Episode 370: Animals Discovered in 2023

Let’s look at some of the most interesting animals discovered last year!

Further reading:

Newly-discovered ‘margarita snails’ from the Florida Keys are bright lemon-yellow

Tiny spirits roam the corals of Japan—two new pygmy squids discovered

Strange New Species of Aquifer-Dwelling Catfish Discovered in India

Bizarre New Species of Catfish Discovered in South America

Unicorn-like blind fish discovered in dark waters deep in Chinese cave

New Species of Hornshark Discovered off Australia

Cryptic New Bird Species Identified in Panama

New Species of Forest Hedgehog Discovered in China

New species of voiceless frog discovered in Tanzania

The weird new spiny katydid:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s time for our annual discoveries episode, where we learn about some animals discovered in the previous year! There are always lots more animals discovered than we have time to talk about, so I just choose the ones that interest me the most.

That includes the cheerfullest of springtime-looking marine snails discovered in the Florida Keys. The Florida Keys are a group of tropical islands along a coral reef off the coast of Florida, which is in North America. A related snail was also discovered off the coast of Belize in Central America that looks so similar that at first the scientists thought they were the same species with slightly different coloration. A genetic study of the snails revealed that they were separate species. The one found in the Keys is a lemony yellow color while the one from Belize is more of a lime green.

The snails have been placed into a new genus but belong to a group called worm snails. When a young worm snail finds a good spot to live, it sticks its shell to a rock or other surface and stays there for the rest of its life. Its shell isn’t shaped like an ordinary snail shell but instead grows long and sort of curved or curly. The snail spreads a thin layer of slime around it using two little tentacles, and the slime traps tiny pieces of food that float by.

The new snails are small and while the snail’s body is brightly colored, its shell is drab and helps it blend in with the background. Scientists think that the colorful body may be a warning to potential predators, since its mucus contains toxins. It mainly lives on pieces of dead coral.

Another invertebrate discovery last year came from Japan, where two new species of pygmy squid were found living in seagrass beds and coral reefs. Both are tiny, only 12 mm long, and are named after little forest spirits from folklore. Despite its small size, it can eat shrimp bigger than it is by grabbing it with its little bitty adorable arms. Both species have been seen before but never studied until now. The scientists teamed up with underwater photographers to find the squid and learn more about them in their natural habitats.

As for invertebrates that live on land, an insect called the blue-legged predatory katydid was discovered in the rainforests of Brazil. It’s a type of bush-cricket that’s dark brown in color except for the last section of its legs, which are greenish-blue. Those parts of its legs are also really spiny. That is literally all I know about it except for its scientific name, Listroscelis cyanotibiatus, but it’s awesome.

Let’s leave the world of invertebrates behind and look at some fish next. This was the year of the catfish, with new species discovered in both India and South America. Catfish can be really weird in general and both these new species are pretty strange.

The first is tiny, only 35 mm long at most, or a little over an inch, and it has four pairs of barbels growing from its face. It looks red because its blood shows through its skin, because its skin doesn’t have any pigment. The fish also doesn’t have any eyes. If this makes you think it’s a cave-dwelling fish, you’re exactly right, but instead of an ordinary cave it actually lives in an aquifer.

An aquifer is a source of water underground. It’s actually a layer of rock that’s broken up or otherwise permeable so that water can get through it, but with a non-permeable layer underneath. The water is trapped in the layer, sometimes far underground. If you’ve ever seen a spring, where water bubbles up from the ground, that water comes from an aquifer that has found its way to the surface. If you’ve ever drunk water pumped or dipped up from a well, the well-water also comes from an aquifer. The water gets into the aquifer in the first place when rain soaks into the ground, but it takes a long time to fill up.

There are really deep aquifers that are completely sealed off from the surface, created thousands or even millions of years ago. As far as we know, nothing lives in those, although we could be wrong. Aquifers that are closer to the surface with some surface openings develop unique ecosystems, including animals that are found nowhere else on earth. That’s the case with the tiny red catfish found in the state of Kerala in India.

Scientists asked people in the area to watch out for any unusual animals when they had a new well dug or cleaned, and before long people from four towns reported finding the little red fish. Three other related species had previously been found in the state.

On the other side of the world, in South America, a much different type of catfish was discovered in Bolivia and Brazil. This one is an armored catfish, and the male actually grows short dermal teeth on the sides of his head that he uses to fight other males. Dermal teeth are teeth that grow on the skin instead of in the mouth, and it’s surprisingly common in fish, especially armored catfish.

The new catfish has been named Sturisoma reisi and it grows about 8 inches long, or 20 cm. It’s actually been known to scientists for a long time, but until recently no one realized it wasn’t one of five other catfish in the genus Sturisoma. They all look kind of similar. It’s a slender, active catfish with a long tail and a pointy rostrum that lives in swift-moving rivers. It was actually described in 2022, not 2023, but I only just realized I have the wrong year so let’s just move along quickly to another fish.

This one isn’t a catfish but it looks like one at first glance since it has barbels around its mouth. These are the whisker-like feelers that give the catfish its name. The newly discovered fish needs feelers because it doesn’t have working eyes, and it also doesn’t have scales or pigment in its skin. It was found in a cave in China, and in fact it’s only been found in a single pool of water in a single cave. The pool is only about 6 feet across, or 1.8 meters, and about two and a half feet deep, or 80 cm, but it’s home to a perfectly healthy population of fish. The fish grow about 5 inches long on average, or 13 cm.

The fish is a new member of the genus Sinocyclocheilus, and of the 76 known species in the genus, most live in caves. The new fish has been named S. longicornus because of a structure on its head that kind of looks like a unicorn horn, if the unicorn was a pink cave fish and its horn was shaped sort of like the tip of a ballpoint pen, also called a biro.

Some other species in this genus also have a so-called horn, although the new fish’s is larger than most. It juts forward and extends above what we can describe as the fish’s forehead. Scientists have absolutely no idea what it’s for. Since the fish can’t see, it can’t be to attract a mate. It’s also not likely to be a navigational aide since the fish has its barbels and a well-developed lateral line system to find its way around. Besides, it lives in a pool of water not much bigger than the desk I’m sitting at. It doesn’t exactly travel very far throughout its life.

Scientists have a lot of other questions about the fish, including how it survives in such a tiny pool of water.

Speaking of fish with horns, a new species of hornshark was discovered last year off the northern coast of Australia. Hornsharks live in shallow warm waters throughout much of the Pacific and Indian oceans, where they spend most of the time at the bottom looking for small invertebrates like crustaceans to crunch up, although sea urchins are their favorites. They’re also called bullhead sharks because they all have short snouts and broad heads with prominent brows. The name hornshark comes from the fins, some of which have spines.

One species of hornshark is the zebra hornshark, which lives in the Indo-Pacific, from southern Japan down to northern Australia. As you may guess from the name, it has stripes, which makes it popular in aquariums and zoos. It only grows to about 4 feet long, or 1.25 meters. Until last year, scientists thought that all the zebra hornsharks around Australia belonged to the same species. Then they noticed that one population that lives off of northwestern Australia has a different stripe pattern and only grows about two feet long, or 60 cm. After a genetic study, it turns out that it’s a totally different species.

A lot of animal discoveries are like this, where everyone thinks an animal is one species, but after close study and genetic testing they find out it’s two or more species that just look very similar. That’s one of the great things about DNA testing being so effective and quick these days, but it’s not always as cut and dried as it sounds. There’s no easy way to determine for sure if animals are different species, subspecies, or just the same species with population variants. Scientists can’t just rely on genetics, but they also can’t always rely on observations of the animal’s physical traits or its behavior in the wild. They have to look at all the data available, and then they still argue about the best interpretation of the data.

The notion of a separate species or subspecies is an artificial one that gives us a way to better understand a natural process. If a population of animals is separated from another population, eventually both will develop separately until they’re two related but very different animals. There’s no way to point at a specific generation and say, “well, NOW they’re different from the last generation” because the process is so slow and the changes are usually so small. It’s like looking at a rainbow and trying to determine exactly the point where red turns into orange and orange turns into yellow.

Take the slaty-backed nightingale-thrush as an example. It’s a dark gray songbird with a short tail and bright orange legs and beak, and it lives in the mountains of Central and northern South America. It spends most of its time in thickets where it’s hard to see but easy to hear, since it has a lovely song. This is an example of what it sounds like, although its song varies depending on where it lives.

[bird song]

It turns out that there’s a lot of variation in the bird’s song because the slaty-backed nightingale-thrush probably isn’t all one species. In late 2023 a team of researchers published a ten-year study of the bird, looking at everything from song variations to genetics. They determined that not only was it not a single species, it was most likely seven different species and four subspecies. Because the bird lives in the mountains and doesn’t fly very far during its lifetime, populations that are separated by steep mountains and valleys have developed into separate species.

Naturally, not everyone agrees with these findings, but it’s always good when a little-studied animal gets some attention. Until last year, no one knew much about this shy little bird, and the controversy of whether it’s one species or lots of closely related species will hopefully lead us to learn even more about it. One population of the bird discovered in Panama had never been documented before, too.

This episode is getting pretty long for someone who just got over a cold, so let’s cover one newly discovered mammal and a newly discovered frog. A new species of forest hedgehog was discovered in China last year and it’s adorable! It’s related to the hedgehogs found in Europe and other areas, but is most closely related to four known species of forest hedgehog that live mostly in central Asia. The new species was discovered in eastern China, over 1,000 km away from the nearest population of other forest hedgehogs. Another species was only discovered in 2007 from southwestern China.

Unlike most hedgehogs, the new species is sexually dimorphic, meaning that males and females don’t look identical. Males are mostly gray while females are more reddish-brown in color.

Let’s finish with another adorable animal, a little frog from Tanzania, a country in east Africa. It’s a type of spiny-throated reed frog, which are all rare and increasingly threatened. They’re also very small, not much bigger than an inch long, or about 30 mm. The male has tiny little spines on his throat that researchers think might be a way that females recognize the males of their own species during mating season instead of by a distinctive croaking sound. That’s because spiny-throated reed frogs can’t make sounds, leading to their other common name of the voiceless frog.

In 2019, researchers were in the Ukaguru Mountains in Tanzania looking for a completely different frog, the beautiful tree toad, which may be extinct. While they didn’t find any of the toads, they did find a little greenish-brown frog with copper-colored eyes that turned out to be completely new to science. It was found in a nature reserve and appears to be common locally, which is good, but the nature reserve is also very small, which is not so good. Hopefully now that we know the little frog exists, it will lead to further protections of the area that will help all the other animals and plants where it lives, including the beautiful tree toad.

This is what the voiceless frog sounds like:

[silence]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 337: Ghost Shrimp and Snapping Shrimp

Thanks to Zachary and Anbo for their suggestions this week! Let’s learn about some shrimp!

Further reading:

This is why the pistol shrimp is immune to its own powerful shock waves

The Symbiotic Relationship Between Gobies and Pistol Shrimp

An eastern ghost shrimp:

A snapping shrimp:

A goby fish and its snapping shrimp buddy:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to have an episode about a few different types of shrimp, with suggestions from Zachary and Ambo.

Let’s start with the ghost shrimp, since Zachary recently got an aquarium and has some ghost shrimp in it.

The name ghost shrimp refers to various species of freshwater shrimp in the genus Palaemon. One of the most popular species to keep as a pet is Palaemonetes paludosus. It’s sometimes called the glass shrimp since it’s mostly transparent, or the eastern ghost shrimp.

The eastern ghost shrimp can grow up to about an inch long, or 2.5 cm. It’s native to the southeastern United States, mostly east of the Appalachian Mountains, where it lives in lakes and eats plankton.

Even though the eastern ghost shrimp is mostly transparent, it can actually change its color to blend in with its background. Only one other species of ghost shrimp is known to do this, a very similar species that is only found in the Mississippi River.

There are dozens of species of ghost shrimp, though, and they live throughout the world. Some species are freshwater, others are marine. Most are at least partially transparent and rarely grow more than two inches long, or maybe 5 cm at most. In some cases people catch them to eat, although more often they’re caught to use as bait or fish food, and of course they’re eaten by a whole lot of wild animals.

We actually don’t know a whole lot about many species of ghost shrimp. Some have only recently been discovered, and some are endangered. For instance, the Florida cave shrimp is only found in a single sinkhole near Gainesville, Florida. It’s the only known species of ghost shrimp that lives in a cave, and it’s closely related to the eastern ghost shrimp.

The Florida cave shrimp grows a little over one inch long, or about 3 cm. It has eyes but doesn’t need them, so they don’t work anymore. It’s mostly transparent with some white spots. It was discovered in 1953 during a scientific exploration of a sinkhole in the Squirrel Chimney Cave and hasn’t been seen since 1973. It may even be extinct by now, but further explorations of the sinkhole have revealed that it connects with a much larger underwater cave system. Hopefully the little shrimp lives within this cave system, but it hasn’t been found anywhere else so far and we know almost nothing about it.

That’s pretty much all there is to know about the ghost shrimp, so congratulations to Zachary for keeping a mysterious little friend in your aquarium.

Next, Anbo wanted to learn about snapping shrimp. (Anbo also wanted to learn about the mantis shrimp, but it turns out that the mantis shrimp isn’t actually a shrimp, or a mantis, and it deserves its own episode one day.) We talked about the snapping shrimp before in episode 273, but there’s definitely more to learn about it. There are a whole lot of species–like, more than a thousand. They’re especially common in coral reefs and live in colonies that communicate with each other by snapping their claws. The sound is so loud that it can sound like a gunshot, which is why it’s sometimes called the pistol shrimp.

The snapping shrimp is about the same size as the ghost shrimp, about 2 inches long at most, or 5 cm. One of its claws is ordinary, but the other claw is much bigger, and it’s the large claw that makes the snapping sound. As we discussed in episode 273, the snapping shrimp will hide in a burrow or rock crevice with its antennae sticking out, and when a small animal like a fish happens by, the shrimp will emerge from its hiding place just far enough to get a good shot at the animal. It opens its big claw and snaps it shut so fast and so forcefully that it shoots tiny bubbles out at speeds of over 60mph, or 100 km/hour. The bubbles only travel a few millimeters in distance, but the shock wave is powerful enough at this short range to stun or outright kill a small animal.

Scientists figured out how the snapping shrimp’s snap worked in 2020, but it wasn’t until 2022 that they discovered why the shrimp doesn’t damage its tiny shrimp brain when it snaps. It turns out that its brain is protected by a translucent helmet called an orbital hood. It needs to be translucent because it covers the shrimp’s eyes as well as the rest of its head. The hood is an extension of the shrimp’s exoskeleton, and it has an opening at the back. Scientists think that when the shock wave of a snap meets the hood, the change in water pressure under the hood is expelled out the opening instead of affecting the brain.

Scientists want to learn how exactly the orbital hood works to redirect pressure waves, in hopes of being able to replicate it. That way we can make really effective armor for people who work with explosives, or for military personnel.

In episode 332 we talked about mutualism, and the snapping shrimp actually has a mutualistic relationship with the goby fish. Gobies are little fish that are usually even smaller than snapping shrimp, or not much bigger. The order Gobiiformes is one of the largest fish families, and we’ve talked about at least one type of goby before. That was back in episode 189 when we learned about the lumpsucker. Not all gobies are buddies with snapping shrimp, but about 130 species are, most of which live in the Pacific Ocean.

Snapping shrimp live in burrows, and the 20 species or so of snapping shrimp that partner with gobies will dig an extra-large burrow. That’s because it’s making room for its goby friend, or even more than one goby friend. The burrow can extend as much as two feet deep, or about 61 cm, with different chambers. While the shrimp is digging the burrow, the goby watches for danger. If a predator approaches, the fish warns the shrimp by moving its fins in a specific way, which signals that the shrimp should hide. If part of the burrow collapses and buries the fish, it just waits until the shrimp digs it out of the sand.

The shrimp and the goby live together in the burrow. They leave the burrow together so they can watch out for each other. The snapping shrimp doesn’t see very well so while it’s outside of the burrow, it will keep track of the goby with its long antennae. The goby watches out for danger and warns the shrimp if it needs to hide.

Both eat small animals, but the shrimp also likes eating some types of algae that grow on rocks. The shrimp will even bring pieces of algae to its burrow to snack on later, and at least one researcher has witnessed the goby help transport algae to the burrow.

During mating season, the goby brings its mate into the burrow, where the female lays eggs in the male’s chamber. Only the male takes care of the eggs, and he spends almost all of his time guarding them and swimming around them to keep them oxygenated. When he has to leave, he blocks the entrance with sand. The eggs hatch after a little over a week and the larvae swim out of the burrow immediately. The female shrimp carries her eggs around until they hatch, which they do in the burrow, and they too leave the burrow right away and float off on their own.

Both the goby eggs and the shrimp eggs hatch at night or sometimes early in the morning, which is important because those are times when both the goby and the shrimp are not active. In other words, that’s a time when the larva can safely leave the burrow without being eaten by its parent’s roommate. Having a buddy is great, but when it comes to your kids, it’s always safety first, even among fish and snapping shrimp.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 288: Mystery Invertebrates

Thanks to Joel for suggesting this week’s topic!

Happy birthday to Fern this week!

Further reading:

Small, rare crayfish thought extinct is rediscovered in cave in Huntsville city limits

Hundreds of three-eyed ‘dinosaur shrimp’ emerge after Arizona monsoon

An invertebrate mystery track in South Africa

The case of the mysterious holes in the sea floor

Contemplating the Con Rit

The Shelton Cave crayfish, rediscovered:

The three-eyed “tadpole shrimp” or “dinosaur shrimp,” triops [photo from article linked above]:

A leech track in South Africa [photo from article linked above]:

A track, or at least a series of holes, discovered in the deep seafloor [photos from article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Thanks to Joel who suggested we do an episode about mystery invertebrates! It took me a while, but I think you’re really going to like this episode. Some of the mysteries are solved and some are not, but they’re all fun.

Before we get to the mystery animals, though, we have a birthday shout-out! A great big happy birthday to Fern! I hope you have your favorite type of birthday cake or other treat and get to enjoy it with your loved ones.

Our first mystery starts in a cave near Huntsville, Alabama in the southern United States, which is in North America. Shelta Cave is a relatively small cave system, only about 2,500 feet long, or 760 meters. That’s about half a mile. It’s a nature preserve now but in the early 1900s it was used as an underground dance hall with a bar and everything.

Biologist John Cooper studied the cave’s aquatic ecosystem in the 1960s when he was doing his dissertation work. His wife Martha helped him since they were both active cavers. At the time, the cave ecosystem was incredibly diverse, including three species of crayfish. One was called the Shelta Cave crayfish, which was only a few inches long, or about 5 cm, mostly translucent or white since it didn’t have any pigment in its body, and with long, thin pincers.

It was rarer than the cave’s other two crayfish species, and unlike them it had only ever been found in Shelta Cave. From 1963 to 1975, only 115 individuals had been confirmed in repeated studies of the cave’s ecosystem.

Then, in the 1970s, several things happened that caused a serious decline in the diversity of life in the cave.

The first was development of the land around the cave into subdivisions, which meant that more pesticides were used on lawns and flower beds, which made its way into the groundwater that entered the cave. It also meant more people discovering the cave and going in to explore, which was disturbing a population of gray bats who also lived in the cave. To help the bats and keep people out, the park service put a gate over the entrance, but the initial gate’s design wasn’t a very good one. It kept people out but it also made it harder for the bats to go in and out, and eventually the bats gave up and moved out of the cave completely. This really impacted the cave’s ecosystem, since bats bring a lot of nutrients into a cave with their droppings and the occasional bat who dies and falls to the cave floor.

The gate has since been replaced with a much more bat-friendly one, but studies afterwards showed that a lot of the animals found in the cave had become rare. The Shelta Cave crayfish had disappeared completely. One was spotted in 1988 but after that, nothing, and the biologists studying the cave worried that it had gone extinct.

Then, in 2019, a team of scientists and students surveying life in the cave spotted a little white crayfish with long, thin pincers in the water. The team leader dived down and scooped it up with his net to examine more closely. The crayfish turned out to be a female Shelta Cave crayfish with eggs, which made everyone excited, and after taking a tiny tissue sample for DNA testing, and lots of photographs, they released her back into the water. The following year they found a second Shelta Cave crayfish.

The Shelta Cave crayfish is so little known that we don’t even know what it eats or how it survives in the same environment with two larger crayfish species. Biologist Dr. Matthew Niemiller is continuing Dr. Cooper’s initial studies of the cave and will hopefully be able to learn more about the crayfish and its environment.

Next let’s travel from a cool, damp, flooded cave in Alabama to northern Arizona. Arizona is in the western United States and this particular part of the state has desert-like conditions most of the year. Almost a thousand years ago, people built what is now called Wupatki Pueblo, a 100-room building with a ballcourt out front and a big community room. It was basically a really nice apartment building. Wupatki means “tall house” in the Hopi language, and while the pueblo people who built it are long gone, Wupatki is still an important place for the Hopi and other Native American tribes in the area. It’s also a national monument that has been studied and restored by archaeologists and is open to the public.

In late July 2021, torrential rain fell over the area, so much rain that it pooled into a shallow temporary lake around Wupatki, including flooding the ballcourt. The ballcourt is 105 feet across, or 32 meters, and surrounded by a low wall. One day while the ballcourt was still flooded, a tourist came up to the lead ranger, Lauren Carter. The visitor said there were tadpoles in the ballcourt.

There are toads in the area that live in burrows and only come out during the wet season when there’s rain, and Carter thought the tadpoles might be from the toads. She went to investigate, saw what looked like tadpoles swimming around, and scooped one up in her hands to take a closer look. But the tadpoles were definitely not larval toads. In fact, they kind of looked like teensy horseshoe crabs, with a rounded shield over the front of the body and a segmented abdomen and tail sticking out from behind, with two long, thin spines at the very end that are called caudal extensions. It had two pairs of antennae and lots of small legs underneath, some adapted for swimming. The largest of the creatures were about two inches long, or 5 cm.

What on earth were they, and where did they come from? This area is basically a desert. Carter stared at the weird little things and remembered hearing about something similar when she worked at the Petrified Forest National Park, also in Arizona. She looked the animal up and discovered what it was.

It’s called Triops and is in the order Notostraca. Notostracans are small crustaceans shaped sort of like tadpoles, which is why it’s sometimes called the tadpole shrimp, but it’s not a shrimp. It has two eyes on the top of its head visible through its flattened, smooth carapace. Species in the genus Triops also have a so-called third eye between the two ordinary eyes, although it’s a very simple eye that probably only detects light and dark. Many crustaceans have these third eyes in their larval forms but very few retain them into adulthood.

Notostracans have been around for about 365 million years, and haven’t changed much in the last 250 million years. It’s an omnivore that mostly lives on the bottom of freshwater pools and shallow lakes, often temporary ones like the flooded ballcourt, although some species live in brackish water and saline pools, or permanent waterways like peat bogs.

Triops eggs are able to tolerate high temperatures and dry conditions, with the eggs remaining viable for years or even decades in the sediment of dried-up ponds. When enough water collects, the eggs hatch and within 24 hours are miniature versions of the adult Triops. They grow up quickly, lay lots of eggs, and die within a few months or when the water dries up again.

Triops eggs are even sold as aquarium pets, since they’re so unusual looking and are easy to care for. They basically eat anything. They especially like mosquito larvae, so if you see some in your local pond or other waterway, give them a tiny high-five.

In 1996, some workers near Indianapolis, Indiana were servicing a tank full of chemical byproducts from making plastic auto parts when they noticed movement in the toxic goo. They investigated and saw several squid-like creatures swimming around. They were red-brown and about 8 inches long, or 20 cm, including their arms or tentacles, but were only about an inch wide, or 2.5 cm.

The workers managed to capture one and put it in a jar, which they stuck in the break room refrigerator. By the time someone in management arranged to have it examined by a scientist, the jar had been thrown out. If you’ve ever tried to keep food in a break room fridge, you’ll know that there’s always someone who will throw out everything in the fridge that isn’t theirs, no matter whether it’s labeled or brand new or not. I have had my day’s lunch thrown out that had only been in the fridge a few hours. Anyway, when the tank was cleaned out the following year, no one found any creatures in it at all.

This sounds really interesting, but there’s precious little information to go on. The story appeared in a few newspapers but we have no names of the people who reportedly saw the creatures, no follow-up information. It has all the hallmarks of a hoax or urban legend. The creatures’ size also seems quite large for extremophiles in a small, closed environment. What would they find to eat to get so big?

Next let’s talk about some mysterious tracks made by invertebrates, as far as we know. We’ll start with a track on land that was a mystery at first, but was solved. A man in the Kruger National Park in South Africa named Rudi Hulshof came across a weird track in the sandy dirt that he didn’t recognize. It was maybe 10 mm wide and kind of looked like a series of connected rectangles, as though a tiny person was moving a tiny cardboard box by rolling it over and over, but there weren’t any footprints, just the body track.

Curious, Hulshof followed the track to find what had made it, and finally discovered the culprit. It was a leech! Most leeches live in water, whether it’s the ocean, a pond or swamp, a river, or just flooded ground. Most species are parasitic worms that attach to other animals with suckers, then pierce the animal’s skin and suck its blood. The leech stays on the animal until it’s full, then drops off. Some leeches are terrestrial, but it appears that this one was a freshwater leech that had attached to an animal passing through the water, then dropped off onto land. It had crawled as far as it could trying to find a better environment, but when Hulshof found it it was dead, so it had not had a good day.

The leech moves on land by stretching the front of its body forward, then dragging its tail end up in a bunch kind of like a worm (it is a kind of worm), so that’s why its track was so unusual-looking. It’s a good thing Hulshof found the leech before something ate it, or else he’d probably still be wondering what had made that track.

We have photographs of other tracks that are still mysterious. You may have heard about one that’s been in the news lately. This one was found by a deep-sea rover in July 2022, more than a mile and a half deep, or 2500 meters, in the north Atlantic Ocean.

The track may or may not actually be a track, although it looks like one at first glance. It consists of a line of little holes in the seafloor, one after the other, although they’re not all the same distance apart. The rover saw them on two separate dives in different locations, so it wasn’t just one track, but although the scientists operating the rover remotely tried to look into the holes, they couldn’t get a good enough view. It does look like there’s sediment piled up next to the holes, so researchers think something might actually be digging the holes, either digging down from the surface to find food hidden in the sediment, or digging up from inside the sediment to find food in the water. The rover did manage to get a sample of sediment from next to one of the holes and a water sample from just above it, and eventually those samples will be tested for possible environmental DNA that might help solve the mystery.

This wasn’t the first time these holes have been seen in the area, though. An expedition in 2004 saw them and hypothesized that the holes are made by an invertebrate with a feeding appendage of some kind that it uses to dig for food. Not only that, we have similar-looking fossil holes in rocks formed from deep marine sediments millions of years ago.

Other deep-sea tracks have a known cause, and humans are responsible. In the 1970s and 1980s, ships with deep-sea dredging equipment traveled through parts of the Pacific Ocean, testing the ocean floor to see whether the minerals in and beneath the sediment were valuable for mining. A few years ago scientists revisited the same areas to see how the ecosystems impacted by test mining had responded.

The answer is, not well. Even after 40 years or so since the deep-sea mining equipment sampled the sea floor, the marks remain. The deep sea is a fragile ecosystem to start with, and any disturbance takes a long, long time to recover—possibly thousands of years. So while the holes discovered in 2022 were almost certainly made by an animal or animals, they might be quite old.

Let’s finish with a mystery animal we’ve talked about before, but a really long time ago—way back in episode 6. It’s definitely time to revisit it.

In 1883 when he was 18 years old, a Vietnamese man named Tran Van Con had seen the body of an enormous creature washed up on shore at Hongay in Vietnam. Van Con said it was probably 60 feet long, or 18 meters, but less than three wide wide, or 90 cm. It had dark brown plates on its back with long spines sticking out from them to either side, and the segment at its tail end had two more spines pointing straight back. It didn’t have a head, which had presumably already rotted off, or something bit it off before the animal washed ashore. It had been dead for a long time considering the smell. In fact, it smelled so terrible that locals finally towed it out to sea to get rid of it. It sank and that was the last anyone ever saw of it. The locals referred to it as a con rit, which means “millipede,” since the armor plates made it look like the segmented body of an immense millipede.

Lots of people have made suggestions as to what the con rit could be, but nothing really fits. It was the length of a whale, but it doesn’t sound like any kind of whale known. The armored plates supposedly rang like metal when hit with a stick. Even if this was an exaggeration, it probably meant the armor plates were really hard, not just the skin of a dead whale that had hardened in the sun. It also implies that the plates had empty space under them, allowing them to echo when hit. Zoologist Dr. Karl Shuker suggests that the plates might have been the exoskeleton of a crustacean of some kind, which makes a lot more sense than a whale, but the sheer size of the carcass is far larger than any crustacean, or even any arthropod, ever known.

There’s also some doubt that the story is accurate. It might even be a hoax. We only know about the con rit at all because the director of Indochina’s Oceanographic and Fisheries service, Dr. A. Krempf, talked to Tran Van Con about it in 1921. That was 38 years after Van Con said he saw the creature, so he might have misremembered details. Not only that, Krempf translated the story from Vietnamese, and there’s no way of knowing how accurate his translation was.

The con rit is also a monster from Vietnamese folktales, a sort of sea serpent that had lots of feet. It was supposed to attack fishing boats to eat the sailors, until a king caught it and chopped it up into pieces. A local mountain was supposedly formed from its head, and the other pieces of its body turned into the unusual stones found on a nearby island.

There’s always the possibility that Tran Van Con actually told Krempf this folktale, but that Krempf misunderstood and thought he was telling him something he actually witnessed. Then again, there are eight reports from ships in the area between 1893 and 1915 of creatures that might have been a con rit. One account from 1899 was a sighting of a creature estimated as being 135 feet long, or 41 meters, which was rowing itself along at the surface by means of multiple fins along its sides.

Whatever the con rit was, there haven’t been any sightings since 1915. That doesn’t mean there isn’t a population of incredibly long invertebrates living in the deep ocean in southeast Asia. If it does exist, maybe one day a deep-sea rover will spot one. Maybe it dug those little holes, who knows?

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 121: Cave Dwelling Animals

This week let’s learn about some animals that live in caves!

The dipluran Haplocampa:

Oilbirds and their big black eyes:

A swiftlet:

The angel cave fish that can walk on its fins like a salamander walks on its feet:

Leptodirus, carrying around some air in its abdomen in case it needs some air:

The cave robber spider and its teeny hooked feet:

The devils hole pupfish:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Way back in episode 27 we learned about some animals that live deep in caves. Cave dwelling animals are always interesting because of the way they’ve adapted to an unusual environment, so let’s learn about some of them!

We’ll start with an invertebrate. Diplurans are common animals that are related to insects but aren’t insects. They live all over the world, with hundreds of species known to science, but most people have never seen one because of where they live. They like moist, dark areas like soil, dead leaves, and caves. They’re also small, usually only a few millimeters long, although a few species grow larger, up to two inches long, or five cm.

Diplurans have long bodies with a number of segments, six legs, long antennae, and a pair of tail appendages called cerci. Depending on the species, the cerci may just be a pair of straight filaments like an extra pair of antennae, or they may look like pincers. Diplurans with pincer-like cerci use them to help capture prey, while ones with antennae-like cerci eat fungi and plant material.

Diplurans also don’t have eyes. They don’t need eyes because they live underground where there’s little or no light. A lot of species are pale in color or lack pigment completely.

Diplurans have been around for something like 350 million years, although we don’t have very many fossil diplurans. But recently, a new species of dipluran was discovered in North America that has raised some interesting questions.

Vancouver Island is a large island on the west coast of Canada, near the city of Vancouver. It’s prone to earthquakes and contains a lot of caves, and last summer, in June of 2018, a party of cavers and scientists explored two of the caves and found a new dipluran, which has been named Haplocampa wagnelli. This dipluran is chunkier than most other known diplurans, with shorter antennae, which researchers think points to a more primitive body plan. Since the dipluran is so different from most other diplurans known, and because the caves where it was found were under a thick ice sheet until around 18,000 years ago, researchers are trying to figure out if it found its way into the caves after the ice sheet melted or if it survived in the caves while they were buried under ice.

Haplocampa seems to be most closely related to a few diplurans found in Asia. Asia was connected to western North America during the Pleistocene when sea levels were much lower, since so much of the world’s water was frozen, so it’s possible the ancestors of Haplocampa migrated from Asia after the ice sheets started to melt but before the Bering Land Bridge was completely submerged. Possibly its eggs were accidentally transported by birds who foraged in leaf litter where its ancestor lived.

A lot of animals that live in caves are only found in one particular cave system. This happens when a species of animal that lives near a cave moves into the cave, either full-time or part-time. As its descendants grow up, they become more and more adapted to cave life, until eventually they couldn’t live outside of the cave. Since there’s no way for them to travel from one cave system to another, they are confined to that single cave. And since caves are largely difficult for humans to explore, that means there are lots and lots and lots of animals unknown to science living out their quiet lives deep within caves where humans have never visited. Every so often a group of adventurous and brave scientists explore a cave and discover new animals, usually with the help of experienced cavers.

Animals that are endemic to a specific cave system are rare to start with and vulnerable to any changes in the cave environment. The Tumbling Creek cave snail is only found in a single stream in Tumbling Creek Cave in Missouri, in the United States. It lives its whole life in the water and is only about 2 millimeters in size, with a pale yellowish shell. When it was first discovered in 1971 it was common. Thirty years later, researchers could only find about forty of the snails due to water pollution.

Caves aren’t very friendly environments. Most of the animals that live in caves are very small as a result. Lots of insects and spiders live in caves, some snails, lots of fish, lots of crustaceans that live in fresh water, like crawdads and amphipods, and some salamanders. But the only mammals and birds that live in caves leave the cave to hunt or forage outside of it, like bats. There just isn’t enough food inside a typical cave to sustain a population of larger animals.

So what do cave animals eat? Obviously they eat each other, but without plants a cave system is definitely lacking in organic matter that can sustain populations of animals. Nutrients enter a cave primarily in two ways. Water flowing into a cave brings nutrients from outside, and animals that mainly live outside but sleep in caves also bring nutrients in. In the case of animals, their poop is a major source of organic material, with dead animals also contributing to the cave’s ecosystem. Bats in particular support a lot of cave animals with their poop, which is called guano, but bears, hyenas, and various other animals, birds, and insects also spend time in caves, either to sleep or to hibernate, and bring nutrients in from outside in one way or another.

There are two birds that spend time in caves, and I’m going to talk about both of them briefly even though technically they don’t live in caves, because they’re so interesting. Both birds are nocturnal and can echolocate like bats. The oilbird lives in parts of northern South America and is related to nightjars. I have a whole episode planned about nightjars and their relatives, but the oilbird is the only one that echolocates (as far as we know). The other bird that echolocates is the swiftlet.

The oilbird nests in caves and also roosts in caves during the day, then flies out at night and eats fruit. Some oilbirds roost in trees during the day instead. Its wings have evolved to allow it to hover and to navigate through tight areas, which helps it fly through caves. It sees well in darkness, with eyes that are arranged more like those of deep-sea fish rather than typical bird eyes.

Several species of swiflet echolocate. These are the birds that make their nests from saliva, and which humans gather to make bird’s nest soup from. They mostly live in Asia. They nest in caves and roost in caves at night, then fly out during the day to catch insects.

Researchers don’t know a lot yet about either bird’s echolocation. It’s audible to human ears, unlike most bat echolocating, and some researchers think it’s less sophisticated than bats’. It’s always possible there are other birds that echolocate, but we don’t know about them yet because maybe we can’t hear their echolocating.

This is what oilbirds sound like. The clicking noises are the echolocation calls.

[oilbird calls]

Cave fish are especially interesting. There isn’t one kind of cave fish but hundreds, mostly evolved from ordinary fish species that ended up in a cave’s water system and stayed. Sometimes the species of fish that gave rise to cave fish are still around, living outside the cave, but most cave fish species have evolved so much that they’re no longer very closely related to their outside ancestors.

Cave fish are considered extremophiles and they tend to have similar characteristics. They usually have no pigment, no scales, and often have no eyes at all, or tiny eyes that no longer function. They’re usually only a few inches long, or maybe 10 cm, and have low metabolic rates. They typically eat anything they can find.

Some cave fish have evolved in unusual ways to better fit their specific habitats. The cave angel fish lives in a single large cave system in Thailand, in fast-moving water. It’s about an inch long, or not quite 3 cm, and gets its name from its four broad fins, which look feathery like angel wings.

It was discovered in 1985 but it wasn’t until 2016 that researchers verified a persistent rumor about the fish, which is that it can WALK on its fins. It has a robust pelvis and vertebral column, and strong fin muscles that allow it to climb rocks to navigate waterfalls.

Other fish navigate waterfalls and other obstacles by squirming and wriggling, using their fins to push them along. But the cave angel fish walks like a salamander. Scientists are studying the way it walks to learn more about how the ancestors of four-legged animals evolved.

The largest cave dwelling animal is the blind cave eel, which grows up to 16 inches long, or 40 cm, although it’s very slender. Since it appears pink due to a lack of pigment in its skin and it has no eyes or fins, it looks a lot like a really long worm. But it’s actually a fish. Not much is known about it, but it’s widespread throughout western Australia and is sometimes found in wells. It lives in caves or underground waterways that are connected to the ocean.

The first insect that was recognized as living only in caves is a beetle called Leptodirus hochenwartii. It was discovered in 1831 deep in a cave in Slovenia, and researchers of the time found it so intriguing that they invented a whole new discipline to study it and other cave animals, known as biospeleology.

Leptodirus has some interesting adaptations to cave living. It has no wings and no eyes, its antennae and legs are long, but the real surprise is its body. Its head is small and the thorax, the middle section of an insect, is slender. But the abdomen is relatively large and round, and the insect uses it to store moist air. Caves tend to be humid environments and Leptodirus has evolved to need plenty of moisture in the air it breathes. But some parts of a cave can be dry, so not only does Leptodirus keep a supply of breathable air in its abdomen, its antennae can sense humidity levels with a receptor called the Hamann organ.

Some spiders live in caves and like other cave dwellers, they’ve evolved to look strange compared to ordinary spiders. The cave robber spider was only discovered in 2010 in a few caves in Oregon. Researchers suspect there are more species of cave robber spider in other cave systems that haven’t been explored yet by scientists.

The cave robber spider is so different from other spiders that it’s been placed in its own family, Trogloraptoridae, which means cave robber. It has hook-like claws on the ends of its legs which it probably uses to capture prey. It spins small, simple webs on the roofs of caves and researchers think it probably hangs upside down from its web and grabs its prey as it passes by. But since no one knows what the cave robber spider eats, it’s anyone’s guess. Researchers have even tried raising the spider in captivity to learn more about it, but it wouldn’t eat any of the insects or other small invertebrates it was offered as food. It starved to death without ever eating anything, so it’s possible it only eats specific prey. It’s a yellowish-brown spider with two rows of teeth, called serrula in spiders, which researchers say is unique among spiders.

It’s also pretty big for a cave dweller. Its body is up to 10 millimeters long, or about a third of an inch, and it has a legspan of about 3 inches, or 7.6 cm. But it’s very shy and rare, and of course it’s not going to hurt you. It literally wouldn’t even hurt a fly to keep itself from starving.

One of the scientists who discovered the spider and is studying it, Charles Griswold, points out that there are stories in the area of giant spiders living in caves. He suggests the cave robber spider might be the source of the stories, since a three inch spider looks much bigger when it’s hanging down from the roof of a cave right in your face, with hooked claws.

Let’s finish with a remarkable cave fish known as the devil’s hole pupfish. Devil’s hole is a geothermal pool inside a cavern in the Amargosa Desert in Nevada, which is in the southwestern United States. It’s not far from Death Valley. The cavern is more than 500 feet deep, or 150 meters, with water that stays at about 92 degrees Fahrenheit, or 33 degrees Celsius. There’s a single small opening into the cavern at the surface, which geologists estimate opened about 60,000 years ago. The cavern and cave system are more than half a million years old.

The geothermal pool is home to the devils hole pupfish, which is barely an inch long, or 25 millimeters, and looks pretty ordinary. It mostly stays around the opening to the surface, where there’s a limestone shelf just below the water’s surface that measures about 6 ½ by 13 feet, or 2 by 4 meters. While the pupfish does swim deeper into the cavern at times, it mostly eats algae that live on and around the shelf, and tiny animals that live within the algae. It also depends on the shelf for laying eggs and spawning.

So the shelf is really important. But it’s also really small and close to the surface. It can only support so many pupfish, so the average devil’s hole pupfish population is about 200 or 300 fish, although this fluctuates naturally depending on many factors. In the 1960s, a farming corporation drilled wells in the area and pumped water out for irrigation, and the water in devil’s hole started to drop and drop. Devil’s hole is part of Death Valley National Monument, and conservationists were well aware of how fragile the pupfish’s environment was. As the water level dropped, threatening to expose the limestone shelf that the pupfish depended on for their entire lives, conservation groups sued to stop the pumping of groundwater in the area. After a series of court cases that went all the way up to the Supreme Court, the water rights were acknowledged to be part of the national monument status. Pumping of groundwater was limited and the pupfish was saved.

The water level in devil’s hole is monitored daily, which has led to a lot of information about how the water is affected by seismic events. Earthquakes as far away as Alaska, Japan, and South America have all affected the water level.

Researchers aren’t sure how long the pupfish have lived in devil’s hole. Some researchers think they’ve been there for 20,000 years, others think it’s more like a few hundred. Researchers aren’t sure how such a small population of fish has stayed healthy for so long, since such a restricted number of individuals should be so inbred they’re no longer viable. The most recent genetic analysis of the pupfish suggests they became isolated from other pupfish species in the area less than a thousand years ago. But if that’s the case, no one’s sure how they got into devil’s hole in the first place. Flooding of the area hasn’t happened in the last thousand years.

Because the pupfish’s habitat is so fragile, the U.S. Fish and Wildlife Service has moved some of the fish into captive populations that mimic the fish’s original habitat. It’s nice to think that these tiny silvery-blue fish with big eyes have so many people working to keep them safe.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!