale is that the red-tailed phascogale doesn’t need to drink water. It gets all the moisture it needs from its diet, which remember consists of insects and other animals. I guess animals are pretty moist on the inside. Don’t think about that too hard.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 314: Animals Discovered in 2022

Let’s learn about some of the animals discovered in 2022! There are lots, so let’s go!

Further Reading:

In Japanese waters, a newly described anemone lives on the back of a hermit crab

Rare ‘fossil’ clam discovered alive

Marine Biologists Discover New Giant Isopod

Mysterious ‘blue goo’ at the bottom of the sea stumps scientists

New Species of Mossy Frog Discovered in Vietnam

A Wildlife YouTuber Discovered This New Species of Tarantula in Thailand

Meet Nepenthes pudica, Carnivorous Plant that Produces Underground Traps

Scientists discover shark graveyard at the bottom of the ocean

Further Watching:

JoCho Sippawat’s YouTube channel

A newly discovered sea anemone (photo by Akihiro Yoshikawa):

A mysterious blue blob seen by a deep-sea rover:

A newly discovered frog:

A newly discovered tarantula (photo by JoCho Sippawat):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the 2022 discoveries episode, where we learn about some of the animals discovered in 2022! Most of the time these animals were actually discovered by scientists before 2022, but the description was published in that year so that’s when we first learned about them. And, of course, a lot of these animals were already known to the local people but had never been studied by scientists before. There are lots of animals in the world but not that many scientists.

The great thing is, so many animals get discovered in any given year that I have to pick and choose the ones I think listeners will find most interesting, which in a stunning coincidence turns out to be the ones that I personally find most interesting. Funny how that works out.

We’ll start in the ocean, which is full of weird animals that no human has ever seen before. It’s about a hermit crab who carries a friend around. The hermit crab was already known to science, but until a team of scientists observed it in its natural habitat, the deep sea off the Pacific coast of Japan, no one realized it had an anemone friend.

The sea anemone is related to jellyfish and is a common animal throughout the world’s oceans. Some species float around, some anchor themselves to a hard surface. Many species have developed a symbiotic relationship with other animals, such as the clownfish, which is sometimes called the anemonefish because it relies on the anemone to survive. Anemones sting the way jellyfish do, but it doesn’t sting the clownfish. Researchers aren’t sure why not, but it may have something to do with the clownfish’s mucus coating. Specifically, the mucus may have a particular taste that the anemone recognizes as belonging to a friend. If the anemone does accidentally sting the clownfish, it’s still okay because the fish is generally immune to the anemone’s toxins.

The clownfish lives among the anemone’s tentacles, which protects it from predators, and in return its movements bring more oxygen to the anemone by circulating water through its tentacles, its droppings provide minerals to the anemone, and because the clownfish is small and brightly colored, it might even attract predators that the anemone can catch and eat.

Anemones also develop mutualistic relationships with other organisms, including a single-celled algae that lives in its body and photosynthesizes light into energy. The algae has a safe place to live while the anemone receives some of the energy from the algae’s photosynthesis. But some species of anemone have a relationship with crabs, including this newly discovered anemone.

The anemone anchors itself to the shell that the hermit crab lives in. The crab gains protection from predators, who would have to go through the stinging tentacles and the shell to get to the crab, while the anemone gets carried to new places where it can find more food. It also gathers up pieces of food that the crab scatters while eating, because crabs are messy eaters.

The problem is that hermit crabs have to move into bigger shells as they grow. Anemones can move, but incredibly slowly. Like, snails look like racecar drivers compared to anemones. The anemone moves so slowly that the human eye can’t detect the movement.

What the team of scientists witnessed was a hermit crab spending several days carefully pushing and pinching the anemone to make it move onto its new shell. If it wasn’t important, the crab wouldn’t bother. The sea anemone hasn’t yet been officially described since it’s still being studied, but it appears to be closely related to four other species of anemone that also attach themselves to the shells of other hermit crab species.

In other marine invertebrate news, a researcher named Jeff Goddard was turning rocks over at low tide at Naples Point, California a few years ago. He was looking for sea slugs, but he noticed some tiny clams. They were only about 10 mm long, but they extended a white-striped foot longer than their shells. Goddard had never seen anything quite like these clams even though he was familiar with the beach and everything that lived there, so he took pictures and sent them to a clam expert. The expert hadn’t seen these clams before either and came to look for the clams in person. But they couldn’t find the clams again. It took ten trips to the beach and an entire year before they found another of the clams.

They thought the clam might be a new species, but part of describing a new species is examining the literature to make sure the organism wasn’t already described a long time ago. Eventually the clam research team did find a paper with illustrations of a clam that matched, published in 1937, but that paper was about a fossilized clam.

They examined the 1937 fossil shell and compared it to their modern clam shell. It was a match! But why hadn’t someone else noticed these clams before? Even Goddard hadn’t seen them, and he’s a researcher that spends a lot of time along the coast looking specifically for things like little rare clams. Goddard thinks the clam has only recently started extending its range northward, especially during some marine heatwaves in 2014 through 2016. He suspects the clam’s typical range is farther south in Baja California, so hopefully a future expedition to that part of the Pacific can find lots more of the clams and we can learn more about it.

We talked about deep-sea isopods just a few weeks ago, in episode 311. They’re crustaceans related to crabs and lobsters, but also related to roly-polies that live on land. The deep-sea species often show deep-sea gigantism and are referred to as giant isopods, and that’s what this newly discovered species is. It was first found in 2017 in the Gulf of Mexico and is more slender than other giant isopods. The largest individual measured so far is just over 10 inches long, or 26 cm, which is almost exactly half the length of the longest giant isopod ever measured. It’s still pretty big, especially if you compare it to its roly-poly cousins, also called pillbugs, sow bugs, or woodlice, who typically grow around 15 mm at most.

Before we get out of the water, let’s talk about one more marine animal. This one’s a mystery that I covered in the October 2022 Patreon episode. It was suggested by my brother Richard, so thank you again, Richard!

On August 30, 2022, a research team was off the coast of Puerto Rico, collecting data about the sea floor. Since the Caribbean is an area of the ocean with high biodiversity but also high rates of fishing and trawling, the more we can learn about the animals and plants that live on the sea floor, the more we can do to help protect them.

When a remotely operated vehicle dives, it sends video to a team of scientists who can watch in real time and control where the rover goes. On this particular day, the rover descended to a little over 1,300 feet deep, or around 407 meters, when the sea floor came in view. Since this area is the site of an underwater ridge, the sea floor varies by a lot, and the rover swam along filming things and taking samples of the water, sometimes as deep as about 2,000 feet, or 611 meters.

The rover saw lots of interesting animals, including fish and corals of various types, even a fossilized coral reef. Then it filmed something the scientists had never seen before. It was a little blue blob sitting on the sea floor.

The blue blob wasn’t moving and wasn’t very big. It was shaped roughly like a ball but with little points or pimples all over it and a wider base like a skirt where it met the ground, and it was definitely pale blue in color.

Then the rover saw more of the little blue blobs, quite a few of them in various places. The scientists think it may be a species of soft coral or a type of sponge, possibly even a tunicate, which is also called a sea squirt. All these animals are invertebrates that don’t move, which matches what little we know about the blue blob.

The rover wasn’t able to take a sample from one of the blue blobs, so for now we don’t have anything to study except the video. But we know where the little blue blobs are, so researchers hope to visit them again soon and learn more about them.

It wouldn’t be a newly discovered species list without at least one new frog. Quite a few frogs were discovered in 2022, including a tree frog from Vietnam called Khoi’s mossy frog. It lives in higher elevations and is pretty big for a tree frog, with a big female growing over 2 inches long, or almost 6 cm, from snout to vent. Males are smaller. It’s mostly brown and green with little points and bumps all over that help it blend into the moss-covered branches where it lives. That’s just about all we know about it so far.

Our next discovery is an invertebrate, a spider that lives in bamboo. Specifically it lives in a particular species of Asian bamboo in Thailand, and when I say it lives in the bamboo, I mean it really does live inside the bamboo stalks. Also, when I say it’s a spider, specifically it’s a small tarantula.

It was first discovered by a YouTuber named JoCho Sippawat, who travels around his home in Thailand and films the animals he sees. I watched a couple of his videos and they’re really well done and fun, and he’s adorable even when he’s eating gross things he finds, so I recommend his videos even if you don’t speak the language he speaks. I’m not sure if it’s Mandarin or another language, and I’m not sure if I’m pronouncing his name right either, so apologies to everyone from Thailand for my ignorance.

Anyway, Sippawat found a tarantula where no tarantula should be, inside a bamboo stalk, and sent pictures to an arachnologist. That led to a team of scientists coming to look for more of the spiders, and to their excitement, they found them and determined right away that they’re new to science. It was pretty easy to determine in this case because even though there are more than 1,000 species of tarantula in many parts of the world, none of them live in bamboo stalks. The new spider was placed in a genus all to itself since it’s so different from all other known tarantulas.

It’s mostly black and dark brown with narrow white stripes on its legs, and its body is only about an inch and a half long, or 3 1/2 cm. It can’t make holes into the bamboo plants itself, so it has to find a hole made by another animal or a natural crack in the bamboo. It lines its bamboo stalk with silk to make a little home, and while there’s a lot we don’t know yet about how it lives, it probably comes out of its home to hunt insects and other small animals since tarantulas don’t build webs.

Finally, let’s wrap around to the sea anemone again, at least sort of. If you remember episode 129, we talked about the Venus flytrap sea anemone, which is an animal that looks kind of like a carnivorous plant called the Venus flytrap. We then also talked about a lot of other carnivorous plants, including the pitcher plant. Well, in 2022 a new species of pitcher plant was discovered that has underground traps.

The pitcher plant has a type of modified leaf that forms a slippery-sided pitcher filled with a nectar-like liquid. When an insect crawls down to drink the liquid, it falls in and can’t get out. It drowns and is dissolved and digested by the plant. Almost all known carnivorous plants are pretty small, but the largest are pitcher plants. The biggest pitcher plant known is from a couple of mountains in Malaysian Borneo, and its pitchers can hold over 2 ½ liters of digestive fluid. The plant itself is a messy sort of vine that can grow nearly 20 feet long, or 6 meters. Mostly pitcher plants just attract insects, especially ants, but these giant ones can also trap frogs, lizards, rats and other small mammals, and even birds.

The newly discovered pitcher plant grows in the mountainous rainforests of Indonesian Borneo and is relatively small. Unlike every other pitcher plant known, its pitchers develop underground and can grow a little over 4 inches long, or 11 cm. Sometimes they grow just under the surface, with leaf litter or moss as their only covering, but sometimes they grow deeper underground. Either way, they’re very different from other pitcher plants in other ways too. For one thing, scientists found a lot of organisms actually living in the pitchers and not getting eaten by the plant, including a new species of worm. Scientists aren’t sure why some animals are safe in the plant but some animals get eaten.

The new pitcher plant is found in parts of Indonesian Borneo that’s being turned into palm oil plantations at a devastating rate, leading to the extinction or threatened extinction of thousands of animal and plant species. The local people are also treated very badly. Every new discovery brings more attention to the plight of the area and makes it even more urgent that its ecosystems are protected from further development. The fastest way to do this would be for companies to stop using so much palm oil. Seriously, it’s in everything, just look at the ingredients list for just about anything. I try to avoid it when I’m grocery shopping but it’s just about impossible. I didn’t mean to rant, but the whole palm oil thing really infuriates me.

You know what? Let’s have one more discovery so we don’t end on a sour note.

A biodiversity survey of two of Australia’s marine parks made some really interesting discoveries in 2022. This included a new species of hornshark that hasn’t even been described yet. It’s probably related to the Port Jackson shark, which grows to around five and a half feet long, or 1.65 meters, and is a slow-moving shark that lives in shallow water off the coast of most of Australia. Instead of a big scary mouth full of sharp teeth, the Port Jackson shark has a small mouth and flattened teeth that allow it to crush mollusks and crabs. The newly discovered shark lives in much deeper water than other hornsharks, though, around 500 feet deep, or 150 meters.

Another thing they found during the survey wasn’t a new species of anything, but it’s really cool so I’ll share it anyway. It was a so-called shark graveyard over three miles below the ocean’s surface, or 5400 meters. The scientists were trawling the bottom and when they brought the net up to see what they’d found, it was full of shark teeth–over 750 shark teeth! They were fossilized but some were from modern species while some were from various extinct species of shark, including a close relative of Megalodon that grew around 39 feet long, or 12 meters. No one has any idea why so many shark teeth are gathered in that particular area of the sea floor.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 312: Little Bouncy Animals

Thanks to Zachary and Oran for this week’s topic, some little animals that bounce around like tiny kangaroos!

Further reading:

Evolution of Kangaroo-Like Jerboas Sheds Light on Limb Development

Supposedly extinct kangaroo rat resurfaces after 30 years

High-Speed Videos Show Kangaroo Rats Using Ninja-Style Kicks to Escape Snakes

Williams’s jerboa [picture by Mohammad Amin Ghaffari – https://www.inaturalist.org/photos/177950563, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=115769436]:

A drawing of a jerboa skeleton. LEGS FOR DAYS:

The San Quintin kangaroo rat lives! [photo from article linked above]

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two cute little animals suggested by Zachary and Oran! Both of these animals are rodents but although they look remarkably alike in some unusual ways, they’re not actually all that closely related.

First, Zachary suggested the jerboa. We talked about the pygmy jerboa in episode 136, but we haven’t talked about jerboas in general. It’s a small rodent that’s native to the deserts of Asia, north Africa, and the Middle East. It’s usually brown or tan with some darker shading on the back and tail. It looks sort of like a gerbil with long ears, long hind legs, and a tuft at the end of the tail. Its front legs are short and it has an adorable whiskery nose.

The reason the jerboa’s hind legs are so long while its front legs are really short is that it jumps around on its hind legs like a kangaroo. Not only can it jump really fast, up to 15 mph, or 24 km/h, it can change directions incredibly fast too. This helps it evade predators, because most animals are fastest when running in a straight line. The jerboa bounces in all sorts of directions, hopping or just running on its long hind legs, with its long tail held out for balance. It can also run on all fours with its short front legs helping it maneuver, but for the most part it’s a bipedal animal. It has tufts of stiff hairs under its toes that help it run through loose sand.

The jerboa eats plants, although sometimes if it finds a nice juicy insect it will eat it too. Mostly it just eats leaves, bulbs, roots, and some seeds. It gets all of the moisture it needs from its diet, which is good because it lives in the desert where there’s not much water available.

Some species of jerboa mainly eat insects and spiders, and some have short ears instead of long ears. This is the case for the thick-tailed pygmy jerboa that lives in parts of China, Mongolia, and Russia. Its head and body only measures about two inches long, or almost 5 cm, but its tail is twice that length. The reason it’s called a thick-tailed jerboa is because it stores fat at the base of its tail, which makes the tail look thick compared to many rodent tails.

The jerboa is mostly active at dawn and dusk, although some species are fully nocturnal. It spends the day in a burrow it digs in sand or dirt. A jerboa will usually have more than one burrow in its territory, with the entrances usually hidden under a bush or some other plant. Different burrows have different purposes. Some have numerous entrances and lots of side tunnels but are relatively shallow, which is useful if the jerboa lives in an area with a rainy season. A shallow burrow won’t flood if it rains a lot. Some burrows are temporary, which the jerboa may dig if it’s out and about during the day looking for food. A mother jerboa will dig a burrow with a roomy nesting chamber to raise her babies, and a jerboa’s winter burrow has a nesting chamber that’s deep underground to help it stay warm. Some species of jerboa construct unusual burrows, like the lesser Egyptian jerboa that has spiral-shaped burrows with storage chambers. Most jerboas are solitary animals, although sometimes a group will hibernate together in winter to help everyone stay warmer.

Scientists have been studying the jerboa to learn how different animals have evolved radically different leg lengths. The jerboa’s incredibly long hind legs are very different from its very short front legs, but it evolved from animals that had four short legs. But jerboas are born with four short legs, and as the babies grow up their hind legs grow longer and longer.

The jerboa is an incredibly efficient runner. Some species can jump as far as six feet in a single bound, or 1.8 meters, and up to three feet, or 90 cm, straight up.

The jerboa isn’t the only rodent that hops on its hind legs like a kangaroo. The kangaroo rat does too, and it’s Oran’s suggestion. Oran pointed out that a long time ago, I think in the humans episode, I said that humans are the only fully bipedal mammal, meaning we only ever walk on our hind legs. (Crawling when you’re a baby or trying to find something under the couch don’t count.) I was wrong about that for sure, because the kangaroo rat, the jerboa, and a few other mammals are also bipedal.

The kangaroo rat is native to parts of western North America. It looks a lot like a jerboa, with long hind legs and a long tail, although its ears are smaller. But the kangaroo rat and the jerboa aren’t closely related, although both are rodents. Their similarities are due to convergent evolution, since both animals live in very similar environments with the same selective pressures.

The largest species of kangaroo rat, the giant kangaroo rat, grows around 6 inches long, or 15 cm, with a tail about 8 inches long, or 20 cm. It can jump even longer than the jerboa although it doesn’t move as fast on average.

Like the jerboa, the kangaroo rat can change directions quickly, and it’s also mostly nocturnal and spends the day in a burrow. Some species spend almost all the time in burrows, only emerging for about an hour a night to gather seeds. Since owls like to eat kangaroo rats, you can’t blame them for wanting to stay underground as much as possible.

Snakes also like to eat kangaroo rats, especially the sidewinder rattlesnake. It’s a fast predator with venom that can easily kill a little kangaroo rat, but the kangaroo rat isn’t helpless. A study published in 2019 filmed interactions in the wild between the desert kangaroo rat and the sidewinder, using high-speed cameras. They had to use high-speed cameras because the snakes can go from completely unmoving to a strike in under 100 milliseconds. That’s less time than it takes you to blink. But the kangaroo rat can react in even less time, as little as 38 milliseconds after the snake starts to move. A lot of time the kangaroo rat will completely leap out of range of the snake, but if it can’t manage that, it will kick the snake with its long hind legs, which are strong enough to knock the snake away. Little fuzzy ninjas.

Unlike the jerboa, the kangaroo rat mostly eats seeds. The jerboa’s teeth aren’t very strong so it can’t bite through hard seeds, but the kangaroo rat’s teeth are just fine with seeds. The kangaroo rat also has cheek pouches, and it will carry lots of seeds home to its burrow. It keeps extra seeds in special burrow chambers called larders.

The kangaroo rat sometimes lives in colonies that can number in the hundreds, but it’s still a mostly solitary animal. It has its own burrow that’s separate from the burrows of other members of its colony, and it doesn’t share food or interact very much with its neighbors. It will communicate with other kangaroo rats by drumming its hind feet on the ground, including warning its neighbors to stay away and alerting them to predators in the area.

The kangaroo rat is vulnerable to habitat loss, since it mostly lives in desert grassland and humans tend to view that kind of land as useless and in need of development. An example of this is the San Quintin kangaroo rat, which is only found in western Baja California in Mexico. Only two large colonies were known when it was discovered by science in 1925, although it used to be much more widespread. But in the decades since 1925, the land was developed for agriculture until by 1986 the two colonies were completely wiped out. Scientists worried the species had gone extinct. Then, in 2017, a colony was discovered in a nature preserve and everyone breathed a sigh of relief. Other colonies have been discovered on farmland that has been abandoned due to drought. Still, the San Quintin kangaroo rat is critically endangered.

The kangaroo rat is actually helpful for the environment. Because it stores seeds underground, and sometimes forgets where it put them, it helps native plants spread. Its burrows help increase soil fertility and the spread of water through the soil. This is similar to the jerboa, which also eats enough insects to help reduce the number of agricultural pests in some areas.

There are also two species of kangaroo mouse, which are closely related to kangaroo rats. They mostly live in the state of Nevada in North America. There are also jumping mice that look like ordinary mice but with long hind legs. It also has cheek pouches. While some jumping mice live in western North America, some live in northeastern North America and Canada and are adapted to cold weather and long winters. One species of jumping mouse lives in the mountains in parts of China. There’s also a larger jumping rodent called the springhare that lives in parts of Africa, and which is about the size of a squirrel or a small rabbit. Like all these other rodents, it’s bipedal and hops on its hind legs like a little kangaroo, using its long tail for balance and to prop itself up when it’s standing. It mostly eats plants but will sometimes eat insects, and it spends most of the day in burrows. There’s also a hopping mouse native to Australia, which is a rodent with long hind legs and a long tail and long ears. It’s not closely related to the jerboa or the kangaroo rat, but it looks a lot like both because of convergent evolution. It mostly eats seeds.

All these animals are rodents, but Australia also has another animal called the kultarr that looks a lot like the kangaroo rat and the jerboa. It’s not a rodent, though. It’s actually a marsupial that’s completely unrelated to rodents although it looks like a rodent. That’s definitely what you call convergent evolution.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 303: Weird and Mysterious Animal Sounds

Thanks to Emory for suggesting this week’s topic, mysterious animal sounds!

Further reading/watching:

The Story of Elk in the Great Smoky Mountains

Terrifying Sounds in the Forests of the Great Smoky Mountains

Evidence found of stingrays making noise

This New AI Can Detect the Calls of Animals Swimming in an Ocean of Noise

The wapiti [pic from article linked above]:

The stingray filmed making noise [stills from video linked to above]:

The tawny owl makes some weird sounds:

The fox says all kinds of things:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Emory suggested we do a new episode about strange and mysterious animal sounds a while back, which is one of my favorite topics. The problem is, it’s hard to find good audio clips to share. It’s taken me a while, but I think I’ve found some good ones.

In late September 2018, in the Great Smoky Mountains in North Carolina, some hikers recorded a terrifying animal sound. The sound wasn’t a mystery for long, though, because they soon saw the animal making it. Here’s what it sounded like:

[elk bugle]

It’s the bugle of a male elk, which I’m going to call wapiti to avoid confusion. It’s a sound that wasn’t heard in the Smoky Mountains for at least a century. The eastern wapiti was once common throughout eastern North America but was driven to extinction in the late 19th century, although the last wapiti in North Carolina was killed almost a century earlier than that. All North American wapiti almost went extinct by about 1900, and hunters and conservationists worked to get nature preserves set aside to save it and its habitat. Starting in the 1990s, wapiti from western North American subspecies were reintroduced in the southeast, with reintroductions in the Smokies starting in 2001. There are now at least 200 wapiti living in the mountains, probably more. I’ve seen them myself and they’re beautiful animals!

The wapiti is a type of deer. We talked about it way back in episode 30 along with the moose. Various species of wapiti live throughout Europe and Asia as well as North America, although it’s been hunted to extinction in many areas. As we mentioned in episode 30, the name elk is used for the moose in parts of Europe, which causes a lot of confusion, which is why I’ve chosen to call it by its Algonquin name of wapiti.

The wapiti is a really big animal, one of the biggest deer alive today. Only the moose is bigger. It’s closely related to the red deer of Eurasia but is bigger. A male, called a bull, can stand about 5 feet tall at the shoulder, or 1.5 meters, with an antler spread some four feet wide, or 1.2 meters. Females, called cows, are smaller and don’t grow antlers. Males grow a new set of antlers every year, which they use to wrestle other males in fall during mating season. At the end of mating season the wapiti sheds its antlers.

The bugling sound males make during mating season is extremely loud. The sound tells females that the bull is strong and healthy, and it tells other bulls not to mess with it.

[elk bugle]

Our next sound is from an animal that scientists didn’t realize could even make sounds. There’ve been reports for a long time of stingrays making clicking noises when they were alarmed or distressed, but it hadn’t been documented by experts. A team of scientists recently decided to investigate, with their report released in July of 2022. They filmed stingrays of two different species off the coasts of Indonesia and Australia making clicking sounds as divers approached. They think it may be a sound warning the diver not to get too close. This is what it sounds like:

[Stingray making clicking sounds]

One exciting new technological development is being used to detect underwater sounds and hopefully help identify them. It’s called DeepSqueak, because it was originally developed to record ultrasonic calls made by mice and rats. This is an example of a mouse sound slowed down enough that humans can hear it, specifically a male mouse singing to attract a mate, which we talked about in episode 8:

[mouse song]

But DeepSqueak also works really well to detect sounds made by whales and their relatives, and researchers are currently using it to determine whether offshore wind farms cause problems for whales.

With DeepSqueak and other listening software, it turns out that a lot of animals we thought were silent actually make noise. For instance, this sound:

[Pelochelys bibron]

That’s a grunting sound made by the southern New Guinea giant softshell turtle.

And here’s a caecilian, a type of burrowing reptile that we talked about in episode 82:

[Typhlonectes compressicauda]

Let’s finish with a strange and mysterious sound heard on land. In January and February of 2021, some residents of London, England started hearing a weird sound at night.

[mystery sound]

Because the animal making the sound moved around so much, some people thought it must be a bird. One suggestion is that it was a tawny owl, especially the female tawny owl who makes a chirping sort of sound to answer the male’s hoot. This is what the male and female tawny owl sound like:

[owl sounds]

The tawny owl also sometimes makes an alarm call that sounds like this:

[tawny owl alarm call]

But the sound didn’t really match up with what residents were hearing. Here it is again:

[mystery sound]

Finally someone pointed out that red foxes make a lot of weird sounds, mostly screams and sharp barks, but occasionally this sound:

[fox sound]

That seems to be a pretty good match for what people were hearing in early 2021, although since no one got a look at the animal they heard, we can’t know for sure. So it’s still a mystery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 298: The Tantanoola Tiger

This week we’re examining the Tantanoola Tiger, a mystery animal that probably wasn’t a tiger…but what was it? This episode is rated two ghosts out of five for monster month spookiness! Thanks to Kristie for sharing her photos of the Tantanoola tiger!

Happy birthday to ME this week! I’ve decided to turn 25 again. That was a good year.

Further reading:

The Tasmanian tiger was hunted to extinction as a ‘large predator’–but it was only half as heavy as we thought

The grisly mystery of the murderous Tantanoola Tiger (Please note that the end of this article has some disturbing details not appropriate for younger readers. However, true crime enthusiasts will just shrug.)

Kristie and her kids reacting to the  taxidermied Tantanoola Tiger:

Kristie’s picture of the taxidermied Tantanoola Tiger. WHO DID THIS TO YOU, TIGER?

The numbat is striped but too small to fit the description of the “tiger”:

Our friend the thylacine, probably not strong enough to kill a full-grown sheep:

Tigers are really really really big. Also, don’t get this close to a tiger:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This past spring, when I was researching mysterious accounts of big cats spotted in Australia for episode 274, I considered including the Tantanoola Tiger. That was Kristie and Jason’s episode, and Kristie casually mentioned that she’d seen the stuffed Tantanoola tiger on display and wasn’t impressed. She even sent me pictures, which we’ll get to in a moment.

In the end, I decided the Tantanoola Tiger deserved its own episode, because it’s completely bonkers, and that it needed to be in monster month, because parts of the story are weird and creepy. I give it two ghosts out of five on our spookiness scale, so it’s not too spooky but it’s more than a little spooky.

The story starts in the southeastern part of South Australia at the very end of the 19th century. The little town of Tantanoola was home to a lot of sheep farmers, and in the early 1890s something was killing and eating sheep.

For years there had been rumors that a Bengal tiger had escaped from a traveling circus in 1884 and was living in the area, so once half-eaten sheep carcasses started turning up near Tantanoola, people assumed the tiger was to blame.

There was definitely something unusual killing sheep. Aboriginal shearers reported seeing an animal they didn’t recognize, something that frightened their dogs. Paw prints were found that measured over 4 inches across, or 11 cm, which is really big for a dog’s print although that’s what it resembled. It also happens to be a reasonable size for a small tiger, although a big tiger’s paw is usually more like 6 inches across, or almost 16 cm.

In 1892, a couple out driving in their buggy saw a striped animal cross the road ahead of them. They reported it as brown with stripes and a long tail. They estimated its length as three feet long not counting its tail, or about a meter, 5 feet long including the tail, or 1.5 meters. This is actually really short for a full-grown tiger. A big male Bengal tiger can grow more than ten feet long, or over 3 meters, including the tail, and even a small female Bengal tiger is about eight feet long, or 2.5 meters, including the tail.

There aren’t a lot of animals native to Australia that have stripes. The numbat has stripes and does live reasonably close to Tantanoola, although it was driven to extinction in the area by the late 19th century. But the numbat is only about 18 inches long, or 45 cm, including its tail, and it looks kind of like a squirrel. It eats insects, especially termites, which it licks up with a long, sticky tongue like a tiny anteater. It’s even sometimes called the banded anteater even though it’s a marsupial and not related to anteaters at all. Plus, it doesn’t eat very many ants. The female numbat doesn’t have a pouch, but while her babies are attached to her teats they’re protected by long fur and the surrounding skin, which swells up a little while the mother is lactating.

So the animal seen in 1892 probably wasn’t a numbat, but it also probably wasn’t actually a tiger. The people who saw it said it definitely wasn’t a dingo either.

In May 1893, a tiger hunt was organized but found nothing out of the ordinary, but in September of that year a farmer found huge paw prints after his dogs alerted him to an intruder during the night. The prints were over 4 inches across, or 11 cm, and this time a policeman took plaster casts of them. A zoologist at the Adelaide Zoo examined the casts and said that they weren’t tiger prints but were instead from some kind of canid.

The next month, in October, a farmer reported that he’d killed the Tantanoola tiger. But it wasn’t a tiger and wasn’t even any kind of wolf relation. Instead, it was a feral hog that had been killing his sheep for years and evading his attempts to kill it. The boar measured 9 feet from nose to tail, or 2.7 meters, and while it was probably responsible for some sheep killing, it wasn’t the Tantanoola tiger. The so-called tiger kept on killing sheep.

In August of 1894 a 17-year-old named Donald Smith saw a strange animal dragging a struggling sheep into the trees. The mystery animal was light brown with darker stripes and stood about two and a half feet high at the shoulder, or 75 cm, and was over four feet long, or 1.3 meters. Donald thought it was a tiger, although he’d never seen a tiger before. He said the stripes on its body were dull, but they were much more distinct on its head. When police and trackers arrived at the area later, after Donald alerted them, they found claw marks, bloody tufts of wool, and big paw prints.

Finally, the following August, two sharpshooters set out to hunt the so-called tiger and actually found it. It was just barely dawn when they saw what looked like a gigantic dog grab a sheep and wrestle it to the ground. One of the men shot the animal and killed it.

The Tantanoola tiger definitely wasn’t a tiger. It was more like a dog, but it was much bigger than any dog they knew and certainly much bigger than a dingo. It was three feet tall at the shoulder, or 91 cm, and 5 feet long, or 1.5 meters, including the tail. It was mostly dark brown with patches of lighter brown and gray, and yellowish legs. Its paws were over 4 inches across, or 11 cm. But it didn’t have stripes. It was identified as a wolf, although what kind of wolf varied. Suggestions included a European wolf, a Syrian wolf, or an Arabian wolf.

We still don’t know exactly what kind of wolf or related animal the animal was, but we do still have the stuffed specimen. It’s on display in the Tantanoola Hotel, which is where Kristie and her kids saw it several years ago. She took pictures and was kind enough to give me permission to use them, and please, I beg you, even if you’ve never clicked through to see any pictures I’ve posted before, please look at these. There are two, the reaction shot of Kristie and her kids looking at the Tantanoola tiger, and a picture of the tiger itself. You will laugh until you cry.

As we’ve mentioned a few times before, taxidermy requires a lot of work and artistic ability. Whoever stuffed and mounted the Tantanoola tiger lacked some of the artistic skills. It looks really goofy. Really, really goofy. But at least we have the body, although unfortunately it hasn’t been DNA tested so we still don’t know exactly what kind of wolf or wolf relation it is. But that’s not the only mystery.

In fact, there are three separate mysteries here. First, how did the wolf get to Australia? Second, what was the striped animal people were seeing? Third, what was killing sheep? Because even after the wolf was shot, sheep kept being killed and the striped animal was occasionally spotted.

One suggestion is that the striped animal was a thylacine. We’ve talked about it a few times before, most recently in episode 274. The thylacine was still alive in Tasmania in the 1890s, but it had been extinct in mainland Australia for about 3,000 years. It’s possible that someone brought a thylacine to mainland Australia where it escaped or was set loose, just as the wolf had to have been brought to Australia.

Then again, thylacines weren’t very strong. They mostly ate small animals, especially the Tasmanian native hen, which is about the size of a big flightless chicken with long legs. It was much smaller than a wolf and much, much smaller than a tiger. If there was a thylacine around Tantanoola at the time, it probably wasn’t the animal killing sheep.

Even though farmers had shot a huge feral hog and a wolf, neither of which belonged in Australia, sheep kept being killed. No one ever figured out what the striped animal was, and eventually it stopped being seen. The 19th century turned into the 20th century, and more and more sheep started disappearing—hundreds of them every year. In this case, though, they weren’t being eaten. They just disappeared.

Toward the end of 1910 the mystery was accidentally solved. Three hunters smelled an intense stench of death coming from some trees. It was so strong that they went to investigate. They found a path into the trees and came across something awful.

There were piles of dead sheep and lambs everywhere, dozens of them. They’d been skinned and the skins were hanging on wires strung through the trees. But the path continued, and when the hunters went farther, they found even more dead sheep.

It took a few weeks, but the police eventually tracked down the culprit, a local man who had been selling a lot of sheepskins on the sly for years despite not raising sheep himself. He’d killed thousands of sheep to sell their skins, leaving the bodies to just rot. He’d also done some other terrible crimes, so if you click through to read the article I’ve linked to in the show notes, please be aware that it’s not appropriate for younger readers. He’d also been convicted of sheep stealing in 1899, but in Victoria, not South Australia.

The sheep rustler wasn’t the Tantanoola tiger, because he was probably a good 140 miles away, or 225 km, when it was killing sheep. Besides, the so-called tiger actually ate the sheep it killed. But once he was caught and sentenced to jail, the Adelaide Evening Journal newspaper wrote about it with the headline “The Tiger Caged.”

As for the striped animal, tiger or not, we still have no idea what it was.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!