Episode 370: Animals Discovered in 2023

Let’s look at some of the most interesting animals discovered last year!

Further reading:

Newly-discovered ‘margarita snails’ from the Florida Keys are bright lemon-yellow

Tiny spirits roam the corals of Japan—two new pygmy squids discovered

Strange New Species of Aquifer-Dwelling Catfish Discovered in India

Bizarre New Species of Catfish Discovered in South America

Unicorn-like blind fish discovered in dark waters deep in Chinese cave

New Species of Hornshark Discovered off Australia

Cryptic New Bird Species Identified in Panama

New Species of Forest Hedgehog Discovered in China

New species of voiceless frog discovered in Tanzania

The weird new spiny katydid:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s time for our annual discoveries episode, where we learn about some animals discovered in the previous year! There are always lots more animals discovered than we have time to talk about, so I just choose the ones that interest me the most.

That includes the cheerfullest of springtime-looking marine snails discovered in the Florida Keys. The Florida Keys are a group of tropical islands along a coral reef off the coast of Florida, which is in North America. A related snail was also discovered off the coast of Belize in Central America that looks so similar that at first the scientists thought they were the same species with slightly different coloration. A genetic study of the snails revealed that they were separate species. The one found in the Keys is a lemony yellow color while the one from Belize is more of a lime green.

The snails have been placed into a new genus but belong to a group called worm snails. When a young worm snail finds a good spot to live, it sticks its shell to a rock or other surface and stays there for the rest of its life. Its shell isn’t shaped like an ordinary snail shell but instead grows long and sort of curved or curly. The snail spreads a thin layer of slime around it using two little tentacles, and the slime traps tiny pieces of food that float by.

The new snails are small and while the snail’s body is brightly colored, its shell is drab and helps it blend in with the background. Scientists think that the colorful body may be a warning to potential predators, since its mucus contains toxins. It mainly lives on pieces of dead coral.

Another invertebrate discovery last year came from Japan, where two new species of pygmy squid were found living in seagrass beds and coral reefs. Both are tiny, only 12 mm long, and are named after little forest spirits from folklore. Despite its small size, it can eat shrimp bigger than it is by grabbing it with its little bitty adorable arms. Both species have been seen before but never studied until now. The scientists teamed up with underwater photographers to find the squid and learn more about them in their natural habitats.

As for invertebrates that live on land, an insect called the blue-legged predatory katydid was discovered in the rainforests of Brazil. It’s a type of bush-cricket that’s dark brown in color except for the last section of its legs, which are greenish-blue. Those parts of its legs are also really spiny. That is literally all I know about it except for its scientific name, Listroscelis cyanotibiatus, but it’s awesome.

Let’s leave the world of invertebrates behind and look at some fish next. This was the year of the catfish, with new species discovered in both India and South America. Catfish can be really weird in general and both these new species are pretty strange.

The first is tiny, only 35 mm long at most, or a little over an inch, and it has four pairs of barbels growing from its face. It looks red because its blood shows through its skin, because its skin doesn’t have any pigment. The fish also doesn’t have any eyes. If this makes you think it’s a cave-dwelling fish, you’re exactly right, but instead of an ordinary cave it actually lives in an aquifer.

An aquifer is a source of water underground. It’s actually a layer of rock that’s broken up or otherwise permeable so that water can get through it, but with a non-permeable layer underneath. The water is trapped in the layer, sometimes far underground. If you’ve ever seen a spring, where water bubbles up from the ground, that water comes from an aquifer that has found its way to the surface. If you’ve ever drunk water pumped or dipped up from a well, the well-water also comes from an aquifer. The water gets into the aquifer in the first place when rain soaks into the ground, but it takes a long time to fill up.

There are really deep aquifers that are completely sealed off from the surface, created thousands or even millions of years ago. As far as we know, nothing lives in those, although we could be wrong. Aquifers that are closer to the surface with some surface openings develop unique ecosystems, including animals that are found nowhere else on earth. That’s the case with the tiny red catfish found in the state of Kerala in India.

Scientists asked people in the area to watch out for any unusual animals when they had a new well dug or cleaned, and before long people from four towns reported finding the little red fish. Three other related species had previously been found in the state.

On the other side of the world, in South America, a much different type of catfish was discovered in Bolivia and Brazil. This one is an armored catfish, and the male actually grows short dermal teeth on the sides of his head that he uses to fight other males. Dermal teeth are teeth that grow on the skin instead of in the mouth, and it’s surprisingly common in fish, especially armored catfish.

The new catfish has been named Sturisoma reisi and it grows about 8 inches long, or 20 cm. It’s actually been known to scientists for a long time, but until recently no one realized it wasn’t one of five other catfish in the genus Sturisoma. They all look kind of similar. It’s a slender, active catfish with a long tail and a pointy rostrum that lives in swift-moving rivers. It was actually described in 2022, not 2023, but I only just realized I have the wrong year so let’s just move along quickly to another fish.

This one isn’t a catfish but it looks like one at first glance since it has barbels around its mouth. These are the whisker-like feelers that give the catfish its name. The newly discovered fish needs feelers because it doesn’t have working eyes, and it also doesn’t have scales or pigment in its skin. It was found in a cave in China, and in fact it’s only been found in a single pool of water in a single cave. The pool is only about 6 feet across, or 1.8 meters, and about two and a half feet deep, or 80 cm, but it’s home to a perfectly healthy population of fish. The fish grow about 5 inches long on average, or 13 cm.

The fish is a new member of the genus Sinocyclocheilus, and of the 76 known species in the genus, most live in caves. The new fish has been named S. longicornus because of a structure on its head that kind of looks like a unicorn horn, if the unicorn was a pink cave fish and its horn was shaped sort of like the tip of a ballpoint pen, also called a biro.

Some other species in this genus also have a so-called horn, although the new fish’s is larger than most. It juts forward and extends above what we can describe as the fish’s forehead. Scientists have absolutely no idea what it’s for. Since the fish can’t see, it can’t be to attract a mate. It’s also not likely to be a navigational aide since the fish has its barbels and a well-developed lateral line system to find its way around. Besides, it lives in a pool of water not much bigger than the desk I’m sitting at. It doesn’t exactly travel very far throughout its life.

Scientists have a lot of other questions about the fish, including how it survives in such a tiny pool of water.

Speaking of fish with horns, a new species of hornshark was discovered last year off the northern coast of Australia. Hornsharks live in shallow warm waters throughout much of the Pacific and Indian oceans, where they spend most of the time at the bottom looking for small invertebrates like crustaceans to crunch up, although sea urchins are their favorites. They’re also called bullhead sharks because they all have short snouts and broad heads with prominent brows. The name hornshark comes from the fins, some of which have spines.

One species of hornshark is the zebra hornshark, which lives in the Indo-Pacific, from southern Japan down to northern Australia. As you may guess from the name, it has stripes, which makes it popular in aquariums and zoos. It only grows to about 4 feet long, or 1.25 meters. Until last year, scientists thought that all the zebra hornsharks around Australia belonged to the same species. Then they noticed that one population that lives off of northwestern Australia has a different stripe pattern and only grows about two feet long, or 60 cm. After a genetic study, it turns out that it’s a totally different species.

A lot of animal discoveries are like this, where everyone thinks an animal is one species, but after close study and genetic testing they find out it’s two or more species that just look very similar. That’s one of the great things about DNA testing being so effective and quick these days, but it’s not always as cut and dried as it sounds. There’s no easy way to determine for sure if animals are different species, subspecies, or just the same species with population variants. Scientists can’t just rely on genetics, but they also can’t always rely on observations of the animal’s physical traits or its behavior in the wild. They have to look at all the data available, and then they still argue about the best interpretation of the data.

The notion of a separate species or subspecies is an artificial one that gives us a way to better understand a natural process. If a population of animals is separated from another population, eventually both will develop separately until they’re two related but very different animals. There’s no way to point at a specific generation and say, “well, NOW they’re different from the last generation” because the process is so slow and the changes are usually so small. It’s like looking at a rainbow and trying to determine exactly the point where red turns into orange and orange turns into yellow.

Take the slaty-backed nightingale-thrush as an example. It’s a dark gray songbird with a short tail and bright orange legs and beak, and it lives in the mountains of Central and northern South America. It spends most of its time in thickets where it’s hard to see but easy to hear, since it has a lovely song. This is an example of what it sounds like, although its song varies depending on where it lives.

[bird song]

It turns out that there’s a lot of variation in the bird’s song because the slaty-backed nightingale-thrush probably isn’t all one species. In late 2023 a team of researchers published a ten-year study of the bird, looking at everything from song variations to genetics. They determined that not only was it not a single species, it was most likely seven different species and four subspecies. Because the bird lives in the mountains and doesn’t fly very far during its lifetime, populations that are separated by steep mountains and valleys have developed into separate species.

Naturally, not everyone agrees with these findings, but it’s always good when a little-studied animal gets some attention. Until last year, no one knew much about this shy little bird, and the controversy of whether it’s one species or lots of closely related species will hopefully lead us to learn even more about it. One population of the bird discovered in Panama had never been documented before, too.

This episode is getting pretty long for someone who just got over a cold, so let’s cover one newly discovered mammal and a newly discovered frog. A new species of forest hedgehog was discovered in China last year and it’s adorable! It’s related to the hedgehogs found in Europe and other areas, but is most closely related to four known species of forest hedgehog that live mostly in central Asia. The new species was discovered in eastern China, over 1,000 km away from the nearest population of other forest hedgehogs. Another species was only discovered in 2007 from southwestern China.

Unlike most hedgehogs, the new species is sexually dimorphic, meaning that males and females don’t look identical. Males are mostly gray while females are more reddish-brown in color.

Let’s finish with another adorable animal, a little frog from Tanzania, a country in east Africa. It’s a type of spiny-throated reed frog, which are all rare and increasingly threatened. They’re also very small, not much bigger than an inch long, or about 30 mm. The male has tiny little spines on his throat that researchers think might be a way that females recognize the males of their own species during mating season instead of by a distinctive croaking sound. That’s because spiny-throated reed frogs can’t make sounds, leading to their other common name of the voiceless frog.

In 2019, researchers were in the Ukaguru Mountains in Tanzania looking for a completely different frog, the beautiful tree toad, which may be extinct. While they didn’t find any of the toads, they did find a little greenish-brown frog with copper-colored eyes that turned out to be completely new to science. It was found in a nature reserve and appears to be common locally, which is good, but the nature reserve is also very small, which is not so good. Hopefully now that we know the little frog exists, it will lead to further protections of the area that will help all the other animals and plants where it lives, including the beautiful tree toad.

This is what the voiceless frog sounds like:

[silence]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 288: Mystery Invertebrates

Thanks to Joel for suggesting this week’s topic!

Happy birthday to Fern this week!

Further reading:

Small, rare crayfish thought extinct is rediscovered in cave in Huntsville city limits

Hundreds of three-eyed ‘dinosaur shrimp’ emerge after Arizona monsoon

An invertebrate mystery track in South Africa

The case of the mysterious holes in the sea floor

Contemplating the Con Rit

The Shelton Cave crayfish, rediscovered:

The three-eyed “tadpole shrimp” or “dinosaur shrimp,” triops [photo from article linked above]:

A leech track in South Africa [photo from article linked above]:

A track, or at least a series of holes, discovered in the deep seafloor [photos from article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Thanks to Joel who suggested we do an episode about mystery invertebrates! It took me a while, but I think you’re really going to like this episode. Some of the mysteries are solved and some are not, but they’re all fun.

Before we get to the mystery animals, though, we have a birthday shout-out! A great big happy birthday to Fern! I hope you have your favorite type of birthday cake or other treat and get to enjoy it with your loved ones.

Our first mystery starts in a cave near Huntsville, Alabama in the southern United States, which is in North America. Shelta Cave is a relatively small cave system, only about 2,500 feet long, or 760 meters. That’s about half a mile. It’s a nature preserve now but in the early 1900s it was used as an underground dance hall with a bar and everything.

Biologist John Cooper studied the cave’s aquatic ecosystem in the 1960s when he was doing his dissertation work. His wife Martha helped him since they were both active cavers. At the time, the cave ecosystem was incredibly diverse, including three species of crayfish. One was called the Shelta Cave crayfish, which was only a few inches long, or about 5 cm, mostly translucent or white since it didn’t have any pigment in its body, and with long, thin pincers.

It was rarer than the cave’s other two crayfish species, and unlike them it had only ever been found in Shelta Cave. From 1963 to 1975, only 115 individuals had been confirmed in repeated studies of the cave’s ecosystem.

Then, in the 1970s, several things happened that caused a serious decline in the diversity of life in the cave.

The first was development of the land around the cave into subdivisions, which meant that more pesticides were used on lawns and flower beds, which made its way into the groundwater that entered the cave. It also meant more people discovering the cave and going in to explore, which was disturbing a population of gray bats who also lived in the cave. To help the bats and keep people out, the park service put a gate over the entrance, but the initial gate’s design wasn’t a very good one. It kept people out but it also made it harder for the bats to go in and out, and eventually the bats gave up and moved out of the cave completely. This really impacted the cave’s ecosystem, since bats bring a lot of nutrients into a cave with their droppings and the occasional bat who dies and falls to the cave floor.

The gate has since been replaced with a much more bat-friendly one, but studies afterwards showed that a lot of the animals found in the cave had become rare. The Shelta Cave crayfish had disappeared completely. One was spotted in 1988 but after that, nothing, and the biologists studying the cave worried that it had gone extinct.

Then, in 2019, a team of scientists and students surveying life in the cave spotted a little white crayfish with long, thin pincers in the water. The team leader dived down and scooped it up with his net to examine more closely. The crayfish turned out to be a female Shelta Cave crayfish with eggs, which made everyone excited, and after taking a tiny tissue sample for DNA testing, and lots of photographs, they released her back into the water. The following year they found a second Shelta Cave crayfish.

The Shelta Cave crayfish is so little known that we don’t even know what it eats or how it survives in the same environment with two larger crayfish species. Biologist Dr. Matthew Niemiller is continuing Dr. Cooper’s initial studies of the cave and will hopefully be able to learn more about the crayfish and its environment.

Next let’s travel from a cool, damp, flooded cave in Alabama to northern Arizona. Arizona is in the western United States and this particular part of the state has desert-like conditions most of the year. Almost a thousand years ago, people built what is now called Wupatki Pueblo, a 100-room building with a ballcourt out front and a big community room. It was basically a really nice apartment building. Wupatki means “tall house” in the Hopi language, and while the pueblo people who built it are long gone, Wupatki is still an important place for the Hopi and other Native American tribes in the area. It’s also a national monument that has been studied and restored by archaeologists and is open to the public.

In late July 2021, torrential rain fell over the area, so much rain that it pooled into a shallow temporary lake around Wupatki, including flooding the ballcourt. The ballcourt is 105 feet across, or 32 meters, and surrounded by a low wall. One day while the ballcourt was still flooded, a tourist came up to the lead ranger, Lauren Carter. The visitor said there were tadpoles in the ballcourt.

There are toads in the area that live in burrows and only come out during the wet season when there’s rain, and Carter thought the tadpoles might be from the toads. She went to investigate, saw what looked like tadpoles swimming around, and scooped one up in her hands to take a closer look. But the tadpoles were definitely not larval toads. In fact, they kind of looked like teensy horseshoe crabs, with a rounded shield over the front of the body and a segmented abdomen and tail sticking out from behind, with two long, thin spines at the very end that are called caudal extensions. It had two pairs of antennae and lots of small legs underneath, some adapted for swimming. The largest of the creatures were about two inches long, or 5 cm.

What on earth were they, and where did they come from? This area is basically a desert. Carter stared at the weird little things and remembered hearing about something similar when she worked at the Petrified Forest National Park, also in Arizona. She looked the animal up and discovered what it was.

It’s called Triops and is in the order Notostraca. Notostracans are small crustaceans shaped sort of like tadpoles, which is why it’s sometimes called the tadpole shrimp, but it’s not a shrimp. It has two eyes on the top of its head visible through its flattened, smooth carapace. Species in the genus Triops also have a so-called third eye between the two ordinary eyes, although it’s a very simple eye that probably only detects light and dark. Many crustaceans have these third eyes in their larval forms but very few retain them into adulthood.

Notostracans have been around for about 365 million years, and haven’t changed much in the last 250 million years. It’s an omnivore that mostly lives on the bottom of freshwater pools and shallow lakes, often temporary ones like the flooded ballcourt, although some species live in brackish water and saline pools, or permanent waterways like peat bogs.

Triops eggs are able to tolerate high temperatures and dry conditions, with the eggs remaining viable for years or even decades in the sediment of dried-up ponds. When enough water collects, the eggs hatch and within 24 hours are miniature versions of the adult Triops. They grow up quickly, lay lots of eggs, and die within a few months or when the water dries up again.

Triops eggs are even sold as aquarium pets, since they’re so unusual looking and are easy to care for. They basically eat anything. They especially like mosquito larvae, so if you see some in your local pond or other waterway, give them a tiny high-five.

In 1996, some workers near Indianapolis, Indiana were servicing a tank full of chemical byproducts from making plastic auto parts when they noticed movement in the toxic goo. They investigated and saw several squid-like creatures swimming around. They were red-brown and about 8 inches long, or 20 cm, including their arms or tentacles, but were only about an inch wide, or 2.5 cm.

The workers managed to capture one and put it in a jar, which they stuck in the break room refrigerator. By the time someone in management arranged to have it examined by a scientist, the jar had been thrown out. If you’ve ever tried to keep food in a break room fridge, you’ll know that there’s always someone who will throw out everything in the fridge that isn’t theirs, no matter whether it’s labeled or brand new or not. I have had my day’s lunch thrown out that had only been in the fridge a few hours. Anyway, when the tank was cleaned out the following year, no one found any creatures in it at all.

This sounds really interesting, but there’s precious little information to go on. The story appeared in a few newspapers but we have no names of the people who reportedly saw the creatures, no follow-up information. It has all the hallmarks of a hoax or urban legend. The creatures’ size also seems quite large for extremophiles in a small, closed environment. What would they find to eat to get so big?

Next let’s talk about some mysterious tracks made by invertebrates, as far as we know. We’ll start with a track on land that was a mystery at first, but was solved. A man in the Kruger National Park in South Africa named Rudi Hulshof came across a weird track in the sandy dirt that he didn’t recognize. It was maybe 10 mm wide and kind of looked like a series of connected rectangles, as though a tiny person was moving a tiny cardboard box by rolling it over and over, but there weren’t any footprints, just the body track.

Curious, Hulshof followed the track to find what had made it, and finally discovered the culprit. It was a leech! Most leeches live in water, whether it’s the ocean, a pond or swamp, a river, or just flooded ground. Most species are parasitic worms that attach to other animals with suckers, then pierce the animal’s skin and suck its blood. The leech stays on the animal until it’s full, then drops off. Some leeches are terrestrial, but it appears that this one was a freshwater leech that had attached to an animal passing through the water, then dropped off onto land. It had crawled as far as it could trying to find a better environment, but when Hulshof found it it was dead, so it had not had a good day.

The leech moves on land by stretching the front of its body forward, then dragging its tail end up in a bunch kind of like a worm (it is a kind of worm), so that’s why its track was so unusual-looking. It’s a good thing Hulshof found the leech before something ate it, or else he’d probably still be wondering what had made that track.

We have photographs of other tracks that are still mysterious. You may have heard about one that’s been in the news lately. This one was found by a deep-sea rover in July 2022, more than a mile and a half deep, or 2500 meters, in the north Atlantic Ocean.

The track may or may not actually be a track, although it looks like one at first glance. It consists of a line of little holes in the seafloor, one after the other, although they’re not all the same distance apart. The rover saw them on two separate dives in different locations, so it wasn’t just one track, but although the scientists operating the rover remotely tried to look into the holes, they couldn’t get a good enough view. It does look like there’s sediment piled up next to the holes, so researchers think something might actually be digging the holes, either digging down from the surface to find food hidden in the sediment, or digging up from inside the sediment to find food in the water. The rover did manage to get a sample of sediment from next to one of the holes and a water sample from just above it, and eventually those samples will be tested for possible environmental DNA that might help solve the mystery.

This wasn’t the first time these holes have been seen in the area, though. An expedition in 2004 saw them and hypothesized that the holes are made by an invertebrate with a feeding appendage of some kind that it uses to dig for food. Not only that, we have similar-looking fossil holes in rocks formed from deep marine sediments millions of years ago.

Other deep-sea tracks have a known cause, and humans are responsible. In the 1970s and 1980s, ships with deep-sea dredging equipment traveled through parts of the Pacific Ocean, testing the ocean floor to see whether the minerals in and beneath the sediment were valuable for mining. A few years ago scientists revisited the same areas to see how the ecosystems impacted by test mining had responded.

The answer is, not well. Even after 40 years or so since the deep-sea mining equipment sampled the sea floor, the marks remain. The deep sea is a fragile ecosystem to start with, and any disturbance takes a long, long time to recover—possibly thousands of years. So while the holes discovered in 2022 were almost certainly made by an animal or animals, they might be quite old.

Let’s finish with a mystery animal we’ve talked about before, but a really long time ago—way back in episode 6. It’s definitely time to revisit it.

In 1883 when he was 18 years old, a Vietnamese man named Tran Van Con had seen the body of an enormous creature washed up on shore at Hongay in Vietnam. Van Con said it was probably 60 feet long, or 18 meters, but less than three wide wide, or 90 cm. It had dark brown plates on its back with long spines sticking out from them to either side, and the segment at its tail end had two more spines pointing straight back. It didn’t have a head, which had presumably already rotted off, or something bit it off before the animal washed ashore. It had been dead for a long time considering the smell. In fact, it smelled so terrible that locals finally towed it out to sea to get rid of it. It sank and that was the last anyone ever saw of it. The locals referred to it as a con rit, which means “millipede,” since the armor plates made it look like the segmented body of an immense millipede.

Lots of people have made suggestions as to what the con rit could be, but nothing really fits. It was the length of a whale, but it doesn’t sound like any kind of whale known. The armored plates supposedly rang like metal when hit with a stick. Even if this was an exaggeration, it probably meant the armor plates were really hard, not just the skin of a dead whale that had hardened in the sun. It also implies that the plates had empty space under them, allowing them to echo when hit. Zoologist Dr. Karl Shuker suggests that the plates might have been the exoskeleton of a crustacean of some kind, which makes a lot more sense than a whale, but the sheer size of the carcass is far larger than any crustacean, or even any arthropod, ever known.

There’s also some doubt that the story is accurate. It might even be a hoax. We only know about the con rit at all because the director of Indochina’s Oceanographic and Fisheries service, Dr. A. Krempf, talked to Tran Van Con about it in 1921. That was 38 years after Van Con said he saw the creature, so he might have misremembered details. Not only that, Krempf translated the story from Vietnamese, and there’s no way of knowing how accurate his translation was.

The con rit is also a monster from Vietnamese folktales, a sort of sea serpent that had lots of feet. It was supposed to attack fishing boats to eat the sailors, until a king caught it and chopped it up into pieces. A local mountain was supposedly formed from its head, and the other pieces of its body turned into the unusual stones found on a nearby island.

There’s always the possibility that Tran Van Con actually told Krempf this folktale, but that Krempf misunderstood and thought he was telling him something he actually witnessed. Then again, there are eight reports from ships in the area between 1893 and 1915 of creatures that might have been a con rit. One account from 1899 was a sighting of a creature estimated as being 135 feet long, or 41 meters, which was rowing itself along at the surface by means of multiple fins along its sides.

Whatever the con rit was, there haven’t been any sightings since 1915. That doesn’t mean there isn’t a population of incredibly long invertebrates living in the deep ocean in southeast Asia. If it does exist, maybe one day a deep-sea rover will spot one. Maybe it dug those little holes, who knows?

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 235: Deep-Sea Squid

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

This week we visit the weirdest squid in the deep sea!

I was a guest on Tim Mendees’s After Hours that’s now up on YouTube! It’s mostly about my writing but we talk about all kinds of stuff, including cephalopods! There is some bad language but it’s not all that bad and it’s mostly toward the end.

Further reading/watching:

Elusive Long-Tailed Squid Captured on Film for First time

See Strange Squid Filmed in the Wild for the First Time (ram’s horn squid)

Multiple observations of Bigfin Squid (Magnapinna sp.) in the Great Australian Bight reveal distribution patterns, morphological characteristics, and rarely seen behaviour

Untangling the Long-Armed Mystery of the Bigfin Squid

Drawing of a long-arm squid and an actual long-arm squid:

Asperoteuthis mangoldae, which really should be called the long-tailed squid:

 

Verany’s long-armed squid, with its tentacles mostly retracted (so not looking very long-armed):

Verany’s long-armed squid with tentacles extended:

Drawing of a paralarval Verany’s long-armed squid:

The ram’s horn squid, floating along doop doop doop:

Drawing of the coiled internal shell of the ram’s horn squid:

A clawed armhook squid mama with her egg cluster:

Bigfin squid!

Another bigfin squid! Good grief look at that!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Before we get started, a quick announcement that I was a guest on a YouTube show called After Hours recently! I was there mostly to talk about my writing, but naturally animals came up too, especially cephalopods. There’s a link in the show notes if you want to watch the show. There is a little bad language, but not too bad and it’s more toward the end.

Anyway, in a not-exactly coincidence, this week we’re going to look at some of the weirdest deep-sea squids known. Yes, weirder than the flying squid we talked about in episode 101. We don’t know much about any of them, but they’re definitely not what you expect when you think about squid.

Let’s talk first about Asperoteuthis acanthoderma, the long-arm squid. It’s also sometimes called the thorny whiplash squid because it has little pointy tubercules in its skin and long, whiplike feeding tentacles. It lives in the deep sea and has been found in both the Pacific and the Atlantic Oceans, although very rarely. Despite its name, its feeding tentacles are much longer than its arms, although its arms are pretty long too. A squid’s body is generally more or less torpedo-shaped and is called a mantle. It has eight arms and two feeding tentacles that are usually longer than the arms. Many squid species have relatively short arms compared to mantle length.

The feeding tentacles in long-arm squid are very slender and delicate, and they’re easily broken off after the animal dies and has washed around in the water for a while. One intact specimen has been found and measured, though. It had a mantle length of almost a foot and a half long, or 45 cm, but its total length, including the tentacles, was 18 feet, or 5.5 meters. The tentacles were 12 times the mantle length.

Using that ratio, one large specimen found in 2007, which was 6 1/2 feet long, or 2 meters, including both mantle and arms, is estimated to have measured up to 24 feet long when it was alive, or over 7 meters. Most of its length is due to its incredibly long, thin feeding tentacles.

So what does the long-arm squid eat with those long, delicate tentacles? We don’t know. We don’t know most things about the long-arm squid.

Another species of Asperoteuthis is Asperoteuthis mangoldae. So little is known about it that it doesn’t even have an informal name. It was only described in 2007 and has only been found around the Hawaiian islands in the Pacific Ocean. It looks similar to the closely-related long-arm squid but without the incredibly long feeding tentacles. Instead, it has a sort of tail, so I nominate it to be called the long-tailed squid. It was caught on video for the first time in 2019 by a deep-sea rover. You’re going to hear a lot about deep-sea rovers in this episode. There are lots of links in the show notes to articles with embedded video of various squids, which is really interesting to watch.

Asperoteuthis mangoldae is a long, slender squid. I couldn’t find any measurements so it could be that’s just not known right now. The species in this genus have an extension of the mantle, on the side opposite of the arms, that looks like an extra fin but that doesn’t seem to be used as a fin. In the long-tailed squid, this extra fin is as long as its mantle and arms and feeding tentacles all measured together. Most of the time the thin flaps of skin on either side of the so-called tail are extended, making it look like a really long fin, but when the squid feels threatened and needs to flee, it collapses the fin part around the middle section so that it reduces drag in the water. That way the squid can move faster. Researchers speculate that the tail section may make the squid look much larger to potential predators, and possibly may imitate an organism called a siphonophore that has stinging cells.

Another squid called Verany’s long-armed squid is Chiroteuthis veranii. It’s related to the long-arm squid we talked about at the beginning of the episode, but they’re placed in different genera. It lives throughout the world’s oceans, often in the deep sea although not as deep as some of the species we’re talking about today. Unlike most squid, whose arms are all about the same length, two of its arms are much wider and longer than the others.

Like the other long-arm squid, its feeding tentacles are incredibly long and thin. The mantle is quite small, up to 8 inches long, or 20 cm, with the legs about the same length as or a little longer than the mantle, but the total length of this squid, including the feeding tentacles, is over four feet, or 130 centimeters. Most of the time the feeding tentacles are retracted, though, so they’re no longer than the arms, and they’re protected by the two largest arms. When the squid sees a tiny fish or crab or other small animal it wants to eat, it can shoot its retracted tentacles out at high speed to catch it. It’s probable that other species of long-armed squid hunt the same way.

A squid’s eggs hatch into an initial form called a paralarva. This is actually the case for other cephalopods too, including octopuses. The paralarvae usually just look like teeny-tiny miniature versions of the adult, but with stubby little arms. In the case of Verany’s long-armed squid, though, the larval squid looks sort of like a little rod. It’s long and thin, mostly transparent, and has a gladius, also called a pen, that sticks out the end of the mantle on the opposite side from the arms. The pen of a squid is named after an ink pen, although the other name, gladius, refers to the shape of a type of ancient Roman sword. It’s a vestigial shell but located inside the squid’s body. The tail of the long-tailed squid we just talked about is given structure by the gladius, so it’s possible that its paralarvae look rod-like, like those of Verany’s long-armed squid.

Speaking of internal shells, the ram’s horn squid has a coiled internal shell. This is unique among all the squid known to be alive today, so the ram’s horn squid is the only living member of its own order and its own family and its own genus. Technically it’s not really considered a squid although it is a closely related cephalopod. It’s small, with a mantle length only about an inch and a half long, or 4.5 centimeters. Its eight arms are quite short and it has two feeding tentacles that are about the same length as its mantle. Its mantle has an outer covering that extends down almost to the squid’s eyes, and it’s big enough that the squid can pull its eyes and legs and tentacles under this covering. The spiral shell resembles that of a nautilus, but it’s inside the squid instead of the nautilus living inside the shell. The shell contains gas that the squid uses to adjust its buoyancy.

For a long time researchers were confused as to how the ram’s horn squid oriented itself in the water. The empty shells from dead squid wash ashore pretty often, and experiments with them show that they want to float with the big end of the shell pointing downward. That confused the researchers, since that would mean the squid floats around with its arms downward too, which means that the photophore on the tail end of its mantle points upward. A photophore is a light-emitting organ, which is common in deep-sea animals. Usually an animal wants its light to point downwards, which means that larger animals looking up toward the surface see a little light sparkling amid the light shining down from the surface instead of seeing a squid-shaped shadow against the surface.

Then, in late 2020, a deep-sea rover exploring the northern section of the Great Barrier Reef off the coast of Australia got a video of a ram’s horn squid in the water. It was the first time a living one had ever been observed. In the video, the squid is floating with its arms pointing upward, flapping the fins on its mantle to move along in the water. Mystery solved! There’s still a lot we don’t know about the ram’s horn squid, but at least we know it doesn’t swim around upside-down.

Another squid that has only recently been seen alive in the wild from a deep-sea rover is the clawed armhook squid. My brother Richard alerted me to this one in a Twitter thread. The clawed armhook squid lives in the northern Pacific Ocean and has a mantle length of about seven inches, or 18 cm. Its arms are about the same length as its mantle. It gets its name from the female, which has small hooks on her arms to help her keep hold of her egg cluster. She lays about 3,000 eggs in a tube-like cluster that looks sort of like a gray cloth bag that’s open at both ends. Most squid lay their eggs on the sea floor and leave them, usually dying soon after, but the clawed armhook squid holds her egg cluster until the eggs hatch. She makes sure the eggs get enough oxygenated water by pumping water through the middle of the bag. She also swims away from anything that might want to eat her eggs or her, although she can’t swim very fast since she has to use her arms to hold onto the egg cluster. She usually stays in deep water far from shore while the eggs are developing, because there are fewer predators there than in her usual habitat nearer shore. In 2001 a rover spotted a mother squid with her egg cluster at 8,200 feet below the surface, or 2500 meters. That’s more than a mile and a half down, or two and a half kilometers.

Unfortunately for the mother squid, after she lays her eggs, she can’t use her arms for anything except holding and taking care of them, and that includes eating. She just doesn’t eat once she lays her eggs, and while we’re not sure how long it takes for them to hatch, it may be as much as nine months. It’s most likely that she dies after her babies hatch. All the female squids seen with egg clusters have been missing their feeding tentacles, and researchers think the squid may actually bite off her own tentacles so they don’t get in the way of her eggs.

Finally, the family Magnapinnidae, also called bigfin squids, were mysteries for over a century. For a long time they were only known from paralarval and juvenile individuals. Five species are known but there may be more, but no scientist has ever been able to study an adult except through photographs and videos made by deep-sea rovers.

All squid have fins of some kind on the mantle to help it move around. Different species, naturally, have varying sizes and shapes of fins. In the bigfin squid, as you may have guessed, the fins are very big. They look more like wings and can be almost as large as the entire mantle. But that’s not the really weird thing about these squid, although it was the most obvious thing when all we knew about them were young specimens. The arms and tentacles of squid don’t develop to their full length until the squid is an adult. The bigfin squid’s arms and tentacles are very long and they’re also very different from all other squids.

In 2001, a deep-sea rover used by an oil company in the Gulf of Mexico caught video of a large, unusual squid. Fortunately, one of the men operating the rover remotely asked for a copy of the squid video for his girlfriend, who was interested in deep-sea animals. His girlfriend asked around, trying to find out what kind of squid it was, and eventually contacted a squid expert at the Smithsonian National Museum of Natural History. The squid expert is named Mike Vecchione and when he saw the video, he freaked out. He’d never seen anything like this squid before. He says he jumped out of his chair and started yelling in excitement.

Then, once he calmed down, he contacted all his squid expert colleagues, who also freaked out, and eventually they found more footage of the weird squid taken by other oil rig rovers. The workers operating the rovers had no idea that the squid was a scientific mystery so hadn’t thought to contact any scientists. Finally the squid was identified as an adult bigfin.

In 2015, a deep-sea rover in a scientific expedition caught video of two bigfin squid near Australia, and in 2017 it saw three more. It also spotted some juvenile bigfin squid in the same area. Even better, the rover was able to use lasers to get a much more accurate estimate of the squid’s size than ever before. All five were different sizes, so they were probably five different individuals.

The bigfin squid has very thin arms and tentacles, referred to as vermiform. That means worm-shaped, which gives you an idea of how thin we’re talking. The largest bigfin squid measured by the rover in 2015 and 2017 had a mantle length of about 6 inches, or 15 cm, and a fin width of 5.5inches, or 14 cm, but the longest arm or tentacle length was 5.5 feet, or 1.68 meters. Measurements of other bigfin squid suggest it can grow up to 26 feet long, or 8 meters, and maybe even longer.

In the bigfin squid, the arms and tentacles are the same size. In other squids, the tentacles are usually longer and look different from the arms. The great length of the arms and tentacles of the bigfin squid comes from what’s called a distal filament that grows from the tip of the arm or tentacle. The filaments are sometimes missing, so it’s possible that they’re sometimes damaged and lost or maybe bitten off. The squid seems to use its arms and tentacles the same way instead of using its arms for some things and its tentacles for other things.

The bigfin squid holds its arms and tentacles differently from any other squid, in what’s called a crane pose or elbow pose. It’s not clear from the articles I read, but it seems to be that if you don’t count the distal filaments, the arms and tentacles are not actually all that long in comparison to its mantle. When it’s hunting, the squid holds them out from its body with the extremely long filaments hanging down. It looks like the squid has elbows that way. Squid don’t have elbows because squid, like other cephalopods like octopuses, don’t have any bones. We talked about how octopuses move without bones in episode 142 if you’re interested, and it’s the same for squid.

The bigfin squid can retract the filaments by coiling them up. One researcher said the coiled-up filaments look sort of like an old-fashioned phone cord, which will mean nothing to my younger listeners but the rest of us just thought, “Oh yeah, that makes total sense.” The filaments are sticky and trap tiny animals and particles of food drifting in the water. If you remember way way way back in episode 11 where we talked about the vampire squid, it uses its feeding tentacles the same way, including being able to retract them, but the vampire squid and the bigfin squid are not very closely related at all.

A research sub investigating a WWII shipwreck spotted a bigfin squid 3.7 miles below the surface, or 6,000 meters, which made it the deepest squid ever recorded. Imagine looking out the window of a submarine, assuming they have windows, trying to see details of a shipwreck, and suddenly there’s a massive squid with incredibly long, thin arms looking back at you.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 215: The Cutest Invertebrates

Thanks to Lorenzo and Page for suggestions used in this week’s episode, and a belated thanks to Ethan for last week’s episode! Let’s learn about some of the cutest invertebrates out there!

Further reading:

Photosynthesis-like process found in insects

Mystery of the Venezuelan Poodle Moth

Further viewing:

Dr. Arthur Anker’s photos from his Venezuela trip, including the poodle moth

The pea aphid, red morph and regular green

So many ladybugs:

The sea bunny is a real animal, but it’s not a real bunny:

A larval sea bunny is SO TINY that fingertip looks like it’s the size of a BUILDING:

The bobtail squid not hiding (left) and hiding (right):

The bobtail squid is SO CUTE I MIGHT DIE:

The Venezuelan poodle moth:

Not a Venezuelan poodle moth–it’s a female muslin moth from Eurasia:

Not a Venezuelan poodle moth–it’s a silkworm moth from Asia:

The dot-lined white moth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week I promised we’d cover a cute, happy animal to make up for last week’s extinction event episode, but instead of mammals let’s look at some cute invertebrates! One of them is even a mystery animal. Thanks to Page and Lorenzo for suggesting two of the animals we’re going to cover today!

We’ll start with Lorenzo’s suggestion, the pea aphid. Years and years ago I spent a slow day at work making a list of cute foods with a coworker, and peas were at the top of the list. Blueberries were second and I don’t remember the rest of the list. Generally, cuteness depended on how small the food was and how round. Aphids are really small and peas are round, so the pea aphid has to be adorable.

The pea aphid, however, is not round. It’s shaped sort of like a tiny pale-green teardrop with long legs, long antennae, and teeny black dots for eyes. It’s actually kind of big for an aphid, not that that’s saying much since it only grows 4 mm long at most. It’s called the pea aphid because it likes to live on pea plants, although it’s also happy on plants related to peas, such as beans, clover, and alfalfa. Cute as it is, farmers and gardeners do not like the pea aphid because it eats the sap of the plants it lives on, which can weaken the plant and can spread plant diseases.

During most of the year, all pea aphids are females. Each adult produces eggs that don’t need to be fertilized to hatch, but instead of laying her eggs like most insects, they develop inside her and she gives birth to live babies, all of them female. An aphid can have up to 12 babies a day, called nymphs, and the nymphs grow up in about a week or a little longer. Then they too start having babies. Even though lots of other insects and other animals eat aphids, as you can see, they will always be numerous.

As the summer turns to fall and the days become shorter, some of the baby aphids are born with wings. Some are also born male, and sometimes the males also have wings, although they might not have mouths. These males and winged females mate and the females fly off to lay their eggs on clover and alfalfa plants, assuming they aren’t already on clover or alfalfa plants. The eggs don’t hatch until spring, and all the resulting nymphs are female.

Sometimes winged females are born if the plants where the aphids live get too crowded. The winged females can fly away and find new plants.

If you’ve ever had a garden, you’re probably familiar with aphids. They spend most of the time on the undersides of leaves, drinking sap through specialized mouthparts called stylets. You may also have noticed that when you try to smush the aphids, all of them immediately drop to the ground. This protects them not just from being smooshed by a gardener’s thumb, but from being eaten along with the leaves when a deer or other animal browses on the plants where they live.

Sometimes, instead of being leaf green, pea aphids are a pale reddish color. This is called the red morph. Red morph pea aphids are more likely to live on certain plants while the ordinary green pea aphids are more likely to live on others, although many times you can find both varieties on a single plant.

The red coloration of red morph pea aphids is due to larger quantities of a chemical called carotenoid [kerOTenoid] in its body. All pea aphids contain carotenoids, though, and it’s not just used for coloration. Research suggests that the carotenoids absorb sunlight and produce energy that the aphid can use. It’s a limited form of photosynthesis—you know, that thing that only plants do.

Not only that, the pea aphid produces the carotenoids in its body. Every other animal that needs carotenoids absorbs them from plants it eats, with the possible exception of a type of mite. The genetic sequence that allows the pea aphid to make its own carotenoids originally came from fungi. Somehow the aphid captured the genetic material from fungi, probably after eating it, and passed those genes down to its descendants. This is called lateral gene transfer and scientists aren’t sure exactly how it works or how common it is.

Pea aphids also contain beneficial bacteria that produce nutrients it needs that it doesn’t get from the sap it eats. The aphids can’t live without the bacteria, and the bacteria can’t survive outside of the aphids.

Even though the pea aphid is really common just about everywhere these days, it’s actually an invasive species in most places. It’s native to temperate parts of Eurasia but has spread to the rest of the world on cultivated plants. For small infestations of aphids, some people release certain species of ladybugs into their gardens, because many ladybugs love eating aphids.

Ladybugs, of course, are another cute invertebrate, specifically a family of beetles. They’re also small and round, although not as small as aphids. A typical ladybug grows about 10 mm long at most. Depending on the species, a ladybug can be red, orange, yellow, or brown, usually with black spots but sometimes with black stripes, or it may be mostly black with red or yellow spots. Most eat tiny insects and other animals, but some species eat plant material.

The ladybug’s bright coloring warns birds and other predators that it contains a toxin that makes it taste nasty. This even affects humans. I mean, obviously don’t eat ladybugs, but sometimes if there are ladybugs on grapes used to make wine, and the ladybugs end up crushed along with the grapes in a wine press, the whole batch of wine will end up tasting bad. It’s called ladybird taint so winemakers try to make sure any ladybugs are removed from the grapes before they’re crushed.

In many cultures around the world, ladybugs are supposed to bring good luck. In some places, if you see a ladybug you should make a wish. We’ve talked about ladybugs before, most recently in episode 203, so let’s move on to our next cute invertebrate.

This one lives in the ocean. It’s called the sea bunny or sea rabbit, a type of nudribranch [noodi-bronk] that lives along the coastline of the Indian Ocean, especially in tropical waters. Nudibranchs are a type of mollusk that are sometimes called sea slugs. Many are brightly colored with beautiful patterns. Compared to some, the sea bunny is a little on the plain side. It’s white, yellow, or rarely green, with tiny brown or black speckles. It looks fuzzy because it’s covered in little protuberances that it uses to sense the world around it, as well as longer, thinner fibers called spicules. It also has two larger black-tipped protuberances that look for all the world like little bunny ears, although they’re actually chemoreceptors called rhinophores. It really is amazing how much the sea bunny actually resembles a little white bunny with dark speckles, which would make it cute right there, because bunnies are cute, but it’s also really small. It barely grows an inch long, or 2.5 cm.

Like other nudibranchs, the sea bunny is a hermaphrodite, which means it produces both eggs and sperm, although it can’t fertilize its own eggs. When it finds a potential mate, they both perform a little courtship dance to decide if they like each other. After mating, both lay strings of eggs in a spiral pattern. The eggs hatch into larvae that are free-swimming, although the adults crawl along the ocean floor looking for small animals to eat. Some nudibranch larvae have small coiled shells like snails, which they shed when they metamorphose into an adult, but the sea bunny hatches into a teeny-tiny miniature sea bunny.

Cute as it is, don’t pet a sea bunny! It’s toxic! One of the things that sea bunnies especially like to eat are sponges, and many sponges contain toxins. The sea bunny absorbs these toxins to protect it from predators. Even its eggs are toxic.

Next we’ll talk about another intensely cute marine animal, the bobtail squid. It’s only a few inches long, or up to 8 cm at most, with a rounded mantle and short little arms. Small and round, the hallmarks of cuteness. It’s also sometimes called the dumpling squid, which is extra cute and potentially delicious. Basically, it’s no longer than your thumb and smaller around than a golf ball.

The bobtail squid lives along the coast of the Pacific Ocean and parts of the Atlantic and Indian oceans, and it’s not just one species. It’s an entire order containing around 70 species. The oceans are full of adorable little squids.

The bobtail squid has a symbiotic relationship with a type of bacteria, much like the pea aphid and its beneficial bacteria, but in the bobtail squid’s case, the bacteria don’t provide nutrients, they provide light. The bacteria are bioluminescent and help the squid hide from predators. You may be thinking, “Wait a minute, how does it help the squid hide to be lit up from within like a tiny squid-shaped lamp?” but that just proves that you’re a land animal and not a water animal. If you’re a big fish on the hunt for yummy bobtail squid to eat, you’re probably hiding in deep water where the squid can’t see you in the darkness, looking up for the telltale shadowy outline of a squid against the surface of the water. Day or night, the water’s surface is much brighter than the water underneath it because it’s reflecting sun, moon, or starlight, but if the squid is glowing faintly, instead of showing up as a dark shape against the brighter surface, it blends in. The light only shines downward and the squid adjusts it to be brighter or dimmer to match the amount of light shining on the water.

The bobtail squid is mostly nocturnal and will hide in the sand during the day or if it feels threatened, using its arms to pull sand over its body. All squids have large eyes, but the bobtail squid’s eyes are especially large in comparison to its small body, which makes it even cuter. It eats small animals and especially likes shrimp. It can also change colors to blend in with its surroundings and communicate with other squid.

Let’s finish with Page’s suggestion, the Venezuelan poodle moth. I was going to start the episode with this one because it’s so fuzzy and cute, but when I started research I realized that there’s a mystery associated with this insect. I like to end episodes with a mystery if I can. I want to keep everyone guessing.

In late 2008 and early 2009, a zoologist named Arthur Anker was in southeastern Venezuela in South America, and photographed a fuzzy white moth he found. He didn’t know what it was so he labeled it as a poodle moth when he posted the picture online. I’ve put a link in the show notes to all the photos he posted from his trip, including the poodle moth, and they’re absolutely gorgeous. He has a lot of moth photos but the poodle moth was the one that went viral in 2012.

There are other cute, fuzzy moths that sometimes get called poodle moths, such as the silkworm moth. Silkworm moths are native to Asia and are one of the few domesticated insects in the world, together with the honeybee. If you’ve ever had a silk shirt, that silk probably came from the domestic silkworm, which has been raised for at least 5,000 years in China and other places.

Silk comes from the cocoons the silkworm moth larva spins. Each cocoon can contain up to a mile of silk fiber, or 1.6 km, in one long, thin thread. The problem is, to harvest the silk properly, you have to kill the silkworm inside, usually by throwing the cocoon into boiling water. If the silkworm is allowed to mature, it releases enzymes to break down the silk so it can get out of the cocoon, and that weakens any fabric made from the silk. You can get silk made from cocoons of silkworms that weren’t killed, though, sometimes collected from wild moths.

Domestic silkworm moths have been bred so that they don’t produce pigments, since that means the silk won’t have any pigments either and can be dyed more easily. Domestic silkworms differ from their wild relatives in other ways too. Their cocoons are bigger, they no longer have any fear of predators, and they can no longer fly because their wings are too small for their bodies. The moth is covered in short white hairs that make it look fuzzy and cute, with black eyes. The larvae eat the leaves of the white mulberry tree or related trees, but adult moths don’t eat at all and don’t even have functional mouths.

So the silkworm moth is definitely a cute invertebrate, but what’s going on with the Venezuelan poodle moth? What’s the big mystery?

Well, no one knows what species it is. Some people have even accused Dr. Anker of making it up completely. Considering how many thousands of moths live in Venezuela, and how many new moth species are discovered every year, it’s likely that the poodle moth is new to science. The trouble is that no one has seen it since. Anker wasn’t on a collecting trip and he didn’t realize the poodle moth might be something new to science, so he just took a picture of it and left it alone.

The best guess by entomologists who’ve examined the picture is that the poodle moth is a member of the genus Artace, possibly a close relation of the dot-lined white moth. The dot-lined white moth is white and fuzzy with tiny black dots on its wings. It mostly lives in the southeastern United States but there have been sightings in Colombia, which is a country in South America just west of Venezuela.

There are other fuzzy white moths in the world that are known to science, including the muslin moth that’s equally small and cute. Female muslin moths are white and fuzzy with some gray or brownish-gray speckles on the wings, while male muslin moths are dark gray and fuzzy with black speckles on the wings. They live mostly in Eurasia.

Hopefully soon a scientist can find and capture a Venezuelan poodle moth and solve the mystery once and for all. Hopefully that scientist will also take lots of pictures so we can verify that it’s just as cute as it looks in its first picture.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

 

Episode 181: Updates 3 and a lake monster!

It’s our annual updates and corrections episode, with a fun mystery animal at the end!

Thanks to everyone who contributed, including Bob, Richard J. who is my brother, Richard J. who isn’t my brother, Connor, Simon, Sam, Llewelly, Andrew Gable of the excellent Forgotten Darkness Podcast, and probably many others whose names I didn’t write down!

Further reading:

Northern bald ibis (Akh-bird)

Researchers learn more about teen-age T. rex

A squid fossil offers a rare record of pterosaur feeding behavior

The mysterious, legendary giant squid’s genome is revealed

Why giant squid are still mystifying scientists 150 years after they were discovered (excellent photos but you have to turn off your ad-blocker)

We now know the real range of the extinct Carolina parakeet

Platypus on brink of extinction

Discovery at ‘flower burial’ site could unravel mystery of Neanderthal death rites

A Neanderthal woman from Chagyrskyra Cave

The Iraqi Afa – a Middle Eastern mystery lizard

Further watching/listening:

Richard J. sent me a link to the Axolotl song and it’s EPIC

Bob sent me some more rat songs after I mentioned the song “Ben” in the rats episode, including The Naked Mole Rap and Rats in My Room (from 1957!)

The 2012 video purportedly of the Lagarfljótsormurinn monster

A squid fossil with a pterosaur tooth embedded:

A giant squid (not fossilized):

White-throated magpie-jay:

An updated map of the Carolina parakeet’s range:

A still from the video taken of a supposed Lagarfljót worm in 2012:

An even clearer photo of the Lagarfljót worm:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This is our third annual updates and corrections episode, where I bring us up to date about some topics we’ve covered in the past. We’ll also talk about an interesting mystery animal at the end. There are lots of links in the show notes to articles I used in the episode’s research and to some videos you might find interesting.

While I was putting this episode together, I went through all the emails I received in the last year and discovered a few suggestions that never made it onto the list. I’m getting really backed up on suggestions again, with a bunch that are a year old or more, so the next few months will be all suggestion episodes! If you’re waiting to hear an episode about your suggestion, hopefully I’ll get to it soon.

Anyway, let’s start the updates episode with some corrections. In episode 173 about the forest raven, I mentioned that the northern bald ibis was considered sacred by ancient Egyptians. Simon asked me if that was actually the case or if only the sacred ibis was considered sacred. I mean, it’s right there in the name, sacred ibis.

I did a little digging and it turns out that while the sacred ibis was associated with the god Thoth, along with the baboon, the northern bald ibis was often depicted on temple walls. It was associated with the ankh, which ancient Egyptians considered part of the soul. That’s a really simplistic way to put it, but you’ll have to find an ancient history podcast to really do the subject justice. So the northern bald ibis was important to the ancient Egyptians and sort of considered sacred, but in a different way from the actual sacred ibis.

In episode 146 while I was talking about the archerfish, I said something about how I didn’t fully understand how the archerfish actually spits water so that it forms a bullet-like blob. Bob wrote and kindly explained in a very clear way what goes on: “Basically, the fish spits a stream of water, but squeezes it so that the back end of the stream is moving faster than the front. So it bunches up as it flies and hits the target with one big smack. Beyond that, the water bullet would fall apart as the back part moves through the front part of the stream, but the fish can apparently judge the distance just right.” That is really awesome.

In another correction, Sam told me ages ago that the official pronouns for Sue the T rex are they/them, because that’s what Sue has requested on their Twitter profile. I forgot to mention this last time, sorry.

While we’re talking about Tyrannosaurus rex, researchers have IDed two teenaged T rex specimens found in Montana. Originally paleontologists thought the specimens might be a related species that grew to a much smaller size, Nanotyrannus, but the team studying them have determined that they were juvenile T rexes. To learn how old the specimens were and how fast they grew, they cut extremely thin slices from the leg bones and examined them under high magnification.

The study of fossil bone microstructure is called paleohistology and it’s a new field that’s helped us learn a lot about long-extinct animals like dinosaurs. We know from this study that T rex grew as fast as modern warm-blooded animals like birds and mammals, and we know that the specimens were 13 and 15 years old when they died. T rex didn’t reach its adult size until it was about twenty, and there are definite differences in the morphology of the juvenile specimens compared to an adult. The young T rexes were built for speed and had sharper teeth to cut meat instead of crush through heavy bones the way adults could. This suggests that juvenile T rexes needed to outrun both predators and smaller prey.

In other fossil news, Llewelly sent me a link about a pterosaur tooth caught in a squid fossil. We know pterosaurs ate fish because paleontologists have found fossilized fish bones and scales in the stomach area of pterosaur remains, but now we know they also ate squid. The fossil was discovered in Bavaria in 2012 and is remarkably well preserved, especially considering how few squid fossils we have. One of the things preserved in the fossil is a sharp, slender tooth that matches that of a pterosaur. Researchers think the pterosaur misjudged the squid’s size and swooped down to grab it from the water, but the squid was about a foot long, or 30 cm, and would have been too heavy for the pterosaur to pick up. One of its teeth broke off and remained embedded in the squid’s mantle, where it remains to this day 150 million years later.

And speaking of squid, the giant squid’s genome has been sequenced. Researchers want to see if they can pinpoint how the giant squid became so large compared to most other cephalopods, but so far they haven’t figured this out. They’re also looking at ways that the giant squid differs from other cephalopods and from vertebrates, including humans, to better understand how vertebrates evolved. They have discovered a gene that seems to be unique to cephalopods that helps it produce iridescence.

The Richard J. who is my brother sent me an article about giant squid a while back. There’s a link in the show notes. It has some up-to-date photos from the last few years as well as some of the oldest ones known, and lots of interesting information about the discovery of giant squid.

The Richard J. who is not my brother also followed up after the magpies episode and asked about the magpie jay. He said that the white-throated magpie jay is his favorite bird, and now that I’ve looked at pictures of it, I see why.

There are two species of magpie jay, the black-throated and the white-throated, which are so closely related that they sometimes interbreed where their ranges overlap. They live in parts of Mexico and nearby countries. They look a little like blue jays, with blue feathers on the back and tail, white face and belly, and black markings. Both species also have a floofy crest of curved feathers that looks like something a parrot would wear. A stylish parrot. Like other corvids, it’s omnivorous. It’s also a big bird, almost two feet long including the long tail, or 56 cm.

In other bird news, Connor sent me an article about the range of the Carolina parakeet before it was driven to extinction. Researchers have narrowed down and refined the bird’s range by researching diaries, newspaper reports, and other sightings of the bird well back into the 16th century. It turns out that the two subspecies didn’t overlap much at all, and the ranges of both were much smaller than have been assumed. I put a copy of the map in the show notes, along with a link to the article.

One update about an insect comes from Lynnea, who wrote in after episode 160, about a couple of unusual bee species. Lynnea said that some bees do indeed spin cocoons. I’d go into more detail, but I have an entire episode planned about strange and interesting bees. My goal is to release it in August, so it won’t be long!

In mammal news, the platypus is on the brink of extinction now more than ever. Australia’s drought, which caused the horrible wildfires we talked about in January, is also causing problems for the platypus. The platypus is adapted to hunt underwater, and the drought has reduced the amount of water available in streams and rivers. Not only that, damming of waterways, introduced predators like foxes, fish traps that drown platypuses, and farming practices that destroy platypus burrows are making things even worse. If serious conservation efforts aren’t put into place quickly, it could go extinct sooner than estimated. Conservationists are working to get the platypus put on the endangered species list throughout Australia so it can be saved.

A Neandertal skeleton found in a cave in the foothills of Iraqi Kurdistan appears to be a deliberate burial in an area where many other burials were found in the 1950s. The new skeleton is probably more than 70,000 years old and is an older adult. It was overlooked during the 1950s excavation due to its location deep inside a fissure in the cave. The research team is studying the remains and the area where they were found to learn more about how Neandertals buried their dead. They also hope to recover DNA from the specimen.

Another Neandertal skeleton, this one from a woman who died between 60,000 and 80,000 years ago in what is now Siberia, has had her DNA sequenced and compared to other Neandertal DNA. From the genetic differences found, researchers think the Neandertals of the area lived in small groups of less than 60 individuals each. She was also more closely related to Neandertal remains found in Croatia than other remains found in Siberia, which suggests that the local population was replaced by populations that migrated into the area at some point.

Also, I have discovered that I’ve been pronouncing Denisovan wrong all this time. I know, shocker that I’d ever mispronounce a word.

Now for a lizard and a couple of corrections and additions to the recent Sirrush episode. Last year, Richard J. and I wrote back and forth about a few things regarding one of my older episodes. Specifically he asked for details about two lizards that I mentioned in episode 21. I promised to get back to him about them and then TOTALLY FORGOT. I found the email exchange while researching this episode and feel really bad now. But then I updated the episode 21 show notes with links to information about both of those lizards so now I feel slightly less guilty.

Richard specifically mentioned that the word sirrush, or rather mush-khush-shu, may mean something like “the splendor serpent.” I totally forgot to mention this in the episode even though it’s awesome and I love it.

One of the lizards Richard asked about was the afa lizard, which I talked about briefly in episode 21. Reportedly the lizard once lived in the marshes near the Tigris and Euphrates rivers in what is now Iraq. Richard wanted to know more about that lizard because he wondered if it might be related to the sirrush legend, which is how we got to talking about the sirrush in the first place and which led to the sirrush episode. Well, Richard followed up with some information he had learned from a coworker who speaks Arabic. Afa apparently just means snake in Arabic, although of course there are different words for snake, and the word has different pronunciations in different dialects. He also mentioned that it’s not just the water monitor lizard that’s known to swim; other monitors do too, including the Nile monitor. I chased down the original article I used to research the afa and found it on Karl Shuker’s blog, and Shuker suggests also that the mysterious afa might be a species of monitor lizard, possibly one unknown to science. We can’t know for certain if the afa influenced the sirrush legend, but it’s neat to think about.

Next up, in cryptid news, Andrew Gable of the excellent Forgotten Darkness podcast suggested that some sightings of the White River Monster, which we talked about in episode 153, might have been an alligator—especially the discovery of tracks and crushed plants on the bank of a small island. This isn’t something I’d thought about or seen suggested anywhere, but it definitely makes sense. I highly recommend the Forgotten Darkness podcast and put a link in the show notes if you want to check it out.

And that leads us to a lake monster to finish up the episode. The Lagarfljót [LAH-gar-flote] worm is a monster from Iceland, which is said to live in the lake that gives it its name. The lake is a pretty big one, 16 miles long, or 25 km, and about a mile and a half wide at its widest, or 2.5 km. It’s 367 feet deep at its deepest spot, or 112 m. It’s fed by a river with the same name and by other rivers filled with runoff from glaciers, and the water is murky because it’s full of silt.

Sightings of the monster go back centuries, with the first sighting generally thought to be from 1345. Iceland kept a sort of yearbook of important events for centuries, which is pretty neat, so we have a lot of information about events from the 14th century on. An entry in the year 1345 talks about the sighting of a strange thing in the water. The thing looked like small islands or humps, but each hump was separated by hundreds of feet, or uh let’s say at least 60 meters. The same event was recorded in later years too.

There’s an old folktale about how the monster came to be, and I’m going to quote directly from an English translation of the story that was collected in 1862 and published in 1866. “A woman living on the banks of the Lagarfljót [River] once gave her daughter a gold ring; the girl would fain see herself in possession of more gold than this one ring, and asked her mother how she could turn the ornament to the best account. The other answered, ‘Put it under a heath-worm.’ This the damsel forthwith did, placing both worm and ring in her linen-basket, and keeping them there some days. But when she looked at the worm next, she found him so wonderfully grown and swollen out, that her basket was beginning to split to pieces. This frightened her so much that, catching up the basket, worm and ring, she flung them all into the river. After a long time this worm waxed wondrous large, and began to kill men and beasts that forded the river. Sometimes he stretched his head up on to the bank, and spouted forth a filthy and deadly poison from his mouth. No one knew how to put a stop to this calamity, until at last two Finns were induced to try to slay the snake. They flung themselves into the water, but soon came forth again, declaring that they had here a mighty fiend to deal with, and that neither could they kill the snake nor get the gold, for under the latter was a second monster twice as hard to vanquish as the first. But they contrived, however, to bind the snake with two fetters, one behind his breast-fin, the other at his tail; therefore the monster has no further power to do harm to man or beast; but it sometimes happens that he stretches his curved body above the water, which is always a sign of some coming distress, hunger, or hard times.”

The heath worm is a type of black slug, not a worm or snake at all, and it certainly won’t grow into a dragon no matter how much gold you give it. But obviously there’s something going on in the lake because there have been strange sightings right up to the present day. There’s even a video taken of what surely does look like a slow-moving serpentine creature just under the water’s surface. There’s a link in the show notes if you want to watch the video.

So let’s talk about the video. It was taken in February of 2012 by a farmer who lives in the area. Unlike a lot of monster videos it really does look like there’s something swimming under the water. It looks like a slow-moving snake with a bulbous head, but it’s not clear how big it is. A researcher in Finland analyzed the video frame by frame and determined that although the serpentine figure under the water looks like it’s moving forward, it’s actually not. The appearance of forward movement is an optical illusion, and the researcher suggested there was a fish net or rope caught under the water and coated with ice, which was being moved by the current.

So in a way I guess a Finn finally slayed the monster after all.

But, of course, the video isn’t the only evidence of something in the lake. If those widely spaced humps in the water aren’t a monstrous lake serpent of some kind, what could they be?

One suggestion is that huge bubbles of methane occasionally rise from the lake’s bottom and get trapped under the surface ice in winter. The methane pushes against the ice until it breaks through, and since methane refracts light differently from ordinary air, it’s possible that it could cause an optical illusion from shore that makes it appear as though humps were rising out of the water. This actually fits with stories about the monster, which is supposed to spew poison and make the ground shake. Iceland is volcanically and geologically highly active, so earthquakes that cause poisonous methane to bubble up from below the lake are not uncommon.

Unfortunately, if something huge did once live in the lake, it would have died by now. In the early 2000s, several rivers in the area were dammed to produce hydroelectricity, and two glacial rivers were diverted to run into the lake. This initially made the lake deeper than it used to be, but has also increased how silty the water is. As a result, not as much light can penetrate deep into the water, which means not as many plants can live in the water, which means not as many small animals can survive by eating the plants, which means larger animals like fish don’t have enough small animals to eat. Therefore the ecosystem in the lake is starting to collapse. Some conservationists warn that the lake will silt up entirely within a century at the rate sand and dirt is being carried into it by the diverted rivers. I think the takeaway from this and episode 179 is that diverting rivers to flow into established lakes is probably not a good idea.

At the moment, though, the lake does look beautiful on the surface, so if you get a chance to visit, definitely go and take lots of pictures. You probably won’t see the Lagarfljót worm, but you never know.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 174: MONSTER CEPHALOPODS!

It’s a bonus monster month in June, because everything is awful and learning about monsters will take our minds off the awfulness. This week let’s learn about some mysterious stories from around the world that feature huge octopus or squid!

Further watching:

River Monsters episode about the Lusca

A colossal squid, up close to that gigantic eyeball:

Blue holes in the ocean and on land:

A giant Pacific octopus swimming:

The popular image of the kraken since the 1750s:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Last week’s mystery bird got me thinking about how far away Halloween feels and how we haven’t really had a lot of monsters or mystery animals lately. So let’s have an extra monster month in June! We’ll start with a topic I’ve touched on in past episodes but haven’t covered in depth, three stories of GIANT OCTOPUS TYPE MONSTERS from around the world.

If you haven’t listened to episode 142, about octopuses, that ran last October, I recommend you listen to it for information about octopus biology and habits. This week we are all about the mysterious and gigantic octopuses.

Let’s jump right in with a monster from Japan, Akkorokamui. Its origins trace back to the folklore of the Ainu, a group of people who in the past mostly lived on Hokkaido, the second largest island in the country. These days they live throughout Japan. The story goes that a monster lives off the coast of Hokkaido, an octopus-like animal that in some stories is said to be 400 feet long, or over 120 meters. It’s supposed to swallow boats and whales whole. But Akkorokamui isn’t just an octopus. It has human features as well and godlike powers of healing. It’s also red, and because it’s so big, when it rises near the surface of the water, the water and even the sky look red too.

Akkorokamui is supposed to originally be from the land. A humongous red spider lived in the mountains, but one day it came down from the mountains and attacked a town, stomping down buildings as the earth shook. The villagers prayed for help, and the god of the sea heard them. He pulled the giant spider into the water where it turned into a giant octopus.

The problem with folktales, as we talked about way back in episode 17, about the Thunderbird, is that they’re not usually meant to be taken at face value. Stories impart many different kinds of information, especially in societies where writing isn’t known or isn’t known by everyone. Folktales can give warnings, record historical events, and entertain listeners, all at once. It’s possible the story of Akkorokamui is this kind of story, possibly one imparting historic information about an earthquake or tsunami that brought down a mountain and destroyed a town. That’s just a guess, though, since I don’t understand Japanese—and even if I did, the Ainu people were historically treated as inferior by the Japanese since their ancestors came from other parts of Asia, so many of their stories were never recorded properly. The Ainu people today have lost some of their historic cultural memories as they assimilated into Japanese society.

So we don’t know if Akkorokamui was once thought of as a real living animal, a spiritual entity, or just a story. There are a few reported sightings of the monster, but they’re all old and light on details. One account from the 19th century is supposedly from a Japanese fisherman who saw a monster with tentacles as big around as a grown man. It was so big that the fisherman at first thought he was just seeing reflected sunset light on the ocean. Then he came closer and realized what he was looking at—and that it was looking back at him from one enormous eye. He estimated it was something like 260 feet long, or 80 meters. Fortunately, instead of swallowing his boat, the monster sank back into the ocean.

Whether or not the folktale Akkorokamui was ever considered to be a real animal, it’s possible that some people who have seen enormous octopuses or squids have called them Akkorokamui. If you’ve listened to episode 74 about the colossal and giant squids, you may remember that both can grow over 40 feet long, or 12 meters, although the giant squid has longer arms while the colossal squid has a longer mantle in proportion to its arms. The two feeding tentacles that squids have are even longer than its arms when extended, which increases the longest measured length to 55 feet, or almost 17 meters. Both squid species are deep-sea animals that are rarely seen near the surface. But both are usually pink or red in color. A squid that big would terrify anyone, especially if they’re fishing in a small boat.

Another octopus-like sea monster is the lusca, this one from Caribbean folklore. The Caribbean Sea is part of the Atlantic Ocean outside of the Gulf of Mexico. Within the Caribbean Sea are thousands of islands, some tiny, some large, including those known collectively as the West Indies. Many reports of the lusca come from the Bahamas, specifically the so-called blue holes that dot many of the islands.

Blue holes are big round sinkholes that connect to the ocean through underground passages. Usually blue holes contain seawater, but some may have a layer of fresh water on top. Some blue holes are underwater while some are on land. The islands of the Bahamas aren’t the only places where blue holes exist. Australia, China, and Egypt all have famous blue holes, for instance, but they’re not uncommon across the world.

Blue holes form in land that contains a lot of limestone. Limestone weathers more easily than other types of rock, and most caves are formed by water percolating through limestone and slowly wearing passages through it. This is how blue holes formed too. During the Pleistocene, when the oceans were substantially lower since so much water was locked up in glaciers, blue holes formed on land, and many of them were later submerged when the sea levels rose. They can be large at the surface, but divers who try to descend into a blue hole soon discover that it pinches closed and turns into twisty passages that eventually reach the ocean, although no diver has been able to navigate so far. Many, many divers have died exploring blue holes.

Andros Island in the Bahamas has 178 blue holes on land and more than 50 in the ocean surrounding the island. It’s also the source of a lot of lusca reports.

So what does the lusca look like? Reports describe a monster that’s sharklike in the front with long octopus-like legs. It’s supposed to be huge, with an armspan of 75 feet, or 23 meters, or even more. The story goes that the tides that rise and fall in the blue holes aren’t due to tides at all but to the lusca breathing in and out.

But people really do occasionally see what they think is a lusca, and sometimes people swimming in a blue hole are dragged under and never seen again. Since blue holes don’t contain currents, it must be an animal living in the water that occasionally grabs a swimmer.

The problem is, there’s very little oxygen in the water deep within a blue hole. Fish and other animals live near the surface, but only bacteria that can thrive in low-oxygen environments live deeper. So even though the blue holes are connected to the ocean, it’s not a passage that most animals could survive. Larger animals wouldn’t be able to squeeze through the narrow openings in the rock anyway.

But maybe they don’t need to. Most blue holes have side passages carved out by freshwater streams flowing into the marine water, which causes a chemical reaction that speeds the dissolving of limestone. Some blue holes on Andros Island have side passages that extend a couple of miles, or several kilometers. It’s possible that some of these side passages also connect to the ocean, and some of them may connect to other blue holes. Most of the blue holes and side passages aren’t mapped since it’s so hard to get equipment through them.

But as far as we know, there is no monster that looks like a shark with octopus-like legs. That has to be a story to scare people, right? Maybe not. The largest octopus known to science is the giant Pacific octopus, which we talked about in episode 142. The largest ever measured had an armspan of 32 feet, or almost 10 meters. It lives in deep water and like all octopuses, it can squeeze its boneless body through quite small openings. When it swims, its arms trail behind it something like a squid’s, and it moves headfirst through the water. A big octopus has a big mantle with openings on both sides for the gills and an aperture above the siphon. The mantle of the octopus could easily be mistaken for the nose of a shark, with a glimpse of the openings assumed to be its partially open mouth. And a large octopus could easily grab a human swimming in a blue hole and drag it to its side passage lair to eat. Big octopuses eat sharks.

The giant Pacific octopus lives in the Pacific, though, not the Atlantic. If the lusca is a huge octopus, it’s probably a species unknown to science, possibly one whose mantle is more pointy in shape, more like a squid’s. That would make it resemble a shark’s snout even more.

Finally, let’s look at a monster many of us are already familiar with, the kraken. Many people think the legend of the kraken was just an exaggerated description of the giant squid. But that’s actually not the case.

The kraken is a Scandinavian monster that dates back to at least the 13th century, when a Norwegian historian wrote about it. That historian, whose name we don’t know, said it was so big that sailors took it for land while it was basking at the surface. The sailors would stop to make camp on what they thought was an island, but when they lit a campfire the kraken submerged and drowned the sailors. It could swallow ships and whales whole.

Nothing about the story mentions squid-like arms until the 1750s when a bishop called Erik Pontoppidan wrote about the kraken. Pontoppidan repeated the story of the kraken appearing island-like and then submerging, but said that it wasn’t the submerging that was so dangerous, it was the whirlpool the kraken caused as it submerged. I’d say that’s just a little bit of hair-splitting, because those sailors were in trouble either way. But Pontoppidan also said that the kraken could pull ships down into the ocean with its arms, which immediately made people think of squid and octopuses of enormous size. The idea of a stupendously large squid or octopus with its arms wrapped around a ship made its way into popular culture and remains there today.

The kraken story was probably inspired by whales, which of course were well known to Scandinavian sailors and fishers. It also might have been inspired by remote islands that are so low in the water that they’re sometimes submerged.

All that aside, could a cephalopod of enormous size actually reach out of deep water and grab the railing or masts of a ship or boat? Actually, it can’t do that, no matter how big or small. Remember that cephalopods have no skeleton, and while their arms are remarkably strong, it takes a whole lot of energy to lift a body part out of the water. We don’t notice this when swimming because our bodies are naturally buoyant especially with our lungs filled with air, and we have bones to give our bodies structure. An octopus spends most of its life supported by the water. When it comes out of the water, it stays very flat to the ground. It can only lift an arm out of the water if it can brace itself against something.

So the dramatic movie scenes where massive kraken arms suddenly shoot out of the water to seize a ship are just fantasy. But an octopus could grab onto the side of a ship with its suction cups and even heave itself onboard that way, potentially capsizing it. So that’s something fun to think about the next time you’re in a boat.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 101: Flying Without Wings

What better way to start out the new year than by learning about some animals that fly (or glide) without wings! Thanks to Llewelly for suggesting the colugo!

Colugo looking startled:

A colugo, flying, which startles everyone else:

Flying fish! ZOOM!

A flying gurnard, not flying:

Flying squid! ZOOM!

Flying squid close-up, mid-zoom:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the first week of a new year, so let’s start it off right and learn about some animals that fly without wings.

The first of our non-winged flying animals is a suggestion from Llewelly, who sent me some links about it and we both freaked out a little because it’s such an awesome animal. It’s called the colugo, and technically it doesn’t fly, it glides. It looks kind of like a big squirrel and kind of like a small lemur, and in fact it’s also sometimes called a flying lemur. But it’s not closely related to squirrels or lemurs. It’s actually not related closely to anything alive today.

Before we learn about the colugo specifically, let me explain a little bit about gliding animals. Gliding animals have a flap of skin called a gliding membrane or patagium. In the case of gliding mammals, like the flying squirrel or the colugo, the patagium connects each foreleg with the hindleg on that side. When the animal wants to glide, it stretches its legs out, which also stretches out the patagium. For a long time scientists assumed that the patagium was just skin and didn’t do anything except increase the animal’s surface area and act as a sort of parachute. But it turns out that the patagium contains tiny muscles like those recently discovered in the membranes of bat wings. And the skin between the fingers of the bat’s forelimbs, which creates the wings, are actually considered patagia. In fact, any gliding membrane, even if it’s part of a real wing, is considered a patagium, so birds actually have them too.

The colugo has a patagium between its legs like other gliding mammals, but it also has a patagium between its hind legs and its tail, and even its fingers and toes are connected with small patagia. It’s the most well-adapted mammal known for gliding, so well-adapted that it can glide incredible distances. One was measured as having glided almost 500 feet in one jump, or 150 meters. This is almost the length of two football fields.

The colugo lives in South Asia and is endangered mainly due to habitat loss. It grows to about 16 inches long, or 40 cm, with a small head, big eyes, and little round ears. It’s gray with some mottled white and black markings that help hide it against tree trunks, and its legs are long and slender. It eats plants. We don’t know a whole lot about the colugo, because it’s shy and lives in the treetops of tropical forests, but what we do know is really weird.

For instance, its babies. If you listened to episode 45 about monotremes, where we also discuss the differences between marsupial and placental mammals, you may remember that placental mammal babies are born mostly developed while marsupial mammal babies are born very early and finish developing outside of the mother, either in a pouch or just clinging to the mother’s fur. Well, the colugo is a placental mammal, but its babies are born extremely early, more like a marsupial. They finish developing outside of the mother, which takes six months or so, and the mother colugo keeps her tail curved up most of the time so that her patagium is wrapped around her babies like a pouch.

The colugo has weird teeth, too. The front teeth, or incisors, are shaped like tiny combs. This is similar to the incisors of lemurs, which look like tiny combs because the lemur uses them as tiny combs to groom its fur. But unlike any other mammal known, some of the colugo’s upper incisors have two roots instead of just one. Why? No one knows.

So what is the colugo related to? For a long time, no one was sure. Researchers even thought it might be a close relation of bats. These days, the two species of colugo make up their own order, Dermoptera. Order is the classification right below mammal so that’s kind of a big deal. While they’re not closely related to anything alive today, researchers place them in the same general group of animals that gave rise to the primates. But they’re about as closely related to rabbits as they are to monkeys.

In 2017 a team of scientists surveying bats in Malaysia picked up a recording of some unusual ultrasonic calls. They weren’t bat calls. Eventually they determined the calls came from colugos in the trees around the microphones, although some researchers have doubts and think the calls may actually be from other animals known to make ultrasonic sounds, like the tarsier. The colugo has been recorded making sounds audible to humans in other studies. There’s no evidence that the colugo uses echolocation like bats do.

Mammals took to gliding very early on. A few years ago, two fossils discovered in China and dated to about 160 million years ago—you know, 100 million years before the dinosaurs died out—show two different species of mammal that were able to glide. We know they could glide because the fossils are so well preserved that researchers can see the patagium between the front and hind legs of both. They’re the earliest known gliding mammals. Both the fossils belonged to a branch of mammals that have completely died out, so they’re not related to the colugo or anything else.

So what other animals fly, or glide, without real wings? You’ve heard of flying fish, of course. Do they really jump out of the water and glide on their fins? They do, and it’s a lot more awesome even than it sounds.

There isn’t just one species of flying fish but over 60, all of them with elongated pectoral fins that act like an airplane’s wings when they jump out of the water. Some species have two pairs of elongated fins. Back in the early 20th century, engineers studied flying fish fins to help design better airplane wings. But the flying fish has a lot of other adaptations that make it good at gliding, including a stiffened body and robust spine, and strong muscles that allow it to jump out of the water at high speeds.

So how well does the flying fish glide? This is where it gets crazy amazing. The longest recorded flight of a flying fish was 1,300 feet, or 400 meters. That’s way better than the colugo. It’s been recorded as reaching 20 feet, or 6 meters, above the water’s surface and flying at speeds of about 45 mph, or 70 km/h. And as if this wasn’t amazing enough, when the fish starts to descend, it can choose to slide back into the water or it can put its tail down and push off against the surface of the water to get back in the air for another glide. It can even change directions when it pushes back off. It will sometimes flap its fins like wings, but so far researchers haven’t found any evidence that this helps it fly. It may just flap its fins to stabilize its flight.

Most flying fish species are fairly small, although the biggest is a respectable 1 1/2 feet long, or about half a meter. Most flying fish live in the ocean, usually in warmer waters, and they’re all extremely slender and streamlined. They mostly eat plankton.

Sometimes flying fish land in boats or even on the decks of small ships. It’s considered a delicacy, with a taste similar to that of a sardine, and many species have started to decline as a result of overfishing.

Gliding flight has evolved in fish more than once in species that aren’t related, so there are more flying fish than there are flying fish, if you see what I mean. No, you don’t. That only made sense to me. The earliest known flying fish is a fossil dated some 240 million  years old, totally unrelated to the flying fish of today. And there are species alive today not related to the various flying fish species that can glide, if not as well as actual flying fish.

One fish that may or may not glide is called the flying gurnard. It’s a bulky fish that grows more than a foot and a half long, or 50 cm, and can weigh four lbs, or 1.8 kg. It lives in the warmer parts of the Atlantic Ocean in shallow coastal areas, where it mostly stays on the seafloor and eats crustaceans, bivalves, and other small invertebrates. It will also eat small fish if it can catch them. It has a face sort of like a frog’s and can be reddish, brown, or greenish, with spots and patches of other colors. But most importantly, its pectoral fins are extremely large, looking more like fan-like wings than fins. The so-called wings are shimmery, semi-transparent, and lined with bright blue. They sort of look like butterfly wings and can be more than 8 inches long, or 20 cm. The fins actually have two parts, a smaller section in front that looks more like an ordinary fin, and the larger wing-like section behind.

The flying gurnard’s popular name refers to its wing-like fins, which it uses to scare potential predators and to walk around on the sea floor with and poke into the sand to find food. But there are stories dating back thousands of years that not only can the flying gurnard jump out of the water to fly, its flight resembles a swallow’s swooping flight. But it’s much too heavy to fly, so those stories are only tall tales. OR ARE THEY? At least one ichthyologist, a Dr. Humphrey Greenwood, reports having seen a flying gurnard leap out of the water, spread its fins, and glide in a controlled manner for a short distance.

The last animal that flies, or glides, without wings is one I bet you would never guess. It’s the flying squid. And yes, I thought it was a made-up animal when I first heard about it. Squid can’t fly! But there one squid that does regularly leap out of the water and glide for short distances.

The Japanese flying squid lives near the ocean’s surface in schools, where it eats fish and crustaceans. Despite its name, it doesn’t just live around Japan but throughout much of the Pacific Ocean. It doesn’t live very long, less than a year, but has a complicated migratory life. Not as complicated as an eel, but pretty complicated. A squid hatches only five days or so after its mother lays the eggs. The baby squid, called a paralarva, eats plankton and doesn’t yet have arms or tentacles, since they’re fused together at first. The fused tentacles split once the baby has grown to about half an inch long, or some 10 mm, which gives you an idea of how tiny it is when it first hatches.

As the baby squid grows, it begins its migration with the other baby squids that hatched at the same time. The migration follows the ocean surface currents and different subspecies have different migration patterns. Males mature first and transfer their packets of sperm, called spermatophores, to the females for later. Then the males die and the females continue their migration back to the same area where they were hatched. They lay a few hundred to a few thousand tiny eggs and then die, leaving the eggs to hatch only a few days later and start the whole process again.

I can hear you thinking, Why yes, Kate, this is all very interesting BUT YOU HAVE NOT TOLD US HOW SQUIDS FLY. Okay, I’ll do that now.

The Japanese flying squid has a mantle, or main part of the body and head, with a pair of fins at the end that stick out quite a bit. Its eight legs and two feeding tentacles are relatively short, shorter than its mantle length of about a foot and a half long in a big female, or 50 cm. Males are smaller. Like all squids and octopuses, the flying squid moves by shooting water out of its siphon, making it jet-propelled. It travels mantle first with the legs trailing behind.

Well, the Japanese flying squid jumps out of the water and shoots through the air this way, with the fins on its mantle helping to stabilize the squid when it’s in the air and keep it flying straight. It also holds its legs and tentacles out so that the membrane between the legs is stretched taut, making a flat surface that it can angle to catch the most air. It can “fly” some 150 feet, or 50 meters, per jump, traveling at about 25 mph, or 11 meters per second. Researchers used to think it only jumped out of the water to avoid predators, but more recent studies show that it’s also a more efficient way to travel long distances than just staying in the water. Oh, and no one knew for sure that the Japanese flying squid could actually fly until about 15 years ago when researchers caught video of it happening.

Like other squids, the Japanese flying squid can change colors and release a cloud of ink to confuse predators. It also has three hearts.

There are other gliding animals and they’re all weird and interesting, so I’ll probably revisit this topic again in the future. In the meantime, if you want to learn about flying snakes, you can go back and listen to episode 56 about strange snakes. Since that’s currently my 8th most popular episode, you may have listened to it already. Thanks.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 011: The Vampire Squid and the Vampire Bat

This week we’re going all goth in April for the vampire squid and the vampire bat. They’re so awesome I want to die.

The vampire squid looking all menacing even though it’s barely a foot long.

“I love you, vampire bat!!” “I love you too, Kate.”

Thanks for listening! We now have a Patreon if you’d like to subscribe! Rewards include patron-only episodes and stickers!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I thought about waiting to run this episode in October, but that’s a really long way away. So we’ll have Halloween in April and talk about the vampire squid and the vampire bat.

The vampire squid has one of the coolest Latin names going, Vampyroteuthis infernalis, which means “vampire squid from hell.” It’s a deep-sea squid and until recently, not a lot was known about it. It was discovered in 1903 and originally classified as an octopus. Its body is about six inches long [15 cm], with another six inches or so of tentacles, which are connected with webbing called a cloak. Actually I’m not sure if scientists refer to this as a cloak, but if you’ve called your animal the vampire squid from hell, you can’t complain if podcasters, for instance, refer to web-connected octopus legs as a cloak.

So is it an octopus or a squid? It’s both, in a way. The vampire squid is the last surviving member of its own order, Vampyromorphida, which shares similarities with both.

The vampire squid’s color varies from deep red to velvety black. The inside of its cloak is black and the parts of its legs inside the cloak are studded with spines. Its beak is white. Basically the only thing this little guy needs to be the world’s ultimate goth is a collection of Morrissey albums.

It lives in the lightless depths of the ocean below 3,000 feet [914 meters]. There’s not a lot of oxygen down there so there aren’t very many predators. The vampire squid doesn’t need oxygen because it’s a vampire—or at least it can live and breathe just fine with oxygen saturations as little as 3%. Its metabolic rate is the lowest of any cephalopod.

The vampire squid doesn’t move a lot. It drifts gently, aided in buoyance because its gelatinous tissues are roughly the same density as seawater. Adults have two small fins sticking out from their mantle, which they flap to propel them through the water.

If something threatens a vampire squid, it brings its legs up to expose the spiny insides of its cloak and hide its body. If something really threatens a vampire squid, even though it doesn’t have ink sacs, it can eject a cloud of bioluminescent mucus, and can flash its photophores in a dazzling display of lights. These photophores are concentrated on the outside tips of its arms. If the end of an arm is bitten off, the vampire squid can regenerate it.

So we have a creepy-looking, if small, cephalopod that lives in the deep, deep sea called a vampire squid. WHAT. DOES. IT. EAT?

I hate to disappoint you, but the vampire squid eats crap. In fact, it eats the crap of animals that eat crap. There’s not a lot of food in the ocean depths. Mostly there’s just a constant rain of fish poop, algae, bits of scales and jellyfish, and other waste. Lots of little creatures live on this stuff and their poop joins the rain of barely-food that makes it down to the abyssal depths where the vampire squid waits.

The squid had two retractable filaments—not the same thing as the two feeding tentacles true squids have, but used for feeding. The filaments are extremely long, much longer than the vampire squid itself. It extends the filaments, organic detritus falls from above and sticks to them, and the vampire squid rolls the detritus up with mucus from its arm tentacles into little sticky balls and pops the balls into its mouth.

That’s not very goth. Or it might be incredibly goth, actually.

Most cephalopods only spawn once before they die. A 2015 paper in Current Biology reports that the vampire squid appears to go through multiple spawning phases throughout its life. It may live for a long time too, but we don’t know for sure. There’s still a lot we don’t know about the vampire squid.

Because squids and octopuses are soft bodied, we rarely find them in the fossil record. In 1982, though, a beautifully preserved octopus body impression was found in France in rocks dating to 165 million years ago. And guess what kind of octopus it turned out to be! Yes, it’s related to the vampire squid.

If the vampire squid is the kind of pensive goth who listens to The Smiths and reads Poe in cemeteries, the vampire bat is out clubbing with its friends, blasting Combichrist, and spending its allowance in thrift shops. There are three species of vampire bat, but they’re different enough from each other that each belongs to its own genus. They’re native to the Americas, especially tropical and subtropical environments, although they haven’t been found any further north than Mexico. And yes, vampire bats do actually feed on blood. It’s all they eat.

Vampire bats are small, active, and lightweight. They’re only about 3 ½ inches long [9cm] with a 7-inch wingspan [18 cm], and weigh less than two ounces [57 grams]. They live in colonies that consist of big family groups: a small number of males and many more females and their babies. Males without a colony hang out together and probably never clean up their apartments.

Vampire bats belong to the leaf-nosed bat family, and like other leaf-nosed bats they sleep during the day and hunt at night. But the vampire bat doesn’t actually have a nose leaf. That’s a structure that aids with echolocation, and vampire bats don’t need the high level echolocation ability that insect-eating bats do. They get by with a reduced ability to echolocate, but they have another highly developed sense that no other mammal has: thermoreception. They use it to determine the best place to bite their prey. The warmer, the better. That’s where the blood is.

The vampire bat also has good eyesight, a good sense of smell, and hearing that’s attuned to the sound of breathing. A bat frequently remembers the sound of an individual animal’s breathing, and returns to it to feed night after night. What vampire bats don’t have is a very good sense of taste. They don’t really need it. In fact, they don’t have the kind of bad food avoidance that every other mammal has. In a study where vampire bats were given blood with a compound that tasted bad and made them throw up, the next time they were offered the bad-tasting blood, they ate it anyway.

Most bats are clumsy on the ground. They’re built for flying and for hanging from perches. But vampire bats are agile. They crawl around and even run and jump with no problems.

Two species of vampire bat prey mainly on birds, while the third—the common vampire bat—feeds on mammals. Bird blood has a much higher fat content than mammal blood, which is higher in protein. But results of a study released in January 2017 found that hairy-legged vampire bats, which usually prey on large wild birds, had started feeding on domestic chickens as their wild prey became scarcer—and then they started feeding on human blood.

A vampire bat doesn’t suck blood. It makes a small incision with extremely sharp fangs and laps up the blood with its grooved tongue. It may even trim hair from the bite site first with its teeth. Its saliva contains an anti-coagulate called draculin that keeps the blood flowing. The bat doesn’t eat much, because let’s face it, it’s just a little guy. In order to hold more blood, as soon as it starts to feed its digestion goes into overdrive. Within some two minutes after it starts to eat, the bat is ready to urinate in order to get rid of the extra fluid so it can hold more blood. A feeding session may last about 20 minutes if the bat isn’t disturbed, and the bat may drink about an ounce of blood in all.

A vampire bat needs to eat at least every two days or it will starve. A bat that hasn’t found prey in two nights will beg for food from its colony mates, which often regurgitate a little blood for the hungry bat to eat. New mother bats may be fed this way by her colony for as much as two weeks after she’s given birth so that she doesn’t have to hunt. Baby vampire bats drink their mother’s milk just like any other mammal.

If a mother bat doesn’t return from hunting, other colony members will take care of her baby so it won’t die. Colony members groom each other and are generally very social. Even the male bats that aren’t part of the colony are allowed to roost nearby. Nobody fights over territory. These are nice little guys.

Vampire bats do sometimes carry rabies, but it’s pretty rare compared to infection rates in dogs. They are more dangerous to livestock than to humans. Attempts to kill off vampire bat colonies to stop the spread of rabies actually has the opposite effect, since bats from a disturbed colony will seek out another colony to join.

Vampire bats have considerable resistance to rabies and frequently recover from the disease, after which they’re immune to reinfection, and there’s some preliminary evidence to suggest that native human populations in areas where vampire bats are common may also have developed some resistance to rabies. Researchers hope that this finding will lead to better treatment of rabies in the same way that the draculin anticoagulant in vampire bat saliva led to advances in blood-thinning medications.

I like to imagine a vampire bat hanging out with a vampire squid. The bat would sip blood from a tiny wineglass and fidget with its jewelry while it tries to conversation. The squid would just stare at the bat. Then it would eat a globule of crap. The bat would pee on itself and the whole evening would just be a bust. Also, one of them would drown but if I can imagine a tiny wineglass I can imagine a tiny bat-sized bathysphere or something. Never mind.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes for as little as one dollar a month.

Thanks for listening!