Episode 366: The Muntjac AKA Deer with Fangs

Thanks to Chuck for suggesting this week’s topic, a weird little deer called the muntjac!

Further reading:

Dam Project Reveals Secret Sanctuary of Vanishing Deer

Wildlife camera trap surveys provide new insights into the occurrence of two threatened Annamite endemics in Viet Nam and Laos

Getting ahead (or two?) with Vietnam’s Viking Deer – the Long-Running Saga of a Slow-Running Mystery Beast

A giant muntjac [photo by Mark Kostich, taken from article linked above]:

A Reeve’s muntjac [photo by Don Southerland, taken from this site]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Chuck, who wanted to learn about a small hoofed animal that I don’t think we’ve ever covered before, the muntjac. It’s a deer, but it’s a very weird deer.

In fact, it’s not just one deer, it’s at least 12 different species that are native to parts of south and southeast Asia, although it used to have a much broader range. Muntjac fossils have been found throughout Europe in particular. It prefers thick forests with lots of water around. Most species live in tropical or subtropical areas, although it can tolerate colder temperatures. It eats leaves, grass, fruit, seeds, and other plant parts, and it will also sometimes eat bird eggs and small animals when it finds them. It will even sometimes eat carrion.

The typical muntjac is small, barely larger than a fox. The largest species, the giant muntjac, stands a little over two and a half feet tall at the shoulder, or 80 cm, while there are several species of muntjac that don’t grow taller than 15 inches high, or 40 cm. It’s brown or reddish-brown, sometimes with darker or lighter markings depending on species. The muntjac appears hump-backed in shape like a rabbit, since instead of having a mostly level back, its back slopes upward from the shoulders to the rump. Its tail is very short and males grow short antlers that either have no branches or only one branch. Males also have a single pair of sharp, curved fangs that grow down from the upper jaw, more properly called tusks.

The muntjac is usually a solitary animal, with each individual defending a small territory. Both males and females have a large gland near the eye that secretes an oily substance with a strong smell. It also has another pair of scent glands on the forehead. The muntjac rubs its face on the ground to mark the edges of its territory with scent. It can even flare its scent glands open to communicate with other muntjacs by smell more effectively.

Unlike many deer species, the muntjac doesn’t have a particular mating season. Females, called does, can come into season any time of the year, so males are always ready to fight with other males for a doe’s attention. The male loses and regrows his antlers yearly, but mainly he only uses them to push an opponent over. He does the real fighting with his fangs.

There are other types of hoofed animals with fangs. We talked about the musk deer and the chevrotain in episode 116, but even though the chevrotain in particular looks a lot like the muntjac, it’s not closely related to it at all. Neither is the musk deer. In fact, neither the musk deer nor the chevrotain are actually deer, and they’re not even closely related to each other.

The southern red muntjac is one of the smallest species of muntjac known and is fairly common throughout much of southeast Asia, although we don’t know much about it. One thing we do know is that it has the smallest number of chromosomes of any mammal ever studied. Males have 7 diploid chromosomes and females only have 6. In comparison, the common Reeve’s muntjac has 46 diploid chromosomes. Scientists have no idea why there’s so much difference in chromosome count between species, but it works for the muntjac.

Many species of muntjac are common and are doing just fine, but others are endangered due to habitat loss, hunting, and the other usual factors we talk about a lot. But the muntjac is small, solitary, and very shy, so there are also species that are probably still waiting to be discovered.

The giant muntjac, also called the large-antlered muntjac, was only discovered in 1994 from a skull found in Vietnam. Scientists were eager to learn more about the animal, especially whether it was still alive or had gone extinct. They talked to hunters and other local people in Vietnam and Laos, and set up camera traps, and went on expeditions searching for it. The hunters said it was still around but the scientists just couldn’t find any. It wasn’t until 1997 that a camera trap took a few pictures of one near a newly constructed dam, which gave everyone hope that this animal could be saved from possible extinction.

Scientists had been searching for the giant muntjac for so long, and had only finally gotten a photograph after 13 years of trying, that they figured it would be an even longer time before they learned more about it. But then, suddenly, only four months after the first pictures of the giant muntjac were captured, a team of conservationists working to relocate animals from the flood area of the new dam ended up capturing 38 of the deer.

When a new dam is constructed across a river or other waterway, it doesn’t flood right away. It takes a long time for the water to back up behind the dam and turn into a lake or large pond, sometimes several years depending on the size of the dam and the waterway. There’s time to relocate animals to higher ground so they’ll be safe, and that’s exactly what Ulrike Streicher and her team were doing in 2007. Not only that, they made sure to transport the animals to a protected area where they’d be safer from hunters. Before they released the giant muntjacs, they had the opportunity to study them and fit some of them with radio collars so the scientists could track where they went. It turned out that the muntjacs settled into their new home just fine, so although the giant muntjac is still classified as critically endangered, at least we know that one small population is doing well.

Another muntjac search involves a camera trap in Vietnam and Laos too, but it’s still an ongoing mystery. The story actually starts back in 1929 when a dead muntjac was sent to the Field Museum in Chicago. The scientists at the museum couldn’t identify it as any known species of muntjac, so they described it in 1932 as Muntiacus rooseveltorum, also called Roosevelt’s muntjac. Modern genetic testing of the specimen determined that it’s a subspecies of Fea’s muntjac that lives in a small area of southern Myanmar and Thailand. Fea’s muntjac itself is so rare and so little known that we don’t even know if it’s extinct or not. As for Roosevelt’s muntjac, no one had seen it since the 1929 specimen was killed and it was presumed extinct.

Then, starting in 2014, a team of scientists conducted surveys in parts of the Annamites, a mountain range along the Vietnam/Laos border. Over the next five or six years, camera traps recorded every animal that passed by them in various remote locations. In addition to lots of animals the scientists expected to see, they found three animals that were either extremely rare or thought extinct. One of these was the Annamite striped rabbit we talked about in episode 254, but the other two were muntjacs.

One of the muntjacs captured on camera was identified as Roosevelt’s muntjac while the other was identified as the Annamite muntjac, a species that was only identified in 1997. The problem is that we only have pictures of the animals, and only a single specimen of Roosevelt’s muntjac to compare the pictures to. Scientists disagree as to whether Roosevelt’s muntjac is for sure still alive and well in the Annamite mountains, or whether the pictures are of a totally different species of muntjac. At least the pictures were taken in a nature reserve, so we know the muntjacs should be safe.

Muntjacs are such strange, attractive animals that rich people used to keep them as pets to show off. Sometimes they would escape into the wild, or were even released on purpose, and that’s why Japan, England, Wales, Belgium, the Netherlands, and Ireland all have invasive populations of Reeve’s muntjac. Reeve’s muntjac is common in southeastern China and Taiwan and only grows a little over a foot high at the shoulder, or maybe half a meter. The male has stubby little antlers and long tusks, so that his tusks are almost as long as his antlers. Cute as the animals are, they’re also bad for the local ecosystems, since they reproduce quickly and eat food that native animals need.

Rumors have circulated for a few decades now of another possible mystery muntjac, usually referred to as the quang khem. Supposedly it’s a large muntjac with unbranched antlers that lives in remote areas of Vietnam. So far it hasn’t been discovered, if it exists at all, but there’s definitely a chance that it’s yet another muntjac that’s just waiting to be spotted by scientists or their camera traps.

The muntjac is sometimes called the barking deer because of its alarm call. This is what a muntjac sounds like:

[muntjac barking sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 354: Sheep and Sivatherium

Thanks to Hannah, who suggested sheep as this week’s topic! We’ll also learn about a few other hoofed animals, including the weird giraffe relative, sivatherium.

Further reading:

The American Jacob Sheep Breeders’ Association

What happened with that Sumerian ‘sivathere’ figurine after Colbert’s paper of 1936? Well, a lot.

A Jacob sheep ewe with four horns (pic from JSBA site linked above):

The male four-horned antelope [photo by K. Sharma at this site]:

A modern reconstruction of sivatherium that looks a lot like a giraffe [By Hiuppo – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=2872962]:

The rein ring in question (on the left) that might be a siveratherium but might just be a deer:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at an animal suggested by Hannah a long time ago. Hannah suggested we talk about sheep, and I can’t even tell you how many times I almost did this episode but decided to push it back just a little longer. Finally, though, we have the sheep episode we’ve all been waiting for! We’re also going to learn about a strange animal called sivatherium and a mystery surrounding when it went extinct.

The sheep has cloven hooves and is a ruminant related to goats and cattle. It mostly eats grass, and it chews its cud to further break down the plants it eats. It’s one of the oldest domesticated animals in the world, with some experts estimating that it was first domesticated over 13,000 years ago. Mammoths still roamed the earth then. Sheep are especially useful to humans because not only can you eat them, they produce wool.

Wool has incredible insulating properties, as you’ll know if you’ve ever worn a wool sweater in the snow. Even if it gets wet, you stay nice and warm. Even better, you don’t have to kill the sheep to get the wool. The sheep just gets a haircut every year to cut its wool short. Wild sheep don’t grow a lot of wool, though. They mostly have hair like goats. Humans didn’t start selecting for domestic sheep that produced wool until around 8,000 years ago.

Like other animals that were domesticated a very long time ago, including dogs and horses, we’re not sure what the direct ancestor of the domestic sheep is. It seems to be most closely related to the mouflon, which is native to parts of the middle east. The mouflon is reddish-brown with darker and lighter markings and it looks a lot like a goat. Other species of wild sheep live in various parts of the world but aren’t as closely related to the domestic sheep. The bighorn and Dall sheep of western North America are closely related to the snow sheep of eastern Asia and Siberia. The ancestors of all three species spread from eastern Asia into North America during the Pleistocene when sea levels were low and Asia and North America were connected by the land bridge Beringia.

The male sheep is called a ram and grows horns that curl in a spiral pattern, while the female sheep is called a ewe. Some ewes have small horns, some don’t. This is the case for both wild and domestic sheep. Sheep use their horns as defensive weapons, butting potential predators who get too close, and they also butt each other. Rams in particular fight each other to establish dominance, although ewes do too.

But some breeds of domestic sheep are what is called polycerate, which means multi-horned. That means a sheep may have more than two horns, typically up to six. Many years ago I kept a few Jacob sheep, which are a polycerate breed, and in a Patreon episode from 2018 I went into really too much detail about this particular breed of sheep. I will cut that short here.

The Jacob is a hardy, small sheep with tough hooves, and it’s white with black spots. Ideally, a Jacob sheep will have four or six well-balanced horns. In a six-horned sheep, the upper pair branch upward, the middle pair curl like an ordinary ram’s horns, and the lower pair branch downwards. Sometimes a sheep will have three or five horns, or will start out with four horns but as they grow, two will merge so it looks like they have a single horn on one side. Sometimes a ram’s horns will grow so large that the blood supply is choked off for the lower pair, which will die and stop growing. Breeding a pair of six-horned Jacob sheep doesn’t guarantee that the babies will have more than two horns, though. It’s still a recessive trait.

Sheep, goats, cattle, and some antelopes are all bovids. Polyceratism appears to be a bovid trait. It’s caused by a mutation where the horn core divides during the animal’s development.

Occasionally, a sheep of non-polycerate breed, or a goat, or even a cow, is born with multiple horns. The blue wildebeest is also occasionally born with multiple horns. Sometimes an animal grows a lot of horns, like eight, but usually it’s three, four, five, or six.

Another animal with more than two horns is the four-horned antelope that lives in India and Nepal. Its horns are quite small, just a pair of tiny points on the forehead with a pair of longer points behind them. The antelope itself is also small, not much more than two feet tall at the shoulder, or 60 cm. Its coat is reddish or yellowish-brown with white underparts, and a black stripe down the front of the legs. The longer horns grow up to about five inches long, or 12 cm, but the front horns are no longer than two inches, or five cm.

The four-horned antelope is shy and solitary, and lives in open forests near water. Since it’s so small, it frequently hides in tall grasses. Sometimes a four-horned antelope’s front two horns are just bumps covered with fur, which makes them look like ossicones although they’re still actually horns.

That brings us to the other group of animals with multiple horns, although they’re not actually horns. I mentioned ossicones in the tallest animals episode, about giraffes. They’re made of ossified cartilage instead of bone, and are covered in skin and fur instead of a keratin sheath. Antlers are actually very similar to ossicones in many ways. A deer’s antlers grow from a base that is similar to an ossicone, and as they grow, the antlers are covered with tissue called velvet that later dries and is scraped off by the deer to show off the bony antlers. Unlike horns, which are always unbranched, the ossicones of some extinct animals can look like antlers.

We talked about sivatherium in episode 256, about mammoths. It was an ancestor of modern giraffes that lived in Africa and India around a million years ago. It stood around 7 feet tall at the shoulder, or just over two meters, but had a relatively long neck that made it almost 10 feet tall in total, or about three meters. It had two pairs of ossicones, one pair over its eyes and another between its ears. Like the four-horned antelope, the front pair were smaller than the rear pair, but the rear pair was broad and had a single branch.

Sivatherium was once believed to be closely related to elephants, and reconstructions of it often made it look like a moose with a short trunk. But modern understanding of its anatomy suggests it looked like a heavily built giraffe with shorter legs and neck, sort of like the giraffe’s closest living relative, the okapi.

One interesting thing about Sivatherium is how recently it may have been alive. Some researchers think it may have been around only 8,000 years ago. There’s rock art in India and the Sahara that does seem to show a long-necked animal with horns that isn’t a giraffe. The art has been dated to around 15,000 years ago. But the big controversy is a figurine discovered in 1928.

That’s when a copper rein ring was found in Iraq and dated to about 2800 BCE. A rein ring was part of the harness to a four-wheeled chariot, with two holes to thread the reins through to keep them from tangling. Above the rings was a little decorative figure of an animal. This particular rein ring’s figure shows an animal with short horns above the eyes and branching horn-like structures farther back, between the ears. When it was originally discovered, scientists thought the figure represented a type of fallow deer found in the area, with the ends of the antlers broken off. But one researcher, Edwin Colbert, pointed out that no deer known has four antlers and the figure clearly has two little bumps over its eyes that are separate from the branched antler or horn-like structures farther back. In 1936 he published his conclusion that the animal wasn’t a deer at all but sivatherium, and a lot of scientists agreed.

That would mean sivatherium might have been alive less than 5,000 years ago. Part of the issue is that sivatherium’s branched ossicones weren’t very big in comparison to its head, while the fallow deer’s antlers are proportionally quite large. The figurine has structures that match sivatherium’s ossicones more than a deer’s antlers. But in 1977, two little pieces of copper were found in a storage box where they’d been since the original discovery of the rein ring. The pieces fit exactly onto the ends of the figure’s horns, showing that the horns are much bigger than originally thought.

That doesn’t explain everything, though. The figure still has those extra little horns over its eyes, and while the branched horns look like deer antlers, they still don’t look like fallow deer antlers. Some researchers point out that sivatherium had a lot of variation in the size and shape of its ossicones, too.

Ultimately there’s not enough evidence either way of whether the figurine depicts a deer or sivatherium. If sivatherium did live as recently as a few thousand years ago, hopefully remains of it will be found soon. Until we know for sure, you can still be glad that the giraffe is alive, because it’s just as amazing as its extinct relation.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 352: The Not-Deer

Happy Halloween! We have a super spooky episode for you this week, a full five out of five bats on the spookiness scale, all about the not-deer of modern folklore!

Join our Patreon and get bonus episodes and other perks! You can also buy copies of the Beyond Bigfoot & Nessie book and Kate’s other books!

Further reading:

Not Deer, or a Deer?

Days before Halloween, creepy trail photo reveals deer standing on 2 legs in NC woods

Sharon A Hill’s Spooky Geology (not about the not-deer but a lot of fun even so)

The white-tailed deer uses its bright white tail to warn other deer of danger:

White-tailed deer sometimes stand on their hind legs to reach vegetation or fight:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Happy Halloween! It’s time for our spookiest episode of the year! It’s rated five out of five bats on our spookiness scale. If you like scary stories on Halloween, make some cocoa and popcorn and sit back to be spooked. If you’re not really a fan of the scarier stuff, you might want to skip this one. Some people also really don’t like hearing about diseases, and that’s one of the things we’ll be discussing. We’re going to talk about a really weird cryptid called the not-deer.

Before we get started, though, we have a little bit of housekeeping, as the big podcasters call it. First, I want to reassure everyone who has sent me suggestions that I’m trying to get to them as soon as possible. I love how many people listen and want to share their enthusiasm about animals, but I do feel bad that some people have been waiting a really long time for their suggestion to make it off of the massive humongous ever-growing ideas list into an episode.

At the same time, I’ve been thinking of ways to make money off the podcast without running ads. I make Strange Animals Podcast because I love helping people learn about animals and science, and I also really value the people who are able to support the podcast through Patreon. But I do put an awful lot of work into each episode, so much that it’s basically a second job. I thought about it, and decided to make a new Patreon tier that’s a little different from the others. It’s called the terror bird tier, and when I drew the art for it I forgot that terror birds didn’t have actual teeth, but we’ll call that artistic liberty. It’s a $25 a month tier, and not only do you get access to the bonus episodes that all patrons can listen to, after three months at that tier you can message me your episode idea AND tell me what week you’d like that episode to run. I’ve limited the new tier to 25 backers, to make it fair for people who don’t have the money for that, and honestly I don’t expect to get very many people at that level at all, because that’s a lot of money, but I thought I’d give it a try.

Finally, the Beyond Bigfoot & Nessie book is still available, as are my other books, and in 2024 I’m planning to attend some conventions again to sell copies of the book. I’ll let you know where I’ll be as I find out, in case you want to come say hi. I’m also very slowly working on a sequel to the book, tentatively titled Small Mysteries, which is all about mystery animals that are really small, like frogs and insects and teeny fish. It probably won’t be ready to publish for a few years, so I’m working hard to make sure it’s got a whole lot of footnotes with references. That’s one of the things I regret not doing for Beyond Bigfoot & Nessie.

Now, with all that out of the way, on to the spookiness!

The not-deer is a cryptid, or mystery creature, that’s mostly reported from the Appalachian region of the United States. I live in the southern Appalachians near the Smoky Mountains, but I’d never heard of the not-deer until a few months ago. I subscribe to Sharon Hill’s Strange Times newsletter, and also love her Spooky Geology website where you can learn all the science behind weird events like earthquake lights. There’s a link in the show notes, but you can search for https://spookygeology.com/ to find it. Sharon Hill wrote about the not-deer in mid-2023 in her newsletter, where she said the not-deer “looks like a deer until you REALLY look and find that it’s not a deer. It displays unsettling characteristics that scare the heck out of people.”

Reports vary, but in general, the not-deer is supposed to look like an ordinary deer at first glance, but then the witness realizes it’s really weird in some ways. Some people report that the deer appears to have extra joints in its legs, a misshapen or overly large head, an overly long neck or legs that are too long or too short, eyes that are close together on the front of its head instead of on the sides of its head as is normal with hoofed animals, and so on. It might walk on its hind legs like a human, and sometimes people say the creature appears to be unusually intelligent and not afraid of people.

The not-deer became popular online around the summer of 2020, especially on TikTok, with the term not-deer apparently coined in August 2019 on Tumblr, but the idea goes back several decades at least. According to Sharon Hill, Jerry Clark, the editor of Fate Magazine, collected two accounts of not-deer in 1971, although he didn’t call them not-deer because that term wasn’t invented yet.

To give you an idea of what we’re talking about, here are three accounts from a Reddit thread. I’ve reworded the stories to make them shorter and more appropriate for a general audience, but I haven’t changed any details.

First is a 2020 report from a Redditor in northern Georgia:

I live at the foothills of the Appalachian mountains halfway in between Chattanooga and Atlanta and sometimes my family takes trips to the mountains. One day up there me and my cousin drove around to just take in the views. At around 8pm we were headed back and were nearly at our cabin when we saw a deer on the side of the road. We slowed down but as we got close, it walked into the road. I hit the brakes and then it stood up and started walking around on its back legs. My cousin and I have been out in nature with animals our whole lives but we’d never seen anything like it. It just looked so wrong! Its joints didn’t move right and it had arms not front legs, and its upper half was like a human excluding the head.

The next story is from a Redditor in Virginia, who at the time of their encounter was riding a motorcycle slowly along the Skyline Drive in Shenandoah National Park at night, although when they encountered the deer they stopped to get a better look.

It was like a deer drawn by someone who had never seen a deer after someone else described it to them. It stood on the left side of the road on the mountainside, and I saw the eyes long before my headlight showed it fully. It was easily the biggest deer I’ve seen, and the lack of any antlers that time in the year suggested that it was a doe. The head was almost bovine in shape, the legs seemed too long in proportion to the body (think maned wolf proportions), and the body was extremely barrel chested.

As soon as I crossed into the other lane, it rose up onto its hind legs. It took two jerky, unnatural steps towards the center of the lane on 2 legs and froze again, staring directly at me. It suddenly shook its head wildly like a dog with a toy, took another short step, then HOPPED on two legs several times until it disappeared into the darkness on the right side of the road.

I turned the light towards the side of the road. On that side, there was a sheer drop off compared to the roadway, and the deer’s head was just peeking over the edge, still looking at me. The drop off was about 40 to 50 feet [that’s about 12 to 15 meters], so there’s no way it was standing at the base of the mountainside.”

Finally, in June of 2023 a Redditor wrote:

I believe I saw a not-deer 3 weeks ago on KY 10 just outside of Lenoxburg. I was driving home to Cincinnati and decided to take the back route. It was dusk and the deer were out and moving. I looked out to my driver’s side and saw a few deer in the field, however there was one closer to the road that was…off. It had small squatty hind legs and long almost ape-like front legs and its neck was too long. The second I laid eyes on it my stomach dropped and I felt a fear I’ve never experienced before. My dogs began to tremble and whine and the feeling didn’t go away until I got back across the river to Ohio.

The most common deer in the Appalachian Mountains is the white-tailed deer. It’s common throughout most of North and Central America down into northern South America. It’s also an invasive species in some parts of the world where people have introduced it as a game animal. Different populations and subspecies vary in size, but the Virginia subspecies found in Appalachia generally grows up to 4 feet tall at the shoulder at most, or about 1.2 meters. Males are larger than females on average. It’s crespuscular, meaning it’s most active at dawn and dusk.

In summer the white-tailed deer is reddish-brown, and in winter its coat is more gray-brown. It gets its name from the underside of its tail, which is bright white. When a deer feels threatened, it raises its tail to warn other deer to be alert, and to warn a potential predator that the deer has spotted it. Baby deer, called fawns, are born in spring and have white spots that help camouflage them in dappled sunlight and shade under trees.

The male white-tailed deer, called a buck or stag, starts growing a new set of antlers in the summer. Antlers are made of bone, but they grow faster than any other mammal bones. While they’re growing, they’re covered in a special type of highly vascularized skin called velvet. The velvet supplies nutrients and oxygen to the antler as it grows, and since the antlers grow so fast, they need a whole lot of nutrients. A deer in poor health or who can’t find enough to eat will grow small antlers, while a healthy deer who has lots to eat will grow larger antlers. Older males usually have bigger antlers than younger males too. The female deer, called a doe, is attracted to bucks with bigger antlers because she can be sure he’s healthy.

Once the antler has finished growing, it actually dies. The velvet dries up and the deer will rub his antlers on a branch or other object to help remove it. Because there are so many blood vessels in the velvet, sometimes a deer who is shedding the velvet has his antlers, head, and face splattered in blood, but he’s not hurt, just messy. Bucks use their antlers to fight each other, although they also use them to attack potential predators. Around the end of winter or early spring, the buck sheds his old antlers in preparation for growing a new set.

Many sightings of not-deer are probably due to people seeing diseased or injured deer. Two diseases that are especially hard on deer are Epizootic Hemorrhagic Disease, or EHD, and Chronic Wasting Disease, or CWD.

EHD is a virus spread by biting flies and midges, and while many species of deer can catch it, white-tailed deer are especially vulnerable to it. Humans can’t catch it, so don’t worry unless you are a deer. Symptoms of EHD include lameness, swelling of the head and neck, a lack of fear of humans, drooling and a runny nose, panting, and fever, which leads to sick deer sometimes lying down in water to cool off. Many deer who catch EHD eventually recover.

CWD is a more serious disease, sometimes called zombie deer disease. It’s related to the so-called mad cow disease found in cattle, and scrapie found in sheep and goats, and it can affect various species of deer. It’s always fatal but it can take a long time to develop, up to two years after exposure until the first symptoms. It’s caused when a protein in the animal’s nervous system is abnormally folded, a condition that spreads and causes neurodegeneration and holes in the brain. CWD is spread from animal to animal, but it can also spread through the environment in water and soil. So far the disease hasn’t been found to spread to humans.

Variations of CWD have been around for a very long time in various animals, but it was first identified in 1967 in a population of captive mule deer in Colorado. By 1981 it had spread to wild elk and it continues to spread in both wild and captive deer, although it’s still very rare. Symptoms include trembling and staggering, repetitive motions like walking in circles, grinding of teeth, drooling, confusion, and loss of fear of humans.

In addition to all this, perfectly healthy deer can have unusual behavior that isn’t witnessed by humans very often. Deer can and do stand and even walk short distances on their back legs, mostly to reach food growing up high. Does in particular will sometimes fight by standing on their hind legs and boxing each other with their front hooves. I own an amazing book called The Deer of North America by Leonard Lee Rue III, and here’s an interesting quote from that book:

“The oddest example of deer locomotion I ever heard of…was witnessed by five people. In July of 1967, the group had been out looking for deer when their trip was cut short by heavy rain. On the way home they saw two deer in a field of high weeds. Suddenly one of the deer raised both of his hind feet in the air, as if it were doing a handstand, balancing and walking on its forefeet. They thought the deer was injured and had to walk that way, but then the second deer did the same thing. Both deer walked on just their front legs for a distance of about 75 feet to where they could no longer be seen. […] We are constantly learning new things about deer.”

Leonard Lee Rue III suggested that the deer were just playing around and having fun.

Most people don’t know a whole lot about deer behavior. Most not-deer reports come from people who witnessed the creature while driving in the dark, so they didn’t get a very good look at it. Plus, as I’ve said over and over, people see what they expect to see. The not-deer has become popular online over the last few years, which means when someone is driving along and sees a deer behaving in what they think is an unusual manner, they remember the not-deer stories. Their brain automatically fills in details they can’t really see, leading to the person remembering things like a deer with human arms or six eyes.

In addition, people like telling spooky stories to scare each other. It’s probable that at least some of the scariest not-deer accounts are fiction. So if you see a deer, you don’t have to be scared. Just observe it and you might just learn something new about deer behavior. (Or something spooky will happen, in which case you have a great opportunity for a TikTok video.) Happy Halloween!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 218: More Unusual Hoofed Animals

So many interesting hoofed animals in this episode, so many awesome suggestions! Thanks to Page, Elaine, Pranav, Richard E., Richard from NC, and Llewelly!

Further Reading:

Meet the Takin: The Largest Mammal You’ve Never Heard Of

New hope for the elusive okapi, the Congo’s mini giraffe

The Resurrection of the Arabian Oryx

Eucladoceros was not messing around with those antlers:

Megaloceros and Thranduil’s elk in the Hobbit movies. COINCIDENCE?

The stag-moose. What can I say? This thing is AWESOME:

Hoplitomeryx. Can you have too many horns? No, no you cannot:

The gerenuk, still beautiful but freaky-looking:

The golden takin looking beautiful [pic from the article linked above]:

The elusive okapi:

Okapi bums [pic from the article linked above]:

The giraffe being really tall and a baby giraffe being somewhat less tall:

A giraffe exhibiting dwarfism but honestly, he is still plenty tall:

The Arabian oryx is just extra:

The weird, weird tusks of the babirusa. Look closely:

Show Transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Back in episode 116, we talked about some amazing hoofed animals. This week we’re going to look at some more amazing hoofed animals that you may have never heard about. Some are extinct but some are running around out there looking awesome even as we speak! Thanks to Page, Elaine, Pranav, Richard E., Richard from NC, and Llewelly for their suggestions! If you’re a Patreon subscriber you may recognize part of the end of the episode as largely from a Patreon episode, by the way.

Let’s start with an extinct deer with amazing antlers. Llewelly suggested it, or more accurately replied to a Twitter conversation mentioning it. That counts as a suggestion. It’s been a while but I think the conversation was about the Hobbit movies.

Eucladoceros was a deer the size of a moose but with much weirder antlers. We’re not talking about the Megaloceros, often called the Irish elk, although it was distantly related. Eucladoceros’s antlers were much different. They branched up and out but were spiky like an ordinary deer’s antlers instead of palmate like a moose’s or Megaloceros’s antlers. But they were seriously big, with up to twelve points each and over five and a half feet across, or 1.7 meters. The deer itself stood just under 6 feet tall at the shoulder, or 1.8 meters. It’s often called the bush-antlered deer because the antler’s many points look like the branches of a bush.

Eucladoceros lived in Eurasia but we’re not completely sure when it went extinct or why. We don’t really know that much about it at all, in fact, which is surprising because it was such a big animal. It was one of the earliest deer with branching antlers and it probably went extinct before humans encountered it, but we don’t know that for sure either.

Another deer relation is a gigantic animal called the stag moose that lived at the very end of the Pleistocene, or ice age, until around 13,000 years ago. It probably looked a lot like a huge, muscular deer more than a moose, but had moose-like antlers that grew up to 6 1/2 feet across, or 2 meters. The animal itself stood almost six feet tall at the shoulder, or 1.8 m, which is about the size of the modern moose. It lived in northern North America until melting glaciers allowed other animals to migrate into the area, and the modern moose outcompeted its cousin.

Early deer and deer relations looked a lot different from the deer we’re familiar with today. For instance, Hoplitomeryx. It was a ruminant and therefore related to modern deer, but while it probably looked a lot like a deer, it didn’t have antlers. It had horns. Antlers grow every year from the skull and the animal sheds them later, usually after breeding season. Horns are permanent, usually made of a bony core with a keratin sheath over it.

Hoplitomeryx lived around 11 to 5 million years ago in one small area of Europe. Specifically, it lived on a large island near what is now Italy, although the island is now part of a little peninsula. It probably also lived on other, smaller islands nearby. While some specimens found are quite small, probably due to island dwarfism, some grew as big as the bush-antlered deer, over 5 ½ feet tall, or 1.7 meters.

It had a pair of horns that were shaped like a modern goat’s, that grew from the top of its head and curved backwards. And it had a smaller pair of horns underneath those horns that grew outward. And it had a single horn that was about the same size or bigger and shaped the same as the goat-like horns, but which grew in the middle of the forehead like a really weird unicorn. Also, it had fangs. I am not making this up. It’s sometimes called the five-horned deer for obvious reasons.

We also don’t know much about Hoplitomeryx except that it was really awesome, so let’s move on to our next strange hoofed animal. This one is a suggestion by Page, who wanted to know more about the gerenuk. We talked about it in episode 167 but it’s such an interesting animal that there’s more to learn about it.

The gerenuk is an antelope that lives in East Africa. It’s considered a type of gazelle, although it’s not very closely related to other gazelles. It’s slender with long legs and a long neck, and stands about three feet tall at the shoulder, or 105 cm. The male has a pair of S-shaped, ridged black horns that can grow up to 18 inches long, or 45 cm, while the female doesn’t have horns at all. It’s reddish-brown with a pale belly and a pale stripe down its sides, a short tail, and a white patch around each eye. But as we talked about in episode 167, its legs are extremely thin—so thin that they look like sticks, especially the front legs.

The gerenuk is the only type of antelope that can stand on its hind legs, which it does all the time. It will even use its front legs to pull branches down closer to its mouth while standing on its hind legs. As a result, even though it’s not very big, it can reach leaves that other antelopes can’t. Not only does this mean it can find food where other antelopes can’t, it also means it doesn’t need very much water because it can reach tender leaves with a higher moisture content.

Like many gazelles, the gerenuk marks its territory with scent glands. It has scent glands on its knees, covered with tufts of hair, and scent glands in front of its eyes. So if you see a gerenuk rubbing its knees or face on a branch, that’s why.

Our next hoofed animal is the golden takin, which looks kind of like a musk ox except that it has pale golden fur. But it isn’t a musk ox although it is in the family Bovidae. It’s actually most closely related to sheep but is sometimes referred to as a goat-antelope. It does resemble the mountain goat in some respects, which makes sense because it lives in the Himalayan Mountains in China. As a result, it has a lot of adaptations to intense cold.

It has a thick coat that grows even thicker in winter, with a soft, dense undercoat to trap heat next to the body. It also has large sinus cavities that warm the air it breathes before it reaches the lungs, which means it has a big snoot. Its skin is oily, which acts as a water repellent during rain and snowstorms. In spring it migrates to high elevations, but when winter starts it migrates back down to lower elevations where it’s not quite as cold.

Like the gerenuk, the golden takin will stand on its hind legs to reach leaves, but it has to balance its front legs against something to stay upright. It will eat just about any plant material it can reach, including tree bark, tough evergreen leaves, and bamboo. Yes, bamboo. It sometimes shares the same bamboo forests where pandas live. The golden takin is a strong animal that will sometimes push over small trees so it can eat the leaves. It visits salt licks regularly, and some researchers think it needs the minerals available at salt licks to help neutralize the toxins found in many plants it eats.

Both male and female golden takins have horns, which grow sideways and back from the forehead in a crescent and can be almost three feet long, or 90 cm. It has a compact, muscular build and can stand over four feet tall at its humped shoulder, or around 1.4 m. Baby golden takins are born with dark gold-brown fur that helps camouflage it, but as it ages, it fur grows more and more pale gold. A full-grown golden takin is big enough and strong enough that it doesn’t have many predators. If a bear or wolf threatens it, it can run fast if it needs to or hide in dense underbrush.

Next, let’s learn about an animal requested by both Elaine and Pranav. In the 19th century and earlier, Europeans exploring central Africa kept hearing about an elusive animal that lived deep in the remote forests. It was supposed to be a kind of donkey or zebra, but it was so little-known that some Europeans started calling it the African unicorn because they didn’t even think it existed.

In 1899, a British man named Harry Johnston decided to get to the bottom of the African unicorn mystery. When he asked the Pygmy people about it, they knew exactly what he was talking about and showed him some hoof prints. Like most Europeans at the time, Johnston thought the African unicorn was a zebra, so he was surprised to learn that it had cloven hooves.

The Pygmy people also gave Johnston some strips of skin from the animal, and later he bought two skulls and a complete skin. He sent these to England where the animal was identified as a giraffe relation. It was named Okapia johnstoni, and is known by the name okapi.

The okapi’s discovery by science was as astounding in its way as the coelacanth’s discovery a few decades later. Until it was described in 1901, scientists thought all the giraffe relations had died out long ago. Paleontologists had found fossils that showed how the giraffe evolved from a more antelope-like animal, and suddenly there was a living animal with those same features. It was mind-blowing!

The okapi is the giraffe’s closest living relation, but it doesn’t look much like a giraffe. For one thing, it’s not quite five feet tall at the shoulder, or 1.5 meters, and while it does have a long neck, it’s nothing like as long as a giraffe’s. It looks more like an antelope than a giraffe, at least at first glance. It’s dark reddish-brown with pale gray markings on its face, and its lower legs are white and its rump and upper legs are striped black and white. It also has a tail with a tuft at the end like a giraffe’s. Females are usually larger than males.

The male okapi has a pair of ossicones on his head, but they’re not very long compared to giraffe ossicones. As you may remember, an ossicone is a bony projection from the skull that’s covered with skin and hair. The female has little forehead bumps instead of actual ossicones.

The okapi lives in rainforests in central Africa and is a solitary animal. It has a long tongue like a giraffe which it uses to grab leaves. Its tongue is almost as long as the giraffe’s, up to 18 inches long, or 46 cm, whereas the giraffe’s tongue is 20 inches long, or 56 cm. A female okapi has one calf every two years or so, and in the first month of life, the calf doesn’t defecate at all. Not a single baby okapi poop. Some babies may hold it until they’re ten weeks old. Scientists aren’t sure if this same behavior is found in the wild, since okapis are hard to observe in the wild and most behavioral observations come from captive animals, but the hypothesis is that by not defecating, the baby is less likely to attract the attention of leopards who would smell the poops.

For a long time scientists thought the okapi didn’t make any sounds at all, just some whistles and chuffing sounds. It turns out, though, that a mother okapi communicates with her baby with infrasound, which is below the range of human hearing.

Speaking of giraffes, in March of 2021 a study of the giraffe genome was published, focusing on the giraffe’s adaptations for growing so extremely tall. One interesting discovery is that the giraffe has very little sense of smell although it has excellent eyesight. This makes sense considering that the giraffe’s head is so far above the ground. Most scents left by predators will be on or close to the ground, not high up in the air. The giraffe also doesn’t sleep very much and it shows a lot of genetic adaptations for extremely high blood pressure. It needs that high blood pressure to push blood up its long neck to its brain. Researchers are especially interested in the genetics of blood pressure, since high blood pressure in humans is a serious problem that can lead to all sorts of medical issues.

We’ve talked about giraffes before, especially in episode 50, about the tallest animals. Giraffes have extremely long necks and legs and a big male can stand 19.3 feet high, or 5.88 m, measured at the top of his head. Even a short giraffe is over 14 feet tall, or 4.3 meters. To put that into perspective, the average height of a ceiling in an average home is 8 or 9 feet high, or just over 2.5 meters. This means a giraffe could look into an upstairs window to see if you have any giraffe treats, and not only would it not need to stretch to see in, it would probably need to lower its head.

But in 2015, a team of biologists surveying the animals in the Murchison Falls National Park in Uganda, which is in eastern Africa, noticed a male giraffe that had much shorter legs than usual. They nicknamed him Gimli after one of the dwarf characters from Lord of the Rings, and estimated his height as just over nine feet tall, or about 2.8 meters. Gimli would not be able to peek into an upstairs window, but he was still a fully grown giraffe.

Since dwarfism affects the length of an animal’s limbs, it was obvious that Gimli was actually a dwarf giraffe, the first ever documented.

Then, in 2018, a different team of scientists found a different giraffe in a different place, Namibia in southwest Africa, who was fully grown but also had short legs. He was also a male, nicknamed Nigel, and was hanging around with some other giraffes on a private farm. The farmer had seen Nigel plenty of times over several years. Nigel’s height was estimated at 8 ½ feet tall, or 2.6 meters.

In animals, dwarfism can result from inbreeding, which is sometimes done on purpose by humans trying to breed cute pets. It also just sometimes happens, a random mutation that affects growth hormones. In the wild, an animal with unusually short legs usually doesn’t live very long. Either it can’t run fast enough to escape a predator or it can’t run fast enough to catch prey. Both Gimli and Nigel appear healthy, though, and even a short giraffe is still a large animal that can kick and run pretty fast.

Next, Richard from North Carolina suggested the Arabian oryx, and it is a beautiful and amazing hoofed animal. It’s a large antelope and used to live throughout the Middle East, but by the 1930s, habitat loss and hunting had restricted it to the desert in northwestern Saudi Arabia. Then oil company employees and Arabian princes both discovered the fun that is to be had when you have a car and a machine gun and can just drive around shooting everything you see. Such fun, driving animals to extinction, I’m being sarcastic of course. The last few Arabian oryx survived to 1972, but they were effectively extinct decades before then.

But. Zoos to the rescue. The Arabian oryx is a beautiful animal that does well in captivity, so lots of zoos had them on display. In 1960 conservationists realized they had to act fast if the oryx wasn’t going to go extinct completely, and they started a captive-breeding project called Operation Oryx at the Phoenix Zoo in Arizona, which is in the southwestern United States. They managed to capture three of the remaining wild animals and added to the herd with captive-bred oryxes donated by other zoos.

Operation Oryx was such a success that in only twenty years they were able to reintroduce oryx into the wild. Currently there are an estimated 1,200 oryxes in the wild with another 7,000 or so in zoos and conservation centers around the world. It’s still vulnerable, but it’s not extinct.

The oryx is white with dark brown or black markings, including dark legs and a pair of long, straight, slender black horns. Both males and females have these horns, which can grow up to two and a half feet long, or 75 cm. Since the oryx itself only stands a little over three feet high at the shoulder, or 1 meter, the horns are sometimes longer than the animal is tall. The oryx lives in small herds of mixed males and females, which travel widely in their desert habitat to find food and water. During the hot part of the day, the oryx digs a shallow nest under a tree or bush to lie in. It also has a short tufted tail. I just noticed the tail in a picture I’m looking at. It’s so cute.

In the last weird hoofed animals episode, we ended with a pig relation, so we’re going to end this episode with a pig relation too. Richard E. suggested the babirusa, and you definitely need to know about this weird piggy.

The babirusa is native to four islands in Indonesia. It’s related to pigs, but researchers think it split off from other pigs early on because of how different it is. Females have only one pair of teats, for instance, and usually only one piglet is born at a time, sometimes two. Females make a nest of branches to give birth in.

The babirusa also lacks the little bone in the snout that helps most pig species root. The babirusa only roots in very soft mud, but sometimes it digs for roots with its hooves. It eats plants of all kinds, including cracking nuts with its strong jaws, and will eat insect larvae, fruit, mushrooms, and even occasionally fish and small animals when it can catch them. Unlike most pigs, the babirusa is good at standing on its hind legs to reach branches, much like deer, which is why it’s sometimes called the deer-pig. Its stomach is more like a sheep’s than a pig’s, with two sacs that help it digest fibrous plant material, and it has relatively long, slender legs compared to most pigs.

Most pigs have tusks of some kind, but the babirusa’s are really weird. At first glance they’re just surprisingly long tusks that curve up and back, but when you look closer, you see that the upper pair actually grows up through the top of the snout.

The babirusa boar has two pairs of tusks, which are overgrown canine teeth. The lower pair jut out from the mouth the way most pig tusks do. The upper pair are the weird ones. Before a male babirusa is born, the tooth sockets for its upper canines are normal, but gradually they twist around and the teeth grow upward instead of down. They grow right up through the snout, piercing the skin, and then continue to grow up to 17 inches long, or 43 cm, curving backwards toward the head. In at least one case, a tusk has grown so long it’s actually pierced the boar’s skull.

For a long time researchers assumed males used their tusks to fight, but males fight by rearing on their hind legs and kicking each other with their forehooves. Then researchers decided the tusks were actually for defense during fights, to keep a boar from getting its face kicked. But the tusks aren’t actually very strong and don’t appear to be used for much of anything. Most likely, it’s just a display for females.

The babirusa does well in captivity, even becoming quite tame. Many zoos keep them, which is a good thing because they’re becoming more and more endangered as their island habitats are taken over by farming and development.

So that’s it for the second episode about strange hoofed animals. I guarantee you that we’re going to have a third because there are so many.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 116: Amazing Hoofed Animals

This week we’re taking a bunch of listener suggestions and learning about a bunch of amazing hoofed animals! Thanks to Richard E., Pranav, Grady, and Simon for all their suggestions!

A pronghorn antelope, which is NEITHER AN ANTELOPE NOR A DEER:

A musk deer, which is NOT ACTUALLY A DEER AND ACTUALLY LOOKS A LOT LIKE A KANGAROO OR RABBIT WITH FANGS:

A chevrotain, or mouse deer, which is ALSO NOT A DEER AND LOOKS LIKE A RODENT FRANKLY (lesser mouse deer on left, water chevrotain on right)

A mama pudu with her baby, WHICH ARE DEER:

A goat eating poison ivy like I told you they do:

A horse eating watermelon, because it’s adorable:

An entelodont, AKA HELL PIG:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week I wanted to get back into some of the excellent suggestions I’ve gotten from listeners. I looked over the list, hoping that a theme would present itself…and one did. Sort of. This week let’s learn about some interesting hoofed animals, some of them living today, some extinct. Thanks to Richard E., Grady, Pranav, and Simon for the suggestions I used in this episode, in no particular order.

First, Richard asked about the differences between deer and antelope. This is an excellent question, obviously, because I’ve been sitting here staring at the screen thinking, “Well, I know they’re not members of the same family but how closely are they related?” So let’s find out. And I’ll warn you now, this gets complicated—but in an interesting way.

Antelopes are bovids, related to cows, sheep, and goats. Deer are cervids. Both groups are related, but not very closely. They’re both members of the order Artiodactyla, the even-toed ungulates, because they have hooves with two toes, called cloven hooves.

At first glance, many antelopes look a lot like deer. But antelopes have horns, not antlers, and the horns are permanent. Deer have antlers, which they shed and regrow every year. And antelope horns, like the horns of goats, sheep, and cattle, don’t branch, whereas deer antlers almost always do.

So far this is pretty straightforward. But now things get complicated. Antelopes are native to Africa and Eurasia while deer live throughout the world. But there are deer that aren’t deer and there are some antelopes that aren’t antelopes. Uh oh. We’d better figure this out.

One thing to remember is that the group of bovids referred to as antelopes have all been lumped together in what’s sometimes referred to as a wastebasket taxon. Basically that means that the animals in that taxon didn’t really fit anywhere else, so scientists grouped them together for the time being. If a bovid is clearly not a cow, a sheep, or a goat, it’s put in the antelope group.

There aren’t any antelopes living in the Americas today. If you happen to live in the western part of North America, you probably just sat up and said, “Hey, you forgot about the pronghorn!” But the pronghorn antelope…is not an antelope.

Sure, the pronghorn looks like an antelope. It’s deer-like, runs extremely fast just like antelopes, and has short black horns. But look at those horns. It’s called a pronghorn because the horns of the males have a prong, or branch, so that the horn is shaped sort of like a Y, with the front branch of the Y shorter than the other, and the longer branch of the Y having a sort of hook at the top. Remember how antelopes only ever have unbranched horns? That’s a clue that the pronghorn isn’t an antelope.

But the pronghorn also isn’t a deer. Its horns are horns, not antlers, and it keeps its horns throughout its life instead of shedding them every year. Except that it kind of does shed part of the horn every year, the sheath. The inside of a horn is bone that grows from the skull, but a sheath of keratin grows over it. If you’ve ever seen an old-fashioned drinking cup made of horn, it was made of a horn sheath, usually from a bull. Most horned animals keep the sheath, which grows as the horn grows underneath, but the pronghorn male sheds the sheath of his horns every year and then grows new ones.

So what is the pronghorn related to? Are you ready? It’s related to the giraffe! I’m not even making this up. It’s not closely related to the giraffe, though, and it’s the only living member of its own family. I think I might have to revisit the pronghorn family in its own episode one day, so for now I’ll just point out that the pronghorn is the second-fastest land animal alive, with only the cheetah able to run faster. The pronghorn can run 55 mph, or 88 km/h, for half a mile, or .8 km.

So the pronghorn isn’t an antelope or a bovid, but it looks like an antelope because it shares a similar habitat and ecological niche. You know what that means! Yes, the pronghorn looks like an antelope due to convergent evolution.

Next, let’s talk about those deer that aren’t deer. Are they related to giraffes too? Are giraffe relatives taking over? No and probably no.

There are two groups of deer that aren’t actually deer. The musk deer of Asia and the chevrotains of Asia and Africa are related to deer but they’re also related about as closely to bovids like antelopes. They’re also not that closely related to each other. Just looking at them tells you that they’re different, since they don’t look like ordinary deer.

There are seven species of musk deer alive today, and while musk deer used to live throughout Eurasia, these days they’re restricted to Asia, especially the Himalayas. They’re small, no more than two and a half feet high at the shoulder, or 70 cm, with hind legs that are longer than their front legs. The back is humped more like a rabbit’s than a deer’s. This allows them to run extremely quickly. They also don’t have antlers or horns, but males do have fangs that they use to fight other males. Fangs, people! Deer-like animals with fangs! They’re not small fangs, either, they’re basically slender tusks that grow down from the upper jaw and can be up to four inches long, or 10 cm. The tusks break easily, but they grow continuously, especially during mating season.

All species of musk deer are endangered due to overhunting, especially for the male’s scent gland, called a musk gland. This gland has been used in perfumes for centuries. These days most perfume-makers use a synthetic musk instead, but the musk deer is still being hunted for its musk gland. The male uses his musk to mark his territory, which warns other males away and attracts females.

Musk deer kind of look like if you tried to draw a kangaroo but you got mixed up halfway through and forgot you were drawing a kangaroo and decided to draw a rabbit instead. Then you added fangs.

The other deer that isn’t a deer is the chevrotain, also called the mouse-deer. There are a number of chevrotain species and they all look more like little rodents than deer. They’re all small and have bulky, rounded bodies but short spindly legs. Like musk deer they have long canine teeth instead of horns or antlers. Female chevrotains have these fangs too, but they’re longer in males and are angled outward like tiny pig tusks. Males use the teeth to fight each other. Most chevrotains are brown or reddish-brown with white streaks on the throat and sometimes face.

Some species of chevrotain like water and, like the marsh cottontail rabbit we learned about last week, will submerge in the water to hide from predators. It can hold its breath for up to four minutes. It can even walk on the bottom of the stream bed, grabbing plants with its teeth to help keep it from being swept away by the current.

The smallest chevrotain is the lesser mouse-deer, which lives across southeast Asia. It’s only about 18 inches tall at most, or 45 cm, and weighs less than 5 pounds, or 2 kg. But the smallest deer was a suggestion by Simon, and that’s the pudu. Specifically, it’s the northern pudu with the scientific name Pudu mephistophiles. I don’t know how it got this name since it’s only 14 inches tall, or 35 cm, and looks inoffensive and not devilish at all. It’s reddish-brown with big eyes, rounded ears, and little stubby antlers that only grow around four inches long, or 10 cm. It lives at high altitudes in the Andes Mountains in South America. It sheds its tiny antlers every year and regrows them, but unlike most other deer, its antlers don’t have any branches.

Because the pudu is so small, it can have trouble reaching the plants it eats. Like other deer, it’s a browser instead of a grazer, eating leaves, twigs, fruit, seeds, and bark, but not grass. It stands on its hind legs to reach leaves, but if it finds a bendy sapling, it will push it with its forelegs until the tree is bent down far enough for the pudu to reach its leaves and twigs.

The pudu is territorial and travels on little trails it makes through its territory. The southern pudu, which is only slightly larger than the northern pudu, will also build tunnels in the underbrush so it can travel without being seen by predators.

Unlike the pudu, the chevrotain hasn’t changed much in millions of years and shows primitive traits compared to modern hoofed animals. It actually shares some traits in common with pigs. While pigs are hoofed animals, they’re not closely related to chevrotains. Researchers think the chevrotain retains traits that were once common in early ruminants.

What’s a ruminant, you may be asking. Aha, this is a good question. Ruminants are hoofed animals that chew their cud, and that includes the chevrotain, the giraffe, musk deer, deer, bovids like cows, goats, sheep, and antelopes, and the pronghorn.

As I mentioned last week in the giant rabbits episode, cud-chewing is one way some animals have evolved to extract as many nutrients as possible from plants. Most plant material is tough and can be hard to digest. Ruminants have a complicated digestive system that helps with this. I bet someone at some point has told you that cows have four stomachs, and maybe you didn’t believe them. But they do. Almost all ruminants have four stomachs, or more properly, four specialized chambers that make up the stomach section of the digestive system.

This is how it works. Let’s say a goat is eating poison ivy leaves, which is something they do, and they don’t seem to have any problem with it either. The goat swallows the leaves, which go into the first two chambers of the goat’s stomach, called the rumen and the reticulum. Both these chambers contain lots of beneficial microbes and bacteria, which immediately start to ferment and break down the leaves. As this happens, the food forms into clumps of partly digested leaves called cuds. After a while, the goat regurgitates a cud and chews it thoroughly, further breaking it down, then swallows it and regurgitates another cud to do the same thing, and so on until it’s cudded everything in its rumen. Then it goes to eat some more.

After the cuds have been chewed and swallowed again, they pass through the rumen and reticulum and into the third chamber, the omasum [oh-MAY-sum]. This is where nutrients start to be absorbed. Only tiny pieces of plant are able to pass through the omasum into the fourth chamber, the abomasum [abba-MAY-sum], which is equivalent to our own stomach. This chamber adds acids to the plant material and kicks the digestive process into high gear, pushing everything on into the small intestine, where most of the nutrients are absorbed. Then what’s left of the plants goes on into the large intestine, where water is absorbed from it and the indigestible parts are packed into pellets that are pooped out.

So most ruminants have four-chambered stomachs. But not all of them. You know which ruminant only has three stomachs? That’s right, the chevrotain, the little mouse deer that kind of looks like a pig.

Pigs, by the way, aren’t ruminants. They’re omnivores and only have one stomach.

So with all this information about chewing cuds in your brain, let’s answer Grady’s question. Grady wants to know how horses digest their food.

Are horses ruminants? They eat grass and other plants. The answer is no, horses aren’t ruminants and don’t chew their cud as part of the digestive process. A horse has only one stomach but it still manages to digest grass and other tough plants just fine. This is how it works.

First, the horse chews its food really thoroughly before swallowing. Like ruminants, the horse’s teeth continue to grow throughout its life, since plants wear teeth down. The horse also produces massive amounts of saliva as it chews, and saliva contains an enzyme called amylase that helps start the digestive process. So before a horse even swallows a single bite of grass or hay, that plant material is chewed up into little bits and mixed with lots of saliva.

Oh, in case you were wondering, a male horse has forty teeth while a female only has 36. I do not know why. But ruminants don’t have front top teeth at all, just a bony pad. That helps them trim plants right down to the ground.

After a horse swallows its food, the stomach mixes it with digestive enzymes and acids that break the plant material down even more. A horse actually has a surprisingly small stomach for its body size, but typically food doesn’t stay in the stomach long. It passes into the small intestine and then into the large intestine, where most of the actual digestion takes place. Microbes in the large intestine help break down the plant material so that the horse can absorb it.

The large intestine is sometimes called the hindgut, because it’s behind the other parts of the digestive system. Horses are hindgut fermenters, which means a horse’s food is fermented, or broken down by microbes, in the hindgut, or large intestine. Ruminants are called foregut fermenters because their food is fermented, or broken down by microbes, in the foregut, or the stomach chambers that come before the rest of the digestive system. And if you’re curious, rabbits and hares are also considered hindgut fermenters.

There are lots more fascinating hoofed animals I want to talk about, but I have to stop somewhere. Don’t worry, eventually we’ll learn about some actual deer with fangs as well as antlers, and more about the pronghorn, and lots more. But we’ll finish up this week with a suggestion from Pranav, who wanted to learn about an extinct hoofed animal called the entelodont.

What’s an entelodont? It’s sometimes called the HELL PIG. Why would it be called that? Is it like the little Mephistopheles pudu who must have scared some scientist one day and ended up with a devilish name? Nope, the entelodont is called the hell pig because it was enormous and terrifying. Fortunately for us, it went extinct millions of years ago.

Despite its name, the entelodont isn’t all that closely related to the pig. It’s more closely related to the hippo and to WHALES, because whales and hippos are closely related. But the various species of entelodont were pig-like in many ways. Entelodonts lived throughout much of the world, but let’s look specifically at the biggest entelodont known, Daeodon [DIE-oh-don], which lived in North America up to about 18 million years ago.

Daeodon stood nearly six feet tall at the shoulder, or about 1.8 meters. It had long, slender legs with cloven hooves, and its body was bulky and something like 10 feet long, or 3 meters. It didn’t have a pig-like snout, and in fact its nostrils were on the sides of its nose, which probably helped it track food by scent. It had flared cheekbones with bony protrusions that probably meant it looked a lot like a modern warthog. Its tail was short and small.

Daeodon was an omnivore, which means it would eat just about anything it wanted, and it had the sharp, serrated teeth of a predator. It probably did a lot of scavenging of dead animals, but it could have hunted and killed prey too. Its jaw was so strong it could bite right through bones. And it could run quickly.

So basically, daeodon and entelodonts in general earn the nickname hell pig. It’s probably a good thing they’re not still around. I personally prefer the tiny and harmless Pudu mephistophiles.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 004: The Irish Elk

(re-recorded audio)

In which your host calls her own podcast by the wrong name! And doesn’t catch it until it’s too late to change (i.e. five minutes ago). This week’s episode of Strange Animals Podcast is about the Irish Elk specifically and the Pleistocene era in general, especially as regards to humans spreading out across the world from Africa. Did the Irish elk’s enormous antlers really have anything to do with its extinction? And is it really for-sure extinct? (Spoiler alerts: no and yes.)

The Irish elk (more accurately called the giant deer) could stand as tall as seven feet high at the shoulder.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This is a re-record of the original episode to improve audio quality and bring some of the information up to date.

This week’s episode is about the Irish elk, the first of many episodes about Ice Age megafauna. But before we learn about the Irish elk, let’s start with the span of time popularly known as the ice age, along with information about how humans spread across the world.

The last two million years or so of history is known as the Pleistocene, which ended about 12,000 years ago. The end of the Pleistocene coincides roughly with the extinction of a lot of the Pleistocene megafauna and the beginning of modern historical times.

During the Pleistocene, the earth’s axis tilt and plane of orbit resulted in reduced solar radiation reaching the earth. The process is due to what is called Milankovitch cycles, which I won’t go into since I don’t actually understand it. To grossly oversimplify, the earth got colder for a while because there wasn’t as much sunshine as usual, and all of these glaciers formed, and then it would warm up again and the glaciers would melt. This happened repeatedly throughout the Pleistocene, which was actually a series of ice ages with interglacial times in between.

Our current era is called the Holocene, and it’s considered an interglacial period. But if you’re hoping that the next ice age is a neat solution to global warming associated with climate change, the next glacial period isn’t expected for another 3,000 years.

The word megafauna means “giant animals.” You might hear dinosaurs referred to as megafauna, and that’s accurate. It’s a general term applied to populations of animals that grow larger than a human. Humans are also considered a type of Ice Age megafauna. high five, all my ice age peeps yes I kept that dumb line in this re-record

During the Pleistocene, humans migrated from Africa and spread across the world, rubbing shoulders with Neandertals, making awesome stone tools, and killing megafauna whenever they could. Humans are good at killing animals. In elementary school, I remember reading about ancient tribes of people stampeding mastodons over cliffs, eventually killing them all off. I didn’t believe it, but that’s actually true. We have lots of evidence that many types of animals were killed in this way, and it may have led to the extinction of some of the megafauna. It certainly didn’t help them. Wherever humans showed up, extinctions followed. The only exception is Africa, probably because the animals in Africa evolved alongside humans and knew how to deal with us. But when the first bands of humans showed up in Eurasia and the Americas, the native animals didn’t even know we were predators. They certainly didn’t know how to avoid being stampeded over cliffs. That’s a skill you don’t get many chances to practice.

Many people, especially Europeans, think that native peoples of whatever part of the world are natural conservationists. They live in harmony with nature, taking only what they need and using, for instance, every part of the buffalo. But human nature is human nature. Sure, when you live in a comfortably established village with a set territory, and your hunters and fishers start noticing that there’s not much game left, you learn conservation or you starve. But when you’ve got an entire world ahead of you—vast continents that have never seen a tool-using great ape with wicked intelligence and an insatiable appetite, you don’t need to live in harmony with nature. Our ancestors would find a nice area, settle there for a while, and when all the easily obtainable food was gone, they’d move on.

Humans still act this way. That’s why we leave trash all over the place. But the good news is that we are also good at recognizing when we’re causing a problem and deciding to fix it. So even though our first impulse might be to throw trash everywhere, we can also stop doing that and clean up trash already on the ground.

By the beginning of the Pleistocene, the continents were in their current spots. The world looked about the way it did now. But during the glacial periods, so much water froze that sea levels dropped around 300 feet. This exposed huge areas of continental shelf, making the continents bigger and joining some of them together. For instance, during glaciation, Alaska was connected to Asia. In some books you’ll see this talked about as a land bridge, which I always imagined as narrow and muddy. But it wasn’t just a bridge, it was a huge chunk of continent, and it stayed that way for thousands of years.

Then the temperature would warm up, sometimes dramatically. Within a few decades, the glaciers had mostly melted, the sea levels rose and flooded the low-lying land, and animals scrambled to find a comfortable habitat. It’s easier for an animal to move than to adapt to a changing habitat.

Even though a lot of land was flooded, other land opened up as glacial barriers disappeared. Animals that had traveled to Alaska on a land bridge from Asia could now move deeper into North America. Animals from deeper in North America could enter Alaska.

This colder-warmer-colder pattern happened a few dozen times during the Pleistocene, shaking the climate up repeatedly and leading to extinctions, with or without human help, and animals that look strange to us now because we don’t fully understand the environments they adapted to. But one thing is for sure. The megafauna were all awesome.

Fast forward to a few hundred years ago. European humans are in the middle of a territorial war with North American humans, and as they pushed their way farther into North America, they started to find interesting things: giant bones in the southerly areas, actual frozen carcasses in the permafrost of the northerly areas. Some of those carcasses looked so fresh, and the interior of North America was so little explored by Europeans that a lot of people assumed they’d find living mammoths if they looked in the right spot. When Thomas Jefferson sent Lewis and Clark on their turn of the 19th century expedition, one of their goals was to find mastodons and other megafauna.

They didn’t, of course. Instead they almost died repeatedly and had to be rescued by Sacajawea, who I like to imagine kept sighing with exasperation but who at least got to hang out with the expedition’s Newfoundland dog. Newfies are the best. (I miss you, Jasper.)

So, now we have a little bit of background about Ice Age megafauna. If you’re interested in learning more about how humans evolved and spread across the world, and our extinct close cousins, you can listen to episodes 25 and 26.

The Irish elk was the reason I started this podcast. I happened across the so-called fact I learned in elementary school, that the Irish elk died out because its antlers became so big that it couldn’t escape from predators.

I hadn’t thought of the Irish elk in literally decades. But that antler thing didn’t sound right. I caught myself thinking about it on and off, even getting angry. It didn’t make sense. It’s not like evolution is a power-up in a video game, and as soon as one elk got extra super gigantic antlers, suddenly all elk had them. If overlarge antlers were an issue, only stags with the biggest antlers would die. Does would mate with the remaining stags with smaller antlers and their offspring would be more likely to have small antlers. Besides, deer of all kinds shed their antlers every year and regrow them, which means the stags with biggest antlers wouldn’t have to deal with them for more than a few months of the year.

I did some research, which I found so much fun I decided to turn it into a podcast. Then I realized I couldn’t really make an ongoing podcast exclusively about Irish elk, which is pretty obvious now that I think about it.

So, it turns out that the Irish elk is neither exclusively Irish nor an elk. It did live in the area now called Ireland, but it also lived all across Eurasia and even in northern Africa. Like many deer it liked open woodland and was a browsing animal, meaning it didn’t eat grass but did eat lots of other plants, including green twigs and bark, and if it lived nowadays it would undoubtedly come to my yard and eat my garden.

Recent genetic analysis suggests it’s more closely related to the fallow deer than to elk. For these reasons, many publications these days refer to it as the Giant Deer. Officially it’s Megaloceros giganteus.

Megaloceros did have huge antlers, that’s for sure, sometimes as much as a twelve-foot span, or 3.7 meters. If you’re sitting in an ordinary house, the ceiling is probably eight feet high, maybe nine, or 2.4 to 2.7 meters. The biggest male giant deer could stand about seven feet at the shoulder, or 2.1 meters, and weigh as much as 1500 pounds, or 680 kg. That’s the size of a bull Alaskan moose, although moose antlers are maybe six feet across, or 1.8 m.

So, giant deer had giant antlers, the biggest of any known deer species. But were they really that big relative to the animal’s size? Stephen Jay Gould published a study in 1974 that concluded that compared to the deer’s body size, Megaloceros’s antlers weren’t actually out of proportion at all. They’re just big animals. Sexual selection did encourage antler size—the ladies liked stags with big racks, and stags with bigger antlers could intimidate rival males more easily. But since Megaloceros shed and regrew their antlers every year, in years where the foraging wasn’t as good, everybody’s antlers tended to be smaller.

So why did Megaloceros die out? When did it happen? And are there pockets of giant deer still living in Siberia?

Those questions are all interrelated and surprisingly hard to answer—although I’m not going to lie, if you’re packing your bags for Siberia to look for giant deer, you’re probably going to be disappointed. But there is evidence that Megaloceros survived much later than formerly thought.

Until recently, the last known remains of Megaloceros were dated to the end of the Pleistocene, about 11,000 years ago. Then a partial giant deer skeleton was found on the Isle of Man, and an antler was found in southwest Scotland. Both were dated to about 9,000 years ago, as published in a year 2000 paper in Nature. In 2004, another paper in Nature revealed that giant deer remains found in western Siberia had been dated to about 7,700 years ago.

So, giant deer were around several thousand years later than previously thought, at least in Siberia. Back in the mid-19th century, some naturalists thought Megaloceros might even have survived well into modern days and been hunted to extinction by modern humans. Well preserved skulls were sometimes found in Irish peat bogs, and it wasn’t uncommon for the antlers to be mounted and displayed. I would.

In 1846, a huge cache of bones was found on a small island in a lake near Limerick in Ireland. Among the bones were Megaloceros skeletons. What interested researchers at the time were the Megaloceros skulls. The stags’ skulls were normal. The smaller skulls, thought to be from females, had holes in the front. They looked for all the world like the skulls of cows that had been slaughtered by being poleaxed in the head—a common butchering practice in the area up until recent times. Researchers thought they might have found evidence of limited domestication of giant deer, where the less dangerous females were raised in captivity while stags were hunted in the wild.

Unfortunately, excavation methods in those days left a lot to be desired. There’s no way now to determine whether the Megaloceros bones were actually mixed in with more recent domestic animal bones or whether they were in older deposits. There’s also doubt that the doe skulls were actually Megaloceros. It’s more likely they were elk or moose skulls. Both animals lived in the area well into the Holocene before going extinct, and the skulls are very similar to those of Megaloceros. As far as I can find out, the bones are gone so they can’t even be DNA tested or radiocarbon dated to see how old they are.

As to why the giant deer went extinct, I’m not saying it was humans…but it was humans. Actually we don’t really know. In some places extinction may have been caused by environmental pressures, including a shortened growing season that would have made food scarce. In other places humans may have been at least a partial cause. But isolated pockets of Megaloceros remained for thousands of years afterwards. Why aren’t they still around?

Hopefully, as more remains are found we’ll learn more. It’s likely that the Siberian deer, which survived longest, migrated onto the plains as the foothills of the Urals became more heavily forested about 8,000 years ago. But that coincided with a dry period and with settlers moving into the area. A combination of reduced fodder, loss of habitat, and hunting may have finally driven the giant deer to extinction.

But don’t be sad! Even if we don’t have Megaloceros in zoos these days, we do have a lot of fascinating deer and relatives of deer—moose, reindeer, elk, and so forth. You can still appreciate them.

I do sometimes think that being extinct makes an animal seem more interesting, just because we know we can never see a living specimen. If moose were extinct, this episode would probably be about the moose, and how awesome it was, and how little we know about it, and how it’s a shame they’re all dead. But hey, moose are still around. Take a little time out of your day today to appreciate the moose. (Also, you can check out episode 30 for lots more information about moose and reindeer.)

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!