Episode 390: The Wallaby and Wiwaxia

Thanks to Jaxon and Lorenzo for their suggestions this week!

Further reading:

Rock-wallaby bite size ‘packs a punch’

Tiny Australian wallaby the last living link to extinct giant kangaroos

Extraordinary Fossil of Giant Short-Faced Kangaroo Found in Australia

Wiwaxia corrugata – The Burgess Shale

The nabarlek:

The banded hare-wallaby:

Wiwaxia was a little less cute than wallabies are:

An artist’s rendition of what Wiwaxia might have looked like when alive [picture from last page linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Every so often I get an animal suggestion that I’m positive we’ve already covered, but then I’m flabbergasted when it turns out we haven’t. That’s the case for the animals we’ll learn about this episode, with thanks to Jaxon and Lorenzo!

A while ago, Jaxon left us a nice review and suggested we talk about wallabies. I was CONVINCED we’d talked about the wallaby repeatedly, but I think I was thinking about the wombat. We’ve hardly ever mentioned the wallaby, and it’s such a great animal!

The wallaby is a marsupial that basically looks like a miniature kangaroo, although some species grow pretty large. The resemblance makes sense because kangaroos and wallabies are closely related, but everything else about the wallaby family tree is confusing. That’s because there are a lot of animals called wallabies that aren’t actually the same type of animal. “Wallaby” is just a catchall term used by people to describe any animal that looks kind of like a miniature kangaroo.

Wallabies are native to Australia and New Guinea, but various species have been introduced to other places where they’re invasive, including New Zealand, France, England, Scotland, and Hawaii. Most of these non-native populations happened by accident when pets or zoo animals escaped into the wild, but some were introduced on purpose by people who didn’t know they were causing damage to the local ecosystems.

One thing everyone knows about kangaroos, which is also true for wallabies, is that they hop instead of running. Their hind legs are extremely strong with big feet, and in fact the name of the family they share, Macropodidae, means big feet. So, you know, Bigfoot exists but maybe doesn’t look like most people think. The animal hops by leaning forward and jumping, with its big hind feet leaving the ground at about the same time, and landing at the same time too before it bounces again. Its big tail helps it balance. But there’s a lot more to this hopping than you might think.

While the wallaby or kangaroo has strong leg muscles, what’s even more important is that it has very strong, very elastic tendons in its legs. These basically act like massively strong rubber bands. When you stretch a rubber band, it stores energy that it releases when you let go of it and it snaps back and whips you in the thumb and you wonder why you did that because it hurt. The tendons in the wallaby’s legs store energy when it hops, and when it lands, the energy releases and helps bounce the animal right back into the next hop. Once it gets going, its muscles are only doing a fraction of the work to keep it hopping at high speed. Even better for the animal, a lot of its breathing is regulated by its movements when it’s hopping, so it always has plenty of oxygen to power its body while moving fast. When it lands after a bounce, the impact pushes its breath out of its lungs, but the action of bringing its legs forward helps suck fresh air in. It’s an incredibly efficient way to move, and allows the animal to travel long distances to find food and water without spending a lot of energy.

Wallabies eat plants, and naturally the bigger species can eat bigger, tougher plants than smaller species. The exception is the dwarf rock-wallaby, according to a study published in March of 2024. There are over a dozen species of rock-wallaby, but in general they live in small groups in rocky areas. They’re nocturnal and spend the day sleeping in shady areas among the rocks, under rock overhangs, or in small caves in cliffs. At night they come out to find plants, but because they live in such harsh environments, most of the plants are pretty tough. Two species of dwarf rock-wallaby in particular turn out to have incredibly strong jaws for their size, as strong as the jaws of much larger species. Their teeth are also larger to help them grind up tough plants, and one species, called the nabarlek wallaby, even grows new molars throughout its life as the old ones wear down. That’s the only marsupial known to grow new molars throughout its life.

The nabarlek is reddish-gray in color and only weighs about 3 ½ pounds at most, or 1.6 kilograms, and is barely more than a foot long, or 30 cm, with its fluffy tail almost doubling that length. When it hops, it curls its tail up over its back. It eats grass, ferns, and other tough plants. Like most species of wallaby, it’s endangered due to habitat loss and introduced predators like foxes.

Another very small wallaby is the banded hare-wallaby, which only has a few small populations remaining on a few islands. It’s almost exactly the same size and weight as the nabarlek and is gray with lighter speckles and darker stripes on its back. It’s also nocturnal and lives in brushy areas where it can hide easily.

Even though these wallabies are smaller than domestic cats, some 45,000 years ago there used to be a type of kangaroo that was extremely large. The short-faced kangaroo stood as tall as a big grey or red kangaroo, about five feet tall, or 1.5 meters, but was much bulkier—as much as twice the weight of a modern kangaroo. It was so heavy that some researchers think it couldn’t hop but actually walked on its hind legs instead like a person. (Bigfoot.)

A few years ago, scientists comparing the genetic sequence of the short-faced kangaroo to other macropods discovered that this big strong kangaroo’s closest living relative was the tiny banded hare-wallaby.

Our next animal is a suggestion from Lorenzo, who sent a bunch of requests a while back. Before we talk about the animal, I should probably explain the situation with the List. This is the list of topics that I want to cover, a lot of them suggestions from listeners and a lot of them animals I’ve added myself. It started out as a simple Word document, but after a few years I moved it over to a spreadsheet and divided it into categories. There’s a page for mammals, a page for birds, and so on. I copied and pasted Lorenzo’s suggestions into the reptiles page because I recognized the first few as reptiles, or at least therapsids.

Well, at some point I took a closer look at the list of Lorenzo’s suggestions and added a note, “these may not all be reptiles.” Then later I took an even closer look and added another note, “these down here are basal arthropods, why did you put them under reptiles?” But next to today’s animal, at some point I added the note “I think this is a bird.”

Dear listener, Wiwaxia is not a bird. Scientists aren’t actually sure what it is, but 100% it is not a bird. It lived just over half a billion years ago in the early to middle Cambrian period, which we talked about in episode 69 about the Cambrian explosion. That’s when life on earth evolved from relatively simple, tiny organisms to much larger and more complex ones. Many of the Cambrian animals look bizarre and confusing to us today because they’re so different from the animals we’re familiar with, and that’s the case for Wiwaxia.

Wiwaxia grew about 2 inches long at most, or 5 cm, and slightly less wide. It was flat underneath like a slug, and it probably moved sort of like a slug too. The upper part of its body was covered in overlapping plates called sclerites, which acted as armor. As the animal grew older, it also developed spines that grew between the sclerites in two rows, with the longest spines growing 2 inches long, or 5 cm. Modern marine invertebrates have mineralized spines and scales that make them harder, but this hadn’t evolved yet and wiwaxia’s were basically the same material as the rest of the body, but tougher. Both the scales and the spines were shed and regrown every so often.

Like all the other animals in the Cambrian, wiwaxia lived in warm, shallow ocean water. It had a feeding apparatus at its front that had tiny conical teeth, and scientists think it used this feeding apparatus to scrape bacteria off the microbial mats that lived on the sea floor in most places, or it might have lived directly on the sea floor or on rocks. Either way, its feeding apparatus is enough like the radula found in modern mollusks that it’s been tentatively placed in the phylum Mollusca. This means it may be a very distant ancestor of slugs, snails, clams, mussels, oysters, squid, octopuses, and lots of other animals.

Wiwaxia was originally classified as an ancestor or at least a relation of modern polychaete worms, and a lot of scientists still think that’s correct. Since the original description of wiwaxia in 1899, a lot of specimens have been discovered in the Burgess shale in Canada, along with lots more found in China, Russia, the Czech Republic, and Australia, with more fossils found in other places that might be wiwaxia spines.

Because all the Cambrian fossils discovered are flattened, there’s a limit to how much we know about its anatomy when alive. The best fossils are reexamined frequently as new and more powerful methods of study are invented. Wiwaxia was apparently very common throughout the world between about 520 and 505 million years ago, so as more and more fossils are discovered, we’ll definitely learn more about it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 389: Updates 7 and the Lava Bear

It’s our annual updates episode! Thanks to Kelsey and Torin for the extra information about ultraviolet light, and thanks to Caleb for suggesting we learn more about the dingo!

Further reading:

At Least 125 Species of Mammals Glow under Ultraviolet Light, New Study Reveals

DNA has revealed the origin of this giant ‘mystery’ gecko

Bootlace Worm: Earth’s Longest Animal Produces Powerful Toxin

Non-stop flight: 4,200 km transatlantic flight of the Painted Lady butterfly mapped

Gigantopithecus Went Extinct between 295,000 and 215,000 Years Ago, New Study Says

First-Ever Terror Bird Footprints Discovered

Last surviving woolly mammoths were inbred but not doomed to extinction

Australian Dingoes Are Early Offshoot of Modern Breed Dogs, Study Shows

A (badly) stuffed lava bear:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have our annual updates episode, and we’ll also learn about a mystery animal called the lava bear! As usual, a reminder that I don’t try to update everything we’ve ever talked about. That would be impossible. I just pick new information that is especially interesting.

After our episode about animals and ultraviolet light, I got a great email from Kelsey and Torin with some information I didn’t know. I got permission to quote the email, which I think you’ll find really interesting too:

You said humans can’t see UV light, which is true, however humans can detect UV light via neuropsin (a non-visual photoreceptor in the retina). These detectors allow the body to be signaled that it’s time to do things like make sex-steroid hormones, neurotransmitters, etc. (Spending too much time indoors results in non-optimal hormone levels, lowered neurotransmitter production, etc.)

Humans also have melanopsin detectors in the retina and skin. Melanopsin detectors respond to blue light. Artificial light (LEDs, flourescents, etc) after dark entering the eye or shining on the skin is sensed by these proteins as mid-day daylight. This results in an immediate drop in melatonin production when it should be increasing getting closer to bedtime.”

And that’s why you shouldn’t look at your phone at night, which I am super bad about doing.

Our first update is related to ultraviolet light. A study published in October of 2023 examined hundreds of mammals to see if any part of their bodies glowed in ultraviolet light, called fluorescence. More than 125 of them did! It was more common in nocturnal animals that lived on land or in trees, and light-colored fur and skin was more likely to fluoresce than darker fur or skin. The white stripes of a mountain zebra, for example, fluoresce while the black stripes don’t.

The study was only carried out on animals that were already dead, many of them taxidermied. To rule out that the fluorescence had something to do with chemicals used in taxidermy, they also tested specimens that had been flash-frozen after dying, and the results were the same. The study concluded that ultraviolet fluorescence is actually really common in mammals, we just didn’t know because we can’t see it. The glow is typically faint and may appear pink, green, or blue. Some other animals that fluoresce include bats, cats, flying squirrels, wombats, koalas, Tasmanian devils, polar bears, armadillos, red foxes, and even the dwarf spinner dolphin.

In episode 20 we talked about Delcourt’s giant gecko, which is only known from a single museum specimen donated in the 19th century. In 1979 a herpetologist named Alain Delcourt, working in the Marseilles Natural History Museum in France, noticed a big taxidermied lizard in storage and wondered what it was. It wasn’t labeled and he didn’t recognize it, surprising since it was the biggest gecko he’d ever seen—two feet long, or about 60 cm. He sent photos to several reptile experts and they didn’t know what it was either. Finally the specimen was examined and in 1986 it was described as a new species.

No one knew anything about the stuffed specimen, including where it was caught. At first researchers thought it might be from New Caledonia since a lot of the museum’s other specimens were collected from the Pacific Islands. None of the specimens donated between 1833 and 1869 had any documentation, so it seemed probable the giant gecko was donated during that time and probably collected not long before. More recently there was speculation that it was actually from New Zealand, since it matched Maori lore about a big lizard called the kawekaweau.

In June of 2023, Delcourt’s gecko was finally genetically tested and determined to belong to a group of geckos from New Caledonia, an archipelago of islands east of Australia. Many of its close relations are large, although not as large as it is. It’s now been placed into its own genus.

Of course, this means that Delcourt’s gecko isn’t the identity of the kawekaweau, since it isn’t very closely related to the geckos of New Zealand, but it might mean the gecko still survives in remote parts of New Caledonia. It was probably nocturnal and lived in trees, hunting birds, lizards, and other small animals.

We talked about some really big worms in episode 289, but somehow I missed the longest worm of all. It’s called the bootlace worm and is a type of ribbon worm that lives off the coast of Norway, Denmark, Sweden, and Britain, and it’s one of the longest animals alive. The longest worm we talked about in episode 289 was an African giant earthworm, and one was measured in 1967 as 21 feet long, or 6.7 meters. The bootlace worm is only 5 to 10 mm wide, but it routinely grows between 15 and 50 feet long, or 5 to 15 meters, with one dead specimen that washed ashore in Scotland in 1864 measured as over 180 feet long, or 55 meters.

When it feels threatened, the bootlace worm releases thick mucus. The mucus smells bad to humans but it’s not toxic to us or other mammals, but a recent study revealed that it contains toxins that can kill crustaceans and even some insects.

We talked about the painted lady butterfly in episode 203, which was about insect migrations. The painted lady is a small, pretty butterfly that lives throughout much of the world, even the Arctic, but not South America for some reason. Some populations stay put year-round, but some migrate long distances. One population winters in tropical Africa and travels as far as the Arctic Circle during summer, a distance of 4,500 miles, or 7,200 km, which takes six generations. The butterflies who travel back to Africa fly at high altitude, unlike monarch butterflies that fly quite low to the ground most of the time. Unlike the monarch, painted ladies don’t always migrate every year.

In October of 2013, a researcher in a small country in South America called French Guiana found some painted lady butterflies on the beach. Gerard Talavera was visiting from Spain when he noticed the butterflies, and while he recognized them immediately, he knew they weren’t found in South America. But here they were! There were maybe a few dozen of them and he noticed that they all looked pretty raggedy, as though they’d flown a long way. He captured several to examine more closely.

A genetic study determined that the butterflies weren’t from North America but belonged to the groups found in Africa and Europe. The question was how did they get to South America? Talavera teamed up with scientists from lots of different disciplines to figure out the mystery. Their findings were only published last month, in June 2024.

The butterflies most likely rode a well-known wind current called the Saharan air layer, which blows enough dust from the Sahara to South America that it has an impact on the Amazon River basin. The trip from Africa to South America would have taken the butterflies 5 to 8 days, and they would have been able to glide most of the time, thus conserving energy. Until this study, no one realized the Saharan air layer could transport insects.

We talked about the giant great ape relation Gigantopithecus in episode 348, and only a few months later a new study found that it went extinct 100,000 years earlier than scientists had thought. The study tested the age of the cave soils where Gigantopithecus teeth have been discovered, to see how old it was, and tested the teeth again too. As we talked about in episode 348, Gigantopithecus ate fruit and other plant material, and because it was so big it would have needed a lot of it. It lived in thick forests, but as the overall climate changed around 700,000 years ago, the forest environment changed too. Other great apes living in Asia at the time were able to adapt to these changes, but Gigantopithecus couldn’t find enough food to sustain its population. It went extinct between 295,000 and 215,000 years ago according to the new study, which is actually later than I had in episode 348, where I wrote that it went extinct 350,000 years ago. Where did I get my information? I do not know.

The first footprints of a terror bird were discovered recently in Argentina, dating to 8 million years ago. We talked about terror birds in episode 202. The footprints were made by a medium-sized bird that was walking across a mudflat, and the track is beautifully preserved, which allows scientists to determine lots of new information, such as how fast the bird could run, how its toes would have helped it run or catch prey, and how heavy the bird was. We don’t know what species of terror bird made the tracks, but we know it was a terror bird.

We talked about the extinction of the mammoth in episode 256, especially the last population of mammoths to survive. They lived on Wrangel Island, a mountainous island in the Arctic Ocean off the coast of western Siberia, which was cut off from the mainland about 10,000 years ago when ocean levels rose. Mammoths survived on the island until about 4,000 years ago, which is several hundred years after the Great Pyramid of Giza was built. It’s kind of weird to imagine ancient Egyptians building pyramids, and at the same time, mammoths were quietly living on Wrangel Island, and the Egyptians had no idea what mammoths were. And vice versa.

A 2017 genetic study stated that the last surviving mammoths were highly inbred and prone to multiple genetic issues as a result. But a study released in June of 2024 reevaluated the population’s genetic diversity and made a much different determination. The population did show inbreeding and low genetic diversity, but not to an extent that it would have affected the individuals’ health. The population was stable and healthy right to the end.

In that case, why did the last mammoths go extinct? Humans arrived on the island for the first time around 1700 BCE, but we don’t know if they encountered mammoths or, if they did, if they killed any. There’s no evidence either way. All we know is that whatever happened, it must have been widespread and cataclysmic to kill all several hundred of the mammoths on Wrangel Island.

We talked about the dingo in episode 232, about animals that are only semi-domesticated. That episode came out in 2021, and last year Caleb suggested we learn more about the dingo. I found a really interesting 2022 study that re-evaluated the dingo’s genome and made some interesting discoveries.

The dingo was probably brought to Australia by humans somewhere between 3,500 and 8,500 years ago, and after the thylacine was driven to extinction in the early 20th century, it became the continent’s apex predator. Genetic studies in the past have shown that it’s most closely related to the New Guinea singing dog, but the 2022 study compared the dingo’s genome to that of five modern dog breeds, the oldest known dog breed, the basenji, and the Greenland wolf.

The results show that the dingo is genetically in between wolves and dogs, an intermediary that shows us what the dog’s journey to domestication may have looked like. The study also discovered something else interesting. Domestic dogs have multiple copies of a gene that controls digestion, which allows them to eat a wide variety of foods. The dingo only has one copy of that gene, which means it can’t digest a lot of foods that other dogs can. Remember, the dingo has spent thousands of years adapting to eat the native animals of Australia. When white settlers arrived, they would kill dingoes because they thought their livestock was in danger from them. The study shows that the dingo has little to no interest in livestock because it would have trouble digesting, for instance, a lamb or calf. The animals most likely to be hurting livestock are domestic dogs that are allowed to run wild.

We’ll finish with a mystery animal called the lava bear. In the early 20th century, starting in 1917, a strange type of bear kept being seen in Oregon in the United States. Its fur was light brown like a grizzly bear’s, but otherwise it looked like a black bear—except for its size, which was very small. The largest was only about 18 inches tall at the back, or 46 cm, and it only weighed about 35 pounds, or 16 kg. That’s the size of an ordinary dog, not even a big dog. Ordinarily, a black bear can stand 3 feet tall at the back, or about 91 cm, and weighs around 175 pounds, or 79 kg, and a big male can be twice that weight and much taller.

The small bear was seen in desert, especially around old lava beds, which is where it gets its name. A shepherd shot one in 1917, thinking it was a bear cub, and when he retrieved the body he was surprised to find it was an adult. He had it taxidermied and photographs of it were published in the newspapers and a hunting magazine, which brought more hunters to the area.

People speculated that the animal might be an unknown species of bear, possibly related to the grizzly or black bear, and maybe even a new species of sun bear, a small bear native to Asia.

Over the next 17 years, many lava bears were killed by hunters and several were captured for exhibition. When scientists finally got a chance to examine one, they discovered that it was just a black bear. Its small size was due to malnutrition, since it lived in a harsh environment without a lot of food, and its light-colored fur was well within the range of fur color for an American black bear. Lava bears are still occasionally sited in the area around Fossil Lake.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 388: Washington’s Eagle

Further reading:

Audubon’s Bird of Washington: Unraveling the fraud that launched The Birds of America

The Mystery of the Missing John James Audubon Self-Portrait

Washington’s eagle, as painted by Audubon:

The tiny detail in Audubon’s golden eagle painting that is supposed to be a self-portrait:

The golden eagle painting as it was published. Note that there’s no tiny figure in the lower left-hand corner:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This past weekend I was out of town, or to be completely honest I will have been out of town, because I’m getting this episode ready well in advance. Since July 4 was only a few days ago, or will have been only a few days ago, and July 4 is Independence Day in the United States of America, I thought it might be fun to talk about a very American bird, Washington’s eagle.

We talked about it before way back in episode 17, and I updated that information for the Beyond Bigfoot & Nessie book for its own chapter. When I was researching birds for episode 381 I revisited the topic briefly and realized it’s so interesting that I should just turn it into a full episode.

We only have two known species of eagle in North America, the bald eagle and the North American golden eagle. Both have wingspans that can reach more than 8 feet, or 2.4 meters, and both are relatively common throughout most of North America. But we might have a third eagle, or had one only a few hundred years ago. We might even have a depiction of one by the most famous bird artist in the world, James Audubon.

In February 1814, Audubon was traveling on a boat on the upper Mississippi River when he spotted a big eagle he didn’t recognize. A Canadian fur dealer who was with him said it was a rare eagle that he’d only ever seen around the Great Lakes before, called the great eagle. Audubon was familiar with bald eagles and golden eagles, but he was convinced the “great eagle” was something else.

Audubon made four more sightings over the next few years, including at close range in Kentucky where he was able to watch a pair with a nest and two babies. Two years after that he spotted an adult eagle at a farm near Henderson, Kentucky. Some pigs had just been slaughtered and the eagle was looking for scraps. Audubon shot the bird and took it to a friend who lived nearby, an experienced hunter, and both men examined the body carefully.

According to the notes Audubon made at the time, the bird was a male with a wingspan of 10.2 feet, or just over 3 meters. Since female eagles are generally larger than males, that means this 10-foot wingspan was likely on the smaller side of average for the species. It was dark brown on its upper body, a lighter cinnamon brown underneath, and had a dark bill and yellow legs.

Audubon named the bird Washington’s eagle and used the specimen as a model for a life-sized painting. Audubon was meticulous about details and size, using a double-grid method to make sure his bird paintings were exact. This was long before photography.

So we have a detailed painting and first-hand notes from James Audubon himself about an eagle that…doesn’t appear to exist.

Audubon painted a few birds that went extinct afterwards, including the ivory-billed woodpecker and the passenger pigeon, along with less well-known birds like Bachman’s warbler and the Carolina parakeet. He also made some mistakes. Many people think Washington’s eagle is another mistake and was just an immature bald eagle, which it resembles.

But here’s the problem. Audubon wasn’t always truthful. He painted some birds that he never saw but claimed he did, because another bird illustrator had painted them first. Once he claimed he went hunting with Daniel Boone in Kentucky in 1810, but at that time Boone would have been in his 70s and was living several states away.

Audubon also claimed that he discovered a little bird called Lincoln’s sparrow, but this wasn’t the case. His wife’s transcript of his diary doesn’t match up with the account that Audubon published about the discovery, but magically, when his granddaughter published her version of the diary later, Audubon’s discovery of the sparrow was in it. Historians think his granddaughter changed the diary entry to match up with Audubon’s published claim, and then she burned the original diaries. Further research into Audubon’s published writings have revealed plagiarism, false data, outright lies, and even completely fake species.

Audubon was also patriotic, as evidenced by his naming the eagle after George Washington. His journals and letters are full of praise for Washington, who died in 1799, only fifteen years before Audubon first saw the “great eagle.” There’s always a chance that Audubon wanted to name a bird after his idol, but not just any bird. It had to be majestic and bold, the largest eagle in the world! Maybe he decided to invent one.

Audubon also needed money to continue his work of painting birds, and most of the money came from English nobility. His painting and notes about a gigantic eagle made a real splash, bringing him money and fame for the rest of his life. But no evidence of the eagle’s existence has been discovered in the last 200 years. All we have are one man’s notes, a painting, and some stories of other specimens here and there. What we don’t have are the specimens, not even any feathers.

While we’re talking about one Audubon eagle mystery, let’s learn about another mystery. While Audubon was an incredible painter of birds, he wasn’t all that great at painting people. Only two of his famous bird paintings contain human figures, and one of them is his painting of the golden eagle. The other is a hunter painted in the background of the snowy egret, but Audubon didn’t paint that figure himself. He painted the bird, but hired another artist to paint the background. But this isn’t the case for the golden eagle painting, and that’s where the mystery lies. Even though it’s not technically anything to do with the bird, I know we’re all here for a good mystery too, so let’s talk about this painting.

Most of the time Audubon shot the birds he painted, which isn’t a great thing to do but which was common back then for scientists and collectors to shoot even very rare animals. Few people really understood conservation at the time. In the case of the golden eagle, though, the bird was already so rare in the early 19th century that Audubon couldn’t find one to shoot. He eventually bought one from a museum in 1833—but the bird wasn’t dead. It was injured, and Audubon was so impressed by its beauty that he almost set it free. But he needed to paint the bird, and in order to do that to his own meticulous standard, the bird had to be dead so he could really examine it in detail. So, after wrestling with his conscience, he killed the bird.

He spent the next two weeks drawing, studying, and eventually painting the bird. As soon as he finished, he reportedly had a mental breakdown. Not only had he been painting almost nonstop for years at that point, he really didn’t like killing birds. Plus, in the case of the golden eagle, instead of shooting it from a distance, he had killed it up close in person—as humanely as possible, but he still ended its life, and that bothered him.

The mystery comes from a detail in the painting’s background. The golden eagle is shown in front of a dramatic background of snowy mountains, with a dead snowshoe hare in its talons. But in a tiny detail in the lower left-hand corner, a man is shown crossing a gorge on a fallen tree trunk. Strapped onto the man’s back is a dead golden eagle.

The man is awkwardly rendered, but experts believe it’s a self-portrait of Audubon himself. Some experts believe Audubon included himself with a dead eagle, navigating a perilous climb, to indicate his emotional struggle in killing the bird. But when the painting was eventually included in Audubon’s famous book of bird illustrations, the figure was gone. The gorge with the fallen tree remains, but the little man carrying the dead bird has been painted out.

The question is why. Who made that decision, Audubon himself or the publisher? If Audubon did it, was it because he was embarrassed that he’d included a self-portrait, or was he embarrassed at the poor rendering of his figure, or did he just think it detracted from the painting, or some other reason? If the publisher did it, did he dislike the badly painted little man, or did Audubon ask him to remove the figure, or some other reason? We don’t know, and very likely we’ll never know.

While Audubon reportedly loved birds, it turns out he wasn’t a great human. Besides shooting a whole lot of birds and other animals, sometimes hundreds in a single day, and lying in published scientific papers, he “owned” enslaved people and reportedly made money selling them. (Just saying that sentence makes me so mad. You cannot own people.) In 2023, members of the National Audubon Society called for the group to change its name and drop any mention of Audubon, and when the board of directors said no, a lot of members resigned.

I came into this topic really hoping Washington’s eagle was a real bird, and believing that James Audubon was an artist who loved birds and was an honest man who made some mistakes. Now I’ve discovered that Audubon was a liar and a bad person, and that Washington’s eagle was probably just the result of one of his lies. At least we still have golden eagles, bald eagles, and lots of other amazing birds to admire!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

 

Episode 387: The Link Between Fossils and Folklore

Thanks to Richard from NC for inspiring this episode!

Further reading:

Paleontologists Debunk Popular Claim that Protoceratops Fossils Inspired Legend of Griffin

The Fossil Dragons of Lake Lucerne, Switzerland

The Lindworm statue:

A woolly rhinoceros skull:

A golden collar dated to the 4th century BCE, made by Greek artisans for the Scythians, discovered in Ukraine. The bottom row of figures shows griffins attacking horses:

The Cyclops and a (damaged, polished) elephant skull:

A camahueto statue [photo by De Rjcastillo – Trabajo propio, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=145434346]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about the link between fossils and folklore, a topic inspired by a conversation I had with Richard from North Carolina.

We know that stories about monsters were sometimes inspired by fossils, and we even have an example from episode 53. That was way back in 2018, so let’s talk about it again.

In Klagenfurt in Austria there’s a statue of a dragon, called the lindorm or lindwurm, that was erected in 1593 to commemorate a local story. The story goes that a dragon lived near the lake and on foggy days would leap out of the fog and attack people. Sometimes people could hear its roaring over the noise of the river. Finally the duke had a tower built and filled it with brave knights. They fastened a barbed chain to a collar on a bull, and when the dragon came and swallowed the bull, the chain caught in its throat and tethered it to the tower. The knights came out and killed the dragon.

The original story probably dates to around the 12th century, but it was given new life in 1335 when a skull was found in a local gravel pit. It was clearly a dragon skull and in fact it’s still on display in a local museum. The monument’s artist based the shape of the dragon’s head on the skull. In 1935 the skull was identified as that of a woolly rhinoceros.

In 1989 a folklorist proposed that the legend of the griffin was inspired by protoceratops fossils. The griffin is a mythological creature that’s been depicted in art, writing, and folklore dating back at least 5,000 years, with early variations on the monster dating back as much as 8,000 years. The griffin these days is depicted as a mixture of a lion and an eagle. It has an eagle’s head, wings, and front legs, and it often has long ears, while the rest of its body is that of a lion.

The griffin isn’t a real animal and never was. It has six limbs, for one thing, four legs and two wings, and it also has a mixture of mammal and bird traits. I can confirm that it’s a lot of fun to draw, though, and lots of great stories and books have been written about it in modern times. Ancient depictions of a griffin-like monster have been found throughout much of eastern Europe, the Middle East, the Mediterranean, northern Africa, and central Asia. Much of what we know about the griffin legend comes from ancient Greek and Roman stories, but they in turn got at least some of their stories from ancient Scythia. That’s important for the hypothesis that the griffin legend was inspired by protoceratops fossils.

Protoceratops lived between 75 and 71 million years ago and its fossils have been found in parts of China and Mongolia. It was a ceratopsian but it didn’t belong to the family Ceratopsidae, which includes Triceratops. It grew up to about 8 feet long, or 2.5 meters, with a big skull and a neck frill, but while that sounds big, it actually was on the small size for a ceratopsian. At most it would have barely stood waist-high to an average human, so while it was heavy and compact, it was probably smaller, if not lighter, than a modern lion. It ate plants and while it had teeth, it also had a beak, sort of like a turtle’s beak.

Folklorist Adrienne Mayor published a number of papers and a book in the 1990s discussing the links between protoceratops fossils and the griffin legend. The fossils are fairly common in parts of Mongolia and China, and Mayor pointed out that the beak combined with four legs would have suggested a four-footed animal with a bird’s head. She suggested that the head frill might have been interpreted as wings.

As for the Scythians, which we talked about a few minutes ago, they were a nomadic people who ruled much of west and central Asia and part of eastern Europe up to about 300 BCE. They were skilled in metalworking and loved gold, so even though they didn’t have a system of writing, we have some of their metal artifacts found by archaeologists. The Scythians were so important to the ancient world that we know a lot about them from other cultures, especially the ancient Greeks, Persians, and Assyrians.

We know the griffin appeared in Scythian mythology because it’s depicted on some decorative metal items. We also have ancient stories about griffins loving gold and either battling people to steal gold, or mining gold that people stole from them, or some other variation. Scythians had elaborate trade routes that connected Asia and Europe, and as I mentioned, they were hugely influential. I mean, we’re still telling versions of monster stories that the Scythians probably came up with originally.

Mayor suggested that the Scythians found protoceratops fossils while prospecting for gold, thought they were the bones of the monster we now call a griffin, and spread stories about them throughout Eurasia. It sounds plausible, so much so that no one really investigated the story until recently.

Just last week as this episode goes live, a new study has been published by a team of paleontologists about the griffin-protoceratops connection. They worked with historians and archaeologists to determine when and where (and if) the Scythians might have discovered protoceratops fossils.

It turns out that they probably wouldn’t have, certainly not while prospecting or mining gold. Gold has never been found anywhere near protoceratops fossils, and in fact the known gold deposits in central Asia occur hundreds of kilometers away from the fossils found so far. Not only that, it would be very rare to find more than a little bit of fossilized bone sticking out of the rock in most cases.

The spread of the griffin in art doesn’t seem to have begun in central Asia, for that matter, and even the earliest artwork doesn’t seem to be very protoceratops-like. The head isn’t huge in comparison to the body, for instance. Early griffins were commonly depicted as lions with an eagle’s head, but sometimes they were depicted as eagles with a lion’s head.

That doesn’t mean that protoceratops fossils didn’t influence griffin mythology at some point, just that it didn’t seem to happen the way Mayor claimed it did.

Another common connection between a fossil and a mythical monster is likewise just speculation. The skulls of elephants and their ancestors have a big opening in the front that looks like a giant eyesocket, but which is where the trunk was located. The eyes are much smaller and more on the sides of the head, and the skull itself does somewhat resemble a really big human skull. The Cyclops, or Cyclopes, was a giant from ancient Greek myth with one eye in the middle of its face instead of the usual two eyes. Is there really a connection between some kind of elephant skull and the Cyclops?

The connection was first suggested in 1914 by a paleontologist named Othenio Abel, who suggested that skulls from dwarf elephants had inspired the myth. Before about 500 BCE, the ancient Greeks didn’t know what elephants were, and the dwarf elephants that once lived in the area went extinct about 20,000 years ago. Sicily and Malta in particular had been home to various species of dwarf elephant for half a million years, so it’s possible that elephant remains were occasionally discovered in the area. Our griffin-protoceratops friend Adrienne Mayor agrees, but there’s no proof either way of this happening.

Stories of dragons living on Mount Pilatus in Switzerland may have been inspired by the pterosaur fossils that are frequently found in the area. In 1649 a man named Christopher Schorer reported seeing a fiery dragon fly from a cave in the side of Mount Pilatus to another mountain, although he admitted that at first he thought it was a meteor. It was probably a meteor, in fact, but he convinced himself it had to be a dragon because they were known to live on the mountain. A so-called dragon skeleton found near the mountain in 1602 had reportedly been crushed flat by rocks during an earthquake, but once science caught up with the finding, it was determined to be a fossilized pterodactyl.

In many parts of the world, especially China, fossilized bones are called dragon bones, but the dragon as a mythological creature probably came first. This is probably the case for a lot of folklore monsters and animals. The story came first, and once fossils were found in the area, they were seen as proof that the story was true.

In Patagonia in South America, there’s a Chilote legend of a monster called the camahueto. When it’s grown it lives in the ocean, but it starts out life living underground. Eventually it picks a stormy night, and it emerges from the ground and rushes toward the ocean, destroying everything in its path. Its single horn may gouge a channel in the ground for a new stream to form, or it may actually live in a river as a young animal and migrate to the ocean as an adult.

An animal named Trigodon once lived in Patagonia. It was a notoungulate, part of an extinct order of hoofed animals that lived throughout South America. It was probably most closely related to rhinoceroses, horses, and other odd-toed ungulates, but it and its relatives are completely extinct with no living descendants.

Trigodon was big and heavy, probably resembling a rhinoceros in many ways, and that includes having a single short horn on its head. On its forehead, in fact, pointing straight forward. It probably wasn’t a true horn but it was a protuberance of the skull. We don’t know if it was covered with skin and hair like an ossicone, a keratin sheath like a true horn, or if it was more like a rhinoceros horn. It might have been something completely different that’s currently unknown among living animals.

Trigodon went extinct around 4 million years ago, as far as we know, but other notoungulates only went extinct around 12,000 years ago. We don’t know very much about most of them, but we do know that at least one other species had a forehead horn like Trigodon’s. It’s always possible that a rhinoceros-like one-horned animal was still alive when humans first settled Patagonia, and that it was so big and scary it inspired stories about the monster Camahueto, a bull with a single horn on its forehead.

Then again, consider the story about the camahueto. It lives underground or in rivers when it’s young, and travels to the sea only during a storm. That might just be a story used to explain earthquakes that open fissures in the ground, and other natural phenomena. Then again, it might have been inspired by fossilized trigodon skulls that are washed out of the ground by torrential rain or rivers. That’s just my theory, though, but it’s fun to speculate.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 386: The Greater Siren and the Anhinga

Thanks to Kai and Emily for their suggestions this week!

The greater siren [photo by Kevin Stohlgren, taken from this site]:

The anhinga [photo by Tim from Ithaca – Anhinga, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=15526948]:

An anhinga swimming [photo by Wknight94, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two animals, one suggested by Kai and the other suggested by Kai’s mom Emily. It’s so awesome to hear when families like to listen to the podcast together. This episode even includes a mystery animal I bet you’ve never heard of.

Let’s start with Kai’s suggestion, the greater siren. The greater siren is an amphibian, specifically a salamander, but it’s probably not the kind of salamander you’re thinking of. For one thing, it can grow over three feet long, or about a meter, which is pretty darn big for a salamander. It’s dark green or gray in color with tiny yellow or green speckles, and while it has short front legs, those are the only legs it has or needs. It also has external gills which it keeps throughout its life, unlike most salamanders who lose their external gills when they metamorphose into adults.

The greater siren lives primarily in Florida, but it’s also found in coastal wetlands throughout much of the southeastern United States. It’s mostly nocturnal and during the day it hides among water plants or under rocks, and will even burrow into the mud. At night it comes out to find food, which includes crayfish and other crustaceans, insects and spiders, little fish, other amphibians, snails, and even algae. It swallows its food whole, even snails and other mollusks. It poops out the shells and other undigestible pieces.

The grater siren’s body is long but thin, sort of like an eel, with a rounded tail that’s slightly flattened to help it swim. While it does spend its whole life in the water, it has small lungs that allow it to breathe air if it needs to. It can wriggle above ground for short distances if it needs to find a new pond or river, and sometimes it will sun itself on shore. In drought conditions when its water dries up, the greater siren will burrow into the mud and secrete mucus that mixes with dead skin cells to form a sort of cocoon. The cocoon covers everything but the siren’s mouth, so it can still breathe. Then it enters a state of torpor called aestivation, and it can stay in its mud cocoon for a long time, possibly as much as five years, and still be fine once the water returns. It does lose a lot of its body fat and its gills wither away, but it regenerates them quickly once it has water, and will gain weight quickly too once it has food.

In early spring, the female siren lays her eggs in shallow water. The male fertilizes them and takes care of them for the next two months, when they hatch into little bitty sirens that go off on their own right away.

The greater siren has tiny eyes and probably doesn’t see very well. It has a good sense of smell instead, and it can also sense movement and vibrations around it with its lateral line system. This is an organ found in many fish and a lot of larval amphibians, although the greater siren retains it throughout its life. It allows the animal to sense the movement of water in extremely fine detail. The greater siren can probably also sense electrical impulses, which is something that all animals generate when they use their muscles.

If there’s a greater siren, you may be thinking, there must be a lesser siren too. There is, and it’s very similar to the greater siren, just not as big. It only grows about two feet long at most, or 61 cm.

Kai mentioned that the greater siren looks a lot like the axolotl, a critically endangered salamander found only in Mexico. I checked to see if the two salamanders were closely related and was actually surprised to find that they’re not. They’re both salamanders and therefore share the same order, but that’s all. The greater siren and its close relations do share one important trait with the axolotl, though, which is neotony. Neotony is when an adult organism retains juvenile traits, which in the case of the salamander means it retains gills and lives underwater as an adult.

Next, Emily wanted to learn more about a bird called the anhinga. It’s sometimes called the snakebird because it has a long, serpentine neck. But before we learn about the anhinga, let’s learn about a mystery animal from Kentucky. I promise this will make sense in a minute.

In 1993 a man named Barton Nunnelly and his wife were sitting in their back yard in Stanley County, Kentucky. It was a nice day and their house was close to the Ohio River, so as they often did they just relaxed and watched the river. On this particular day, they both noticed a strange animal in the water. It was snake-like with a bill similar to a duck’s, but it obviously wasn’t a duck. It swam with its head and neck above the water, but its body was never visible. It frequently sank into the water, then surfaced elsewhere. The couple watched the animal for half an hour before it disappeared downstream.

For most people, that sighting would just be an interesting story to tell at parties, but Barton Nunnelly was a cryptozoologist. That’s someone who likes to investigate mystery animals, and while it’s a great word, it’s not an official branch of science. Zoologists, biologists, and other scientists study mystery animals all the time as part of their jobs. Nunnelly investigated—and in fact still does investigate, since he’s alive and well—mystery animals that are a lot more mystery than animal, like Bigfoot. He wrote about his sighting of what he thought might be a young freshwater sea serpent in his book Mysterious Kentucky.

Now, with Nunnelly’s sighting in mind, let’s return to the anhinga and learn a little more about this unusual bird. It can grow almost three feet in length, or about 90 cm, with a nearly four-foot wingspan, or 115 cm. A lot of its body length is due to the long neck. The male is black all over with a white tail-tip, while the female looks similar but has a brown head and neck. It looks similar to the double-crested cormorant, a close relation, but it has a longer, sharper bill. It lives throughout much of South and Central America, and is also common around the Gulf of Mexico and parts of the southeastern United States. In North America it usually stays near the coast or around wetlands, but sometimes it’s found farther inland, especially along rivers.

The most interesting feature of the anhinga is the way it hunts. It has big webbed feet and swims extremely well, and it hunts fish, frogs, and other small animals underwater. Unlike other water birds, which have water-repellent oils coating their feathers, as soon as the anhinga gets in the water, its feathers get all wet. This causes it to lose buoyancy and sink, but that’s just fine with the anhinga. It also has dense bones compared to most birds, which helps it stay underwater. The bird swims underwater until it gets close to a fish or other prey animal. Then it stabs the animal with its sharp bill, before bringing it above water to swallow. Often it will swim with its body completely submerged but its head and neck sticking up out of the water.

One interesting fact about the anhinga is that it has no nostrils. It can only breathe through its mouth. It can hold its breath underwater for about four minutes and during that time can travel quite a distance, up to about 100 yards, or 90 meters, completely underwater. In addition to fish and frogs, it will eat crayfish, crabs, insects, water snakes, and lots of other small animals. After it’s done hunting, or if it wants a rest, it will stand in the sun with its wings spread in order to dry its feathers. Cormorants do this too for the same reason.

Now, think back to Barton Nunnelly’s sighting of a duck-billed water serpent. It sounds to me an awful lot like Nunnelly saw an anhinga hunting in the river. It’s a rare visitor that far inland, but not unheard of. Naturally, not everyone knows every single bird in the world, but I feel like if you’re going to write a book about mystery animals, you should do a little research first. But maybe that’s just me.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 385: More Monitors

Thanks to Cosmo and Zachary for suggesting this week’s monitor lizards!

Further reading:

No One Imagined Giant Lizard Nests Would Be This Weird

The Mighty Modifications of the Yellow-Spotted Goanna

The Asian water monitor:

A yellow-spotted goanna standing up [picture by Geowombats – https://www.flickr.com/photos/geowombats/136601260/, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=2595566]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Last week we had our big dragons episode where we learned about the Komodo dragon and some of its relations, including goannas. I forgot to thank Cosmo for suggesting the lace monitor, also called the tree goanna, in that episode, and I also forgot that Zachary had also suggested monitor lizards as a topic, so let’s learn about two more monitor lizards this week.

Cosmo is particularly interested in aquatic and semi-aquatic animals, and a lot of monitor lizards are semi-aquatic. Let’s learn about the Asian water monitor first, since it’s the second-largest lizard alive today, only smaller than the Komodo dragon.

The Asian water monitor is common in many parts of South and Southeast Asia, including India, Vietnam, Cambodia, Laos, southern China, and many islands. A half dozen subspecies are currently recognized, although there may be more.

The largest water monitor ever reliably measured was 10 1/2 feet long, or 3.2 meters. It’s dark brown or black with yellow speckles and streaks, and young lizards have larger yellow spots and stripes. It lives wherever it can find fresh or brackish water, from lakes and rivers to swamps, ponds, and even sewers.

Like the crocodile, the Asian water monitor’s tail is flattened from side to side, called lateral compression, and it’s also very strong. It swims by tucking its legs against its sides and propelling itself through the water with its tail. It can dive deeply to find food, and while it prefers fresh water, it will swim in the ocean too. That’s why it’s found on so many islands.

Juvenile Asian water monitors spend most of the time in trees, but even a fully grown lizard will sometimes climb a tree to escape danger. Only saltwater crocodiles and humans kill the adults.

In some parts of its range, the water monitor is killed by humans for its meat and its skin, which is used as leather. In other parts of its range, it’s never bothered since it eats venomous snakes and animals that damage crops. It’s sometimes kept as a pet, although it can grow so big that many people who buy a baby water monitor eventually run out of room to keep it. That’s how so many have ended up in the waterways of Florida and other areas far outside of its natural range, from people letting pets go in the wild even though doing so is illegal and immoral.

While most of the time the water monitor isn’t dangerous to humans, if it feels threatened, it can be quite dangerous. Like the Komodo dragon and other monitor lizards, it’s venomous, plus its teeth are serrated, its jaws are strong, and it has sharp claws. It eats a lot of carrion, along with anything it can catch. A population in Java even enters caves to hunt bats that fall from the ceiling.

Zachary didn’t suggest a particular type of monitor lizard, so let’s learn about the yellow-spotted goanna. Goannas are a type of monitor lizard found in Australia, New Guinea, and some nearby areas. We talked about some of them last week, including Cosmos’s suggestion of the lace monitor, but after the episode was released I found an article I had saved over a year ago. It’s about the yellow-spotted goanna, and a remarkable discovery about how it takes care of its eggs.

The yellow-spotted goanna lives in parts of Australia and southern New Guinea, and a big male can grow up to five feet long, or 1.5 meters. It can swim and climb trees when it wants to, but mainly it stays on the ground, although it prefers to live near water if possible. It’s a fast runner and chases its prey instead of ambushing it. It eats small animals like rodents, birds, fish, insects, and reptiles, including other monitor lizards.

If you remember last week’s episode, the female tree goanna digs a hole into a termite nest to lay her eggs inside. The termites repair the hole in their nest, which means the eggs are nicely hidden from predators and protected from weather, and when the babies hatch they have lots of termites to eat. That’s weird enough, but the yellow-spotted goanna female has an even more interesting way of protecting her eggs.

The yellow-spotted goanna digs a big burrow to hide in, and it spends a lot of its time in the burrow when it’s not out hunting. Researchers assumed the female laid her eggs in the burrow, but every time they investigated a female’s burrow, it was empty.

In 2012, a herpetologist named Sam Doody hoped to figure out where the female hid her eggs. He thought the eggs might be buried inside the burrow. When a female left her burrow, he and his team examined the burrow carefully. Doody noticed that the dirt at the end of the burrow felt softer than the walls, and he dug into it carefully, convinced he would find the eggs right away.

Instead, he and his team kept digging, following the softer dirt. It took them hours and hours, since they had to be really careful, and the filled-in burrow just kept going. It descended five feet, or 1.5 meters, into the ground in a corkscrew shape, more properly called helical, and at the very bottom the team found a nest of ten eggs.

Since then, Doody and his colleagues have studied many other yellow-spotted goanna nests and they’re all helical in shape and as much as 13 feet deep, or 4 meters. The extreme depth is related to how long it takes the eggs to hatch, about 8 months. If the eggs were closer to the surface, they would get too hot and dry to hatch. There’s more moisture and a constant temperature deep underground.

It takes the female more than a week to dig her tunnel and the small nesting chamber at the bottom. She lays her eggs, then returns to the surface, letting the sandy soil collapse behind her to hide and protect the eggs. The females also frequently nest together, sometimes sharing a nesting chamber. Doody’s team once found a nesting chamber as big as a room of your home but only about as tall as a mattress, with more than 100 clutches of eggs laid in it. The females often re-use the same burrows year after year. When the eggs hatch, the baby lizards dig their way out of the nesting chamber–but they dig straight up instead of using the softer parts of the helical structure.

Other animals move into the loose soil of the nesting burrows, especially frogs. When excavating one burrow, Doody’s team found 418 frogs, along with numerous small reptiles, invertebrates, and even mammals, all of them spending the dry season comfortably inside the loose soil in the spiral burrow. I wonder if the mother lizard sometimes digs some of these frogs out to eat as a snack. Watch out, frogs!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 384: Dragons Revisited

This week we need to thanks a bunch of listeners for their suggestions: Bowie, Eilee, Pranav, and Yuzu!

Further reading:

Elaborate Komodo dragon armor defends against other dragons

Giant killer lizard fossil shines new light on early Australians

A New Origin for Dragon Folklore?

The Wyvern of Wonderland

The Komodo dragon:

The beautiful tree goanna:

The perentie:

Fossilized scale tree bark looks like reptile scales:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to revisit a popular topic we talked about back in episode 53. That episode was about dragons, including the Komodo dragon. Since then, Bowie has requested to learn more about the Komodo dragon and Eilee and Pranav both suggested an updated dragon episode. We also have a related suggestion from Yuzu, who wants to learn more about goannas in general.

We’ll start with the Komodo dragon, which gets its name because it’s a huge and terrifying monitor lizard. It can grow over 10 feet long, or 3 meters, which means it’s the biggest lizard alive today. It has serrated teeth that can be an inch long, or 2.5 cm, and its skin is covered with bony osteoderms that make it spiky and act as armor. Since the Komodo dragon is the apex predator in its habitat, it only needs armor to protect it from other Komodo dragons.

Fortunately for people who like to hike and have picnics in nature, the Komodo dragon only lives on four small islands in Indonesia in southeast Asia, including the island of Komodo. Young Komodo dragons have no armor and spend most of the time in trees, where they eat insects and other small animals. As the dragon gets older and heavier, it spends more and more time on the ground. Its armor develops at that point and is especially strong on the head. The only patches on the head that don’t have osteoderms are around the eyes and nostrils, the edges of the mouth, and over the pineal eye. That’s an organ on the top of the head that can sense light. Yes, it’s technically a third eye!

The Komodo dragon is an ambush predator. When an animal happens by, the dragon jumps at it and gives it a big bite from its serrated teeth. Not only are its teeth huge and dangerous, its saliva contains venom. It’s very good at killing even a large animal like a wild pig quickly, but if the animal gets away it often dies from venom, infection, and blood loss.

Like a lot of reptiles, the Komodo dragon can swallow food that’s a lot bigger than its mouth. The bones of its jaws are what’s called loosely articulated, meaning the joints can flex to allow the dragon to swallow a goat whole, for instance. Its stomach can also expand to hold a really big meal all at once. After a dragon has swallowed as much as it can hold, it lies around in the sun to digest its food. After its food is digested, which can take days, it horks up a big wad of whatever it can’t digest. This includes hair or feathers, horns, hooves, teeth, and so on, all glued together with mucus.

A Komodo dragon eats anything it can catch, and the bigger the dragon is, the bigger the animals it can catch. One thing Komodo dragons are just fine with eating are other Komodo dragons.

As we mentioned a few minutes ago, the Komodo dragon is a type of monitor lizard, and there are lots of monitor lizards that live throughout much of the warmest parts of the earth, including Australia. Yuzu suggested we talk about the goanna, which is the term for monitor lizards in the genus Varanus, although it’s also a term sometimes used for all monitor lizards. Goannas are more closely related to snakes than to other types of lizard.

Like the Komodo dragon, the goanna will eat pretty much any animal it can catch, and will also scavenge already dead animals. Smaller goannas mostly eat insects, especially the tiny goanna often called the short-tailed pygmy monitor or just the pygmy monitor. Its tail is actually pretty long for its size. It only grows about 8 inches long at most, or 20 cm, and babies are less than the length of your pinkie finger. It spends most of its time underground in a burrow, but comes out to hunt for grasshoppers and other insects, spiders, scorpions, and sometimes frogs and small snakes. Many species of goanna spend the hottest part of the day in a burrow, and some species will hibernate in winter.

Most goannas spend all their time on the ground unless they’re actually underground, but some live in trees. The tree goanna, also called the lace monitor or just lacy, can grow up to seven feet long, or over two meters, but is lightly built to climb around on tree branches looking for food. The tree goanna eats a whole lot of bird eggs, along with whatever animals it can catch in trees or on the ground. It eats a lot of carrion and will even get into trash cans if it smells food. When the female is ready to lay her eggs, she digs a hole in the side of a termite nest and lays them in the nest. The termites repair the hole, which hides the eggs, and when the babies hatch, they have lots of termites to eat. The mother goanna keeps watch on the termite nest and once her eggs hatch, she’ll dig into it again to let her babies out.

Genetic testing has discovered that the tree goanna is the closest living relative to the Komodo dragon, but another relative is the biggest goanna alive today in Australia. It’s called the perentie and it can definitely grow up to 8 and a half feet long, or 2.5 meters, and possibly close to 10 feet long, or 3 meters. That’s almost the length of the Komodo dragon.

Long as it is, the perentie isn’t very heavy for its size. It has big claws that allow it to dig quickly, so that if it feels threatened it can dig a burrow and hide in it in only a few minutes. It can also climb trees and is a fast runner. Sometimes it will rear up on its hind legs, propping itself up with its tail, to get a good look around. It’s covered with a maze-like pattern of spots and speckles, and it has a very long neck and a very long tail. Like most monitor lizards, its head is flattened so that it looks a little like a snake’s head. Also like other monitor lizards, it has a long forked tongue that it flicks in and out like a snake to detect the chemical signature of other animals nearby, sort of like smelling but with the tongue.

Also like other monitor lizards, the perentie has a venomous bite. Its venom isn’t all that strong, but you still wouldn’t want to get nipped by one. A big perentie will kill and eat just about anything it can catch, including wombats and small kangaroos. It’s not dangerous to humans, though, and in fact very few people in Australia have ever seen a perentie in the wild. It’s shy and lives in remote areas, mostly in the interior of the country over to the western coast.

There used to be a goanna in Australia that was even bigger than the perentie, but it went extinct around 50,000 years ago. We talked about it briefly in episode 325, but Pranav suggested we learn more about it. It’s called megalania and not only was it bigger than the perentie, it made the Komodo dragon look like a little baby lizard. Megalania may have grown as much as 23 feet long, or 7 meters, although most scientists these days think it wasn’t quite that big. The latest estimates are still pretty big, possibly 18 feet long, or 5.5 meters. It was also heavily built, more like the Komodo dragon than the perentie, so it may have weighed as much as a polar bear. That’s about 1200 pounds, or around 550 kg, but I thought the polar bear comparison was funny. We don’t know for sure how big megalania was because we don’t have a complete skeleton.

Megalania has been classified with the living goannas in the genus Varanus, so it was probably related to the Komodo dragon, although we don’t know exactly how closely. It was probably venomous, and we know its teeth were serrated like the Komodo dragon’s. It lived throughout much of eastern Australia and may have been even more widespread, we just don’t know because we don’t have very many fossils.

Megalania lived alongside another giant monitor lizard in what is now Queensland, the Komodo dragon. That’s right, the Komodo dragon once lived in Australia, although it went extinct there around 300,000 years ago. Megalania went extinct around the time that humans first arrived in Australia, so it’s very possible that the ancestors of today’s Aboriginal Australians encountered it. In 2015, a study was published detailing the discovery of a large goanna osteoderm from a cave system in Queensland. The osteoderm has been dated to about 50,000 years ago and probably belonged to megalania, and some scientists think humans may have been a factor in its extinction, along with climate change.

There are supposedly stories passed down for thousands of years among the Aboriginal Australian peoples that suggest meetings with megalania. I tried hard to find accounts of any of these stories to share, but the sources were always questionable. I did learn that European accounts of the Dreamtime, especially older ones, are inaccurate at best. European colonizers didn’t fully understand the Aboriginal cultures and in many cases weren’t interested in understanding them. They just wanted to collect stories that they would then change to fit the European worldview. This trend continues to the present day, with non-Aboriginal writers changing, misinterpreting, or even straight up inventing Dreamtime stories to fit their own interests. Sometimes that interest is cryptozoology. From what I was able to discover, there really is one aspect of the Dreaming that does apparently include a giant goanna, but that the traditions involved are especially sacred and not meant for outsiders to learn. So it’s none of our business.

As we discussed in episode 53, European stories about dragons were probably inspired by snakes, since early dragons were described as snake-like. Dragon stories in other parts of the world were probably inspired by various local reptiles such as crocodiles. Fossilized bones also played a part, since in the olden days no one knew what dinosaurs were. All anyone knew was that sometimes they found gigantic bones that seemed to be made of stone, and people made up stories to explain them.

Stories about giant reptiles are common throughout much of the world, and in 2020 a study was published suggesting that one of the reasons wasn’t an animal at all. It was a plant, specifically a 300 million year old plant called Lepidodendron, also called the scale tree.

The scale tree wasn’t actually a tree, but it was a really big plant that could grow 160 feet tall, or 50 meters. It’s been extinct for a long time, but it does have living relations called quillworts that kind of look like weird grass.

The scale tree gets its name from the diamond-shaped pattern on its trunk, which looks for all the world like reptile scales. These were just places where leaves once grew, but as the plant got taller, it shed its lower leaves as new ones grew from the top. Different species of the plant had different scale patterns. The study suggests that fossilized pieces of scale tree trunks inspired stories about giant reptiles. Since the plants grew throughout the supercontinent Pangaea and often ended up fossilized in coal beds, their fossils have been found in many different parts of the world.

Let’s finish with a dragon story from England, specifically the village of Sockburn in County Durham. It’s referred to as the Sockburn Worm, since “worm” used to mean any creature that was snakey or worm-shaped in appearance. It’s closely related to the story of the Lambton Worm that we talked about in episode 53.

Once upon a time in the olden days, maybe around 750 years ago, maybe longer ago, Sockburn and the farmland around it were terrorized by a dragon. The dragon had a poisonous breath and would eat anyone it came across, and killed and ate all the livestock it could find. No one could kill it.

Sir John Conyers was a knight who lived in the area and he decided he had to do something. He got dressed in his armor and went to the local church to pray, and said he would give up his only son’s life if it meant killing the dragon. Then he set out to find the dragon.

He didn’t so much find the dragon as the dragon found him. Instead of getting eaten, Sir John drew his magical sword and battled the dragon until finally he lopped its head off with one massive chop. Sir John survived and so did his son.

Centuries later, in 1855, a writer was inspired by the story and wrote a poem based on it. He eventually included the poem in a book called Alice Through the Looking-Glass, the sequel to Alice in Wonderland. You may know the poem “The Jabberwock,” and now you know the dragon story that inspired it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 383: The Marsupial Mole

Thanks to Catherine and arilloyd for suggesting the marsupial mole!

Further reading:

Northern marsupial mole: Rare blind creature photographed in Australian outback

The marsupial mole, adorable little not-mole from Australia [photo from article above]:

Grant’s golden mole, adorable little not-mole from Africa:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a little short episode about a very small Australian animal suggested by two listeners: Catherine, who has the best name ever, and someone called arilloyd who left us a nice review and suggested this animal in the review. I’m not sure I’m pronouncing their name right, so apologies if not. The animal is the unusual but very cute marsupial mole.

There are two closely related species of marsupial mole, one that lives farther north than the other. They look very similar, with silky golden fur, strong, short legs with strong claws for digging, a very short tail, no external ears, and no eyes. The marsupial mole doesn’t have eyes at all. It doesn’t need eyes because it spends almost its entire life underground.

All this sounds similar to other moles, but the marsupial mole isn’t related to other moles. Other moles are placental mammals while the marsupial mole is a (guess, you have to guess), right, it’s a marsupial! That means its babies are born very early and crawl into the mother’s pouch to finish developing. The marsupial mole has two teats, so it can raise two babies at a time.

The marsupial mole grows around 6 inches long, or about 16 cm, and is a little chonky animal with a pouch that faces backwards so sand won’t get in it. It has a leathery nose and small teeth, and its front feet are large with two big claws.

We actually don’t know very much about the marsupial mole because it’s so seldom seen. Not only does it live underground, it lives in the dry interior of Australia, the Great Sandy Desert. It probably also lives in other desert areas of Australia.

Scientists think the marsupial mole originally evolved to dig not in desert sand but in the soft, wet ground in rainforests. Over millions of years Australia became more and more dry, until the rainforests eventually gave way to the current desert conditions. The marsupial mole had time to adapt as its environment changed, and now it’s extremely well adapted to living in sand. It sort of swims through the sand using its big paddle-shaped front feet, kicking the sand behind it with its back legs. Unlike other moles, the marsupial mole doesn’t dig permanent tunnels and the sand just collapses behind it.

While the marsupial mole can’t see, and probably doesn’t have great hearing by our standards, it does have a good sense of smell in order to sniff out insect eggs and larvae, worms, and other small, soft food. It probably searches mainly for insect nests where it can find lots of food at one time, like ant nests. There are also reports of it eating adult insects, seeds, and even small lizards.

The reason the marsupial mole looks and acts so much like placental moles is due to convergent evolution. The mole’s body shape and habits just work really well for an animal that wants to dig around and eat grubs. Like other moles, it has trouble regulating its body temperature since most of the time it doesn’t need to do so. If it gets too hot, it can dig deeper into the sand where it’s cooler.

The marsupial mole is most similar to a completely unrelated placental mammal, Grant’s golden mole, which lives in a few parts of coastal South Africa and Namibia in Africa. Grant’s golden mole lives in sandy areas and swims through the sand like the marsupial mole does. It mainly eats termites and other insects, but it will also eat small reptiles. Its fur is a sandy golden color and it has no external ears, no eyes, and three big claws on its front feet. It only grows about 3 and a half inches long, or 9 cm, which makes it the smallest golden mole. It’s nocturnal and emerges from the sand at night, often hunting aboveground to conserve energy. It mostly hunts by hearing, but since its ears are most effective when it’s underground, it will often stop and stick its head into the sand to listen for potential prey.

Other golden moles are a little bit larger and live in different parts of Africa in different environments, from forests to swamps. But while golden moles are placental mammals, they’re not actually moles despite the name. They look and act like moles, but they’re actually more closely related to the tenrec, which we talked about in episode 324. The golden mole just shares the same traits as true moles due to convergent evolution again.

Just like water animals that all eventually develop a fish-like body shape, it seems that all digging mammals eventually develop a mole-like body shape. That shape also happens to be really cute, which is just a little extra bonus for the animal.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

 

Episode 382: Smilodon, the Sabertoothed Cat

Thanks to Luke for suggesting this week’s topic: Smilodon, the saber-toothed cat, AKA the sabertooth tiger!

Further reading:

Did sabertooth tigers purr or roar?

The double-fanged adolescence of saber-toothed cats

We don’t know for sure what Smilodon looked like, but it might have been something like this:

An artist’s rendition of an adolescent Smilodon with doubled fangs [picture from second link above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about an animal suggested by Luke, the sabertooth tiger, also called the sabertooth cat since it wasn’t actually a tiger, also called smilodon after its scientific name. We’ve talked about it before, way back in episode 34, but a lot of new studies have been published since then and we know a lot more about this terrifying-looking animal!

The genus of the saber-toothed cat is Smilodon, so that’s mostly what I’m going to call it in this episode. It’s classified as a member of the family Felidae, which is the same family where you find domestic cats, wildcats, big cats, and lots of extinct animals like the cave lion, but Smilodon wasn’t closely related to what we think of as cats. There were at least three species of saber-tooth cats in the genus Smilodon that we know of, but it had many other similar-looking relatives.

Smilodon is best known from the La Brea tar pits in Los Angeles, California, where the remains of hundreds of individuals have been discovered. That’s a big reason why we know so much about Smilodon, especially the species Smilodon fatalis that lived in North America and parts of South America. An even bigger species lived exclusively in South America, while both were probably descended from a smaller species that also lived in South America.

S. fatalis is estimated to have grown up to 39 inches tall at the shoulder, or 99 cm, while S. populator stood at an estimated 47 inches tall, or 119 cm. That’s almost four feet tall. Some full-grown humans are that height! Smilodon was so stocky and heavily muscled that it probably looked more like a bear than a cat. Its had a broad head and jaws that could open much wider than most modern animals, which allowed it to deploy its most deadly weapon, its saber teeth, without its jaw getting in the way.

Smilodon’s saber teeth were as much as 11 inches long, or 28 cm, although S. fatalis typically had teeth around 8 inches long, or 20 cm. Big as they were, the saber teeth were also relatively delicate. A young Smilodon didn’t start growing its big teeth until it was about a year old, and even then it had to learn how to use them so they wouldn’t break. Luckily for adolescent smilodons, they didn’t lose their baby fangs until they were fully grown.

Most mammals only grow two sets of teeth in our lifetimes. The first set is usually called baby teeth or milk teeth. As the baby grows up, its adult teeth start growing in one at a time. The adult tooth pushes at the baby tooth until it gets loose and either comes out on its own or, in the case of me in second grade, I asked to go to the bathroom and then spent half an hour twisting at a loose baby tooth until it finally came out, along with some blood. But I got a quarter that night from the tooth fairy. (Kids, maybe don’t do that.)

In the case of a young smilodon’s saber teeth, they grew in just next to the baby fangs. Instead of pushing the baby fangs out, the new teeth grew alongside them and even had a groove for the baby teeth to fit into. When scientists first discovered preserved jaws with these double fangs, they thought it was a fluke, that sometimes the new teeth came in wrong and didn’t push the old teeth out. That happens in humans sometimes too and then you have to go to the dentist to get the old baby teeth taken out. But paleontologists kept finding these double toothed jaws, and only in adolescent smilodons.

Finally a team of scientists studied the teeth carefully and made a surprising discovery. The baby fang stayed in place next to the saber tooth until the animal was about two and a half years old, at which time the baby fang finally fell out. In early 2024 the team published their study, which concluded that these double teeth acted sort of like a set of training wheels. Training wheels on a bicycle keep a new rider from tipping over sideways, and the doubled fangs kept the saber teeth from getting bent sideways until they broke. By the time the baby fang fell out, the smilodon had lots of experience hunting properly and no longer needed training wheels.

Smilodon legs are relatively short, which suggests it didn’t do a lot of running after prey. It was probably an ambush hunter and may have hunted in groups, sort of like lions do today. Some scientists think that instead of big groups, smilodon lived in small family groups of a mated pair and their offspring, which they took care of for several years. There’s even some evidence that adult animals with debilitating injuries or congenital issues that meant they couldn’t hunt were taken care of by other adults.

Smilodon ate large animals like ground sloths, horses, deer, camelids, and glyptodonts. It went extinct about 11,000 years ago, the same time that a lot of its prey went extinct too. We don’t know what color it was, but modern cats that hunt in forested areas generally have spots while cats that hunt in open areas generally have plain coats. Since smilodon lived in a variety of habitats, from forests to deserts, its coat pattern and coloration may have varied from region to region. It also had a short tail like a bobcat instead of a long tail like most modern cats.

Let’s finish with one last important detail about smilodon. Did it purr or did it roar? Remember that modern cats can either do one or the other, not both. A tiger can’t purr, while a wildcat can’t roar. In modern cats, the difference appears to be due to the number of hyoid bones in the throat. Humans have a single hyoid bone, which anchors the larynx in place, but cats have a whole row of them. Cats that can roar have seven of these tiny bones, while cats that can purr have nine of them.

Smilodon had seven hyoid bones. Therefore, scientists assumed, smilodon could roar but not purr. But a study from 2023 suggests it’s not that simple. The hyoid bones in purring cats are shaped differently from those in roaring cats. Smilodon only had seven hyoid bones, but some of them were shaped like really big purring hyoid bones, big even for the animal’s large size. Scientists aren’t sure if that means smilodon was able to purr in a deep register, if it could roar instead but with a really deep voice compared to modern cats, or if it made some other sound that we can’t even guess at.

In other words, I’m sorry, we don’t know if smilodon roared or purred, and we probably won’t know for sure until someone invents a time machine. Personally, I like to think that smilodon could purr and roar, and that it could also meow, but in a really deep voice. MEOW.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 381: Out of Place Birds

Thanks to Richard from NC, Pranav, and Alexandra for their suggestions this week!

Further reading:

ABA Rare Bird Alert

One Reason Migrating Birds Get Lost Is Out of This World

Inside the Amazing Cross-Continent Saga of the Steller’s Sea-Eagle

A Vagrant European Robin Is Drawing Huge Crowds in China

Bird migration: When vagrants become pioneers

A red-cockaded woodpecker:

Steller’s Sea Eagle making a couple of bald eagles look small:

Steller’s sea eagle:

A whole lot of birders showed up to see a European robin that showed up in the Beijing Zoo [photo from the fourth article linked above]:

A robin:

Mandarin ducks:

Richard’s pipit [photo by JJ Harrison (https://www.jjharrison.com.au/) – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=23214345]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’re talking about some birds again this week, with a slightly mysterious twist. These are birds that have shown up in places where they shouldn’t be, sometimes way way far from home! Thanks to Richard from NC for inspiring this episode and suggesting one of the birds we’re going to talk about, and thanks to Pranav for suggesting we cover more out of place animals.

Last week we talked about some woodpeckers, and I said I thought there was another listener who had suggested the topic. Well, that was Alexandra! Let’s start today’s episode talking about the red-cockaded woodpecker, another bird Alexandra suggested.

The red-cockaded woodpecker is native to the coastal southeastern United States, where it lives in pine forests. It’s increasingly threatened by habitat loss since the pine forests get smaller every year, and not only does it need old-growth pine forests to survive, it also needs some of the trees to be affected by red heart fungus. The fungus softens the interior wood, which is otherwise very hard, and allows a woodpecker to excavate nesting holes in various trees that can be quite large. The female lays her eggs in the best nesting hole and she and her mate raise the babies together, helped by any of their children from previous nests who don’t have a mate of their own yet. When they don’t have babies, during the day the birds forage together, but at night they each hide in their own little nesting hole to sleep.

It’s a small bird that doesn’t migrate, which is why Beth Miller, a birder in Muskegon, Michigan, couldn’t identify it when she spotted it on July 1, 2022 in some pine trees near a golf course. She took lots of photos and a recording of its calls, which she posted in a birding group to ask for help. She knew the bird had to be a rare visitor of some kind, but when it was identified as a red-cockaded woodpecker, she and nine birder friends went back to the golf course to look for it. Unfortunately, they couldn’t find the bird again. It was the first time a red-cockaded woodpecker had ever been identified in Michigan, although individual birds do sometimes wander widely.

While bird migration isn’t fully understood, many birds use the earth’s magnetic field to find their way to new territories and back again later in the year. Humans can’t sense magnetic fields but birds can, and being able to sense Earth’s magnetic field helps birds navigate even at night or during weather that keeps them from being able to see landmarks.

But sometimes birds get lost, especially young birds who have never migrated before or a bird that gets caught in storm winds that blow it far off course. If a bird shows up somewhere far outside of its normal range, birdwatchers refer to it as a vagrant, and some birders will travel great distances to see vagrant birds.

One interesting note is that birds navigating by the earth’s magnetic field can get confused if the magnetic field is disrupted by geomagnetic storms, including solar flares, sunspots, and coronal mass ejections. Very recently as this episode goes live, the aurora has been occasionally visible across much of the world. The aurora is caused by charged particles from the sun reaching Earth’s atmosphere, causing a colorful glow or shimmer in the night sky, and it’s usually only visible at or near the poles. This month it was visible in places far away from the poles. Fortunately, a really strong geomagnetic storm like the ones this month can actually make it easier for birds to migrate. Instead of getting a scrambled sense of the earth’s magnetic field, a strong geomagnetic storm can temporarily knock out a bird’s ability to sense the magnetic field at all, and that means it uses landmarks, the position of the stars and sun, and other methods to find its way.

Sometimes a bird just flies the wrong way, like the Steller’s sea eagle that showed up in Alaska at the end of August 2020. Steller’s sea eagle is native to the coast of northeastern Asia and is increasingly threatened due to habitat loss, pollution, climate change, poaching, and overfishing, a real problem if you’re an eagle that eats a whole lot of fish. Only about 4,000 of the birds remain in the wild. It’s a huge eagle, one of the biggest in the world, with a big female having a wingspan over 8 feet across, or almost 2.5 meters. Some unverified reports indicate birds with a wingspan over 9 feet across, or 2.8 meters. It has a huge yellow bill and feet, and is black and white in color. It’s related to the bald eagle but is larger and heavier, and its head is black instead of white.

To an eagle as big as Steller’s sea eagle, the distance between the eastern coast of Russia and the western coast of Alaska is very small, so it’s not all that unusual for birders to see one in Alaska. The difference in 2020 is that the bird was far inland, not on the coast. Then, several months later, a Steller’s sea eagle was reported in Texas. Texas! Very far away from Alaska and the northeastern Asian coast.

No one could definitively say if the Texas bird was the same one seen in Alaska, but a few weeks before there had been a massive storm that could have blown the eagle to San Antonio. It was the first time a wild Steller’s sea eagle had been spotted in Texas.

But the bird wasn’t done traveling. In late June 2021, a ranger in eastern Canada spotted the sea eagle. It was seen by multiple birders and photographers, some of whom got pictures good enough to compare to the Alaska photos from the year before, and it was the same bird! A few months later it was spotted in Nova Scotia, Canada, and in mid-December 2021 it arrived in southern Massachusetts in the United States for a few days. By the end of 2021 it was in Maine.

Since then the eagle appears to divide its time between Maine in the northeastern United States and Newfoundland, Canada, not too far away.

Richard from NC suggested that sightings of Steller’s sea eagle might explain the mystery of Washington’s eagle. I go into detail about Washington’s eagle in the Beyond Bigfoot & Nessie book. There is a rare color morph of Steller’s sea eagle that is almost all black, which matches Audubon’s painting of Washington’s eagle, but Steller’s sea eagle always has a yellow bill, not a dark one as Audubon painted. Still, it’s a very interesting theory that matches a lot better than the theory that Washington’s eagle is just a big juvenile bald eagle.

Eagles are spectacular birds, but even an ordinary bird turns into a celebrity when it shows up somewhere far outside of its normal range. That’s what happened to a European robin at the beginning of 2019. We talked about the European robin back in episode 333. It’s a common bird throughout much of Europe and parts of Asia, but it’s only been documented in Beijing, China three times. The third time was when one showed up in the Beijing Zoo in 2019, at least 1,500 miles, or 2,400 km, away from its usual range. Birdwatching is an increasingly popular hobby in China, and hundreds of birders showed up at the zoo not to see the animals it has on display but to see a little robin that someone in England would barely glance at.

A few months before that, on the other side of the planet, a Mandarin duck showed up in Central Park in New York City. Birders showed up soon after to look at it. The Mandarin duck is a beautiful bird related to the wood duck native to North America, but it’s native to China and other parts of east Asia. The male has a red bill, rusty red face with white markings, and purplish feathers on his sides, while the female is softer and more muted in color. Both males and females have a purplish crest and the male also has a reddish crest on both of his wings that sticks up like a sail when his wings are folded.

In other words, the male in particular is a spectacular duck, and the duck that showed up at Central Park was a male in full breeding plumage, looking his best. Since Mandarin ducks are so attractive and increasingly threatened in the wild, many zoos and private owners keep them, and the Central Park duck did have a band on his leg that indicates he might have been an escaped bird. But no one ever claimed him and in March of 2019 he flew off for good.

Vagrant birds show up in weird places all the time, especially in spring and fall when most migratory birds are on the move. Sometimes a vagrant bird returns to the mistaken area in following years, brings its mate and offspring, and essentially founds a new migratory route. This is what scientists think has happened with several species of songbird that breed in Siberia and migrate to southeast Asia for the winter.

Richard’s pipit is a medium-sized songbird with long legs, a long tail, and a relatively long bill. It’s mainly brown and black, with lighter underparts. It looks like a stretched-out sparrow. It migrates to southern Siberia, Mongolia, and a few other parts of central Asia to nest during the summer, and flies back to India and other parts of southeast Asia to spend the winter. But a small population flies west instead of south and spends the winter in Spain, Italy, and surrounding areas instead of in India.

For a long time scientists thought the birds seen in Europe were just lost. They’re still quite rare in Europe compared to their high population in Asia. Then a team of scientists caught 81 of the birds, installed leg-bands on all of them and GPS loggers on seven of them, and released them again. The birds migrated north to breed, then returned to Europe instead of Asia to spend the winter, where some were caught again and their leg-bands recorded. So just remember that when a bird shows up where it’s not expected, it might not be as lost as people think.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!