Category Archives: Australia

Episode 189: The Handfish and the Lumpsucker



This week we have two more listener suggestions, so thanks to Rosy and Simon! They both suggested small but intensely interesting fish!

Further reading:

The Handfish Conservation Project – Name a Fish!

Further watching:

Pacific Spiny Lumpsucker making adorable faces

The only smooth handfish specimen in the whole world:

In case you were wondering why it’s called a handfish (this one is a spotted handfish):

A red handfish. You’d be angry too if there were fewer than 100 individuals left in your species (photo by Rick Stuart-Smith):

A Pacific spiny lumpsucker:

HOW IS THIS REAL? I AM GOING TO DIE. These are real lumpsuckers on a real balloon in an aquarium. Apparently it’s a birthday party thing to do in Japan:

The sucker part of the lumpsucker:

SO ANGY:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two interesting fish, but first a CORRECTION!

In the hyena episode last week I called the hyena a canid, and it’s not! Yikes, that was a major blunder on my part. Thanks to Bal for the correction. Hyenas aren’t even very closely related to canids at all. They’re in the family Hyaenidae while canids are in the family Canidae, although both are in the order Carnivora along with cats and walruses and raccoons and weasels, etc. AND thanks to Simon who also let me know that the striped hyena lives in the Middle East and Asia as well as Africa. Sorry, y’all. I hate when I make mistakes.

Anyway, back to the fish! We’ll start with the handfish, which happens to be a suggestion by Simon. Simon sent me an article about the smooth handfish specifically, and it’s a sad article because the smooth handfish has been declared extinct.

The smooth handfish used to be a common fish that lived off the coast of Tasmania in warm, shallow water. It was reddish-brown with darker brown markings, and it grew to about 1 3/4 inches long, or 4.4 cm. But the area where it lived was dredged so intensively for oysters and scallops up until 1967 that the fish’s habitat was destroyed. It was described in 1802 from a single specimen caught by a French naturalist, but that’s the only smooth handfish anyone ever bothered to collect for science. And now it’s the only specimen we have to study.

The reason the smooth handfish was so vulnerable to habitat loss is that it didn’t have a larval stage where newly hatched fish could disperse to new areas by floating on currents. Handfish eggs hatch into teeny baby handfish, not larval handfish. As a result, it was restricted to only specific areas and when those areas were destroyed by dredging, the fish was driven extinct. And the really awful thing is, the only reason people stopped dredging for oysters and scallops is because they’d been so overfished that there basically weren’t any left. The smooth handfish is actually the first marine fish known that has gone extinct in modern times.

There are 13 other species of handfish known in the world, but they’re all endangered due to pollution, habitat loss, and the spread of invasive species. Like the smooth handfish, other handfish species lay eggs that hatch into juvenile fish instead of larval fish, so they’re also especially vulnerable to habitat loss. For example, there are fewer than 100 red handfish alive in two small areas off the coast of Tasmania. We know because each fish has unique markings, which allows conservationists to identify individuals. A group called the Handfish Conservation Project has put together a database of living individuals, and if you donate at least $1,000 (in Australian dollars) you get to give one of the fish a name. I’ll put a link in the show notes so you can go look at the fish and see the names some of them have been given. The names include Ginger Ninja, Knuckles, Rosie Palm, and The Stalker.

The handfish is called that because its pectoral fins look like big flat hands that it uses to walk along the ocean floor. It’s actually related to the anglerfish, and like anglerfish it has an illicium above its mouth. Anglerfish use the illicium as a lure to attract animals that it then gulps down, but the handfish’s illicium is relatively small and researchers aren’t sure if all species use it as a lure. We’re not even completely sure what handfish eat, although there are reports of handfish eating polychaete worms, small fish, and crustaceans like amphipods and shrimp.

All the species live off the coast of Australia, especially around Tasmania. The largest species only grows to about 6 inches long, or 15 cm.

That is pretty much all we know about the handfish, so let’s move on to our other fish today, a suggestion by Rosy. Rosy wants us to talk about the lumpsucker, and I cannot argue with this because they are weirdly adorable fish.

The lumpsucker lives in cold waters near the Arctic. Most species live in the North Pacific but some also live in the North Atlantic. It doesn’t swim very well and, like the handfish, it spends most of its time on the sea floor. But unlike the handfish, which lives in shallow coastal water, some lumpsuckers live in the deep sea, up to 5,600 feet deep, or 1,700 meters. It eats small crustaceans, mollusks, polychaete worms, and other small animals, and the deep-sea species may also eat small jellyfish.

There are around 30 species of lumpsucker known, and we don’t know a whole lot about most of them. Most are small, but the biggest can grow 20 inches long, or 50 cm, and weigh as much as 11 lbs, or 5 kg. That’s Cyclopterus lumpus, which varies in color from blue or gray to yellowish or brown, and sometimes greenish, although during breeding season males turn orangey-red. The female’s eggs are eaten by people as imitation caviar, and it’s the only lumpsucker that is fished for as a result. Some people eat the fish itself too, especially in Iceland, but usually only the males. The females reportedly taste bad.

Cyclopterus lumpus has become a helpful addition to salmon farming in a surprising way. It eats parasites called sea lice, which infest the salmon. The lumpsuckers do such a good job cleaning the salmon of sea lice that fish farmers don’t have to use parasiticides.

The lumpsucker gets its name because it’s a little round lump of a fish and it has modified pelvic fins that act as a little sucker on its belly that lets it stick to things. The lumpsucker also has little hard bumps on its body. It has big round eyes and a little round mouth. Basically what I’m trying to say is the best word to describe a lumpsucker is ROUND. So round.

The lumpsucker doesn’t have a swim bladder. Instead, it has jelly-like fat deposits that increase its buoyancy. The female lays her eggs in rock crevices and the male stays to guard the eggs. He uses his tail and tiny fins to push water over the eggs so they stay aerated, and remains with them until they hatch several weeks later. The larvae are well developed and already have suckers.

Probably the most well-loved species of lumpsucker is the Pacific spiny lumpsucker, which is the roundest and most adorable, and is often kept in aquariums. It grows to about three inches long, or 7.5 cm, and it varies in color. Females are usually greenish while males are orange or reddish, but individuals can be gray, brown, or yellow too. In the wild it lives around Japan, northern California, and many other areas, where it spends most of its time stuck to pieces of eel grass, kelp, or rocks, making adorable faces at things. There’s a link in the show notes to a little video of one sticking itself to a rock, looking around, moving slightly with its teeny fins, sticking itself back to the rock… You really need to watch it. It will make you feel very calm.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, or if you have a great idea for a red handfish name, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!


Episode 179: Lost and Found Animals



This week let’s learn about some animals that were discovered by science, then not seen again and presumed extinct…until they turned up again, safe and sound!

Further reading:

A nose-horned dragon lizard lost to science for over 100 years has been found

Modigliani’s nose-horned lizard has a nose horn, that’s for sure:

Before the little guy above was rediscovered, we basically just had this painting and an old museum specimen:

The deepwater trout:

The dinosaur ant:

The dinosaur ant statue of Poochera:

The false killer whale bite bite bite bite bite:

Some false killer whales:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn about some animals that were discovered by scientists but then lost and assumed extinct, until they were found again many years later. There’s a lot of them and they’re good to think about when we feel down about how many species really are extinct.

We’ll start with a brand new announcement about a reptile called Modigliani’s nose-horned lizard, named after an Italian explorer named Elio Modigliani. He donated a specimen of the lizard to a natural history museum when he got home from exploring Indonesia. That was in 1891, and in 1933 scientists finally described it formally as Harpesaurus modiglianii.

The lizard was especially interesting because it had a horn on its nose that pointed forward and slightly up, and it had spines along its back. It looked like a tiny dragon.

But no one saw another one, not in Indonesia, not anywhere. Researchers knew it had lived where Modigliani said it did because a group of people from Indonesia called the Bataks knew about the lizard. It was part of their mythology and they carved pictures of it. But they didn’t have any, live or dead. Researchers thought it must have gone extinct.

Until 2018. In June 2018, a wildlife biologist named Chairunas Adha Putra was surveying birds in Indonesia, specifically in North Sumatra, when he found a dead lizard. Putra isn’t a lizard expert but he thought it might interest a herpetologist colleague named Thasun Amarasinghe, so he called him. Amarasinghe said oh yeah, that does sound interesting, do you mind sending it to me so I can take a look?

And that’s history, because once he saw it, Amarasinghe knew exactly what the lizard was.

Amarasinghe immediately called Putra, who was still out surveying birds. Could Putra please go back to where he’d found the dead lizard and see if he could find another one, preferably alive? It was really important.

Putra returned obligingly and searched for another lizard. It took him five days, but finally he found one asleep on a branch. He caught it and took pictures, measured it, and observed it before releasing it a few hours later. Hurray for scientists who go that extra mile to help scientists in other fields!

Modigliani’s nose-horned lizard is bright green with a yellow-green belly and spines, plus some mottled orange markings. At least, that’s what it looks like most of the time. It can change colors just like a chameleon. If it’s feeling stressed, it turns a darker gray-green and its spines and belly turn orangey. But it can change its color to match its environment too.

It’s related to a group of lizards called dragon lizards, which includes the bearded dragon that’s often kept as a pet. There are a lot of dragon lizards, and 30 of them have never been seen since they were first described.

Unfortunately, deforestation and habitat loss throughout North Sumatra and other parts of Indonesia threaten many animals, but the Modigliani’s nose-horned lizard was found just outside of a protected area. Hopefully it will stay safely in the protected area while scientists and conservationists study it and work out the best way to keep it safe.

A fish called the deepwater trout, also known as the black kokanee or kunimasu salmon, used to live in a Japanese lake called Lake Tazawa, and that was the only place in the world where it lived. It’s related to the sockeye salmon but it’s much smaller and less flashy. It grows to about a foot long, or 30 cm, and is black and gray in color as an adult, silvery with black markings as a young fish.

In the 1930s, plans to build a hydroelectric power plant on the lake alarmed scientists. The plan was to divert water from the River Tama to work the power station, after which the water would run into the lake. The problem is that the River Tama was acidic with agricultural runoff and water from acidic hot springs in the mountains. The scientists worried that if they didn’t do something to help the fish, soon it would be too late.

In 1935 they moved as many of the fish’s eggs as they could find to other lakes in hopes that the species wouldn’t go extinct. In 1940 the plant was completed, and as expected, the lake’s water became too acidic for the deepwater trout to survive. In fact, it became too acidic for anything to survive. Soon almost everything living in the lake was dead. Within a decade the lake was so acidic that local farmers couldn’t even use it for irrigation, because it just killed any plants it touched. Lake Tazawa is still a mostly dead lake despite several decades of work to lessen its acidity by adding lime to the water.

So, the deepwater trout went extinct in Lake Tazawa along with many other species, and to the scientists’ dismay, they found no sign that the eggs they’d moved to other lakes had survived. The deepwater trout was listed as extinct.

But in 2010, a team of scientists took a closer look at Lake Saiko. It’s one of the lakes where the deepwater trout’s eggs were transferred, and it’s a large, deep lake near Mount Fuji that’s popular with tourists.

The team found nine specimens of deepwater trout. Further study reveals that the population of fish is healthy and numerous enough to survive, as long as it’s left alone. Fortunately, Lake Saiko is inside a national park where the fish can be protected.

Next, let’s look at a species of ant called the dinosaur ant. It was collected by an amateur entomologist named Amy Crocker in 1931 in western Australia. Crocker wasn’t sure what kind of ant she had collected, so she gave the specimens to an entomologist named John Clark. Clark realized the ant was a new species, one that was so different from other ants that he placed it in its own genus.

The dinosaur ant is yellowish in color and workers have a retractable stinger that can inflict painful stings. It has large black eyes that help it navigate at night, since workers are nocturnal. It lives in old-growth woodlands in only a few places in Australia, as far as researchers can tell, and it prefers cool weather. Its colonies are very small, usually less than a hundred ants per nest. Queen ants have vestigial wings while males have fully developed wings, and instead of a nuptial flight that we talked about in episode 175 last month, young queens leave the nest where they’re hatched by just walking away from it instead of flying. Males fly away, and researchers think that once the queens have traveled a certain distance from their birth colony, they release pheromones that attract males. If a queen with an established colony dies, she may be replaced with one of her daughters or the colony may adopt a young queen from outside the colony. Sometimes a queen will go out foraging for her food, instead of being restricted to the nest and fed by workers, as in other ant species.

The dinosaur ant is called that because many of its features are extremely primitive compared to other ants. It most closely resembles the ant genus Prionomyrmex, which went extinct around 29 million years ago. Once researchers realized just how unusual the dinosaur ant was, and how important it might be to our understanding of how ants evolved, they went to collect more specimens to study. But…they couldn’t find any.

For 46 years, entomologists combed western Australia searching for the dinosaur ant, and everyone worried it had gone extinct. It wasn’t until 1977 that a team found it—and not where they expected it to be. Instead of western Australia, the team was searching in South Australia. They found the ant near a tiny town called Poochera, population 34 as of 2019, and the town is now famous among ant enthusiasts who travel there to study the dinosaur ant. There’s a statue of an ant in the town and everything.

The dinosaur ant is now considered to be the most well-studied ant in the world. It’s also still considered critically endangered due to habitat loss and climate change, but it’s easy to keep in captivity and many entomologists do.

Let’s finish with a mammal, and the situation here is a little different. In 1846 a British paleontologist published a book about British fossils, and one of the entries was a description of a dolphin. The description was based on a partially fossilized skull discovered three years before and dated to 126,000 years ago. It was referred to as the false killer whale because its skull resembled that of a modern orca. Scientists thought it was the ancestor of the orca and that it was extinct.

Uh, well, maybe not, because in 1861, a dead but very recently alive one washed up on the coast of Denmark.

The false killer whale is dark gray and grows up to 20 feet long, or 6 meters. It navigates and finds prey using echolocation and mostly eats squid and fish, including sharks. It’s not that closely related to the orca and actually looks more like a pilot whale. It lives in warm and tropical oceans and some research suggests it may migrate to different feeding spots throughout the year. It often travels in large groups of a hundred individuals. That’s as many dolphins as there are ants in dinosaur ant colonies. Part of the year it spends in shallow water, the rest of the year in deeper water, only coming closer to shore to feed.

Researchers are only just starting to learn more than the basics about the false killer whale, and what they’re learning is surprising. It will share food with its family and friends, and will sometimes offer fish to people who are in the water. It sometimes forms mixed-species groups with other species of dolphin, sometimes hybridizes with other closely-related species of dolphin, and will protect other species of dolphin from predators. It’s especially friendly with the bottlenose dolphin. So basically, this is a pretty nice animal to have around if you’re a dolphin, or if you’re a swimming human who would like a free fish. So it’s a good thing that it didn’t go extinct 126,000 years ago.

This is what the false killer whale sounds like:

[false killer whale sounds]

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!


Episode 172: Temnospondyls



This week let’s go back back back in time to more than 300 million years ago, when amphibian-like animals lived in enormous swamps. Don’t be fooled by the word amphibian: many Temnospondyls were really big!

Further reading:

Palaeos Temnospondyli

Dvinosaurus, three feet long and full of teeth:

And Sclerocephalus, five feet long and full of teeth. This one has a couple of larvae nearby:

Fayella (art by Nix)

Nigerpeton’s astonishing NOSE TEETH:

Mastodonsaurus had nose teeth too and it was way bigger than Nigerpeton, but somehow it just looks goofy instead of cool:

Koolasuchus just looked weird:

The largest Temnospondyl known, Prionosuchus:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going back into the past, way before the dinosaurs, to look at an order of animals that resembled modern amphibians but weren’t precisely amphibians, or reptiles, or fish. Let’s look at the Temnospondyls.

During the early Carboniferous period, which lasted from about 360 to 300 million years ago, the ocean levels were high, the climate across much of the world was humid and tropical, and the continents were in the process of smushing together to form a huge landmass called Pangea. Much of the land was flooded with warm, shallow water that created enormous swampy areas full of plants and newly evolved trees. These swampy areas, full of decomposing leaves, eventually became coal and peat beds. As the Carboniferous period continued, the climate turned milder and the sea levels dropped, but while the huge swamps remained, many life forms evolved to take advantage of the various habitats and ecological niches they provided.

The armored fish of the Devonian went extinct, replaced by more modern-looking fish, including sharks and the first freshwater fish. The first conifer trees appeared, land snails, dragonflies and other insects, and the first animals that could survive on land for part of the time. This included the Temnospondyls, a numerous and successful order of animals whose fossils have been found worldwide and appear in the fossil record for more than 200 million years. But most people have never heard of them.

Temnospondyls are grouped in the class Amphibia alongside Lissamphibia, which is the order all living amphibians and their ancestors belong to. But researchers aren’t sure if Temnospondyls gave rise to lissamphibians or if they all died out.

The first Temnospondyl fossils were discovered in the early 19th century and early paleontologists immediately started debating what exactly these strange animals were. It was originally classified as a reptile, but as more fossils came to light, it became clear that these weren’t reptiles. Finally it was classified as a subclass of amphibian called Labyrinthodontia, where it remains today, at least for now.

Temnospondyls do share many traits with modern amphibians. We know that at least some species had a larval form that was completely aquatic, with fossil evidence of gill arches. Some retained external gills into adulthood the way some salamanders do. But they still had a lot in common with their fish ancestors.

Most Temnospondyls had large heads that were broad and flattened in shape, often with a skull that was roughly triangular. The earliest species had relatively small, weak legs and probably spent most of their time in the water, but it wasn’t long before species with stronger legs developed that probably lived mostly on land.

When you think about amphibian relatives, you probably think these animals were small, maybe the size of a bullfrog. But while some Temnospondyls were small, many grew much larger. Some had smooth skin but many had scales, including some species with scales that grew into armor-like plates. Let’s look at some individual species of Temnospondyl and get an idea of how varied they were.

Let’s start with a group of temnospondyls with one of the most confusing names ever, Dvinosauria. That may not sound too confusing, but it’s spelled just like dinosauria but with a V after the D. It lived in the late Permian around 260 million years ago, and its fossils have been found in parts of Russia. It was named not to mess with people who keep seeing dvinosaur and thinking dinosaur, but after the Northern Dvina River.

Dvinosaurs were either semi-aquatic or fully aquatic, depending on the species. The genus Dvinosaurus was pretty typical for aquatic Temnospondyls. It had external gills and was fully aquatic, with small legs but a powerful tail for swimming. It grew over three feet long, or around a meter, and probably looked like a big salamander with a big triangular head. It probably ate fish and other small animals. Like many Temnospondyls, it had extra teeth growing from the roof of its mouth to help it hold onto fish. Some paleontologists think it lurked at the bottom of rivers and streams until it saw a fish or other animal approach, at which point it shot upward and grabbed it.

A typical land Temnospondyl was Sclerocephalus, which lived around 300 million years ago in what is now Germany. We have a lot of Sclerocephalus fossils, which means it was probably a successful animal. It was also big, around five feet long, or 1.5 meters.

Because we have so many Sclerocephalus fossils, we know a lot more about it than we do other Temnospondyls. Its larval form was aquatic and had a long tail to help it swim. As a juvenile it probably had external gills but as it matured, it spent more and more time on land, using its lungs to breathe. Its tail was shorter as an adult because it didn’t need to swim as often. But it did spend time in the water and retained the lateral line system still found in fish and some amphibians, a sensory organ that detects water movements. It also had a pineal eye that a few animals retain today, notably the reptile Tuatara that we talked about way back in episode three. This third eye was at the top of the skull and was probably only sensitive to light rather than being useful for seeing. As in modern animals that still have a pineal eye, it probably helped regulate behaviors according to the length of days.

We even know exactly what Sclerocephalus ate, because we have fossilized stomach contents in a few cases. It ate fish and amphibians and sometimes smaller Sclerocephaluses, and was probably an opportunistic predator. Like other Temnospondyls it had teeth on its palate, three pairs in its case that grew from the roof of its mouth.

A less typical temnospondyl was the genus Fayella, which lived in what is now Oklahoma in the United States and lived around 270 million years ago, in the early Permian. It grew to about four feet long, or 1.15 meters, and had unusually long legs for a Temnospondyl. It also had a smaller head in proportion to its body compared to most Temnospondyls, and was more lightly built. As a result, it looked more like a reptile or an early synapsid, which as you may remember from episode 119 were proto-mammals that looked like weird reptiles. Researchers think Fayella could run much faster than other Temnospondyls could, which didn’t so much help it catch prey as evade hunting synapsids.

Nigerpeton looked more like your average Temnospondyl, mostly. It lived in what is now the African country of Niger, around 250 million years ago. It was only discovered in the early 2000s and we still don’t have very many fossils so we don’t know exactly how big it was. But its skull was two feet long, or 60 cm, so it was definitely a big animal. It probably looked a lot like a crocodile in many ways, including a long, heavy snout with lots of teeth. Lots of teeth. LOTS of teeth. As with other Temnospondyls, it ate fish and other small, wriggly animals, and to help it catch those fish it had ordinary teeth and extra teeth that grew from the top of the mouth and the lower jaw. Basically it just had a mouthful of teeth. This is true for many Temnospondyls, but Nigerpeton took that one step too far. Two of its extra teeth are referred to as tusks, because they grew upward from the lower jaw, pierced through the roof of the mouth, and emerged from the top of the nose about where you’d expect nostrils to be in a modern animal. Instead of nostrils, NOSE TEETH. Actually, the nostrils were behind the nose teeth. We don’t know enough about Nigerpeton to know what it used these tusks for, but it sure looked cool.

Nigerpeton wasn’t the only Temnospondyl with tusks that emerged from the top of the nose when its mouth was closed. Others had it too, including one of the first Temnospondyls discovered, Mastodonsaurus. Mastodonsaurus was a successful genus of Temnospondyls that lived from about 247 million years ago to 201 million years ago in what is now Europe. Despite its name, Mastodonsaurus was neither a mastodon nor a dinosaur. It was big, though—one species grew up to 20 feet long, or 6 meters. Like other Temnospondyls it had a big head and a somewhat short tail. It also had legs that were small and weak, which suggests it was mostly if not completely aquatic, and it ate fish and other small animals.

The most recently living Temnospondyl, which went extinct around 120 million years ago, lived in what is now Australia. Koolasuchus lived in fast-moving streams and filled the same ecological niche as crocodiles, which eventually replaced it after it went extinct. But it didn’t look anything like a crocodile. It had the typical big head of a Temnospondyl, in this case broad and rounded with a blunt nose, but with what are called tabular horns that projected from the rear of the skull, which gave its head a triangular appearance. Plus, it probably grew up to 16 feet long, or 5 meters. But its body was relatively slender compared to the chonky head, which made it look kind of like a really really big tadpole.

We’ll finish with the largest species of Temnospondyl known, Prionosuchus. It lived between 299 and 272 million years ago in what is now Brazil, and while it didn’t look much like a modern crocodile, it filled the same ecological niche. It had relatively small legs and a big head like most Temnospondyls, but its snout was slender and elongated like a ghavial’s. It was an aquatic animal and was probably an ambush predator that mostly ate fish.

While we don’t know exactly how big Prionosuchus could grow since we don’t have any complete specimens, the largest skull found measured 5.2 feet long, or 1.6 meters. That’s just the skull. Researchers estimate the animal was 30 feet long, or 9 meters, when it was alive.

But although Prionosuchus was amphibious like other temnospondyls, it retained a lot of features from its fish ancestors. Basically, it looked something like the biggest salamander you could imagine, but with jaws and teeth like a ghavial’s, but inside it was more fish than amphibian. It’s no wonder paleontologists have been trying to figure Temnospondyls out for almost two centuries.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!


Episode 158: Legless Lizards and Other Not-Snakes



What’s the difference between a snake and a legless lizard? Find out this week and learn about all kinds of interesting reptiles without legs that aren’t actually snakes!

The slow-worm. Not a snake:

Burton’s legless lizard. Not a snake:

The excitable delma. Not a snake:

The Mexican mole lizard. Not a snake or a worm:

The red worm lizard (Amphisbaena alba). Also not a snake or a worm, but honestly, it looks a lot like I imagine the Mongolian death worm to look:

The giant legless skink. Not a snake:

Stacy’s bachia. Not a snake:

Further reading (and this is where I got the Stacy’s bachia picture above):

Bachia lizards–look, no hands!

An Explosive Enigma from Kalmykia—the ‘Other’ Mongolian Death Worm?

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

A couple of weeks ago we discussed the Mongolian death worm and the possibility that it was an animal called an amphisbaenian, which is a reptile without legs that’s not a snake. But there are lots of other legless reptiles that aren’t snakes. So this week we’re going to learn about legless lizards and their friends.

Researchers have determined that leglessness evolved in reptiles many different times in species that aren’t related, often in species that spend at least part of their time underground. If the legs get in the way of burrowing or other movement, over time individuals born without legs or with much smaller legs end up finding more food than those with legs. That means they’re more likely to reproduce, and their offspring may inherit the trait of no legs or smaller legs.

Some legless lizards look so much like snakes at first glance that it can be hard to tell them apart. The common slow-worm, for instance, lives throughout most of Europe and part of Asia. It grows to about a foot and a half long, or 50 cm, and is brown. It mostly eats slugs and worms so it spends most of its time in damp places or underground. But while it looks superficially like a snake, it’s not a snake. It’s a lizard with no legs. Like some other lizard species, including many legless lizards, it can even drop its tail if it’s threatened and then regrows a little tail stump.

So how can you tell the difference between a legless lizard and a snake? The one big clue is if the reptile blinks. Snakes don’t have eyelids; instead, their eyes are protected by a transparent scale that covers the eye completely. Lizards have eyelids and blink. Legless lizards have a different head shape from snakes too, usually more blocky and less flattened. The tongue is not so much forked as just notched, and shorter and less slender than a snake’s tongue.

Species of one family of legless lizards do sometimes have legs. Honestly, this is almost as confusing as the whole deer and antelope mix-up from episode 116. The family is Pygopodidae and they’re actually most closely related to geckos although they don’t look much like geckos. They look like snakes, and to make things even more complicated, geckos and Pygopodids don’t have eyelids. I know I know, I just said lizards have eyelids but geckos are an exception. Pygopodids don’t have front legs at all, but some do have vestigial hind legs that look more like little flaps than actual legs. They’re sometimes called flap-footed lizards as a result. They live in Australia and New Guinea.

One Pygopodid is Burton’s legless lizard, which does actually have vestigial hind legs. It lives in parts of Australia and Papua New Guinea and is kind of a chunky reptile with a pointed nose. It’s brown or gray, sometimes with long stripes, and can grow to more than three feet long, or one meter. It eats other lizards, especially skinks, but will also sometimes eat small snakes.

Burton’s legless lizard mostly stays in leaf litter in forests. Sometimes it will twitch the end of its tail to attract a lizard, which it then grabs by the neck. It will swallow small lizards whole, but if it’s too big to swallow, it will just hold onto its neck until the lizard suffocates or just gives up out of exhaustion. It can also retract its eyes so they’re less likely to be injured if its prey fights back.

The excitable delma is another pygopodid, this one without any legs at all. It lives in many parts of Australia and can grow nearly two feet long, or 54 cm, but almost half that length is tail. It’s shy and nocturnal, so even though it’s very common, it’s seldom seen. It’s brown or grayish with darker stripes on its head. The reason it’s called the excitable delma is because it uses its long tail to jump, twisting and changing directions as it jumps repeatedly up to six inches off the ground, or 15 cm. It does this to escape from predators but it also sometimes just jumps around for the heck of it, according to observations of excitable delmas in captivity. It can also make a squeaky sound. It likes dry, rocky areas and eats insects.

There are other reptiles that look like snakes but aren’t, in addition to the legless lizards. We talked about the amphisbaenians in the Mongolian animals episode a few weeks ago, and also in episode 10. Amphisbaenians are sometimes called worm lizards because they look less like snakes than they do worms. They’re related to both legless lizards and snakes but lost their legs independently.

The amphisbaenian moves like a worm, not a snake. Its skin is loosely attached to its body so that it can move freely, and it bunches up its skin the way a worm bunches up its body, then extends it to move forward or backward. This kind of action is called peristalsis, by the way. Unlike worms, the amphisbaenian has scales because it’s a reptile, but the scales are often arranged in rings that make it look even more like an earthworm. Many amphisbaenians are pink like many earthworms, too.

Most amphisbaenians live underground their entire lives, hunting worms, insect grubs, and other small animals. In most cases they only come to the surface at night or after a heavy rain. Most have no legs at all, but one family consisting of four species, all of them native to Mexico, has little front legs. One of these species is the Mexican mole lizard, which can grow over a foot long, or more than 30 cm. It mostly eats soft-bodied animals like worms and termites, but it will occasionally eat small lizards. It’s pink and has little black dots for eyes and is actually really cute, but don’t let that fool you. If you are a worm, the Mexican mole lizard is a murder machine. It has sharp little teeth that it uses to bite pieces from its prey instead of swallowing them whole.

All the other known amphisbaenians have no legs at all, and for most species we know very little about them. The red worm lizard, for instance, lives throughout much of western South America and appears to be common, but it lives underground and is hardly ever seen. It’s the largest amphisbaenian known and can grow nearly three feet long, or 85 cm, although it’s only a few inches thick, or around 6 cm. It’s brown, reddish, or yellowish in color with a white belly and has tiny eyes that are barely visible. Its tail is blunt and rounded like other amphisbaenian tails, but its tail is tough enough to withstand bites from predators without being injured. If the red worm lizard feels threatened, it raises its head and tail and bends itself into a U shape so that it looks like it has two heads.

That’s why the amphisbaenian has that name, by the way. In ancient mythology, the amphisbaena was a serpent with a head on each end of its body. It was said to mostly eat ants, and that’s actually a good observation of the real amphisbaenian, which often eats ants, termites, and other insects.

Legless skinks are another group of lizards that either have no legs at all or just little flaps instead of hind legs. The males are the ones with the hind leg flaps, which they use to hold onto the female while mating. Most legless skinks look sort of like amphisbaenians, with a blunt-ended tail that’s sometimes hard to tell from the head, but more snakey than wormy for the most part.

One example is the giant legless skink, which is dark gray or black with no legs, and which lives in South Africa. It grows almost a foot and a half long, or 42 cm, and is a little bit of a chonk. We still don’t know much about it but it probably eats insects and other invertebrates like most legless skinks do.

A while back, Llewelly sent me a link to an article about Stacy’s bachia, a lizard that lives in the tropics of South America. It’s a member of the spectacled lizards, which all have lower eyelids that are transparent. That way the lizard can see even if its eyes are closed. I put a link to the article in the show notes if you want to read it.

Stacy’s bachia usually has no hind legs, although it may have little stubby ones, but it hatches with small front legs. But it spends most of its life burrowing in soil and in leaf litter as it hunts termites, ants, and other small animals, and eventually all its legs wear away to nothing.

Let’s finish with a mystery animal. Kalmykia is a small region of Russia, and the native people of the area are called Kalmyks. The Kalmyks report that there’s an animal that lives in both the steppes and in sand dunes in the desert that looks like a snake but isn’t a snake, which they actually call the short gray snake. It grows around 20 inches long, or 50 cm, and has smooth skin and a tail that’s short and rounded at the end. It has no legs. This report is from zoologist Karl Shuker’s blog, and check the show notes for a link. The person who told him about this animal also says it’s about six to eight inches thick, or up to 20 cm, so if that’s correct it’s even more of a chonk than the giant legless skink.

Kalmykia is west of Kazakhstan, which is west of Mongolia, so there’s always the possibility that this legless animal is related to or the same animal as the Mongolian death worm that we talked about in episode 156. But Kalmykia is actually pretty far away from Mongolia, and the short gray snake is different from the death worm in two important ways. One, reports say it has no bones. If this is true, it must be some kind of invertebrate, not a reptile. It’s also supposed to move like a worm, although remember that the amphisbaenian does too and it’s a reptile.

But the other thing reported about the short gray snake is much weirder than having no bones. Apparently if someone hits the animal in a particular place on its back—presumably with a stick—it EXPLODES. It explodes into goo that spreads for several feet in every direction, or about a meter, leaving nothing else behind.

It’s possible this isn’t a real animal but a folktale, something like American tall tales about the hoop snake that’s supposed to grab its tail in its mouth and roll itself along like a hoop. The hoop snake is not a real animal, in case you were wondering. There’s no way of telling whether the exploding boneless short gray snake is a real animal, a folktale, or reports of more than one real animal that have gotten mixed up in translation. Hopefully someone who lives in Kalmykia will investigate and find out more. In the meantime, don’t hit any animals with sticks. For one thing, that’s mean. For another, it might explode and leave you covered in goo.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!


Episode 154: Some Australian animals and how to help



This week let’s learn about some lesser-known Australian animals. A heat wave and dry conditions have led to many terrible bush fires in Australia, with many animals and people left hurt, killed, and homeless. Fortunately, there are ways you can help!

Check out the Animal Rescue Craft Guild for patterns and other information about crafting pouches, beds, and other items needed for injured and orphaned animals, and where to send the items you make.

Animals to the Max has a great episode about the fires and a long list of places where you can donate money where it’s needed most.

Some rescued joeys chilling in their donated pouches:

An Eastern banded bandicoot:

A bilby:

A long-nosed potoroo:

The woylie, or brush-tailed bettong:

The numbat:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As you’ve probably heard, there are terrible fires sweeping through many parts of Australia right now amid a record-breaking heat wave. Both the fires and the heat have killed an estimated half a billion animals in the last few months. This week we’re going to learn about some lesser-known Australian animals and also talk about ways you can help the people in Australia who are helping animals, even if you don’t have any money to spare.

A Facebook group called the Animal Rescue Craft Guild is the resource for anyone who wants to make needed items for injured or orphaned animals. I’ll put a link in the show notes. The group shares what items are needed, patterns to make them, information about what fabrics and what fibers are appropriate for which items, and where to send them.

In the last week I’ve been knitting and crocheting nests for small animals, and this weekend my aunt Janice and I will be sewing pouches for larger animals. Well, Janice will be doing the sewing, I’ll cut out the cloth pieces for her to use. Many of the animals rescued from the fires are young marsupials, called joeys, whose mothers died, so the pouches are for joeys to live in until they’re old enough to be on their own. Being in a pouch makes the joey feel safe because it feels like being in its mother’s pouch. Rescue groups in Australia need all sizes and kinds of pouches, because there are so many different species of marsupial animals in Australia. So let’s learn about a few you may not have heard of.

One Australian marsupial that a lot of people don’t know much about is the bandicoot. There are a number of different species that live in parts of Australia and New Guinea. Some are exclusively herbivorous while some are omnivores. For instance, the Eastern barred bandicoot lives on the island of Tasmania and has recently been reintroduced into its historic range in Victoria in southeastern Australia. It’s still quite rare and threatened by introduced predators like foxes and by diseases. It’s an active animal and a fast runner, and makes a happy grunting noise when it finds food.

The Eastern barred bandicoot is about the size and shape of a rabbit but with shorter ears and a long nose that it uses to probe into the soil to find worms and other small animals that it then digs up. You can tell where one has been because it leaves a series of little holes in the ground called snout pokes. It’s light brown with darker and lighter stripes on its rounded rump, and has a short mouse-like tail. The Western barred bandicoot is a little smaller than the eastern but looks and acts very similar. Both are nocturnal and solitary, and spend the day sleeping in a nest lined with grass and leaves. When it rains, the bandicoot pushes dirt over its nest to help keep it dry. It eats plant material like seeds and roots as well as small animals like insects, worms, and snails. If something startles it, it will give a big jump, and as soon as it comes down it digs a burrow to hide in. Its pouch faces backwards so dirt won’t get into it when it digs.

Scientists are still working out what other animals the bandicoot is closely related to and how the different species are related to each other. It doesn’t help that many bandicoot species are already extinct. We do know that the bandicoot is most closely related to an animal called the bilby.

The bilby looks even more like a rabbit than the bandicoot does, and in fact sometimes it’s called the rabbit-bandicoot or the rabbit-eared bandicoot. Its fur is silky and slate gray on the back with white underneath, and it has a long nose, long ears, little pink paws, and a long tail. It grows to about 22 inches long, or 55 cm, not counting the tail, which is another 11 inches long, or 29 cm. Males are generally considerably larger than females. It even hops sort of like a hare.

There used to be two species of bilby, but the lesser bilby went extinct in the mid-20th century. The greater bilby is vulnerable due to habitat loss and introduced animals likes foxes and cats, but conservation efforts are underway with captive breeding programs and reintroduction of bilbies into areas where they used to live. There’s also a push to educate people about the bilby, and instead of chocolate Easter bunnies, a lot of people in Australia have started giving each other chocolate Easter bilbies.

The bilby is an omnivore and eats seeds, fruit, plant bulbs, insects, worms, and other small animals. Its large ears contain lots of blood vessels close to the surface. As blood travels through the ears, it radiates heat and returns to the heart much cooler than before, which helps cool the whole body.

The bilby sleeps in a burrow during the day, usually alone or with a few other bilbies, and it digs tunnels to connect different burrows throughout its territory. Like the bandicoot, its pouch faces backwards so dirt won’t get in it. Some bilbies may have a dozen burrows and will dig a new one every few weeks, which is helpful to other species of animal too since other animals may move into old bilby burrows.

The potoroo is another animal that people outside of Australia may not know about. It’s related to kangaroos and wallabies, but looks more like a rodent with a long, thin snout that curves downward. It’s brown with small ears and a thin tapering tail, and its hind legs are longer than its front legs so that it hops like a little kangaroo with its front feet tucked to its chest.

All species of potoroo are endangered even though when European settlers first arrived, it was a common animal all over Australia. Gilbert’s potoroo is so critically threatened that it’s estimated that only 70 are still alive today. In fact, it was suspected to be extinct until a small population was discovered in 1994. The long-footed potoroo was only discovered when one was caught in a trap in 1967. The long-nosed potoroo is less endangered than the other two species, but it’s still threatened by habitat loss, fires, and introduced predators like foxes, cats, and dogs.

The long-nosed potoroo grows to about 15 inches long at most, or 38 cm, with a tail about nine inches long, or 24 cm. Like the bandicoot and bilby, it’s nocturnal, solitary, omnivorous, and digs for a lot of its food. When it’s foraging, it sniffs the ground while moving its head side to side, and when it smells something it wants to eat, it digs to find it. It eats seeds, fruit, flowers, some leaves, and insects and other invertebrates, but it especially likes fungi like mushrooms.

Another little-known Australian marsupial is the bettong, also called the rat kangaroo. It’s related to potoroos and therefore to kangaroos, and looks similar. There are five species, all of them about the size of a rabbit. It hops on its hind legs and has a tail about the length of its body, specifically up to 15 inches, or 38 cm. Its fur is grey or brown, sometimes reddish. It’s nocturnal and solitary and sleeps in a nest during the day, much like the bandicoot. But since it has a prehensile tail, it actually carries its nesting material to the nest with its tail. Since it often lives in desert areas, it digs a warren of burrows and tunnels to stay out of the heat. Like the potoroo, it especially likes to eat mushrooms, but it will eat a lot of plant materials as well as invertebrates.

The woylie, or brush-tailed bettong, is one of the rarest species. It sometimes collects seeds of the Australian sandalwood tree to eat later, burying them in shallow holes. Like squirrels burying acorns, sometimes the woylie forgets where it hid the seeds and they germinate to grow into new trees.

Several species of bettong are threatened by habitat loss, fire, and introduced predators, but there are conservation plans in place to protect the bettong and its habitat.

The last animal we’ll learn about today is the numbat, which sounds like a Pokemon but which is a marsupial related to the extinct thylacine. It’s brown, gray, or reddish with white stripes over its back and rump, and a black streak through its eye, which also has a white ring around it. It grows to almost a foot long, or 29 cm long, with a long bushy tail that adds another eight inches to its length, or 21 cm.

The numbat eats termites and only termites. Termites are soft, so although the numbat has lots of little peg teeth—fifty of them, although sometimes less—it doesn’t need them. Its jaw is weak as a result but it has a long tongue with sticky saliva to lick up termites, and the roof of its mouth is ridged to scrape the termites off its tongue. Then it just swallows them.

The numbat needs to eat up to 20,000 termites every single day. Most marsupials are nocturnal, but the numbat is active during the day since it needs to be awake when the termites are active. It has good eyesight too, unlike many marsupials. It hunts termites by both sight and smell, and digs into the shallow tunnels termites dig outside of their nests. A termite’s nest is too tough for the numbat’s small claws to damage, but the tunnels leading away from the nest are easy for it to uncover.

At night the numbat sleeps in a burrow or sometimes in a hollow tree. Its burrow is usually a long tunnel that ends in a cozy round nesting chamber that it lines with grass, leaves, feathers, flowers, and other soft items. Its rump is protected by especially thick skin, and if a predator tries to get into its burrow, it will block the entrance with its rump. It can also climb trees with its sharp claws.

Male numbats have a scent gland on the chest that starts exuding a smelly oil during the summer, which it uses to mark its territory. The smell attracts females and warns other males away. Babies stay in their mother’s pouch for six months or so, until they’re so big the mother can’t walk properly. At that point she dumps them in the nest although she continues to nurse them. A few months after that the babies start to eat termites instead of just milk.

Like the other animals we’ve talked about today, the numbat is threatened by habitat loss and introduced predators, especially foxes and cats. But conservation programs have helped its numbers increase, and it’s been reintroduced into areas where it once lived.

Australia cares about all its animals, little and big, and I know that you care about animals too, or you wouldn’t be listening to this podcast. It’s easy to feel helpless when you hear the news about so many animals dying in fires. But there are ways you can help. Even if you don’t know how to sew, knit, crochet, or do woodworking, you probably know someone who does. Just ask them to teach you how. You’d be surprised at how easy it is to learn, and the patterns posted on the Facebook group I link to in the show notes are all quite simple. For the lining of most pouches, you can use old flannel sheets or even cotton t-shirts, as long as it’s clean, soft, and has no frayed or pilled areas. The outer layer of the pouches can usually be ordinary cloth, and some of the outer pouches can be knitted from regular old acrylic yarn.

If you aren’t able to craft, or you don’t have access to craft materials, you can raise money to donate to wildlife rescue groups in Australia. Check with any groups you may already belong to, like your place of worship, book clubs, gaming groups, your school or college, even your employer. Many groups may be interested in holding a bake sale or yard sale, or just gather donations from members to send to Australia. Last week’s episode of the great podcast Animals to the Max had an interview with an Australian wildlife expert, so I’ve linked to it in the show notes so you can listen if you haven’t already, and because that episode’s show notes have lots of great links where you can send donations.

Whatever you do to help, the people and animals of Australia appreciate it! Even if all you can do is learn about Australian animals so you can share that knowledge with other people, everything helps.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!


Episode 151: Fossils with other fossils inside



Thanks to Pranav who suggested this week’s amazing topic, animals that fossilized with the remains of their last meal inside!

Indrasaurus with a lizard inside. Yum!

Baryonyx:

Rhamphorhynchus (left, with long wing bones) and its Fish of Doom (right):

The fish within a fish fossil is a reminder to chew your food instead of swallowing it alive where it can kill you:

The turducken of fossils! A snake with a lizard inside with a bug inside!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a listener suggestion from Pranav, who has sent me so many amazing suggestions that he has his own page on the ideas spreadsheet. When he emailed me about this one, he just suggested cool fossils, but the links he provided had a really interesting theme that I never would have thought about on my own. This week we’re going to learn about some fossil animals that have fossils of their last meal inside them!

We’ll start with a recent discovery of a new microraptor species, Indrasaurus wangi, which lived about 120 million years ago. It was an interesting animal to start with, because it had arms that were very similar to bird wings, although with claws, but its hind legs also had long feathers that made it almost like a four-winged animal. It was found in 2003 in northeastern China, but when researchers were studying it in 2019 they found something amazing. Not only did it have an entire lizard skeleton where its stomach once was, showing us that it swallowed its prey whole, the lizard itself was a species new to science.

We know what else Indrasaurus ate because more Indrasaurus fossils have been found in the area, many of them so well preserved that its fossilized stomach contents have been preserved too. It ate mammals, birds, lizards, and fish—basically anything it could catch.

Another species that was similar to Indrasaurus, called Anchiornis, also called a four-winged bird-like dinosaur, was found with what appears to be a gastric pellet in its throat. The pellet contains the bones of more than one lizard and was probably ready to be horked up the way many carnivorous birds still regurgitate pellets made up of the indigestible parts of their prey, like bones, scales, and fur.

The fossilized remains of food inside a fossilized organism has a term, of course. It’s called a consumulite. It’s a type of bromalite, which is a broader term for any food or former food found in a fossilized organism’s digestive tract. The term bromalite also includes coprolites, which are fossilized poops.

Naturally, it requires a high degree of preservation for consumulites to form, and a high degree of skill to reveal the often tiny and delicate preserved details. And consumulites are important because they let us know exactly what the animal was eating.

Consumulites aren’t limited to prey animals, either. A small armored dinosaur, a type of ankylosaur, called Kunbarrasaurus, which lived around 115 million years ago in what is now Australia, was a herbivore. The type specimen of the species, which was described in 2015, was incredibly well preserved—almost the entire skeleton, most of its body armor, and the contents of its stomach. Paleontologists can determine not just what kinds of plants it had eaten—which include ferns and seeds—but how it was processing its food. Most herbivorous dinosaurs swallowed leaves and other plant parts whole, then crushed the food in a powerful gizzard or gizzard-like organ along with rocks or grit. The rocks helped break up the plant material, and we have lots of these rocks associated with fossilized dinosaurs. The rocks are called gastroliths and are usually worn smooth. But Kunbarrasaurus didn’t have any gastroliths, and the plant material was so well preserved that researchers could see the cut ends of the plants where Kunbarrasaurus had bitten them. And all the pieces were small. Kunbarrasaurus therefore probably chewed its food, which meant it also probably had lips and cheeks of some kind to help keep the food in its mouth while it was chewing.

Another example of an animal with a consumulite that helped solve a mystery about its diet is Baryonyx. Baryonyx is a type of spinosaurid, a theropod dinosaur that grew at least 33 feet long, or 10 meters. It was discovered in 1983 in Surrey, England, and was described in 1986. It lived around 125 million years ago. It walked on its hind legs and probably used its arms to tear its prey into bite-sized pieces, because its first finger had a huge claw 12 inches long, or 31 cm.

But its skull was the real puzzle. Most theropods are meat-eaters, although a few evolved to eat plants. But Baryonyx had a long, relatively slender snout with a lot of close-growing teeth, and a sort of bulb at the end of its snout called a rosette. It looks more like the skull of a crocodilian called a gharial than a theropod. But as far as anyone knew when Baryonyx was discovered, there were no fish-eating theropods.

Until 1997, that is, when paleontologists studying Baryonyx spotted some overlooked details. In addition to a gastrolith in its belly area, they found some fish scales and teeth that showed evidence of being damaged by digestive acids. It probably hunted by wading through shallow water like a heron, catching fish and other animals with its long toothy snout.

It’s not just dinosaurs that are found with consumulites. Animals of all kinds eat all the time, so as long as the conditions are right to fossilize the remains of an animal, there’s a chance that whatever food was in the digestive tract might fossilize too. For instance, the same part of China that has yielded amazingly well preserved feathered dinosaurs has also produced other animals—including a carnivorous mammal called Repenomamus that grew more than three feet long, or one meter. I think we’ve talked about Repenomamus before, because we have evidence that it actually ate dinosaurs—at least baby ones, or it might have scavenged already dead dinosaurs. Either way, it lived around 125 million years ago and was shaped sort of like a badger with a long tail, although it wasn’t related at all to badgers or any other modern mammal. It probably laid eggs like monotremes still do. The reason we know what Repenomamus ate is because one specimen was found with pieces of a young Psittacosaurus in its stomach.

In at least one case it’s hard to tell which animal should be considered the eater and which should be considered the eaten. A fossil slab found in Southern Germany and described in 2012 contains a Rhamphorhynchus associated with two different fish.

Rhamphorhynchus lived around 150 million years ago and was a type of pterosaur with a long tail. Its wingspan was about six feet across, or 1.8 meters. It mostly ate fish, which it probably caught not by flying down to grab fish out of the water, like eagles do, but by floating like a goose and diving for fish. It had large feet and short legs, which would have helped it take off from the water just like a goose.

A fish that lived at the same time as Rhamphorhynchus was called Aspidorhynchus, and it grew up to two feet long, or 60 cm. It had long jaws filled with teeth, with the upper jaw, or rostrum, extending into a pointy spike.

In the fossil found in Germany, a Rhamphorhynchus has a small fish in its throat that it had probably just caught. While it was still swallowing it, an Aspidorhynchus fish attacked! But things obviously went wrong for everyone involved. Researchers suggest that the fish’s rostrum cut right through the flying membrane of Rhamphorhynchus’s left wing. The fish bit down but its teeth became tangled in the tissue. It started thrashing to free itself and Rhamphorhynchus was thrashing around too trying to get away, which only got them more tangled up together. The fish dived, drowning Rhamphorhynchus, and the weight of its body dragged Aspidorhynchus into deep water where there wasn’t enough oxygen for it to survive. It died too, and its heavier body lay partially across Rhamphorhynchus, holding it down so it wouldn’t drift away. The fossil shows Rhamphorynchus, Aspidorhynchus, and the tiny fish that Rhamphorhynchus never did get to finish swallowing.

Another fish, Cimolichthys, lived around 75 or 80 million years ago and grew a little over six feet long, or two meters. Its body was heavily armored by large scutes and it had several rows of teeth. It may have been related to modern salmon. It lived in what is now North America and Europe, and ate fish and squid. We know it ate fish and squid because, of course, we have the remains of various last meals found with preserved fossil Cimolichthys. For instance, one specimen was found with the internal shell of a cephalopod lodged in its throat. Researchers suspect the fish had tried to swallow a Tusoteuthis that was too big to fit down its throat. The Tusoteuthis got stuck and blocked the flow of water over the fish’s gills, basically drowning it. Tusoteuthis, by the way, could possibly grow up to 36 feet long, or 11 meters, although that depends on whether it had long feeding tentacles like modern squid or not. If it didn’t have long feeding tentacles, it was probably only about 19 feet long, or 6 meters, which is pretty darn big anyway. I wouldn’t want to have to swallow that thing whole. Not even if it was deep-fried first.

Another fish called Xiphactinus, which grew up to 20 feet long, or 6 meters, lived in the late Cretaceous period. It died out at the same time as the non-avian dinosaurs. It had massive fangs and was a terrifying predator, but sometimes that backfires. The fossil of a 13 foot, or 4 meter, Xiphactinus was found with a 6 foot long, or 1.8 meter, fish called Gillicus inside it. Paleontologists think Xiphactinus swallowed its prey whole, which thrashed around so much inside it that it ruptured an organ and killed the predator fish. Both fish sank to the bottom of the shallow Western Interior Seaway in North America until it was discovered in 1952.

Let’s finish with two even more incredible fossils. In 2008 paleontologists found a fossilized freshwater shark they dated to 250 million years ago. Right before it died, it had eaten two animals called temnospondyls. Temnospondyls were common animals, with many species found throughout the world, and researchers still aren’t sure if they were the ancestors of modern amphibians or a similar type of animal that died out without any descendants. One of the temnospondyls that the shark ate had the well digested remains of a spiny fish in its stomach.

But a few years later researchers in Germany found something even better. It’s a fossilized snake called a Palaeopython, related to boas. It was about three feet long, or one meter, and was still young. If it had lived to grow up, it would have doubled in size. It lived in trees but also hunted along the edges of rivers and lakes. About 48 million years ago, this particular snake caught a lizard that’s related to modern basilisk lizards. It swallowed the lizard headfirst. But then the snake died, possibly asphyxiated by a cloud of carbon dioxide from the volcanic lake nearby. We have a lot of incredibly detailed fossils from that lake, known as the Messel Pit.

Researchers aren’t sure how the snake made it into the lake. Maybe it was already in the shallow water when it died, or on the bank, and a wave washed it into the water. Maybe the wave was actually what killed the snake, washing it into the lake where it drowned. However it died, it sank into deep water and was covered in sediment that preserved it. Then, 48 million years later, paleontologists found it.

When the fossil was cleaned and prepared for study, researchers found that the lizard was preserved inside it. But there was another surprise inside the lizard! Right before it had been eaten by the snake, the lizard had eaten an insect. And the insect was so well preserved that researchers could tell it had an iridescent exoskeleton.

If I was fossilized right now, paleontologists from the far future would find a lot of chocolate in my stomach. Happy holidays to everyone, whatever your reason for celebrating at this time of year!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!


Episode 148: Gastric Brooding and Other Frogs



Thanks for Merike for suggesting the gastric brooding frog and to Hally for suggesting newly-discovered frogs!!

The Gastric brooding frog:

Darwin’s frog, round boi:

The Surinam toad carries her eggs and tadpoles in the skin of her back:

Kermit the frog and a newly discovered glass frog:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have another fantastic listener suggestion, about frogs! Merike is a herpetologist from Estonia, who suggested the gastric brooding frog, and another listener, Hally, also wanted to learn about some of the new frog species discovered recently.

The gastric brooding frog is native to eastern Australia, specifically Queensland. There are two species, and both of them live in creeks in separate rainforests. The habitat is specific and small, and unfortunately both species went extinct less than forty years ago. Researchers aren’t sure why they went extinct, but it was probably due to pollution and habitat loss.

The gastric brooding frog was a slender frog, with the northern gastric brooding frog being about three inches long, or about 8 cm, while the southern gastric brooding frog was about half that size. Females were larger than males. It was grey or brown-gray in color with some darker and lighter patches on the back with a lighter belly. During the day it spent most of its time at the water’s edge, hidden in leaf litter or among rocks, although it generally only fully came out of the water when it was raining. It ate insects and may have hibernated in winter.

As you may have guessed from its name, the gastric brooding frog had a unique way of taking care of its eggs. After the eggs were fertilized, the female would actually swallow the eggs and keep them in her stomach while they developed. Even after the eggs hatched into tadpoles, they stayed in the mother’s stomach. As they grew larger, the stomach also grew larger, until it pretty much filled up the mother’s insides, to the point where she couldn’t even use her lungs to breathe. Fortunately many frogs, including the gastric brooding frog, can absorb a certain amount of oxygen through the skin. Finally the tadpoles metamorphosed into little frogs, at which point the mother regurgitated one or a few of them at a time, or sometimes all of them at once if she felt threatened.

So how did the mother keep from digesting her own eggs or tadpoles? How did she eat when her stomach was full of babies? How did the babies eat?

The jelly around the gastric brooding frog’s eggs contained prostaglandin E2, also called PGE2, which causes the stomach to stop producing hydrochloric acid. That’s a digestive acid, so once the eggs were inside the stomach, the stomach basically stopped stomaching. There is some speculation that the first eggs the mother frog swallowed actually got digested, but then the acid production stopped and the rest of the eggs remained. Once the eggs hatched, the tadpoles also produced PGE2 in the mucus in their gills.

The tadpoles continued to live off the yolk sac from their eggs as they developed, and in fact their mouths weren’t even connected to their gut yet. As for the mother, she just didn’t eat until the babies were developed and released into the water on their own, which took about six weeks.

The gastric brooding frog is the only frog known to raise its babies this way, but other frog species have interesting variations of the usual way frogs reproduce. Most female frogs lay their eggs, and then the male fertilizes them. But about a dozen species of frog have developed internal fertilization, where the female retains the eggs in her body until the male fertilizes them. The tailed frog from California in the United States, in North America, gets its name from a structure that looks like a tail, but is actually an extension of the cloaca. That’s the opening used for both excretion and reproduction. Only males have the tail, and it works like a penis to fertilize the female’s eggs without her needing to lay the eggs first. Once they’re fertilized, she can choose just the right spot to lay the eggs.

Another weird way frogs take care of their eggs is something that Darwin’s frog does. Darwin’s frog lives in Chile and Argentina in South America, and grows to a little over an inch long, or 3 cm. It has a pointy snout that gives its head a wedge  shape something like a leaf, which helps keep it camouflaged on the forest floor. The female lays her eggs in damp leaf litter, and after the male fertilizes them he guards them for several weeks. When they start to move as they develop, the male swallows them—but instead of his stomach, he stores them in his vocal sac. That’s the expandable sac in the frog’s throat that males use to make their croaking sounds by filling the sac with air.

The eggs hatch into tadpoles, which the male carries around as they grow. They live off their egg yolks, but they also eat secretions from the lining of the vocal sac. Once the tadpoles metamorphose into little frogs, they hop out of the male’s mouth and are on their own. Until then, the male doesn’t eat.

The Surinam toad is a species of frog. Remember that all toads are frogs but not all frogs are toads. It lives in wetlands and forests in northern South America, and has a radically different way of keeping its eggs safe. The Surinam toad is a flattened, broad toad that can grow up to 8 inches long, or 20 cm, and looks a lot like a dead leaf. It lives in slow-moving water. Unlike other frogs it doesn’t have a tongue, so instead of catching insects with its sticky tongue, it grabs them with its hands. It’s sometimes called the star-fingered toad because its long, thin fingers have tiny star-shaped appendages that help it catch prey. Instead of croaking, male Surinam toads make a clicking noise by moving a small bone in the throat back and forth.

When the female is ready to lay her eggs, a male clasps her around the middle like most frogs do while mating. But instead of just releasing her eggs and letting the male release sperm to fertilize them, the female makes a sort of flipping movement in the water as she releases a few eggs at a time. The male fertilizes them, then presses them onto her back. The skin of the female’s back grows up over the eggs, embedding them in the skin in little pockets. When the tadpoles hatch they stay in these little pockets as they develop. They only leave when they’ve metamorphosed into tiny toads, at which point they emerge and live on their own. The mother then sheds the layer of skin on her back where her babies lived.

A frog described in 2014 that lives in parts of South Asia gives birth to tadpoles instead of laying eggs. It’s a species of fanged frog, which are frogs that do actually have teeth unlike most frogs. Limnonectes larvaepartus grows about 1 ½ inches long, or just under 4 cm. The eggs are fertilized internally, but instead of laying them the female keeps them in her oviducts until they hatch. They remain inside her until they no longer have any yolk left to nourish them, at which point the mother releases them into a slow-moving stream.

Lots of other interesting frogs have been discovered recently. A new frog discovered in southern India in 2018 was recently determined to be a member of its own genus. It’s called the narrow-mouthed frog and had gone unnoticed even though it lives in an area that’s been extensively explored by scientists. It only comes out into the open for less than one week out of the year during the short breeding season, and the rest of the time it hides. Obviously, we don’t know much about it yet.

In 2016 in the same area as the narrow-mouthed frog, researchers discovered a new species of frog with a tadpole that burrows through sand. It’s a member of the Indian dancing frog family, and not only do the tadpoles burrow through wet sand at the bottom of streams, they have ribs that help them move around more easily. Tadpoles are usually just squidges without bones. Dancing frogs get that name because the males wave their feet to attract females during mating season.

There are so many recently discovered frog species that it’s hard to know which ones to highlight. You know, like the new glass frog from Costa Rica described in 2015 that honestly looks just like Kermit the Frog, if Kermit had a translucent belly that showed his organs. Scientists don’t know why glass frogs have no pigmentation at all on their bellies. Or the three tiny frog species discovered in Madagascar and described earlier in 2019, all of them smaller than your thumbnail, that belong to a new genus, Mini. Their scientific names are therefore Mini mum, Mini scule, and Mini ature. The three are related to one of Madagascar’s biggest frogs, which grows over four inches long, or 10.5 cm, as opposed to the Mini frogs which top out at about 15 mm long. Hally sent me an article about eleven new species of frog discovered recently in the Andes, including the multicolored rain frog. It’s sometimes yellow, sometimes brown, sometimes green, speckled, splotched, spotted–so variable that at first scientists thought they were different related species. All eleven of the Andes frogs lay their eggs on land, and instead of hatching into tadpoles the eggs hatch into tiny froglets.

Frogs and other amphibians are sensitive to environmental change, which means a lot of species have either recently gone extinct or are critically endangered. Habitat loss and an amphibian fungal disease that has spread around the world are also making things hard for frogs and their relations. Scientists have been working hard lately to find species that are rare, suspected to be extinct, or are unknown to science, to learn about them while we can and do our best to preserve the species, either in the wild or in captivity. There are even multiple genetic resource banks, or biobanks, to preserve genetic material of frogs and other animals so that future scientists might be able to clone them.

There’s always the possibility that the gastric brooding frog isn’t actually extinct. The southern gastric brooding frog hasn’t been seen since at least 1981 despite extensive searches, though, with the last captive individual dying in 1983. The northern gastric brooding frog was only discovered in 1984 but hasn’t been seen since 1985.

But even if there aren’t any left in the wild, all hope isn’t lost. The gastric brooding frog is a good candidate for de-extinction, and cloning has actually been successful to a limited degree already. In 2013 a living embryo was produced from preserved genetic material, although it didn’t survive. Researchers are still working to clone the frogs and keep them alive. With luck the attempt will be successful, and not only can a population of the frogs be kept in captivity, they can be reintroduced to their former habitat one day.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!


Episode 146: Three strange animals



The next few weeks will be all listener suggestions! This week, Dylan and Genevieve of What Are You? Podcast request a strange fish, Kim suggests a strange invertebrate, and Callum suggests a strange bird. Thanks for the great suggestions!

An archerfish, pew pew pew:

A regular roly poly and a spiky yellow woodlouse. Can you spot which is which??

A nightjar. Turn out light pls, is too bright:

A white-winged nightjar showing off his wings:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’m really, really behind in getting to suggestions, as you will probably know if you have sent in a suggestion and you think I’ve forgotten all about it. So before the end of the year, which is coming up frighteningly fast, I’m going to try to get to a lot of the older suggestions. So this week we’re going to learn about a fish, an invertebrate, and a bird.

We’ll start with the archerfish, suggested by Dylan and Genevieve, who are part of the What Are You? Podcast. If you don’t already listen to What Are You?, I really recommend it. It’s a new animal podcast that’s especially for younger kids. If you like Cool Facts About Animals, you’ll like What Are You? Anyway, Dylan and Genevieve both really like the archerfish, so let’s find out why it’s such a weird and interesting fish.

The archerfish isn’t one fish, it’s a family of fish who all catch insects in an unusual way. Most archerfish species are small, maybe 7 inches at the most, or 18 cm, but the largescale archerfish can sometimes grow up to 16 inches long, or 40 cm. All archerfish live in Asia or Australia, especially southeast Asia. They like rivers and streams, sometimes ponds, and a few species live in mangrove swamps and the mouths of rivers where the water is brackish. That means it’s saltier than ordinary fresh water but not as salty as the ocean.

The reason the archerfish is so weird is the way it catches insects. Think about its name for a minute. Archer-fish. Hmm. An archer is someone who uses a bow and arrow, but obviously the archerfish doesn’t have arms and hands so it can’t shoot tiny arrows at insects. But it can shoot water at insects, and that’s exactly what it does.

The archerfish has really good eyesight, and it learns to compensate for the way light refracts when it passes from air to water. When it sees an insect or other small animal, maybe a spider sitting on a branch above its stream, it rises to the surface but only far enough so that its mouth is above water. Then it forms its tongue and mouth to make a sort of channel for the water to pass through. Then it contracts its gill covers, which shoots a stream of water out of its mouth. But because it shapes it mouth in a really specific way, the stream of water turns into a blob as it flies through the air, like a tiny water bullet. The water hits the spider, which falls from its branch and into the stream, where the archerfish slurps it up.

But the archerfish has to learn how to aim. Young archerfish aren’t very good at it, and they have to practice to shoot accurately and far. They can even learn by watching other archerfish shooting water, which is rare among all animals but practically unheard-of in fish.

Sometimes the archerfish will shoot underwater, sending out a jet of water instead of a bullet. It does this mostly to expose small animals hidden in the silt at the bottom of a pond or stream. And sometimes, of course, if the insect is close enough to the surface of the water, the archerfish will just jump up and grab it.

The archerfish shoots water with a force that’s actually six times stronger than its muscles would allow, and it does this by taking advantage of natural water dynamics. This means it uses a lot less energy to shoot water than if it was only using its muscles, and it gets a better result. It can shoot water up to ten feet away, or three meters, to bring down an insect or other small animal, although of course it prefers closer targets.

Archerfish do well in aquariums, so they’ve been studied by scientists to find out how smart they are. It turns out, they’re pretty darn clever. The archerfish takes into account the size of its target to adjust how strong a blob of water it needs to shoot. It also recognizes individual humans by their facial features. So it’s probably a good thing that they don’t have little arms and hands.

Next, Kim sent me some great suggestions way back in August, and I feel terrible that I’ve taken so long to get to any of them. We’ll look at one of those today, an invertebrate officially called a terrestrial isopod, although you may know it by one of a lot of different names. My preferred name for it is roly poly, but it’s also called a sowbug, a wood louse, a pillbug, a doodlebug, and many others.

You have probably seen roly polies, because they’re really common. The most well-known family are the various species that can actually roll up into a ball when threatened, Armadillidiidae, and someone with a sense of humor came up with that name. They’re native to Europe, but they’ve been introduced all over the world. They’re gray or brown-gray in color, armored on the back with overlapping segments, with seven pairs of little legs underneath and a pair of little antennae.

Roly polies eat decaying plant material and sometimes living plants, especially if the plant is wet. In a pinch, they will also eat dead insects and other decaying matter, but mostly they just want that yummy rotting leaf. As a result, they’re valuable decomposers in the food web. They also need moisture to breathe, so they’re often found in soil, under rocks and leaf litter, and in moss.

But Armadillidiidae isn’t the only family of roly polies. Most roly polies actually can’t roll up at all, so I should start using one of their other names, woodlouse. Technically, woodlice are crustaceans. You know, related to crabs and lobsters. But they are infinitely cuter than other crustaceans. And if you’re curious about whether they taste like lobster, apparently they taste awful, like urine. I don’t even want to think about how anyone knows what a woodlouse tastes like, or how anyone knows what urine tastes like. Yuck. Anyway, they’re descended from marine isopods that ventured out on land over 300 million years ago, but a few species have returned to the water and are aquatic.

All woodlice have segmented, flattened bodies with seven pairs of legs. When a woodlouse molts its exoskeleton, it does it in two stages. It molts the back half first, then the front half a few days later. This means that it’s not as unprotected as other arthropods that shed the whole exoskeleton at once.

There’s another arthropod called a pill millipede that looks a lot like a woodlouse, including being able to roll into a ball. But it’s actually not very closely related to the woodlouse. Pill millipedes have 18 pairs of legs and a smoother appearance.

Almost all woodlice are gray or brown, although a few may have small yellow spots. But one is actually yellow and looks very different from other woodlice. It’s called the spiky yellow woodlouse, which is a perfect description. It’s critically endangered, because it only lives in one part of the world, a volcanic tropical island in the South Atlantic, Saint Helena. It lives in trees, but it’s so threatened by habitat loss and introduced rats and other non-native species of woodlice that a captive breeding program is underway to save it. There may be as few as 100 individuals left in the wild, but fortunately it’s a lot easier to keep in captivity than, say, 100 rhinoceroses.

Let’s finish with a bird. Callum suggested caprimulgiformes, which includes nightjars, potoos, oilbirds, and whippoorwills. We’ve talked about a few of them before in previous episodes, including the oilbird in episode 121 and the Nechisar nightjar in episode 70. I know we’ve talked about the tawny frogmouth somewhere, but I can’t remember which episode. Maybe it was a Patreon episode. But we’ve never looked at most caprimulgiformes, so let’s do that now, because they are weird birds. We’ll focus on the nightjars, which are also sometimes called goatsuckers, not to be confused with the chupacabra, which also means goatsucker. In the olden days people used to think nightjars snuck into barns at night and suckled milk from dairy goats. They don’t, though. Birds can’t digest milk.

Nightjars and their close relatives are nocturnal, although some species are mostly crepuscular, which means they’re most active at dawn and dusk. Like the owl, the nightjar’s feathers are very soft so that it can fly silently. It eats insects, especially moths.

There are three subfamilies of nightjars: the typical nightjars, the eared nightjars, and the nighthawks, with lots of species in each group. They live throughout most of the world and they all look similar. We’ll take one typical nightjar as an example, the European nightjar. It lives throughout most of Europe and part of Asia, although it migrates to Africa for the winter. It’s brown and gray mottled with lighter and darker speckles, which makes it really hard to see when it’s sitting on a branch or on the ground in dead leaves. Its head appears flattened and it has a short, broad bill. Its feet are small. It has large eyes and sees well even in darkness. It grows to about 11 inches long, or 28 cm, with a wingspan of about two feet, or 60 cm.

The female nightjar lays her eggs directly on the ground instead of building a nest. Usually she’ll pick a spot where long grass or other vegetation hangs over to form a little hidden alcove. Since the nightjar is so well camouflaged, it can incubate its eggs on the ground in plain sight and probably won’t be seen. If a predator does approach the nest, the parents will pretend to be injured, so that the predator follows the supposedly injured bird hoping for an easy meal. Once the nightjar has drawn the predator far enough away from the nest, it flies away. Some nightjars can even pretend to be injured while flying.

Some nightjars have beautiful, haunting songs while some are nearly silent. The male chuck will’s widow, which lives in the southeastern United States and much of Mexico, sings at night and also claps his wings to show off for females. His song sounds like this.

[chuck will’s widow song]

Because nightjars are so well camouflaged and mostly nocturnal, they’re hard for birdwatchers and scientists to spot. As a result, there are undoubtedly nightjar species still unknown to science. This is the case with the Nechisar nightjar, which we talked about in episode 70. It’s only known from a single wing found on an otherwise squashed dead bird that was hit by a car. And until 1997, the white-winged nightjar from South America was only known from two museum specimens.

Since the first white-winged nightjar nest was discovered in 1997, researchers have learned a lot about it. It’s only been found in a few places in Brazil, Bolivia, and Paraguay, and it likes open lowlands and savannas. The male has white markings on his wings, and during breeding season he finds a termite mound to stand on, spreads his wings to show them off, and then flies up. As he does, his wings make a distinctive sound. Since most nightjars fly silently like owls, the beating of the male’s wings is intended to attract a female. This is what it sounds like:

[white-winged nightjar wings beating]

Like other nightjars, the white-winged nightjar female lays her eggs directly on the ground. Some researchers think she times the eggs to hatch around the full moon so the parent birds have more light to forage for insects. In years where there’s lots of food, the female may lay eggs in a second nest near the first one and incubate them while the male feeds the babies of the first nest.

Many nightjar species are endangered due to habitat loss, but it’s also killed by cars more often than other birds because of its habit of sitting in the road. That does not strike me as being very smart. Maybe it needs to talk to the archerfish for some advice.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

This is what the little nightjar sounds like. It lives in South America:

[little nightjar calls]


Episode 135: Smallest of the Large



This week we’re looking at some very small animals–but not animals that we think of as small. Join us for a horrendously cute episode!

Further reading:

The Echinoblog

Further listening:

Animals to the Max episode #75: The Sea Panda (vaquita)

Varmints! episode #49: Hippos

Further watching:

An adorable baby pygmy hippo

The Barbados threadsnake will protecc your fingertip:

Parvulastra will decorate your thumbnail:

Berthe’s mouse lemur will defend this twig:

The bumblebee bat will eat any bugs that come near your finger:

The vaquita, tiny critically endangered porpoise:

The long-tailed planigale is going to steal this ring and wear it as a belt:

He höwl:

A pygmy hippo and its mother will sample this grass:

This Virgin Islands dwarf gecko will spend this dime if it can just pick it up:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I talk a lot about biggest animals on this podcast, so maybe it’s time to look at the very smallest animals. I don’t mean algae or bacteria or things like that, I mean the smallest species of animals that aren’t usually considered especially small.

We’ll start with the smolest snek, the Barbados threadsnake. It only lives on a few islands in the Caribbean, notably Barbados. The very largest individual ever measured was only 4.09 inches long, or 10.4 cm, but most are under four inches long. But it’s an extremely thin snake, not much thicker than a spaghetti noodle.

The Barbados threadsnake mostly eats termites and ant larvae. It spends most of its time in leaf litter or under rocks, hunting for food. The female only lays one single egg, but the baby is relatively large, about half the mother’s length when it hatches.

That’s so cute. Why are small things so cute?

Remember the starfish episode where we talked about the largest starfish? Well, what’s the smallest starfish? That would be Parvulastra parvivipara, which is smaller than a fingernail decoration sticker. It grows to about ten millimeters across and is orangey-yellow in color. It lives on the coast of Tasmania in rock pools between low and high tide, called intertidal rock pools.

If you remember the Mangrove killifish from a few episodes ago, you’ll remember how killifish females are hermaphrodites that produce both eggs and sperm, and usually self-fertilize their eggs to produce tiny clones of themselves. Well, Parvulastra does that too, although like the killifish it probably doesn’t always self-fertilize its eggs. But then it does something interesting for a starfish. Instead of releasing its eggs into the water to develop by themselves, Parvulastra keeps the eggs inside its body. And instead of the eggs hatching into larvae, they hatch into impossibly tiny miniature baby starfish, which the parent keeps inside its body until the baby is big enough to survive safely on its own.

But what do the baby starfish eat while they’re still inside the mother? Well, they eat their SIBLINGS. The larger babies eat the smaller ones, and eventually leave through one of the openings in the parent’s body wall, called gonopores. Researchers theorize that one of the reasons the babies leave the parent is to escape being eaten by its siblings. And yes, occasionally a baby grows so big that it won’t fit through the gonopores. So it just goes on living inside the parent.

Next, let’s look at the smallest primate. The primate order includes humans, apes, monkeys, and a lot of other animals, including lemurs. And the very smallest one is Berthe’s mouse lemur. Its body is only 3.6 inches long on average, or 9.2 cm, with a tail that more than doubles its length. Its fur is yellowish and brownish-red.

Berthe’s mouse lemur was only discovered in 1992. It lives in one tiny area of western Madagascar, where it lives in trees, which means it’s vulnerable to the deforestation going on all over Madagascar and is considered endangered.

It mostly eats insects, but also fruit, flowers, and small animals of various kinds. Its habitat overlaps with another small primate, the gray mouse lemur, but they avoid each other. Madagascar has 24 known mouse lemur species and they all seem to get along well by avoiding each other and eating slightly different diets. Researchers discover new species all the time, including three in 2016.

Last October we had an episode about bats, specifically macrobats that have wingspans as broad as eagles’. But the smallest bat is called the bumblebee bat. It’s also called Kitti’s hog-nosed bat, but bumblebee bat is way cuter. It’s a microbat that lives in western Thailand and southeast Myanmar, and like other microbats it uses echolocation to find and catch flying insects. Its body is only about an inch long, or maybe 30 millimeters, although it has a respectable wingspan of about 6 ½ inches, or 17 cm. It’s reddish-brown in color with a little pig-like snoot, and it only weighs two grams. That’s just a tad more than a single Pringle chip weighs.

Because the bumblebee bat is so rare and lives in such remote areas, we don’t know a whole lot about it. It was only discovered in 1974 and is increasingly endangered due to habitat loss, since it’s only been found in 35 caves in Thailand and 8 in Myanmar, and those are often disturbed by people entering them. The land around the caves is burned every year to clear brush for farming, which affects the bats too.

The bumblebee bat roosts in caves during the day and most of the night, only flying out at dawn and dusk to catch insects. It rarely flies more than about a kilometer from its cave, or a little over half a mile, but it does migrate from one cave to another seasonally. Females give birth to one tiny baby a year. Oh my gosh, tiny baby bats.

So what about whales and dolphins? You know, some of the biggest animals in Earth’s history? Well, the vaquita is a species of porpoise that lives in the Gulf of California, and it only grows about four and a half feet long, or 1.4 meters. Like other porpoises, it uses echolocation to navigate and catch its prey. It eats small fish, squid, crustaceans, and other small animals.

The vaquita is usually solitary and spends very little time at the surface of the water, so it’s hard to spot and not a lot is known about it. It mostly lives in shallow water and it especially likes lagoons with murky water, properly called turbid water, since it attracts more small animals.

Unfortunately, the vaquita is critically endangered, mostly because it often gets trapped in illegal gillnets and drowns. The gillnets are set to catch a different critically endangered animal, a fish called the totoaba. The totoaba is larger than the vaquita and is caught for its swim bladder, which is considered a delicacy in China and is exported on the black market. The vaquita’s total population may be no more than ten animals at this point, fifteen at the most, and the illegal gillnets are still drowning them, so it may be extinct within a few years. A captive breeding plan was tried in 2017, but porpoises don’t do well in captivity and the individuals the group caught all died. Hope isn’t lost, though, because vaquita females are still having healthy babies, and there are conservation groups patrolling the part of the Gulf of California where they live to remove gill nets and chase off fishing boats trying to set more of the nets.

If you want to learn a little more about the vaquita and how to help it, episode 75 of Corbin Maxey’s excellent podcast Animals to the Max is an interview with a vaquita expert. I’ll put a link in the show notes.

Next, let’s talk about an animal that is not in danger of extinction. Please! The long-tailed planigale is doing just fine, a common marsupial from Australia. So, if it’s a marsupial, it must be pretty big—like kangaroos and wallabies. Right? Nope, the long-tailed planigale is the size of a mouse, which it somewhat resembles. It even has a long tail that’s bare of fur. It grows to 2 ½ inches long not counting its tail, or 6.5 cm. It’s brown with longer hind legs than forelegs so it often sits up like a tiny squirrel. Its nose is pointed and it has little round mouse-like ears. But it has a weird skull.

The long-tailed planigale’s skull is flattened—in fact, it’s no more than 4 mm top to bottom. This helps it squeeze into cracks in the dry ground, where it hunts insects and other small animals, and hides from predators.

The pygmy hippopotamus is a real animal, which I did not know until recently. It grows about half the height of the common hippo and only weighs about a quarter as much. It’s just over three feet tall at the shoulder, or 100 cm. It’s black or brown in color and spends most of its time in shallow water, usually rivers. It’s sometimes seen resting in burrows along river banks, but no one’s sure if it digs these burrows or makes use of burrows dug by other animals. It comes out of the water at night to find food. Its nostrils and eyes are smaller than the common hippo’s.

Unlike the common hippo, the pygmy hippo lives in deep forests and as a result, mostly eats ferns, fruit, and various leaves. Common hippos eat more grass and water plants. The pygmy hippo seems to be less aggressive than the common hippo, but it also shares some behaviors with its larger cousins. For instance, the pooping thing. If you haven’t listened to the Varmints! Episode about hippos, you owe it to yourself to do so because it’s hilarious. I’ll put a link in the show notes to that one too. While the hippo poops, it wags its little tail really fast to spread the poop out across a larger distance.

Also like the common hippo, the pygmy hippo secretes a reddish substance that looks like blood. It’s actually called hipposudoric acid, which researchers thinks acts as a sunscreen and an antiseptic. Hippos have delicate skin with almost no hair, so its skin dries out and cracks when it’s out of water too long.

The pygmy hippo is endangered in the wild due to habitat loss and poaching, but fortunately it breeds successfully in zoos and lives a long time, up to about 55 years in captivity. For some reason females are much more likely to be born in captivity, so when a male baby is born it’s a big deal for the captive breeding program. I’ll put a link in the show notes to a video where you can watch a baby pygmy hippo named Sapo and his mother. He’s adorable.

Finally, let’s finish where we started, with another reptile. The smallest lizard is a gecko, although there are a lot of small geckos out there and it’s a toss-up which one is actually smallest on average. Let’s go with the Virgin Islands dwarf gecko, which lives on three of the British Virgin Islands. It’s closely related to the other contender for smallest reptile, the dwarf sphaero from Puerto Rico, which is a nearby island, but while that gecko is just a shade shorter on average, it’s much heavier.

The Virgin Islands dwarf gecko is only 18 mm long not counting its tail, and it weighs .15 grams. A paperclip weighs more than this gecko. It’s brown with darker speckles and a yellow stripe behind the eyes. Females are usually slightly larger than males. Like other geckos, it can lose its tail once and regrow a little stump of a tail.

The Virgin Islands dwarf gecko lives in dry forests and especially likes rocky hills, where it spends a lot of its time hunting for tiny animals under rocks. We don’t know a whole lot about it, but it does seem to be rare and only lives in a few places, so it’s considered endangered. In 2011 some rich guy decided he was going to release a bunch of lemurs from Madagascar onto Moskito Island, one of the islands where the dwarf gecko lives. Every conservationist ever told him oh NO you don’t, rich man, what is your problem? Those lemurs will destroy the island’s delicate ecosystem, drive the dwarf gecko and many other species to extinction, and then die because the habitat is all wrong for lemurs. So Mr. Rich Man said fine, whatever, I’ll take my lemurs and go home. And he did, and the dwarf gecko was saved.

Look, if you have so much money that you’re making plans to move lemurs halfway across the world because you think it’s a good idea, I can help take some of that money off your hands.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!


Episode 134: The Magpie



Thanks to Emma for this week’s suggestion about the magpie! We’ll learn all about the magpie and also about the mirror test for intelligence and self-awareness.

The black-billed magpie of North America (left) is almost identical in appearance to the Eurasian magpie (right):

Not all magpies are black and white. This green magpie is embarrassed by its goth cousins:

The beautiful and altruistic azure-winged magpie:

Chimps pass the mirror test. So do magpies:

The Australian magpie, or as Emma calls it, MURDERBIRD:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn about the magpie, a frighteningly intelligent bird. Thanks to Emma for the suggestion!

The magpie is a member of the corvid family, so it’s related to crows, ravens, jackdaws, jays, rooks, and a few other kinds of birds. Most magpies are native to Europe and Asia, but there are a couple of species found in western North America. There are also two species found in Australia, but we’ll come back to those later on. People think of magpies as black and white, but some Asian species are green or blue. They look like parrots at first glance.

The most well-known magpie is the Eurasian or common magpie. Its body and shoulders are bright white and its head, tail, wings, beak, and legs are a glossy black. It has a very long tail for its size, a little longer than its body, and its wingspan is about two feet across, or 62 cm. It looks so much like the black-billed magpie of western North America that for a long time people thought the two birds were the same species.

Like most corvid species, the magpie is omnivorous. It will eat plant material like acorns and seeds, insects and other invertebrates, the eggs and babies of other birds, and roadkill and other carrion. It will also hunt small animals in groups. It mates for life and is intensely social.

The big thing about the magpie is how intelligent it is. It’s a social bird with a complex society, tool use, excellent memory, and evidence of emotions usually only attributed to mammals, like grief. An experiment with a group of Azure-winged magpies, a species that lives in Asia, shows something called prosocial behavior, which is incredibly rare except in humans and some other primates. Prosocial behavior is also called altruism. In the experiment, a magpie could operate a seesaw to deliver food to other members of its flock, but it wouldn’t get any food itself. All the magpies tested in this way made sure their bird buddies got the food. When access to the food was blocked for the other birds, the bird operating the seesaw didn’t operate it.

The magpie also passes what’s called the mirror test. The mirror test is when a researcher temporary places a colored dot on an animal’s body in a place where it can’t see it, usually the face. Then a mirror is introduced into the animal’s enclosure. If an animal sees the dot in the reflection and investigates its own body to try to examine or remove the dot, the researcher concludes that the animal understands that the reflection is itself, not another animal.

This sounds simple because most humans pass the mirror test when we’re still just toddlers. But most animals don’t. Obviously researchers haven’t been able to try the test with every single animal in the world, but even so, the results they’ve found have been surprising. Great apes pass the test, bottlenose dolphins and orcas have passed, and the European magpie has passed the test. Cleaner wrasse fish also passed the test.

You know what else passed the mirror test? Ants.

The mirror test is supposed to be a test of self-awareness, but that’s not necessarily what it’s showing. Dogs fail the mirror test but pass other tests that more clearly indicate self-awareness. But in dogs, the sense of smell is much more important than sight. Humans don’t even usually think of smell since we’re more attuned to sight and hearing, so we’ve constructed a flawed test without realizing it.

Gorillas also don’t always pass the mirror test, but researchers think this may be because in gorilla society, it’s an act of aggression to look into another gorilla’s eyes. So the gorilla looking in the mirror may literally not see the dot that was painted on its forehead while it was asleep, since it automatically avoids looking at another gorilla’s face, even its own reflection. As far as I can find, no one has tried painting the dot on bottom of the gorilla’s foot or something instead of its face.

Parrots, monkeys, lesser apes, and octopuses don’t pass the test, but all these animals express intelligence in many other ways. Not only that, but some animals that don’t technically pass the test because they don’t give any attention to the dot painted on them will use the mirror for other purposes, like looking at parts of the body they can’t ordinarily see. Asian elephants do poorly on the mirror test, but do well in other tests that measure self-awareness.

Also, most of the animals given the mirror test have never looked in a mirror before. Maybe they don’t realize that dot wasn’t always on their cheek. Or maybe they just don’t care if they’ve got a dot on their face.

That brings us to a final criticism of the mirror test. Some animals live in environments where they’re likely to see reflections. An animal that frequently sees its own reflection in still water when it drinks is more likely to understand that this is a reflection of itself. An animal that has never seen its own reflection won’t necessarily understand what it is. Even humans have this trouble. People who have been blind since birth but who regain vision later in life often don’t know what a reflection is at first. This doesn’t mean they’re stupid or not self-aware, it’s just something new that they have to learn.

But it’s still interesting that magpies pass the mirror test. Okay, let’s move on.

There are a lot of folklore traditions and superstitions about magpies. In Britain, seeing a single magpie is sometimes said to be bad luck, a sign of bad weather to come, or even an omen of death. Seeing two magpies is good luck or a good omen. In parts of Asia all magpies are considered lucky. The nursery rhyme “one for sorrow, two for joy” is originally about magpies, although as a kid I learned it about crows since I live in a part of the world where we don’t have magpies. The rhyme varies, but the version I learned is “one for sorrow, two for joy, three for a girl, four for a boy, five for silver, six for gold, and seven’s a secret that’s never been told.”

Magpies are supposed to be attracted to shiny objects and are thought of as thieves. There’s a whole opera about this, Rossini’s La Gazza Ladra, about a girl who’s accused of stealing a silver spoon. The girl is convicted and condemned to death, but just in time the spoon is discovered in a magpie’s nest and the girl is pardoned. You’ve probably heard the overture to this opera without knowing it, since it appears in a lot of movies.

But do magpies really steal shiny things like jewelry, coins, and silver spoons? Results of a study of wild common magpies indicate that they don’t. A few of the magpies investigated the shiny objects, but none took any and most birds were wary of getting too close to items they’d never seen before.

Many people think magpies are pests who chase off or kill other songbirds, steal things, and are basically taking over the world. That’s actually not the case. The magpie is an important part of its ecosystem, and areas with plenty of magpies actually have healthier populations of other songbirds. The black-billed magpie of North America will hang around herds of cattle, cleaning the animals of ticks and other insects.

Let’s return now to the Australian magpies I mentioned earlier. The black magpie is mostly black with white on its wings. It’s actually not closely related to the magpie at all but is a species of treepie. Other treepies are found in southeast Asia. Treepies are corvids, but they’re not closely related to magpies although they look similar.

The Australian magpie also looks similar to the common magpie, but it’s not a corvid, although its family is distantly related to the corvid family. It’s mostly black with white markings and a heavy silvery-white bill with a black tip. It lives in Australia, southern New Guinea, and has been introduced to New Zealand, where it’s an invasive pest that displaces native birds. It’s about the size of the common magpie, but more heavily built with a shorter tail. It mostly eats insects and other invertebrates, but it is omnivorous. Researchers have noticed that some Australian magpies dunk insects in water before eating them, a practice seen in many species of birds. It doesn’t just dip the insect in the water, though, it thrashes it around. Researchers theorize that this helps rid certain insects of toxins and therefore improves the taste.

If someone gets too close to an Australian magpie’s nest, it will divebomb them, especially the male. It may also peck at the face, sometimes causing injuries. Sometimes people will paint eyes on the back of a hat to try and fool a magpie into attacking the painted face instead of their actual face, although this generally doesn’t work. The magpie especially attacks people who are moving fast, like joggers and bicyclists, so some bike helmets have spikes on them to stop magpies from diving at them. But since a magpie will also sometimes land on the ground in front of a person, then fly up and attack their face from that angle, it doesn’t really matter what kind of hat you wear. It’s probably safest to avoid magpies who are nesting. The babies will be grown and flown away soon enough and then you can have your public park back.

Australian magpies also chase off predatory birds, mobbing them the same way crows and other birds mob hawks.

The Australian magpie is also an intelligent bird. Researchers think intelligence in birds and animals of all kinds is linked to sociability, and Australian magpies are just as social as their far-distant Eurasian and North American cousins. Magpies who grow up in larger groups score higher on tests of intelligence than magpies from smaller groups. The larger a group, the more complex the social interactions required of an individual bird, which drives cognitive development.

The Australian magpie has an amazing singing voice and can mimic other birds and animals. It even sometimes imitates human speech. A magpie may sing constantly for over an hour at a time, and pairs often call together. These duets actually indicate to other birds that the pair is working together to defend their territory, so maybe if you hear it it’s time to put on the bike helmet with spikes.

This is what an Australian magpie sounds like:

[magpie call]

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!