Category Archives: birds

Episode 206: The Bowerbird and the Victoria Crowned Pigeon



This week let’s learn about two birds of New Guinea, bowerbirds and the Victoria crowned pigeon! Both are beautiful and the bowerbird is kind of weird. Thanks to M Is for Awesome for the suggestion!

Further Reading:

The Women Who Removed Birds from People’s Hats

Various bowers made by various species of bowerbird:

The golden-fronted bowerbird:

Not a bowerbird but a close relation, a dead bird of paradise from New Guinea, decorating an old-timey lady’s fancy hat. I would not want to put this on my head:

A Victoria crowned pigeon, wearing a built-in fancy hat:

A Victoria crowned pigeon baby. Such miniature floof:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we are finally going to look at some birds of New Guinea, a topic suggested ages ago by M Is for Awesome! There are so many weird and amazing birds in New Guinea that instead of trying to talk about a bunch of them very briefly in one episode, I’m going to make this another ongoing series throughout the year. Every so often we’ll revisit New Guinea (in our minds, anyway) and learn about a few more birds. In this episode we’ll learn some basic information about New Guinea and then learn about two really interesting birds that live there.

New Guinea comes up in lots of episodes because so many animals live there. It’s almost the world’s largest island, second only to Greenland. Australia is considered a continent, not an island. New Guinea is actually pretty close to Australia so there’s a lot of overlap between animals that live in Australia and animals that live in New Guinea.

A big reason New Guinea has so many animals is its geography. It has everything from ridiculously high mountains with glaciers to lowland rainforests, savannas, wetlands, mangrove forests, rivers, lakes, alpine tundra, and coral reefs off the coast. About the only thing it doesn’t have is a desert. Most of the island is warm and humid with lots of rain.

Of course people live in New Guinea too, and have for at least 40,000 years, possibly as long as 60,000 years. Back then, New Guinea was connected to Australia by a land bridge similar to the one that has connected North America with Asia when sea levels were low. Some of the earliest humans to migrate out of Africa settled in New Guinea, and the people there developed agriculture independently of the people who settled in the Middle East. More people arrived much later, only around 3,500 years ago, from parts of Asia. But because the land is so hard to navigate due to the mountains and rivers and so forth, people who moved to a new part of the island were largely isolated from the people in other parts. Some 7,000 languages are spoken on the island right up to the present day, with several hundred more languages once spoken.

Unfortunately, as happens so often, after European explorers discovered the island in the 16th century, they decided they would like to have it for themselves. So they took it, which is just rude. The eastern half of the island is now independent as of 1975, called Papua New Guinea, while the western half, usually just called Papua, is now part of Indonesia. Indonesia is an Asian country and unfortunately, they’re being just as bad to the indigenous people of the area as Europeans were.

There are still lots of places in New Guinea that scientists haven’t explored, mostly in the mountains, and undoubtedly lots and lots of animals and birds that are completely unknown to science. Some of the animals and birds of the mountains may never have been seen by any person at all.

M specifically wanted us to cover bowerbirds, so let’s start with them. Bowerbirds live in Australia and New Guinea along with a few smaller islands, with twenty species known. You may have heard about them before, because a male bowerbird builds what’s called a bower and decorates it with items he selects to attract a female. A bower is a nice little shady area where you’d like to have a picnic, unless you’re a female bowerbird in which case you’d like to examine all the things a male has collected and evaluate his elaborate courtship dance.

Because the female builds a nest and takes care of her eggs and chicks by herself, she’s really picky about who she mates with. She wants the strongest, healthiest male she can find so her babies will be healthy too. She looks for a male who has the energy to build a bower, collect pretty items to decorate it, and then perform an elaborate courtship dance when the female shows up. She will visit numerous bowers before she makes a decision, narrowing them down over the course of several days or even weeks until she chooses between the best candidates.

Researchers think the bowerbird is most closely related to corvids, which as you may remember includes birds like crows, magpies, and jays, but they’re also closely related to birds of paradise. Some bowerbirds are plain black or brown, some are mostly black or brown with green or other colored markings, while some are brightly colored overall. For instance, the male flame bowerbird that lives in rainforests in New Guinea has a bright orangey-red head and shoulders shading to bright yellow body and wings, with a black tail tipped with yellow. The female is more brown but she has a bright yellow belly.

The species most people have heard of is the satin bowerbird, where the male has black feathers that shine iridescent blue in sunlight and who collects almost exclusively blue items to attract a female. The satin bowerbird lives in Australia, not New Guinea. The bowerbirds that live in Australia are more well studied than the ones in New Guinea because it’s easier to find them.

Not all bowerbirds build bowers, though. The catbirds of Australia and New Guinea are mostly green, and instead of the males building bowers to attract a mate who then goes off to lay her eggs and take of the babies herself, both parents take care of the babies.

Let’s talk a little more about these bowers. There are two main types, the maypole bower and the avenue bower, and a particular species of bowerbird will only ever build one or the other. A male who builds a maypole bower chooses a sapling tree or large fern and places sticks against it all around. Some maypole bowers look like little huts. An avenue bower is made of two walls of sticks with a walkway between. These structures can be big, sometimes up to three feet high, or about a meter, although most are smaller. Most bowerbirds are fairly big too, about the size of a jay or magpie.

Once he’s built the bower, the male finds and places items around it that he hopes a female will like. He will spend hours arranging and rearranging them. Some species put light-colored objects down first, then display colored items on top. Some birds will place smaller items in front, larger items in back, so that when the female is inside the bower all the items appear to be about the same size. Different species of bowerbird prefer different colors of item.

The items a male chooses for decoration vary from bird to bird depending on what he can find, or what he can steal from other males, and can include shells, stones, coins, pieces of glass, berries, feathers, bones, flowers, leaves, bottle caps, dead beetles, fungus, moss, snail shells, bark, nuts, and many other things.

Bowerbirds mainly eat fruit, but they also eat insects and some also eat nectar and flowers.

Let’s look into the story of a particular bowerbird before we move on to another type of bird. The male golden-fronted bowerbird is a rusty reddish-brown with a long golden crest, while the female is olive brown. The species was described in 1895 from skins imported to decorate hats.

In the 19th century women wore fancy hats, at least in Europe and America and other places that were influenced by this fancy-hat-wearing trend, and the more well-to-do a woman was, the fancier she wanted her hats. This was before synthetic dyes, so the brightest, fanciest, and most expensive way to decorate a hat was with the feathers of exotic birds. Sometimes it wasn’t just a few feathers or even a lot of feathers, but an entire wing or a bunch of bird wings. As the style grew more and more elaborate, often it was an entire dead bird, stuffed and mounted on a hat. I am not known for my sense of style, but that just seems really gross. But it was the style at the time and it meant hat-makers would pay a lot for exotic birds, especially ones with brightly colored feathers. The demand for feathers was so high, it nearly drove some species to extinction.

When an American woman named Harriet Hemenway heard about the slaughter of birds happening all around the world just so women could have fancier and fancier hats, she and her cousin Minna Hall started spreading the word to all the women they knew: stop buying and wearing hats with dead birds on them. The women attracted more and more supporters, both among hat-wearing ladies and people who just liked birds, and Hemenway and Hall pushed for a boycott of the feather trade. They even started the Massachusetts Audubon Society, the forerunner of the National Audubon Society that’s still around today.

You would think that this would be an obvious law to put into place. I mean, yes, don’t kill millions of rare birds just for hat decorations. But there was a lot of money involved in feather imports back then. People who were getting rich off dead birds called the Audubon Society extremists who wanted to put people out of jobs. Fortunately, the women persisted, and in 1900 the first federal conservation act was put into place in the United States to stop the import of feathers.

But before the feather trade was banned, some scientists made a habit of looking through imports of feathers and bird skins to find new species. That’s how one ornithologist discovered the golden-fronted bower bird, but he didn’t know where it was from. He described the species from the skin and that’s where the story ended for almost a century.

In 1979, a biologist named Jared Diamond was hired to survey New Guinea for the site of a national park. He spent a month hiking through areas where no scientist had ever been before, and returned in 1981 for another few weeks to look for bowerbirds specifically. And as you may have guessed, he saw golden-fronted bowerbirds alive and well in the Foja Mountains. The mountains are steep and inaccessible, which has helped protect the bird from hunters and habitat loss. The first photographs of the bird were only taken in 2005.

Next, let’s look at a pigeon that lives in New Guinea. New Guinea has a whole lot of pigeons and doves, something like 60 species although some are now extinct due to habitat loss and other factors. The Victoria crowned pigeon is a beautiful bird that lives in the lowlands and swampy forests. It’s increasingly threatened in the wild due to habitat loss and hunting, but it’s so pretty that many people keep it in captivity. Unfortunately that also means people trap the wild birds to sell, even though it’s illegal and the birds are hard to take care of properly, although they do tend to be easy to tame. Some zoos let them wander around the grounds the same way peacocks often do.

The Victoria crowned pigeon is indeed a pigeon. It’s a soft blue-grey all over with a reddish patch on its breast, lighter blue wing bars and tail tip, red eyes in a dark blue mask, and a gorgeous spray of feathers on its head that are tipped with white. It’s just lovely. It’s the sort of bird that people would have put on hats in the olden days, but I’m glad they don’t anymore. It’s an especially large bird, too, at least twice as big as ordinary pigeons you see in cities. Basically it’s the size of a big chicken. It mostly eats fruit, especially figs, although it will also eat seeds and small animals like insects, and it doesn’t fly much. It mostly eats fruit that has fallen from trees.

Like all pigeons it’s a sociable bird that usually forages in a small flock or in pairs. It only lays one egg at a time and its baby is blue with white streaks. Both parents feed the baby with crop milk, which we’ve talked about before in various episodes. It’s not actually milk, just a nutritious shed lining of the crop.

During courtship, the male dances for the female to show off his crest, and he also makes a loud booming noise that doesn’t actually sound like a pigeon call. It sounds more like a special effect from a movie set in space. This is what it sounds like:

[pigeon booming]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!


Episode 202: Terror Birds and Pseudotooth Birds



Let’s find out about some gigantic birds this week! Thanks to Pranav and Richard for the suggestions!

Further reading:

Exceptionally preserved fossil gives voice to ancient terror bird

Antarctica yields oldest fossils of giant birds with 21-foot wingspans

Look at that beak! Llallawavis scagliai:

Big birdie!

A red-legged seriema and an unfortunate snake:

Another big birdie!

Toothy birdie!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some gigantic extinct birds! Pranav wants to hear about Phorusrhacidae, also known as the terror bird. Something called a terror bird is definitely going to be interesting. My brother Richard also tweeted me about some huge extinct birds called pelagornithids, so we’ll talk about them too. Both birds were huge and successful, but extremely different from each other.

Phorusrhacidae is the name for a family of flightless birds that lived from about 62 million years ago to a little under 2 million years ago. Flightless birds may make you think of ostriches and penguins and dodos, but remember that Phorusrhacids were called terror birds. They were carnivores and many of them were enormous.

Most terror birds lived in South America, with one species known from southern North America. A few newly discovered bird fossils from Africa and Europe may have been close relations of terror birds, but palaeontologists are still studying them.

Various species of terror bird ranged in size from about 3 feet tall to 10 feet tall, or 1 to 3 meters, and had long, strong legs that made them fast runners. The terror bird also had a long, strong neck, a sharp hooked beak, and sharp talons on its toes. The beak was strong but the jaw muscles were relatively weak. Researchers think that it ambushed prey and chased it down, then either kicked it to death with its sharp talons or held it down with its feet and stabbed it to death with its beak. Smaller species may have grabbed its prey and thrown it back down with enough force to injure, stun, or outright kill the animal. It may have swallowed small prey whole and regurgitated pellets made up of compressed fur and bones, the way many modern carnivorous birds do today.

Although the beak was strong, it was also hollow. This would have made it weigh less, which meant that the bird could move its head more quickly. Some researchers think that it might also have acted as a resonant chamber, and that the bird could clap its beak closed to make a loud noise to communicate with other terror birds. It had excellent hearing and vision, but a poor sense of smell.

Many details of what we know about terror birds come from a single specimen discovered in 2010 in Argentina. The bird lived around 3 million years ago and stood four feet tall, or 1.2 meters. It was described in 2015 and is named Scaglia’s magnificent bird. I am not going to attempt to pronounce its scientific name [Llallawavis scagliai], but I’ll put it in the show notes along with a picture. Almost the entire skeleton is preserved in stunning detail, including details that hardly ever preserve, like the tiny bones that help the eye focus. Studies of the tiny ear bones and other details of the ear indicate that its hearing was most acute at low frequencies, which meant it would have been good at hearing footsteps. It also probably had a deep voice.

The terror bird had wings, but they were small and probably only used for display. The wings did have claws, though, and may have been used to fight other terror birds over mates or territory. Young terror birds of some species might have been able to fly, although adults certainly couldn’t.

The earliest known terror bird, Paleopsilopterus, lived about 60 million years ago in what is now Brazil. It was relatively small, only about three feet high, or 1 meter. It evolved only a few million years after the non-avian dinosaurs went extinct, and its descendants became larger and more fearsome until they were apex predators throughout South America.

Kelenken, for instance, grew up to ten feet tall, or three meters, and had an enormous beak, 18 inches long or almost 46 cm. It lived in what is now Argentina around 15 mya. It’s the tallest terror bird known but it was more slenderly built than others so was probably a faster runner. It was only discovered in 1999.

Brontornis, however, was the one that puts the terror into terror bird. It grew over 9 feet tall, or 2.8 meters, but it was massively built. It probably wasn’t a very fast runner and would have definitely been an ambush predator. Most likely it hid among trees or other tall vegetation, and when an animal came too close, BOOM! THERE’S A TERROR BIRD! RUN! TOO LATE, ARGH!

Titanis lived in parts of North America, with fossils found in Texas and Florida. It probably stood a little over eight feet tall, or 2.5 meters, although we don’t have any complete skeletons so can only estimate its actual size compared to other species of terror bird. You may find information online that says Titanis lived as recently as 10,000 years ago in Florida, and that it used the claws on its wings like hands to help catch prey. Both these things are wrong, unfortunately. The fossil bones found in the Santa Fe River in Florida had washed out of their original location and were mixed in with much more recent bones, and there’s no evidence that any terror bird used its wings like hands. Terror birds were descended from birds that could fly, not descended directly from dinosaurs, so its wings were still highly modified for flight.

Titanis lived in North America about five million years ago. But how did it get to North America from South America before the Isthmus of Panama formed around three million years ago? Before then, a big stretch of ocean separated the two continents. Researchers think it island-hopped, as the tops of mountains and hills in what is now Central America first emerged from the ocean as sea levels dropped, forming islands. Volcanoes also formed islands in the area. Titanis may have traveled to these islands by swimming or rafting during storms.

Terror birds went extinct after the Isthmus of Panama opened up when sea levels lowered. This connected North and South America, which allowed animals from North America to cross into South America and vice versa. The Andes Mountains also formed about this time and changed the climate of much of South America. Forests became open savanna where terror birds wouldn’t have been able to hide to ambush prey. Climate change combined with increased competition from saber-toothed cats and other North American predators probably led to the terror birds’ extinction.

There are no descendants of terror birds living today, but its closest living relations are probably the seriema birds, the red-legged and the black-legged seriema. Both live in South America and both are carnivorous birds that eat small animals like rodents, lizards, snakes, and even other birds. When it catches an animal, it beats it against the ground until it dies. It will also sometimes eat fruit and eggs.

The red-legged seriema stands a little over three feet tall, or a meter, with long legs, long neck, and long tail. It’s mostly brown and gray and it has a fan-shaped crest low down on its forehead, just above the bill. The gray-legged seriema looks very similar but is mostly gray. The seriema also has a sickle claw on each foot that it uses to cut pieces off its dead prey so it can swallow them more easily.

The seriema can fly, but it prefers to walk or run. It can run up to 15 mph, or 25 km/h. It builds its nest in low bushes so it can just hop up onto the nest instead of having to fly. It’s also aggressive and will attack animals much larger than it is, driving them away from its nest or chicks. Farmers sometimes catch young seriemas and tame them, then allow them to patrol the farmyard to catch rats and snakes and drive away larger predators.

Next, let’s learn about a different giant extinct bird, Richard’s suggestion. Unlike the terror bird, pelagornithids could fly. They’re sometimes called pseudotooth birds because they had teeth, but they weren’t real teeth. They were pointy projections of the jaw bones that grew along the edges of its beak and were covered with keratin. Pelagornithids evolved around the same time as the terror bird, around 62 million years ago, and didn’t die out until about the same time as the terror bird, around 2.5 million years ago.

And like the terror bird, pelagornithids were huge, but in a different way than terror birds. They were sea birds that may have superficially resembled modern albatrosses, but they were much larger. The largest living albatross has a wingspan of about 11 1/2 feet, or 3.5 meters, but the largest known pelagornithid had a wingspan estimated at up to 21 feet, or almost 6.5 meters. Its wings were narrow and pointed like albatross wings are.

Researchers think that the pelagornithid probably mostly ate soft-bodied animals like squid and other cephalopods, because its teeth were not very strong. It probably scooped its prey up from the water while flying, like many modern seabirds do, although it could probably also sit on the water and dip its long, strong beak down to catch anything that swam too close. Its bones were too delicate for diving. It may have had a throat sac like a pelican too. It was probably white or gray in color and its wings and tail were probably black, which is the most common coloration for sea birds of any kind.

It had short legs but enormously long wings, so long that it probably couldn’t flap them. Its strongest muscles were the ones that held the wings out straight. It was definitely a bird, of course, but it was proportioned more like a flying reptile, Pteranodon, even though they weren’t related. You know what that means, of course. Convergent evolution! Researchers think the pelagornithid spent almost all its time soaring on ocean breezes, scooping up cephalopods and fish to swallow whole, and that Pteranodon probably did the same. These days, modern albatrosses fill that particular ecological niche, and the albatross has many similarities to the pelagornithid too.

Pelagornithids of various species were found throughout the world, from the Arctic and Antarctic to the tropics. It was extremely successful and unlike the terror bird, which was restricted to land, it could travel as far as it liked as long as it had a breeze to keep it aloft. It evolved soon after the non-avian dinosaurs went extinct and didn’t die out until the beginning of the Pleistocene. What happened then? Why aren’t these enormous birds still flying around?

The Pleistocene, of course, was the ice age, or more properly the ice ages. Its onset resulted from a lot of factors, including the movement of continents that changed ocean currents radically. Once the changes started, they accelerated quickly. As more water froze and became massive glaciers that weighted down entire continents, sea levels dropped and more land was exposed, including the Isthmus of Panama that connected North and South America. This would have radically changed the air currents that pelagornithids used to travel around the world, from nesting sites to feeding sites and back. It also drove many sea animals to extinction as their environments became too cold or too warm for them to adapt to, or the water where they lived just dried up completely.

The one place where pelagornithids couldn’t go was across continents. They needed constant sea breezes and lots of water where they could catch prey, and steep cliffs near water to nest on. As the ecological changes of the Pleistocene became more pronounced, pelagornithids had more and more trouble surviving, and finally they went extinct. Modern albatrosses, gulls, and cormorants expanded at the same time to fill the ecological niche left open by the pelagornithid.

While there are no living descendants of pelagornithids, researchers tentatively think they’re most closely related to living ducks, geese, and swans. Since most pelagornithid fossils are badly damaged and fragmented, so that we only have one or two bones preserved from any given animal, it’s hard for scientists to make conclusions as to what they were most closely related to. Hopefully more and better fossils will be found soon so we can learn more about these gigantic birds!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes for as little as one dollar a month.

Thanks for listening!


Episode 201: The African Grey Parrot and More Mantises



This week we’ll learn about a fascinating parrot and some more weird praying mantises! Thanks to Page and Viola for the suggestions!

Further watching:

Nova Science Now: Irene Pepperberg and Alex

Alex: Number Comprehension by a Grey Parrot

The Smartest Parrots in the World

Further reading:

Why Do Parrots Talk?

Ancient mantis-man petroglyph discovered in Iran

Alex and Irene Pepperberg (photo taken from the “Why do parrots talk?” article above):

Two African grey parrots:

The “mantis man” petroglyph:

The conehead mantis is even weirder than “ordinary” mantis species:

Where does Empusa fasciata begin and the flower end (photo by Mehmet Karaca)?

The beautiful spiny flower mantis:

The ghost mantis looks not like a ghost but a dead leaf:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at two completely unrelated animals, but both are really interesting. Thanks to Page and Viola for the suggestions!

We’ll start with Page’s suggestion, the African gray parrot. We haven’t talked about very many parrots in previous episodes, even though parrots are awesome. The African gray parrot is from Africa, and it’s mostly gray, and it is a parrot. Specifically it’s from what’s called equatorial Africa, which means it lives in the middle of the continent nearest the equator, in rainforests. It has a wingspan of up to 20 inches, or 52 cm, and it has red tail feathers.

The African gray parrot is a popular pet because it’s really good at learning how to talk. It doesn’t just imitate speech, it imitates various noises it hears too. It’s also one of the most intelligent parrots known. Some studies indicate it may have the same cognitive abilities as a five year old child, including the ability to do simple addition. It will also give its treats to other parrots it likes even if it has to go without a treat as a result, and it will share food with other parrots it doesn’t even know.

Despite all the studies about the African grey in captivity, we don’t know much about it in the wild. Like other parrots, it’s a highly social bird. It mostly eats fruit, seeds, and nuts, but will also eat some insects, snails, flowers, and other plant parts. It mates for life and builds its nest in a tree cavity. Both parents help feed the babies. That’s basically all we know.

It’s endangered in the wild due to habitat loss, hunting, and capture for sale as pets, so if you want to adopt an African grey parrot, make sure you buy from a reputable parrot breeder who doesn’t buy wild birds. For every wild parrot that’s sold as a pet, probably a dozen died after being taken from the wild. A good breeder will also only sell healthy birds, and will make sure you understand how to properly take care of a parrot. Since the African grey can live to be up to sixty years old, ideally it will be your buddy for basically the rest of your life, but it will require a lot of interaction and care to stay happy and healthy.

One African grey parrot named Alex was famous for his ability to speak. Animal psychologist Dr. Irene Pepperberg bought Alex at a pet shop in 1977 when he was about one year old, not just because she thought parrots were neat and wanted a pet parrot, but because she wanted to study language ability in parrots.

Pepperberg taught Alex to speak and to perform simple tasks to assess his cognitive abilities. Back then, scientists didn’t realize parrots and other birds were intelligent. They thought an animal needed a specific set of traits to display intelligence, such as a big brain and hands. You know, things that humans and apes have, but most animals don’t. Pepperberg’s studies of Alex and other parrots proved that intelligence isn’t limited to animals that are similar to us.

Alex had a vocabulary of about 100 words, which is average for a parrot, but instead of just mimicking sounds, he seemed to understand what the words meant. He even combined words in new ways. He combined the words banana and cherry into the word banerry to describe an apple. He didn’t know the word for cake, so when someone brought a birthday cake into the lab and he got to taste it, he called it yummy bread. When he saw himself in a mirror for the first time, he said, “What color?” because he didn’t know the word gray. He also asked questions about new items he saw. So not only did he understand what words meant, he actually used them to communicate with humans. As Pepperberg explains, Alex wasn’t super-intelligent or unusual for a parrot. He was just an ordinary parrot, but was trained properly so he could express in words the intelligence that an average parrot uses every day to find food and live in a social environment.

Alex died unexpectedly in 2007 at only 31 years old. I’ve put a link in the show notes to a really lovely Nova Science Now segment about Alex and Dr. Pepperberg, and some other videos of Alex and other parrots. Pepperberg has continued to work with other parrots to continue her studies of language and intelligence in birds.

This is audio of Alex speaking with Pepperberg. You’ll notice that he sounds like a parrot version of her, which is natural since he learned to speak by mimicking her voice, meaning they have the same intonations and pronunciations.

[Alex the parrot speaking with his trainer, Dr. Pepperberg]

Next, Viola wants to learn about praying mantises. We had an episode about them not too long ago, episode 187, but there are more than 2,400 known species, so many that we could have hundreds of praying mantis episodes without running out of new ones to talk about.

Today we’ll start somewhere I bet you didn’t expect, an ancient rock carving from central Iran.

The carving was discovered while archaeologists were surveying the region in 2017 and 2018. I’ll put a picture of it in the show notes, but when you first look at it, you might think it was a drawing of a plant or just a decoration. I’ll try to describe it. There’s a central line that goes up and down like a stick, with three lines crossing the central line and a rounded triangle near the top. The three lines have decorations on each end too. The bottom line curls downward at the ends, the middle line ends in a little circle at each end, and the top line curves up and then down again at the ends. It’s 5 1/2 inches tall, or 14 cm, and a little over four inches across at the widest, or 11 cm. Archaeologists have estimated its age as somewhere between 4,000 years old and 40,000 years old. Hopefully they’ll be able to narrow this age range down further in the future.

The team that found the carving, which is properly called a petroglyph, was actually looking specifically for petroglyphs that represented invertebrates. So instead of thinking, “Oh, that’s just a tree” or “I don’t know what that is, therefore it must just be a random doodle,” the archaeologists thought, “Bingo, we have a six-legged figure with a triangular head and front legs that form hooks. It looks a lot like some kind of praying mantis.”

But while archaeologists might know a lot about petroglyphs, they’re not experts about insects, so the archaeologists asked some entomologists for help. They wanted to know what kind of praying mantis the carving might depict.

The entomologists thought it looked most like a mantis in the genus Empusa, and several species of Empusa live in or near the area, although they’re more common in Africa. So let’s talk about a few Empusa species first.

The conehead mantis is in the genus Empusa and is native to parts of northern Africa and southern Europe. Like most mantises, females are larger than males, and a big female conehead mantis can grow up to four inches long, or 10 cm. The body is thin and sticklike, with long, thin legs, and individuals may be green, brown, or pink to blend in among the shrubs and other low-growing plants where it lives. It eats insects, especially flies. So far this is all pretty normal for a praying mantis. But the conehead mantis has a projection at the back of the head that sticks almost straight up. It’s called a crown extension and it helps camouflage it among sticks and twigs. It also often carries its abdomen so that it curves upward.

Other members of the genus Empusa share these weird characteristics with the conehead mantis. Empusa fasciata lives in parts of western Asia to northeastern Italy and is usually green and pink with lobe-shaped projections on its legs that help it blend in with leaves and flowers. It mostly eats bees and flies, and females spend a lot of time waiting on flowers for a bee to visit. And then you know what it does…CHOMP. The more I learn about insects that live on flowers, the more I sympathize with bees. Everything wants to eat bees. E. fasciata also has a crown extension that makes its head look like a knob on a twig, and it also sometimes carries its abdomen curved sharply upward so that it looks a lot like a little spray of flowers.

Most mantids are well camouflaged. We talked about the orchid mantis in episode 187, which mimics flowers the same way E. fasciata does. But a few mantis species look like they should really stand out instead of blending in, at least to human sensibilities. The spiny flower mantis is white with green or orange stripes on its legs and a circular green, yellow, and black pattern on its wings. When I first saw a photo of it, I honestly thought someone had photoshopped the wing pattern on. But if something threatens a spiny flower mantis, it opens its wings in a threat display, and the swirling circular pattern suddenly looks like two big eyes. It also honestly looks like really nifty modern art. I really like this mantis, and you know I am not fond of insects so that’s saying something. It lives in sub-Saharan Africa and females grow about two inches long, or 5 cm.

Finally, the ghost mantis is really not very well named because it doesn’t look anything like a ghost, unless a ghost looks like a dead leaf. It looks so much like a leaf that it should be called a leaf mantis, but there are actually lots of different species called leaf mantis or dead leaf mantis. This particular one is Phyllocrania paradoxa, and it also grows to about two inches long, or 5 cm. It lives in Africa and most individuals are brown, although some are green or tan depending on the humidity level where it lives. It looks exactly like a dead leaf that’s sort of curled up, except that this leaf has legs and eats moths and flies. It even has a crown extension that looks like the stem of a leaf. Unlike most mantis species, it’s actually pretty timid and less aggressive toward members of its own species. In other words, ghost mantises are less likely to eat each other than most mantis species are.

People keep all these mantises as pets, which I personally think is weird but that’s fine. They’re easier to take care of than parrots are, although you’ll never manage to teach a praying mantis to talk.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!


Episode 191: Masters of Disguise!



Thanks to Nicholas and Pranav for their suggestions which led to this episode about animals that are especially good at disguising themselves!

If you’d like to listen to the original Patreon episode about animal mimics, it’s unlocked and you can listen to it on your browser!

Don’t forget to contact me in some way (email, comment, message me on Twitter or FB, etc.) if you want to enter the book giveaway! Deadline is Oct. 31, 2020.

Further watching:

An octopus changing color while asleep, possibly due to her dreams

Crows mobbing an owl!

Baby cinereous mourner and the toxic caterpillar it’s imitating:

The beautiful wood nymph is a moth that looks just like bird poop when it sits on a leaf, but not when it has its wings spread:

The leafy seadragon, just hanging out looking like seaweed:

This pygmy owl isn’t looking at you, those are false eyespots on the back of its head:

Is it a ladybug? NO IT’S A COCKROACH! Prosoplecta looks just like a (bad-tasting) ladybug:

The mimic octopus:

A flower crab spider with lunch:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s look at some masters of disguise. This is a suggestion from Nicholas, but we’ll also learn about how octopuses and other animals change colors, which is a suggestion from Pranav. Both these suggestions are really old ones, so I’m sorry I took so long to get to them. A couple of years ago we had a Patreon episode about animal mimics, so I’ll be incorporating parts of that episode into this one, but if you want to listen to the original Patreon animal mimics episode, it’s unlocked so anyone can listen to it. I’ll put a link to it in the show notes.

Most animals are camouflaged to some degree so that they blend in with their surroundings, which is also called cryptic coloration. Think about sparrows as an example. Most sparrows are sort of brownish with streaks of black or white, which helps hide them in the grass and bushes where they forage. Disruptive coloration is a type of camouflage that breaks up the outlines of an animal’s body, making it hard for another animal to recognize it against the background. Many animals have black eye streaks or face masks that help hide the eyes, which in turn helps hide where their head is.

But some animals take camouflage to the extreme! Let’s learn about some of these masters of disguise.

We’ll start with a bird. There’s a bird that lives in parts of South America called the cinereous mourner that as an adult is a pretty ordinary-looking songbird. It’s gray with cinnamon wing bars and an orange spot on each side. It mostly lives in the tropics. In 2012, researchers in the area found a cinereous mourner nest with newly hatched chicks. The chicks were orangey-yellow with dark speckles and had long feather barbs tipped with white. While the researchers were measuring the chicks and making observations, they noticed something odd. The chicks started moving their heads back and forth slowly. If you’ve ever seen a caterpillar moving its head back and forth, you’d recognize the chicks’ movements. And, as it happens, in the same areas of South America, there’s a large toxic caterpillar that’s fluffy and orange with black and white speckles.

It’s rare that a bird will mimic an insect, but mimicry in general is common in nature. We’ve talked about some animal mimics in earlier episodes, including the orchid mantis in episode 187 that looks so much like a flower that butterflies sometimes land on it…and then get eaten. Stick insects, also known as phasmids, which we talked about in episode 93, look like sticks. Sometimes the name just fits, you know? Some species of moth actually look like bird poop.

Wait, what? Yes indeed, some moths look just like bird poop. The beautiful wood nymph (that’s its full name; I mean, it is beautiful, but it’s actually called the beautiful wood nymph) is a lovely little moth that lives in eastern North America. It has a wingspan of 1.8 inches, or 4.6 cm, and its wings are quite lovely. The front wings are mostly white with brown along the edges and a few brown and yellow spots, while the rear wings are a soft yellow-brown with a narrow brown edge. It has furry legs that are white with black tips. But when the moth folds its wings to rest, suddenly those pretty markings make it look exactly like a bird dropping. It even stretches out its front legs so they resemble a little splatter on the edge of the poop.

But it’s not just insects that mimic other things. We’ve talked about frogfish before in episode 165. It has frills and protuberances that make it look like plants, rocks, or coral, depending on the species. The leafy seadragon, which is related to seahorses and pipefish, has protrusions all over its body that look just like seaweed leaves. It lives off the coast of southern and western Australia and grows over nine inches long, or 24 cm, and it moves quite slowly so that it looks like a piece of drifting seaweed. Not only are the protuberances leaf-shaped, they’re green with little dark spots, or sometimes brown, while the body can be green or yellowish or brown like the stem of a piece of seaweed.

Many animals have false eyespots, which can serve different purposes. Sometimes, as in the eyed click beetle we talked about in episode 186, the false eye spots are intended to make it look much larger and therefore more dangerous than it really is. Sometimes an animal’s false eyespots are intended to draw attention away from the animal’s head. A lot of butterflies have false eyespots on their wings that draw attention away from the head so that a predator will attack the wings, which allows the butterfly to escape. Some fish have eyespots near the tail that can make a predator assume that the fish is going to move in the opposite direction when startled.

Even some species of birds have false eyespots, including many species of pygmy owl. The Northern pygmy owl is barely bigger than a songbird, just six inches tall, or 15 cm. It lives in parts of western North America, usually in forests although it also likes wetlands. It’s mostly gray or brown with white streaks and speckles, but it has two black spots on the back of its head, fringed with white, that look like eyes. Predators approaching from behind think they’ve been spotted and are being stared at.

But some larger birds of prey have false eyespots too, including the American kestrel and northern hawk owl. What’s going on with that?

You’ve probably seen or heard birds mobbing potential predators. For instance, where I live mockingbirds will mob crows, while crows will mob hawks. The mobbing birds make a specific type of angry screaming call while divebombing the predator, often in groups. They mostly aim for the bird’s face, especially its eyes, in an attempt to drive it away. This happens most often in spring and summer when birds are protecting their nests. Researchers think the false eyespots that some birds of prey have help deflect some of the attacks from other birds. The mobbing birds may aim for the false eyespots instead of the real eyes. Despite its small size, the northern pygmy owl will eat other birds, and it’s also a diurnal owl, meaning it’s most active during the day, and it does sometimes get mobbed by other birds.

Sometimes, instead of blending in to its surroundings, an animal’s appearance jumps out in a way that you’d think would make it easy to find and eat. But like the cinereous mourner chicks mimicking toxic caterpillars, something in the mimic’s appearance makes predators hesitate.

A genus of cockroaches from the Philippines, Prosoplecta, have evolved to look like ladybugs, because ladybugs are inedible to many predators. But cockroaches don’t look anything like ladybugs, so the modifications these roaches have evolved are extreme. Their hind wings are actually folded up and rolled under their carapace in a way that has been found in no other insect in the world. The roach’s carapace is orangey-red with black spots, just like a ladybug.

In the case of a lot of milkweed butterfly species, including the monarch butterfly, which are all toxic and which are not related to each other, researchers couldn’t figure out at first why they all look pretty much alike. Then a zoologist named Fritz Müller suggested that because all the butterflies are toxic and all the butterflies look alike, predators who eat one and get sick will afterwards avoid all the butterflies instead of sampling each variety. That’s called Mullerian mimicry.

A lot of insects have evolved to look like bees, wasps, or other insects with powerful stings. The harmless milksnake has similar coloring to the deadly coral snake. And when the mimic octopus feels threatened, it can change color and even its body shape to look like a more dangerous animal, such as a sea snake.

And that brings us to the octopus. How do octopuses change color? Is it the same in chameleons or is that a different process? Let’s find out and then we’ll come back to the mimic octopus.

We’ve talked about the octopus in many episodes, including episodes 100, 142, and 174, but while I’ve mentioned their ability to change color before, I’ve never really gone into detail. Octopuses, along with other cephalopods like squid, have specialized cells called chromatophores in their skin. A chromatophore consists of a sac filled with pigment and a nerve, and each chromatophore is surrounded by tiny muscles. When an octopus wants to change colors, its nervous system activates the tiny muscles around the correct chromatophores. That is, some chromatophores contain yellow pigment, some contain red or brown. Because the color change is controlled by the nervous system and muscles, it happens incredibly quickly, in just milliseconds.

But that’s not all, because some species of octopus also have other cells called iridophores and leucophores. Iridophores are layers of extremely thin cells that can reflect light of certain wavelengths, which results in iridescent patches of color on the skin. While the octopus can control these reflections, it takes a little longer, several seconds or sometimes several minutes.

Leucophores are cells that scatter light, sort of like a mirrored surface, which doesn’t sound very helpful except when you remember how light changes as it penetrates the water. Near the surface, with full spectrum light from sunshine, the leucophores just appear like little white spots. But water scatters and absorbs the longer wavelengths of light more quickly than the shorter wavelengths. We’ve talked about this before here and there, mostly when talking about deep-sea animals.

To make it a little simpler, think of a rainbow. A rainbow is caused when there are a lot of water droplets in the air. Light shines through the droplets and is scattered, and the colors are always in the same pattern. Red will always be on the top of the rainbow because it has the longest wavelength, while violet, or purple, will always be on the bottom because it has the shortest wavelength. The same thing happens when sunlight shines into the water, but it doesn’t form a rainbow that we can see. Red light is absorbed by the water first, which is why so many deep-sea animals are unable to perceive the color red. There’s no reason for them to see it, so there’s no need for the body to put effort into growing receptors for that color.

Blue, by the way, penetrates water the deepest. That’s why clear, deep water looks blue. Solid particles in the water also affect how light scatters, so it can get complicated. But to get back to an octopus with leucophores, the leucophores reflect the color of the light that shines on them. So if an octopus is deeper in the water and the light shining on it is mostly in the green and blue spectrum, the leucophores will reflect green and blue, helping make the octopus look sort of invisible.

But wait, it gets even more complicated, because some octopuses can also change the texture of the skin. Sometimes that just means it can make its skin bumpy to help it blend in with rocks or coral, but some species can change the shape of the skin more drastically.

We still don’t fully understand how cephalopods know what colors they should change to. While octopuses mostly have good eyesight, at least some species are colorblind. But they can still match the background colors exactly. Some preliminary research into cuttlefish skin appears to show that the cuttlefish has a type of photosensor in the skin that allows it to sense light wavelengths and brightness without needing to use its eyes. Basically the skin acts like its own eye. This is getting weirder and weirder, but that happens when we talk about cephalopods because they are peculiar and fascinating animals. In 2019, marine biologists released footage of a captive octopus changing colors in her sleep. Some researchers think she may have been dreaming, and her dream prompted the color changes.

Let’s get back to the mimic octopus now that we’ve learned the basics of how octopuses change color. The mimic octopus lives throughout much of the Indo-Pacific, especially around Indonesia, and has an armspan of about two feet across, or 60 cm. It generally lives in shallow, murky water, where it forages for small crustaceans and occasionally catches small fish. It’s usually light brown with darker brown stripes, but it’s good at changing both its color and its shape to mimic other animals.

So far, researchers have documented it mimicking 15 other animals, including a sea snake where it hides all but two of its legs, a lion fish where it holds its legs out to look like spines, jellyfish, sting rays, frogfish, starfish, sponges, tube-worms, flatfish, and even a crab. It actually imitates a crab in order to approach other crabs, which it then grabs and eats. So obviously it’s not using its mimicry ability randomly. It will imitate a sea snake if it feels threatened by an animal that is eaten by sea snakes, for instance. And it was only discovered in 1998 and hasn’t been studied very well yet.

Unfortunately, the mimic octopus is rare to start with and threatened by pollution and habitat loss. Once it was discovered, people immediately wanted to own them. But the mimic octopus doesn’t do well in captivity, usually dying within weeks or even days. Even octopus experts have trouble keeping them alive for very long. One expert reported that the mimic octopus is incredibly shy and spends most of its time hiding deep under the sand. It’s mostly active at night and doesn’t like bright light. It’s incredibly sensitive to temperature changes, water quality, and even the type of salt used in saltwater aquariums, and most importantly, he reported that in captivity, it doesn’t do any imitating.

Chameleons are also famous for their ability to change color and pattern, but not every species can do so. The ones who can use a very different process for color changing compared to octopuses. The chameleon has a layer of skin that contains pigments with a layer beneath that contains crystals of guanine, a reflective molecule that’s used in cosmetics to make things look shimmery, like nail polish. The chameleon can move the crystals to change the way light reflects off them, which affects the color, especially when combined with the pigments in the upper layer of skin. The color change takes about 20 seconds and different species are able to change into different colors and patterns.

Not all mimics use appearance. A number of moths are toxic to bats, but it’s no use evolving bright colors to advertise their toxicity to predators who use echolocation to hunt. Instead, the moths generate high-pitched clicks that the bats hear, recognize, and avoid. And naturally, some non-toxic moths also generate the same sounds to mimic the toxic moths.

Let’s finish with a tiny spider that also changes color. It’s called the white crab spider or the goldenrod crab spider or the banana crab spider, or just the flower spider. It’s a small, common spider that lives throughout the northern hemisphere. You’ve probably seen a few of them in your time, probably when you’re leaning down to sniff a flower. It hangs out on flowers and can be white or yellow in color. A big female can be 10 mm long, not counting her legs, while males are barely half that size. They’re called crab spiders because they often run sideways like a crab. The flower spider doesn’t build a web. Instead, it just sits on a flower.

The male flower spider climbs around from flower to flower, looking for a mate. The female generally stays put on a particular flower until it fades, and then she’ll find a new one. If she moves from a yellow flower to a white one, or vice versa, she can change color to match, but it’s not a quick process. It takes at least ten days and sometimes up to 25 days to change from white to yellow, since the spider has to secrete yellow pigment into its cells, while changing from yellow to white usually takes less than a week. If she’s on a flower that is another color, she’ll usually remain white. Only the female can change color, and some females may have small red or pink markings that don’t change color. The male is usually yellow or off-white in color.

The flower spider is so well camouflaged that it can be hard to spot even if you’re looking for it. It eats butterflies and moths, bees, and other insects that visit the flowers. Males will also eat pollen. Its venom is especially toxic to bees, although it’s harmless to humans. It really likes to eat bumblebees. Its first pair of legs are longest and curve forward to make it easier for the spider to grab a bumblebee and sink its fangs into it. Meanwhile, the bumblebee has black and yellow stripes to advertise to potential predators that it will sting, but that doesn’t help it when it comes to the little crab spider. Danger in the bee world!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Don’t forget to contact me if you want to enter the book giveaway contest, which will run through October 31, 2020! If you want to enter, just let me know by any means you like.

Thanks for listening!


Episode 190: The Northern Gannet and Plotopterids



Thanks to Lorenzo for suggesting the northern gannet this week! We’ll also learn about an extinct ancestor of the gannet, called plotopterids!

Don’t forget to enter our book giveaway! Details here.

The northern gannet is the assassin of the bird world, probably:

DIVING! It’s what they do:

Northern gannets hanging out on their nesting grounds:

An artist’s rendition of a plotopterid, with the silhouette of a modern emperor penguin for comparison. Picture from March of the Fossil Penguins.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn about two interesting birds! Thanks to Lorenzo for the suggestion!

But first, an announcement! I’m doing a giveaway of my books Skytown and Skyway! The giveaway runs through October 31, 2020 and is open to anyone in the world. To enter, just let me know you’d like to enter. You can email me at strangeanimalspodcast@gmail.com, leave me a message on Twitter or Facebook, or anything else. All I ask is that you make it clear that you want to enter and let me know how to contact you if you win. On Halloween night at midnight I’ll choose one name at random from everyone who enters and that person will win one paperback copy of each book, and I’ll also throw in some stickers, bookmarks, a pencil that says “I bite mean people,” and probably some other stuff. I’ll also sign the books if you like. If you want to take a look at the books to see if they sound interesting, I made a new page on the strangenanimalspodcast.blubrry.net website with links. Please enter. It will be embarrassing if no one does.

Anyway, Lorenzo wants to hear about the northern gannet, a sea bird that sort of looks like a gull who mastered the blade and is probably an assassin. Its bill is large, silvery-blue, and dagger-like, outlined with black at the base that makes a dramatic mask. This mask is actually bare of feathers, showing the bird’s black skin. Otherwise it’s mostly white, with a wash of pale golden on the head and neck, black-tipped wings, and gray legs with webbed toes. But it’s also really big, almost the size of a pelican. Its wingspan can be over six feet, or 184 cm. It can weigh almost 8 lbs, or 3.6 kg, too.

Like many sea birds, the northern gannet breeds in colonies that can number in the thousands, and it only breeds on oceanside cliffs, mostly on islands off the coast of eastern Canada, Iceland, and western Europe. It’s especially common around the British Isles. So many birds may be nesting at once that the cliffs appear white from a distance, like snow fell on the clifftops, but instead of snowflakes, it’s gannets!

While the northern gannet will sit on the water after diving, the only time it actually sets foot on land is when it breeds. It doesn’t walk very well, which is why it nests on cliffs. It’s easier for it to get airborne from a cliff. It can only take off from the water by facing into the wind and flapping hard, but if it’s not windy enough it can’t get airborne and it just has to float there until the wind picks up, probably feeling pretty foolish. But it swims well so if it is stuck on the water, it can swim along with its head under water, looking for fish it can grab.

But most of the time the northern gannet is in the air, and it is built for speed and efficiency. Its long, narrow wings allow it to reach high speeds, up to 40 mph, or 65 km/h. It’s not very maneuverable, though, except for one specific move. The northern gannet is a diver. It’s a diver extraordinaire! It can reach incredible speeds while diving, up to 62 mph, or 100 km/h. When it dives, it holds its body rigid and angles its wings back, then folds the wings tight against its body just before it hits the water. It can dive up to 36 feet deep, or 11 m, and then it will swim farther down, sometimes over 80 feet deep, or 25 m. Its eyes are sharp and adapted to seeing both underwater and above water, so that as soon as it plunges into the water it can look around for fish. It uses both its feet and its wings to maneuver underwater.

The northern gannet mostly eats fish, but it will also eat squid if it happens to come across one. It prefers small fish like sardines and anchovies, but any fish that swims in a shoal is its favorite. Groups of northern gannets will dive together into a shoal of fish, and swallow the fish underwater. The northern gannet especially likes to follow whales and fishing boats to grab fish trying to escape, injured fish, or fish that are discarded as too small or the wrong kind.

Northern gannets live a long time, with the oldest known bird living past 34 years old. It’s not considered an adult until it’s about five years old. Breeding season starts in spring. The male finds a nesting site, or reclaims the nesting site he used the previous year, and defends it from other males, while females fly over the island and look for a male with a nesting site they like. Pairs generally mate for life, so many females are looking for their mates from the previous year. When a female has found a mate, she lands and displays her wings, while the male displays his neck and shakes it in a little courtship dance.

The male collects seaweed, grass and other plants, feathers, even dirt to build the nest. He’ll basically bring back anything he can find to add to the nest, and researchers have found some weird stuff in gannet nest walls. This includes golf balls, a set of false teeth, a gold watch, and a plastic frog. Not all in the same nest, though. Nests are always just a few feet apart, or maybe 60 cm, even though gannets are fiercely territorial and will fight any other gannet that comes into its little territory.

The female lays one egg. Both the male and female take turns keeping the egg warm, which they do by wrapping their big webbed feet around it. Usually their feet are cool, but during nesting season their feet stay much warmer. The parents will keep the baby warm the same way, wrapping their feet around it. One parent will stay with the chick while the other flies out to fish.

When northern gannet chicks are ready to learn how to fly, they don’t get a chance to practice. I mean, they nest on cliffs. You get one try and you better be lucky or splat. And once they’re flying, they’re on their own and don’t return to the nest. They stay at sea for the next few years, then return to the nesting ground where they hang out in groups near the edges. Even though they don’t breed for a few more years after that, hanging out in the colony helps them learn where the best fishing spots are in the area.

I can’t count how many times I’ve had to say that an animal is threatened by habitat loss, hunting, and so on, but I’m happy to report that the northern gannet is not threatened by anything. It’s doing just fine, and in fact its numbers are increasing after it stopped being hunted extensively in the early 20th century. Its main problem in life is probably a bird called the skua, another sea bird that’s mostly black, brown, and gray. The skua is much smaller than the northern gannet but it’s aggressive, and will kill and eat smaller birds. The northern gannet is much too big to kill, so instead the skua will fly up to a gannet and grab its wing. The gannet falls to the water, where the skua will either keep hold of its wing so it can’t take off again, or will just peck it. Either way, it won’t leave the gannet alone until it regurgitates whatever fish it’s eaten recently but hasn’t digested, which the skua eats.

This is what the northern gannet sounds like:

[northern gannet sounds]

While I was researching the northern gannet, I ran across an article about extinct relations called plotopterids. Plotopterids probably looked a lot like penguins. They also probably acted like penguins, using their short wings as flippers while swimming to catch fish. But they weren’t penguins. They weren’t even related to penguins, or even to the similar-looking great auk, which we talked about in episode 78. They were related to gannets, cormorants, and boobies, which are all sea birds that can fly.

Plotopterids lived in the northern hemisphere between around 35 and 25 million years ago, with fossils of the birds discovered in various places around northwestern North America and Japan. But they were huge! They were even bigger than the extinct giant penguins of the southern hemisphere that could grow almost five and a half feet long, or 1.6 meters. The biggest species of plotopterid known could grow six and a half feet long, or 2 meters.

The similarities between penguins and plotopterids are due to convergent evolution, where animals that share similar environmental conditions develop similar traits. We don’t know whether plotopterids had the same black and white coloring that penguins have, but it’s a good bet that they did. Most sea birds are black and white. Even most diving ducks that live in fresh water are black and white, whereas dabbling ducks have more varied colors. The most obvious difference between penguins and plotopterids, though, is the neck. Penguins have relatively short necks. Plotopterid necks were longer.

Researchers are studying plotopterids to learn why these birds and penguins evolved to swim using their wings. Most birds that can swim use their feet to propel them along in the water. One scientist in the study I read about, Dr. Gerald Mayr, says, “We think both penguins and plotopterids had flying ancestors that would plunge from the air into the water in search of food. Over time these ancestor species got better at swimming and worse at flying.”

I bet the young northern gannets who are about to try flying for the first time wish they were a little more like plotopterids and could just swim away from the nest.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, suggestions for future episodes, or want to enter the book giveaway, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!


Episode 186: Velvet Animals



This week’s episode is about some invertebrates who look like they’re made of velvet! Thanks to Rosy and Simon for their suggestions!

Further reading:

Red Velvet Mite

Chigger Bites

Structure and pigment make the eyed elater’s eyespots black

The red velvet mite looks like a tiny red velvet cake but is NOT CAKE, NOT A SPIDER, NOT A SPIDER CAKE:

GIANT RED VELVET MITE:

Regular sized red velvet mites on a fingertip and one parasitizing a daddy long legs spider:

An eastern velvet ant female (it’s actually a wasp, not an ant):

Velvet worms on hands:

A blue velvet worm!

Look at its teeny mouf!

An eyed click beetle DO YOU SEE THE EYES(pots):

The velvet asity (maybe you notice that it’s uh not an invertebrate):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As we continue invertebrate August, we’ve got a nicely themed episode this week, velvet invertebrates! Thanks to Simon and Rosy for their suggestions!

First, let’s talk about Rosy’s suggestion, the red velvet mite. It sounds delicious, but only because it makes me think of red velvet cake. But the red velvet mite is an arachnid, related to spiders and scorpions–but it’s not actually a spider.

In English, the word mite, spelled m-i-t-e, means a tiny thing, and mites are tiny. Most are under a millimeter long. Scientists actually group mites into two kinds, parasitic mites that are closely related to ticks, and velvet mites that are closely related to chiggers. Chiggers, my least favorite. All the many species of velvet mite and chigger are in the order Trombidiformes.

You know what? Let’s talk briefly about chiggers, because there’s a lot of bad information about them out there. The chigger lives in vegetation, especially tall weeds and shrubs. Various species live throughout the world but it’s more common in warm, humid areas. In some places it’s called a harvest mite or scrub-itch mite.

The chigger is only parasitic as a larva. The larvae only have six legs, compared to adults that have eight. A larva waits on a blade of grass or a leaf for an animal to brush past it, and when it does, the larva grabs on. The longer you stay in one place, for instance when you’re blackberry picking, the more likely it is that a chigger will crawl onto you. It’s very nearly microscopic so you can’t look for chiggers and pick them off the way you can ticks. Like velvet mites, they’re red in color but generally paler than actual velvet mites.

A chigger bite causes intense itching, swelling, redness, and takes sometimes several weeks to heal, especially if you scratch it. It also gets infected easily. Many people believe that the chigger actually burrows into the skin. The chigger does eat skin cells from the layers of skin below the outer layer, but they don’t actually have mouthparts that can bite that deeply. They certainly can’t burrow into the skin. What they do instead is give the skin a little bite and inject digestive enzymes into the wound. The enzymes break down the skin cells they touch, and also harden the tissues around the wound. The chigger slurps up the liquefied skin cells and injects more enzymes, which seep down deeper into the skin, until basically what it’s created is a tube of hardened skin cells that reaches the lower layers of skin. The tube is called a stylosome, in case you were wondering. All this takes several days, so the best way to treat chigger bites before they get bad is to take a hot shower as soon as possible after you’ve been blackberry picking or whatever, and scrub well, especially around places where your clothing was tight. You also need to wash your clothes in hot, soapy water to kill any chiggers still on them.

The best way to deal with chiggers is to wear a good insect repellent and make sure to apply it all the way from your feet up, paying special attention to ankles, the backs of your knees, and around your waist and stomach.

Okay, that’s enough of that. Let’s talk about actual red velvet mites that don’t bite and that you can see. The red velvet mite is covered with short, dense hairlike structures that may act as sensors to help the mite find its way around in the dark or underground. The hairs are orangey-red, although some species may have white spots. Adults have eight legs like spiders do, but each pair of legs grows from a different part of the cephalothorax instead of from the same place like in spiders. Adult red velvet mites generally eat insect larvae and eggs. But the red velvet mite larvae are parasites—but not chigger-type parasites. They don’t bother people or pets, and in fact they only parasitize invertebrates like insects and spiders. A red velvet mite larva will grab onto certain types of insect like grasshoppers or beetles, or some spiders like daddy long-legs. It rides around on the insect and sucks its hemolymph like eensy-beensy insect ticks.

To attract a female, the male red velvet mite leaves droplets of sperm on twigs and grass in a little area and spins an intricate trail of silk leading to the droplets. The female examines the silk trail and if she finds it well-made, she’ll gather up some of the sperm to fertilize her eggs. But if another male comes across the trail, he’ll tear it up. The female lays her eggs in the soil.

There are thousands of species of velvet mite throughout the world, with many more undoubtedly yet to be discovered. Most are teensy, but there are some bigger species called giant red velvet mites.

There are actually two totally different mites called by that name. The first one lives in southwestern North America in dry areas, and includes several species in the genus Dinothrombium. The adults eat ants and termites. Like other mites, people are most likely to see them walking around on outside walls or patios or deck railings, usually lots of them in one area and often after summer rain. That’s why they’re sometimes called rain bugs. But while most velvet mites are just little moving red dots, the giant red velvet mite can grow up to 12 mm, which is almost half an inch long. In the mite world, that really is giant.

The other species called the giant red velvet mite lives in parts of northern India in dry areas, Trombidium grandissumum, and it can grow up to two cm long, or over ¾ of an inch. Like most other red velvet mites, it mostly lives underground and eats insect larvae, many of which are harmful to crops.

So why are red velvet mites so red? Surely that would make them easier for predators to see. Well, the red velvet mite contains compounds that make them taste bad and may be toxic, so the bright red color advertises that to predators.

The red velvet mite will curl its legs in to make itself smaller if it feels threatened, which is oddly sweet. Be safe, little mites.

Next, let’s learn about the velvet ant. It’s not an ant at all but a wasp, although wasps and ants are closely related. The female has no wings although the male does, but the male doesn’t have a stinger while the female does. Sometimes it’s called the cow killer ant because its sting is so painful that people think it could practically kill a cow. It can’t kill a cow. Or a person, for that matter, but one species of velvet ant was scored for how painful its sting was and it ranks right up there with bullet ants.

Like the red velvet mite, there are thousands of species of velvet ant that live throughout the world. The females and usually the males have plush-looking hairs, some species with orange or red hairs, some with other colors and patterns like black and white. In the case of the velvet ant, the bright coloration is to warn potential predators that this is a dangerous wasp and they should steer clear! It’s also a tough insect with a thick exoskeleton.

The biggest species of velvet ant is the eastern velvet ant, which lives in the eastern United States. It can grow almost two centimeters long, or three-quarters of an inch, and is orangey-red with a black stripe on its abdomen and black legs.

If you remember way back to episode 28, about crawdads and cicadas, we talked briefly about a huge wasp called the cicada killer. The cicada killer can grow up to two inches long, or 5 cm, which is simply enormous when one gets into your house and you worry it’s going to just move in and complain that the furniture is too small. Anyway, the cicada killer does something horrible to the cicada. The female stings a cicada, which paralyzes it but doesn’t kill it. Then it carries the cicada to its burrow and lays an egg on it. When the egg hatches a day or two later, the larva eats the still-living cicada.

Well, I bring this up because velvet ants do the same thing to cicada killers! Comeuppance in the insect world! The female velvet ant searches for cicada killer burrows, and when it finds one with a larva inside, eating a cicada, it lays an egg on the larva. The egg hatches and the velvet ant larva promptly eats the cicada killer larva which is in turn eating the cicada. This is a way different circle of life than they talked about in the Lion King.

Next, let’s talk about a different kind of invertebrate, the velvet worm. It’s not a worm and it’s also not fuzzy like the animals we’ve talked about so far, but its body does have a soft, velvety texture. There are about 180 species known in two families. It lives in tropical areas in Central and South America, the Caribbean, parts of Africa and Asia, and Australia and New Zealand, but we know it used to be more widespread because we’ve found velvet worms in Baltic amber from what is now northern Europe. It has a soft, segmented body that’s covered with a very thin layer of chitin with tiny overlapping scales. This makes the velvet worm look velvety and acts as a water repellent so the body won’t dry out, but it also needs plenty of humidity in its environment to survive.

At first glance, the velvet worm looks like a caterpillar. It has a caterpillar’s stumpy bumps of legs and a long soft-looking body like a caterpillar. Various species grow to various sizes, but the largest is only about eight inches long, or 20 cm, and most are much shorter. Different species are different colors, from brown or reddish to blue, white, or even bright green like a caterpillar. But it’s not related to any animal that goes through a caterpillar-like stage of life. Scientists aren’t even completely sure what the velvet worm is actually most closely related to. It shares features with some of the strange animals that evolved during the Cambrian, and currently many researchers think it’s a descendant of a group of Cambrian animals called lobopodians, a group which includes Hallucigenia. You may remember Hallucigenia from episode 69.

Some beautifully preserved fossil ancestors of velvet worms have been found in a Canadian fossil bed dated to 425 million years ago. While modern velvet worms live exclusively on land, its 425 million years old ancestors lived in shallow coastal water.

These days, velvet worms are uncommon animals that mostly live in leaf litter or under rotting logs or similar places. Two species even live in caves. It’s mostly nocturnal, although it will come out during the day in rainy weather. During the day, or when it’s too dry or cold for its liking, it will rest in tiny crevices in its habitat. That may be just a deep crack in the earth or a rock, a tunnel originally dug by termites, or a little hidden spot inside a rotting log. It’s eaten by a lot of animals, including birds, insects, spiders, rodents, and snakes, so it’s good at hiding.

But when the velvet worm is out hunting, it is fearsome to its prey. It mostly eats small invertebrates like insects, worms, spiders, and snails, but it can kill animals its own size or even a little larger. And it doesn’t need to eat very often, maybe once a week or even just once a month.

The velvet worm has a pair of retractable antennae that act as feelers that the velvet worm uses to very lightly touch potential prey to see whether it wants to attack. It will sneak up on an animal and use these feelers to touch it so lightly that the animal has no idea the velvet worm is there or is touching it. If that doesn’t creep you out completely, you haven’t read the spooky horror stories I’ve read, that’s all I can say. At the base of the antennae the velvet worm has a pair of eyes, although some species don’t have eyes at all.

The velvet worm’s mouth contains a sharp pair of mandibles, but these are actually inside the mouth, sort of like teeth although they’re nothing like teeth, rather than external mandibles like those of insects. But it’s behind the mouth where things get really interesting, because that’s where the slime is secreted. The velvet worm has a pair of slime glands in its body that generate and hold extremely sticky slime. The velvet worm squirts it from two tiny openings on the sides of its head to form a sort of net that ensnares its prey. If the prey is large or strong, the velvet worm may squirt more slime at its legs to keep it immobilized.

The slime immediately starts to dry and harden, and as it dries it contracts. Then the velvet worm bites the animal and injects digestive saliva into the wound that liquefies the tissues it comes in contact with. Sort of like a chigger. While it’s waiting for the saliva to do its work, the velvet worm eats up the slime it discharged, because it’s made of proteins and takes several weeks to regenerate. Then the velvet worm clamps its mouth over the wound and slurps up the liquefied insides of its prey, which by the way is very dead by this point.

But the really amazing thing is that some species of velvet worm are social. It lives in family groups that hunt together, led by a dominant female. She eats first, then the other females, then the males, then any young. Females are usually larger than males.

Velvet worms have been well studied and I could go on and on about them. I might return to them eventually and give them their own episode. But let’s go on now to our last velvet animal, the velvet asity.

Simon suggested the velvet asity of Madagascar when we were talking on twitter about an insect called the eyed elater, or eyed click beetle, which lives in forests in North and Central America. It’s a slender beetle that grows about 2.5 inches long, or 4.5 cm. The larvae are sometimes called wireworms because they’re so long and skinny. They eat the grubs of other beetles that live in rotting wood, but it’s not known what the adults eat, if anything.

Like other click beetles, if it feels threatened, the eyed click beetle can suddenly launch itself away with its click mechanism. This is a spine underneath its thorax that fits into a groove between its legs. If the insect is threatened, it flexes its body to release the spine, which snaps against whatever surface the beetle is touching and catapults it sometimes several inches away.

The eyed click beetle is black and mottled gray to blend in with tree bark, but it has two large eye spots that are probably meant to frighten predators away. The eye spots are black outlined with white, and the black part contains cone-shaped microtubules made of modified setae that contain the pigment melanin. Between the pigment and the shape of the hairs and the way they’re aligned, the eyespots absorb 96.1% of light that hits them. This makes them look much larger and more conspicuous to potential predators.

Quite a few insects and some other animals have developed similar coloring that will absorb light, often called super-black. And that brings us to the velvet asity, the male of which is almost all super-black as an adult except for bright lime green wattles above the eyes.

Uh, and this is where I have to admit I made a mistake. I often take quick notes about animals people recommend, especially if the recommendation comes from a Twitter conversation that’s easily lost. Later on I transfer my notes to the big ideas spreadsheet. Well, this time I made a note that said “Velvet asity of Madagascar, Simon replied with this to a twitter post about the eyed elater, with specialized hairs in the eyespots that deaden reflection.” That’s literally what’s in my notes, and I listed it under the invertebrates tab because I forgot what the velvet asity is and just assumed it was another insect like the eyed click beetle.

But the velvet asity isn’t an invertebrate, which I only discovered after I’d started researching the other velvet animals in this episode. It’s a bird. But what a bird it is! It’s a little round bird with a very short tail, short wings, and amazing coloration! While the female is a streaky olive color, the male’s breeding plumage is striking.

The super-black coloring of the male velvet asity deadens reflections and makes its green eyebrows look even brighter, which attracts females. The velvet asity lives in the rainforests of Madagascar and mostly eats fruit, but it will also eat nectar and some insects. During breeding season, males gather in small groups called leks to show off for females with a mating dance that involves him flipping all the way around the branch he’s standing on. The female weaves a pear-shaped nest that hangs from a branch and is camouflaged because she uses materials like strips of bark, leaves, and moss to make it. She also takes care of the eggs and chicks by herself. All the male does is show off, but you can hardly blame him. If you’ve got it, flaunt it, velvet asity.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!


Episode 181: Updates 3 and a lake monster!



It’s our annual updates and corrections episode, with a fun mystery animal at the end!

Thanks to everyone who contributed, including Bob, Richard J. who is my brother, Richard J. who isn’t my brother, Connor, Simon, Sam, Llewelly, Andrew Gable of the excellent Forgotten Darkness Podcast, and probably many others whose names I didn’t write down!

Further reading:

Northern bald ibis (Akh-bird)

Researchers learn more about teen-age T. rex

A squid fossil offers a rare record of pterosaur feeding behavior

The mysterious, legendary giant squid’s genome is revealed

Why giant squid are still mystifying scientists 150 years after they were discovered (excellent photos but you have to turn off your ad-blocker)

We now know the real range of the extinct Carolina parakeet

Platypus on brink of extinction

Discovery at ‘flower burial’ site could unravel mystery of Neanderthal death rites

A Neanderthal woman from Chagyrskyra Cave

The Iraqi Afa – a Middle Eastern mystery lizard

Further watching/listening:

Richard J. sent me a link to the Axolotl song and it’s EPIC

Bob sent me some more rat songs after I mentioned the song “Ben” in the rats episode, including The Naked Mole Rap and Rats in My Room (from 1957!)

The 2012 video purportedly of the Lagarfljótsormurinn monster

A squid fossil with a pterosaur tooth embedded:

A giant squid (not fossilized):

White-throated magpie-jay:

An updated map of the Carolina parakeet’s range:

A still from the video taken of a supposed Lagarfljót worm in 2012:

An even clearer photo of the Lagarfljót worm:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This is our third annual updates and corrections episode, where I bring us up to date about some topics we’ve covered in the past. We’ll also talk about an interesting mystery animal at the end. There are lots of links in the show notes to articles I used in the episode’s research and to some videos you might find interesting.

While I was putting this episode together, I went through all the emails I received in the last year and discovered a few suggestions that never made it onto the list. I’m getting really backed up on suggestions again, with a bunch that are a year old or more, so the next few months will be all suggestion episodes! If you’re waiting to hear an episode about your suggestion, hopefully I’ll get to it soon.

Anyway, let’s start the updates episode with some corrections. In episode 173 about the forest raven, I mentioned that the northern bald ibis was considered sacred by ancient Egyptians. Simon asked me if that was actually the case or if only the sacred ibis was considered sacred. I mean, it’s right there in the name, sacred ibis.

I did a little digging and it turns out that while the sacred ibis was associated with the god Thoth, along with the baboon, the northern bald ibis was often depicted on temple walls. It was associated with the ankh, which ancient Egyptians considered part of the soul. That’s a really simplistic way to put it, but you’ll have to find an ancient history podcast to really do the subject justice. So the northern bald ibis was important to the ancient Egyptians and sort of considered sacred, but in a different way from the actual sacred ibis.

In episode 146 while I was talking about the archerfish, I said something about how I didn’t fully understand how the archerfish actually spits water so that it forms a bullet-like blob. Bob wrote and kindly explained in a very clear way what goes on: “Basically, the fish spits a stream of water, but squeezes it so that the back end of the stream is moving faster than the front. So it bunches up as it flies and hits the target with one big smack. Beyond that, the water bullet would fall apart as the back part moves through the front part of the stream, but the fish can apparently judge the distance just right.” That is really awesome.

In another correction, Sam told me ages ago that the official pronouns for Sue the T rex are they/them, because that’s what Sue has requested on their Twitter profile. I forgot to mention this last time, sorry.

While we’re talking about Tyrannosaurus rex, researchers have IDed two teenaged T rex specimens found in Montana. Originally paleontologists thought the specimens might be a related species that grew to a much smaller size, Nanotyrannus, but the team studying them have determined that they were juvenile T rexes. To learn how old the specimens were and how fast they grew, they cut extremely thin slices from the leg bones and examined them under high magnification.

The study of fossil bone microstructure is called paleohistology and it’s a new field that’s helped us learn a lot about long-extinct animals like dinosaurs. We know from this study that T rex grew as fast as modern warm-blooded animals like birds and mammals, and we know that the specimens were 13 and 15 years old when they died. T rex didn’t reach its adult size until it was about twenty, and there are definite differences in the morphology of the juvenile specimens compared to an adult. The young T rexes were built for speed and had sharper teeth to cut meat instead of crush through heavy bones the way adults could. This suggests that juvenile T rexes needed to outrun both predators and smaller prey.

In other fossil news, Llewelly sent me a link about a pterosaur tooth caught in a squid fossil. We know pterosaurs ate fish because paleontologists have found fossilized fish bones and scales in the stomach area of pterosaur remains, but now we know they also ate squid. The fossil was discovered in Bavaria in 2012 and is remarkably well preserved, especially considering how few squid fossils we have. One of the things preserved in the fossil is a sharp, slender tooth that matches that of a pterosaur. Researchers think the pterosaur misjudged the squid’s size and swooped down to grab it from the water, but the squid was about a foot long, or 30 cm, and would have been too heavy for the pterosaur to pick up. One of its teeth broke off and remained embedded in the squid’s mantle, where it remains to this day 150 million years later.

And speaking of squid, the giant squid’s genome has been sequenced. Researchers want to see if they can pinpoint how the giant squid became so large compared to most other cephalopods, but so far they haven’t figured this out. They’re also looking at ways that the giant squid differs from other cephalopods and from vertebrates, including humans, to better understand how vertebrates evolved. They have discovered a gene that seems to be unique to cephalopods that helps it produce iridescence.

The Richard J. who is my brother sent me an article about giant squid a while back. There’s a link in the show notes. It has some up-to-date photos from the last few years as well as some of the oldest ones known, and lots of interesting information about the discovery of giant squid.

The Richard J. who is not my brother also followed up after the magpies episode and asked about the magpie jay. He said that the white-throated magpie jay is his favorite bird, and now that I’ve looked at pictures of it, I see why.

There are two species of magpie jay, the black-throated and the white-throated, which are so closely related that they sometimes interbreed where their ranges overlap. They live in parts of Mexico and nearby countries. They look a little like blue jays, with blue feathers on the back and tail, white face and belly, and black markings. Both species also have a floofy crest of curved feathers that looks like something a parrot would wear. A stylish parrot. Like other corvids, it’s omnivorous. It’s also a big bird, almost two feet long including the long tail, or 56 cm.

In other bird news, Connor sent me an article about the range of the Carolina parakeet before it was driven to extinction. Researchers have narrowed down and refined the bird’s range by researching diaries, newspaper reports, and other sightings of the bird well back into the 16th century. It turns out that the two subspecies didn’t overlap much at all, and the ranges of both were much smaller than have been assumed. I put a copy of the map in the show notes, along with a link to the article.

One update about an insect comes from Lynnea, who wrote in after episode 160, about a couple of unusual bee species. Lynnea said that some bees do indeed spin cocoons. I’d go into more detail, but I have an entire episode planned about strange and interesting bees. My goal is to release it in August, so it won’t be long!

In mammal news, the platypus is on the brink of extinction now more than ever. Australia’s drought, which caused the horrible wildfires we talked about in January, is also causing problems for the platypus. The platypus is adapted to hunt underwater, and the drought has reduced the amount of water available in streams and rivers. Not only that, damming of waterways, introduced predators like foxes, fish traps that drown platypuses, and farming practices that destroy platypus burrows are making things even worse. If serious conservation efforts aren’t put into place quickly, it could go extinct sooner than estimated. Conservationists are working to get the platypus put on the endangered species list throughout Australia so it can be saved.

A Neandertal skeleton found in a cave in the foothills of Iraqi Kurdistan appears to be a deliberate burial in an area where many other burials were found in the 1950s. The new skeleton is probably more than 70,000 years old and is an older adult. It was overlooked during the 1950s excavation due to its location deep inside a fissure in the cave. The research team is studying the remains and the area where they were found to learn more about how Neandertals buried their dead. They also hope to recover DNA from the specimen.

Another Neandertal skeleton, this one from a woman who died between 60,000 and 80,000 years ago in what is now Siberia, has had her DNA sequenced and compared to other Neandertal DNA. From the genetic differences found, researchers think the Neandertals of the area lived in small groups of less than 60 individuals each. She was also more closely related to Neandertal remains found in Croatia than other remains found in Siberia, which suggests that the local population was replaced by populations that migrated into the area at some point.

Also, I have discovered that I’ve been pronouncing Denisovan wrong all this time. I know, shocker that I’d ever mispronounce a word.

Now for a lizard and a couple of corrections and additions to the recent Sirrush episode. Last year, Richard J. and I wrote back and forth about a few things regarding one of my older episodes. Specifically he asked for details about two lizards that I mentioned in episode 21. I promised to get back to him about them and then TOTALLY FORGOT. I found the email exchange while researching this episode and feel really bad now. But then I updated the episode 21 show notes with links to information about both of those lizards so now I feel slightly less guilty.

Richard specifically mentioned that the word sirrush, or rather mush-khush-shu, may mean something like “the splendor serpent.” I totally forgot to mention this in the episode even though it’s awesome and I love it.

One of the lizards Richard asked about was the afa lizard, which I talked about briefly in episode 21. Reportedly the lizard once lived in the marshes near the Tigris and Euphrates rivers in what is now Iraq. Richard wanted to know more about that lizard because he wondered if it might be related to the sirrush legend, which is how we got to talking about the sirrush in the first place and which led to the sirrush episode. Well, Richard followed up with some information he had learned from a coworker who speaks Arabic. Afa apparently just means snake in Arabic, although of course there are different words for snake, and the word has different pronunciations in different dialects. He also mentioned that it’s not just the water monitor lizard that’s known to swim; other monitors do too, including the Nile monitor. I chased down the original article I used to research the afa and found it on Karl Shuker’s blog, and Shuker suggests also that the mysterious afa might be a species of monitor lizard, possibly one unknown to science. We can’t know for certain if the afa influenced the sirrush legend, but it’s neat to think about.

Next up, in cryptid news, Andrew Gable of the excellent Forgotten Darkness podcast suggested that some sightings of the White River Monster, which we talked about in episode 153, might have been an alligator—especially the discovery of tracks and crushed plants on the bank of a small island. This isn’t something I’d thought about or seen suggested anywhere, but it definitely makes sense. I highly recommend the Forgotten Darkness podcast and put a link in the show notes if you want to check it out.

And that leads us to a lake monster to finish up the episode. The Lagarfljót [LAH-gar-flote] worm is a monster from Iceland, which is said to live in the lake that gives it its name. The lake is a pretty big one, 16 miles long, or 25 km, and about a mile and a half wide at its widest, or 2.5 km. It’s 367 feet deep at its deepest spot, or 112 m. It’s fed by a river with the same name and by other rivers filled with runoff from glaciers, and the water is murky because it’s full of silt.

Sightings of the monster go back centuries, with the first sighting generally thought to be from 1345. Iceland kept a sort of yearbook of important events for centuries, which is pretty neat, so we have a lot of information about events from the 14th century on. An entry in the year 1345 talks about the sighting of a strange thing in the water. The thing looked like small islands or humps, but each hump was separated by hundreds of feet, or uh let’s say at least 60 meters. The same event was recorded in later years too.

There’s an old folktale about how the monster came to be, and I’m going to quote directly from an English translation of the story that was collected in 1862 and published in 1866. “A woman living on the banks of the Lagarfljót [River] once gave her daughter a gold ring; the girl would fain see herself in possession of more gold than this one ring, and asked her mother how she could turn the ornament to the best account. The other answered, ‘Put it under a heath-worm.’ This the damsel forthwith did, placing both worm and ring in her linen-basket, and keeping them there some days. But when she looked at the worm next, she found him so wonderfully grown and swollen out, that her basket was beginning to split to pieces. This frightened her so much that, catching up the basket, worm and ring, she flung them all into the river. After a long time this worm waxed wondrous large, and began to kill men and beasts that forded the river. Sometimes he stretched his head up on to the bank, and spouted forth a filthy and deadly poison from his mouth. No one knew how to put a stop to this calamity, until at last two Finns were induced to try to slay the snake. They flung themselves into the water, but soon came forth again, declaring that they had here a mighty fiend to deal with, and that neither could they kill the snake nor get the gold, for under the latter was a second monster twice as hard to vanquish as the first. But they contrived, however, to bind the snake with two fetters, one behind his breast-fin, the other at his tail; therefore the monster has no further power to do harm to man or beast; but it sometimes happens that he stretches his curved body above the water, which is always a sign of some coming distress, hunger, or hard times.”

The heath worm is a type of black slug, not a worm or snake at all, and it certainly won’t grow into a dragon no matter how much gold you give it. But obviously there’s something going on in the lake because there have been strange sightings right up to the present day. There’s even a video taken of what surely does look like a slow-moving serpentine creature just under the water’s surface. There’s a link in the show notes if you want to watch the video.

So let’s talk about the video. It was taken in February of 2012 by a farmer who lives in the area. Unlike a lot of monster videos it really does look like there’s something swimming under the water. It looks like a slow-moving snake with a bulbous head, but it’s not clear how big it is. A researcher in Finland analyzed the video frame by frame and determined that although the serpentine figure under the water looks like it’s moving forward, it’s actually not. The appearance of forward movement is an optical illusion, and the researcher suggested there was a fish net or rope caught under the water and coated with ice, which was being moved by the current.

So in a way I guess a Finn finally slayed the monster after all.

But, of course, the video isn’t the only evidence of something in the lake. If those widely spaced humps in the water aren’t a monstrous lake serpent of some kind, what could they be?

One suggestion is that huge bubbles of methane occasionally rise from the lake’s bottom and get trapped under the surface ice in winter. The methane pushes against the ice until it breaks through, and since methane refracts light differently from ordinary air, it’s possible that it could cause an optical illusion from shore that makes it appear as though humps were rising out of the water. This actually fits with stories about the monster, which is supposed to spew poison and make the ground shake. Iceland is volcanically and geologically highly active, so earthquakes that cause poisonous methane to bubble up from below the lake are not uncommon.

Unfortunately, if something huge did once live in the lake, it would have died by now. In the early 2000s, several rivers in the area were dammed to produce hydroelectricity, and two glacial rivers were diverted to run into the lake. This initially made the lake deeper than it used to be, but has also increased how silty the water is. As a result, not as much light can penetrate deep into the water, which means not as many plants can live in the water, which means not as many small animals can survive by eating the plants, which means larger animals like fish don’t have enough small animals to eat. Therefore the ecosystem in the lake is starting to collapse. Some conservationists warn that the lake will silt up entirely within a century at the rate sand and dirt is being carried into it by the diverted rivers. I think the takeaway from this and episode 179 is that diverting rivers to flow into established lakes is probably not a good idea.

At the moment, though, the lake does look beautiful on the surface, so if you get a chance to visit, definitely go and take lots of pictures. You probably won’t see the Lagarfljót worm, but you never know.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!


Episode 173: The Mystery of the Forest Raven



We have a fun mystery bird this week, the forest raven! Was it a real bird??? (hint: yes, but not a raven)

The “forest raven” illustration from Swiss naturalist Conrad Gessner’s Historiae Animalium, published in 1555:

Scans of the original pages about the forest raven. It’s written in Latin:

The Northern bald ibis. Wacky hair!

Flying bald ibises:

Further viewing:

This Weird Bird May Have Been the First Protected Species

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s high time we had a mystery animal episode, so this week we’re going to learn about a mystery bird, one with a satisfying conclusion.

The story starts almost 470 years ago, when a scholar and physician named Conrad Gessner, who lived in Switzerland, published a book called Historia animalium. The book wasn’t like the medieval bestiaries of previous centuries, in which fantastical and real animals were listed together and half the information consisted of local superstitions. Gessner was an early naturalist, a scientist long before the term was in general use. Historia animalium consisted of five volumes with a total of more than 4,500 pages, and in it Gessner attempted to describe every single animal in the world, drawing from classical sources such as Pliny the Elder and Aristotle as well as his own observations and study.

The book contained animals that had only recently been discovered by Europeans at the time, including animals from the Americas and the East Indies. It also included a few entries which no one today believes ever existed, like the fish-like sea monk and sea bishop. Those and similar monsters were probably added by Gessner’s publishers against his will or maybe just without him knowing, since he was seriously ill by the time the volume on fish was published. For the most part, the book was as scholarly as was possible in the mid-16th century and was lavishly illustrated too.

Volume three, about birds, was published in 1555, and it included an entry for a bird Gessner called the waldrapp, or forest raven. But the illustration didn’t look anything like a raven. The bird has a relatively long neck, a crest of feathers on the back of its head, and a really long bill that ends in a little hook. Gessner wrote that the bird was found in Switzerland and was good to eat.

In fact, I spent an entire morning finding the original scanned pages of a copy of the forest raven entry, typing them as well as I could and modernizing the spelling where I knew how, and using Google translate from Latin to English. The results were…not entirely coherent. Then, after I’d done all that, I continued my research, and that included watching a short BBC film about the bird–which included part of the translation! So I transcribed it. Here’s a translation cobbled together from the BBC’s translation and other parts of the passage that me and Google translate could figure out:

“The bird is generally called by our people the Waldrapp, or forest raven, because it lives in uninhabited woods where it nests in high cliffs or old ruined towers in castles. Men sometimes rob the nests by hanging from ropes. It acquires a bald head in its age. It is the size of a hen, quite black from a distance, but if you look at it close, especially in the sun, you will consider it mixed with green. The Swiss forest raven has the body of a crane, long legs, and a thick red bill, slightly curved and six inches long. Its legs and feet are longer than those of a chicken. Its tail is short, it has long feathers at the back of its head, and the bill is red. The bill is suited for poking in the ground to extract worms and beetles which hide themselves in such places. It flies very high and lays two or three eggs. The young ones are also praised as an article of food and are considered a great delicacy, for they have lovely flesh and soft bones. Those who rob the nests of young take care to leave one chick so the parents will return the following year.”

All that sounds like a perfectly ordinary bird, although not a raven. But what was it? That’s the problem. No one knew, and eventually scholars decided that Gessner must have included a bird that didn’t exist.

But it did sound like one particular bird, just not one related in any way to the raven and not one that lived in Switzerland or other parts of Europe. That’s the northern bald ibis, which was once common across the Middle East and northern Africa.

Here’s a description of the Northern bald ibis. Let’s see how it matches up with Gessner’s forest raven.

The Northern bald ibis is a fairly large bird, about a foot long, or 31 cm, with a wingspan of four and a half feet, or 135 cm. That’s about the size of a goose. It has black feathers that shine with iridescent colors in sunlight, including bronze, violet, and green. It has long, dull red legs and a long, curved bill that’s also reddish. Its head is the same shade of dull red and has no feathers, but it does have a crest of long feathers on the back of its head and neck. It nests on cliff ledges and prefers to hunt for food in areas where the grass or other vegetation is short, such as pastures, fallow fields, semi-arid steppes, and golf courses, often ten miles or more from the cliffs where it nests, or 15 km. It eats insects and other small invertebrates, but it especially likes lizards and beetles. It probes into soft, sandy soil with its bill to find most of its food. The birds live in small flocks and often fly in a V formation.

The northern bald ibis mates for life. The male finds a good nesting site and tidies it up, then waits to see if he can attract a female. The female inspects the site and the male to decide if she likes them, and if she does, the pair build a nest of twigs lined with grass, and the female lays two to four eggs.

Oh, and the northern bald ibis is sometimes also called the waldrapp, just as Gessner reported.

All this information certainly sounds like the same bird Gessner described. But the northern bald ibis doesn’t live in Switzerland or other parts of Europe. It’s only known from the Middle East and northern Africa. Right?

That’s what people after Gessner thought, until 1941. That’s when a team of scientists excavating ancient sites in Switzerland found the bones of what turned out to be northern bald ibises—but the bones weren’t fossilized. They were only a few hundred years old. More remains, both fossil and subfossil, have since been found in France, Germany, Austria, and Spain, and the bird probably lived in even more areas.

It turns out that the northern bald ibis was once common in many parts of Europe, especially around the Alps. It was considered a sacred bird in ancient Egypt, and was supposed to be one of the birds released by Noah during the great flood to help him find land, so was venerated by people of different faiths in the Middle East. But in Europe, it was just considered good to eat. The Archibishop Leonard of Salzburg called for its protection in the Swiss Alps as long ago as 1504, but by the early 17th century, only a matter of decades after Gessner’s book was published, the bird was extinct in Europe. It didn’t take long for Europeans to forget it even existed.

Unfortunately, the northern bald ibis is still endangered due to hunting, habitat loss, and poisoning from pesticides. It’s also sometimes electrocuted when it lands on electricity pylons that aren’t insulated for birds, although efforts are underway to make pylons bird-safe in many areas. A successful captive breeding program has been in place since the late 1970s, though, and that’s a good thing, since the last migratory population went extinct in 1989 and the remaining non-migratory colonies declined to only a few hundred individuals.

The breeding program has gone so well that birds started being reintroduced in some areas of their former range in about 2003, including Spain, Germany, Austria, and Italy. Tagging of the remaining wild birds has also revealed that a small population still migrates from the Middle East to Africa to winter in central Ethiopia. In some areas, conservationists have added nesting platforms to the existing cliffs so that more birds can nest safely. Hopefully their numbers will continue to climb.

I’ll finish with a final piece of trivia about the northern bald ibis that I think you’ll like. It’s a member of the pelican family. Have a nice day.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!


Episode 171: The Animals of St. Kilda



Thanks to Emma for the suggestion! Let’s learn about some animals that live on the St. Kilda islands off the coast of Scotland!

St. Kilda:

Soay rams (kept on farms, not the feral sheep):

A small flock of Soay sheep (these are from a farm too):

A Boreray ram (on a farm):

A Boreray ewe with her babies (also on a farm, or at least I think so):

The St. Kilda wren (not a sheep):

The St. Kilda field mouse (also not a sheep) is the size of a hamster:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s episode is a suggestion from Emma, who long ago told me about the interesting history and unique animals of the island of St. Kilda in Scotland. I’ve been meaning to cover it ever since, so finally I’m getting around to it after only two years or so.

Emma says, “It’s an amazing little island and sort of a reverse of the usual ‘humans cause extinction’ story. The humans on the island went ‘extinct’, being evacuated from the island partly because increased mainland human contact was bringing illnesses they couldn’t fight without hospitals. Two lots of rad ancient sheep and some unique wrens and mice are happily living there to this day.”

St. Kilda is not one but a group of islands off the coast of Scotland, but the largest island and the only one where people once lived is called Hirta. In 1930, everyone who still lived there moved to the mainland, but by that time hardly anyone remained on St. Kilda anyway. The island probably never had more than a few hundred people in residence at any given time. In 1957 St Kilda was designated as a nature reserve and in 1986 as a World Heritage Site.

Since then, as Emma says, the animals of the islands have mostly been left alone. This includes two breeds of sheep that were left behind on two of the smaller islands when the last residents moved away.

One of these sheep breeds is the Soay, which originally lived on a tiny island called Soay, which actually means “sheep island.” The island of Soay is only about 250 acres in size, or 100 hectares, but that’s not the only place they used to be found. The breed has lived in northern Europe for probably 4,000 years, and was a popular sheep in Britain for centuries. When all the people moved away, 107 sheep living on Soay were moved to Hirta. The sheep on Hirta are feral and receive no care from humans, but they also have basically no predators on the island. They have been studied since 1955 by a small team of scientists and conservationists.

The Soay is a primitive breed of sheep that closely resembles its wild ancestor, the Asiatic mouflon. It’s brown, usually with lighter markings on the face and rump, and the rams often grow a short mane of hair in addition to wool. Rams have dark brown horns and ewes often grow smaller horns too. It also has a short tail. In late spring, Soay sheep shed their fleece naturally instead of needing to be shorn. This is the case with many primitive sheep breeds. Its wool is considered high quality and sought after by handcrafters.

Also like many primitive breeds, the Soay doesn’t have much of a flocking instinct. Soay sheep have been exported from the islands and are kept on farms in many areas for their wool, but if a sheep dog tries to herd a flock of Soay, the poor dog is going to be so frustrated. Soay scatter instead of flocking together. It can also be an aggressive sheep, especially the rams, but it’s also a small breed, with even a big ram rarely heavier than 70 lbs, or 32 kg. And these days, the feral Soay sheep are actually getting smaller overall and have been for the last twenty years. The research team that studies the sheep thinks it’s because climate change has led to shorter, warmer winters, which allows more of the sheep to survive, including smaller sheep that would ordinarily have trouble in cold weather. The smaller sheep breed and their offspring are more likely to be small too, and after twenty years of this the breed overall is smaller than it used to be.

While the Soay used to be a popular breed throughout much of Europe, it’s an at-risk rare breed these days. There are fewer than 1500 breeding ewes registered on farms, in addition to the feral flock on Hirta.

The other breed of St. Kilda sheep is called the Boreray, and it’s also a feral sheep on one of the St. Kilda islands. In this case it lives on the island of Boreray. It’s even rarer than the Soay sheep, the rarest sheep breed in the UK. In 1999 there were only 84 individuals known, but a conservation effort by the Rare Breeds Survival Trust has increased the number to nearly 900 breeding ewes as of 2018.

The Boreray is a little smaller than the Soay and shares characteristics with that breed, including a short tail and its fleece shedding naturally in late spring. It’s usually gray or white, although sometimes brown, often with a speckled black face. Its wool is much coarser than the Soay’s and was traditionally used to make tweed fabric or carpets.

But sheep are domesticated animals, feral or not. What about some of the other animals of St. Kilda?

The St. Kilda wren is a subspecies of Eurasian wren that’s found nowhere else in the world. Like other wrens it’s a tiny songbird, brown and gray with a short tail. It was only recognized as a separate subspecies in 1884, and as happened a lot in those days, museum collectors killed so many of them to stuff and mount that the bird nearly went extinct. Fortunately, early conservationists realized the danger in time, and a special Act of Parliament in 1904 protected the bird. After all the people were evacuated from Hirta, a small team of scientists studied the wren. In 1931 68 nesting pairs were counted, and in 2002 230 breeding pairs were counted. That’s still a low population, but since the wren has almost no predators on St. Kilda, that’s a decent number for such a small habitat.

The St. Kilda wren eats insects, spiders, and other small invertebrates. The male builds the nest out of dead grass and other plants, moss, and seabird feathers.

This is what the St. Kilda wren sounds like:

[St Kilda wren singing]

Another animal found nowhere else in the world is the St. Kilda field mouse, a subspecies of wood mouse. There used to be another mouse subspecies found only on St. Kilda, the St. Kilda house mouse. Both mice were described in 1899, and both are larger than mainland mice. But because the house mouse is dependent on humans, once everyone evacuated the islands the St. Kilda house mouse went extinct within two years.

But the field mouse was fine, and is common throughout the island of Hirta and at least one other island. It actually moved into the abandoned buildings after the house mice went extinct, since houses are full of little nooks and crannies that mice can use as homes. Researchers think the mouse may have been on the islands for something like a thousand years, arriving with Viking settlers.

The St. Kilda field mouse is twice as large and heavy as mainland mice, probably because it basically has no predators. It’s an omnivore like most other mice, and eats seeds, moss, insects and other small animals, and even scavenges meat from dead sheep and birds.

Many sea birds nest on St. Kilda, including Atlantic puffins and northern gannets. The grey seal started breeding on Hirta after everyone left. But except for the sheep, the mice, and the gray seals coming ashore during breeding season, there are no other mammals living on St. Kilda. There are also no trees, no bees, and a limited number of plants and animals, all due to how remote the islands are. They’re 41 miles, or 66 km, away from the Outer Hebrides, a series of much larger islands off the Scottish coast.

Humans have probably lived on Hirta for two thousand years, maybe longer, and have visited the St. Kilda islands as long as 5,000 years ago. But now that the people are gone, the mice and sheep and birds are free to live their quiet lives. As long as they don’t mind a few curious scientists keeping an eye on them.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes for as little as one dollar a month.

Thanks for listening!


Episode 161: Strange Bird Sounds 2



I still have a cold, so let’s let some birds do part of the talking in this episode about more weird bird calls!

Further reading:

Listen to the Loudest Bird Ever Recorded

Further listening/watching:

A video of the screaming piha. You need to see this.

The yellow-bellied sapsucker is a real bird, and an adorable one too:

The mute swan is not actually mute:

The white bellbird is the loudest bird ever recorded (photo by Anselmo d’Affonseca):

The screaming piha is hilariously loud. Left, sitting like a normal bird. Right, screaming:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I still have this rotten cold, although I’m getting over it. As you can hear, my voice is pretty messed up, so for this episode I’ll let birds do some of the talking for me. Yes, it’s another weird bird calls episode!

We’ll start with this cute little call:

[yellow-bellied sapsucker call]

That’s not a dog’s squeaky toy, it’s a yellow-bellied sapsucker. Yes, that’s a real bird. It’s a type of woodpecker that lives in much of eastern and northern North America, breeding in Canada and spending winters in the eastern United States and Mexico. I get them in my yard sometimes. The sapsucker will also drum on dead trees and other items to make a loud sound to communicate with other sapsuckers.

It mostly eats tree sap, but it also eats berries, small insects, and fruit. To get the tree sap, it drills small holes in tree bark, usually in neat rows, and licks up the sap that oozes from the holes. If you ever see a tree with rows of little holes in the bark, that was done by a sapsucker. It can sometimes even kill trees this way, but for the most part it doesn’t hurt the tree unless the tree is already dying.

Males and females both forage for insects to feed their babies. They usually dip the insects in tree sap before feeding them to the chicks. Yummy!

Next up is this little grunty call:

[mute swan call]

Maybe it’s not exciting or loud, but it’s made by a bird you wouldn’t expect to hear, the mute swan. I mean, the word mute is right there in its name but it’s not mute at all. The mute swan is a big white waterfowl from Eurasia, although it’s been introduced to other parts of the world since it’s so pretty. Its legs are black with an orange and black bill, and it has a long neck that it uses to reach plants that are deeper underwater than ducks and most geese can get at. Its wingspan can be seven and a half feet across, or 2.4 meters. It’s more closely related to the black swan of Australia and the black-necked swan of South America than it is to other swan species from Eurasia.

Mute swans get their name not because they can’t make sounds, obviously, but because they’re not as noisy as other swan species. Not only does it make the little grunting sounds we just heard, it will sometimes hiss aggressively if a person or animal gets too close to its nest. Also, swans can give you such a wallop with their wings that they could knock you out stone cold, so it’s best to just watch them from a distance and not get too close. When mute swans fly, their wings make a distinctive thrumming sound that helps them stay in contact with other mute swans. This is what their wingbeats sound like:

[mute swans flying]

That sounds more like a UFO than a bird, just saying.

Next is a weird metallic call that doesn’t sound like a noise a bird could make either. It sounds like an industrial machine of some kind:

[white bellbird call]

That’s the sound the male white bellbird gives to attract a female. It also happens to be the loudest bird call ever recorded. In late 2018, an ornithologist from Brazil teamed up with a bioacoustician from the United States. They traveled into the mountainous forests of the Brazilian Amazon to record both the white bellbird and our next bird, which I’ll get to in a minute.

The male white bellbird is white with a black bill with a long wattle hanging from it. The female is green streaked with brown. It’s about the size of a pigeon but the male is as loud as a piledriver hammering rock. The male sits on an exposed perch to call, usually the top of a tree. If a female is interested, she’ll join him. The male will turn his back on the female, then turn around quickly to face her during the call, which adds an extra level of drama to an already dramatic call. These birds are the rock stars of the bird world.

The white bellbird eats fruit, some of it rather large, so the bird can open its beak really wide. This makes its beak act as the bell of an instrument like a trumpet, which helps increase the volume of its call. It also has a robust syrinx and unusually strong abdominal muscles. Its call can reach 125 decibels, which is louder than a firetruck’s siren, a rock band, and even a thunderclap.

Let’s finish with another extremely loud bird:

[screaming piha call]

That’s the male screaming piha, which is related to the white bellbird and lives in the same areas in South America. It’s a drab-looking bird, plain grayish in color, and it looks like a type of thrush. It’s a little bit bigger than an American robin. But drab as it is, keep in mind the bird has “screaming” right in its name. It’s almost as loud as the white bellbird.

The screaming piha eats fruit and insects, and it especially likes figs, which it often swallows whole. I like figs too but I chew them. Also, I don’t scream to attract a mate. The male usually perches in a tree and starts with a couple of relatively ordinary-sounding notes. But when he does the actual screaming part, he tips backwards on his perch, pulls his head back into his shoulders, so to speak, opens his beak wide to show how orange it is inside, and SCREAMS. It’s hilarious to watch. I’ve linked to a video in the show notes and you really do owe it to yourself to give it a watch.

The male gives these calls to attract a female, but it’s also useful to define his territory to other males. During mating season the males gather in a group called a lek to show off for females, and then pairs return to the male’s territory to build a nest. We don’t know a whole lot about the bird’s nesting behavior, but they appear to only lay one egg. Fortunately the screaming piha is a common bird that’s doing well, because if you’ve watched that video of one screaming you’ll agree that it’s probably the funniest bird ever and we definitely need them in the world.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!