Tag Archives: trace fossils

Episode 253: The Sand Striker



Sign up for our mailing list! We also have t-shirts and mugs with our logo!

This week let’s learn about a weird marine worm and its extinct ancestor!

Further reading:

Eunice aphroditois is a rainbow, terrifying

The 20-million-year-old lair of an ambush-predatory worm preserved in northeast Taiwan

Here’s the money shot of the sand striker with its jaws open, waiting for an animal to get too close. The stripy things are antennae:

The fossilized burrow with notes:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going back in time 20 million years to learn about an animal that lived on the sea floor, although we’ll start with its modern relation. It’s called the sand striker and new discoveries about it were released in January 2021.

Ichnology is the study of a certain type of trace fossil. We talked about trace fossils in episode 103, but basically a trace fossil is something associated with an organism that isn’t actually a fossilized organism itself, like fossilized footprints and other tracks. Ichnology is specifically the study of trace fossils caused by animals that disturbed the ground in some way, or if you want to get more technical about it, sedimentary disruption. That includes tracks that were preserved but it also includes a lot of burrows. It’s a burrow we’re talking about today.

Because we often don’t know what animal made a burrow, different types of burrows are given their own scientific names. This helps scientists keep them organized and refer to a specific burrow in a way that other scientists can immediately understand. The sand striker’s fossilized burrow is named Pennichnus formosae, but in this case we knew about the animal itself before the burrow.

The sand striker is a type of polychaete worm, and polychaete worms are incredibly successful animals. They’re found in the fossil record since at least the Cambrian Period half a billion years ago and are still common today. They’re also called bristle worms because most species have little bristles made of chitin. Almost all known species live in the oceans but some species are extremophiles. This includes species that live near hydrothermal vents where the water is heated to extreme temperatures by volcanic activity and at least one species found in the deepest part of the ocean that’s ever been explored, Challenger Deep.

A polychaete worm doesn’t look like an earthworm. It has segments with a hard exoskeleton and bristles, and a distinct head with antennae. Some species don’t have eyes at all but some have sophisticated vision and up to eight eyes. Some can swim, some just float around, some crawl along the seafloor, and some burrow in sand and mud. Some eat small animals while others eat algae or plant material, and some have plume-like appendages they use to filter tiny pieces of food from the water. Basically, there are so many species known—over 10,000, with more being discovered almost every year, alive and extinct—that it’s hard to make generalizations about polychaete worms.

Most species of polychaete worm are small. The living species of sand striker generally grows around 4 inches long, or 10 centimeters, and longer. We’ll come back to its size in a minute. Its exoskeleton, or cuticle, is a beautifully iridescent purple. It doesn’t have eyes, instead sensing prey with five antennae. These aren’t like insect antennae but look more like tiny tentacles, packed with chemical receptors that help it find prey.

The sand striker lives in warm coastal waters and spends most of its time hidden in a burrow in the sand. It’s especially common around coral reefs. While it will eat plant material like seaweed, it’s mostly an ambush hunter.

At night the sand striker remains in its burrow but pokes its head out with its scissor-like mandibles open. When the chemical receptors in its antennae detect a fish or other animal approaching, it snaps its mandibles on it and pulls it back into its burrow. Its mandibles are so strong and sharp that sometimes it will cut its prey in half and then, of course, it pulls both halves into its burrow to eat. If the prey turns out to be large, the sand striker injects it with venom that not only stuns and kills it, it starts the digestive process so the sand striker can eat it more easily. It does all this so quickly that it can even catch fish and octopuses. The mandibles are at the end of a feeding apparatus called a pharynx, which it can retract into its body.

If a person tries to handle a sand striker, they can indeed get bitten. The sand striker’s mandibles are sharp enough to inflict a bad bite, and if it injects venom it can make the bite even more painful. Not only that, the sand striker’s body is covered with tiny bristles that can also inflict stings, with a venom strong enough that it can cause nerve damage in a human that results in permanent numbness where the person touched it. Don’t pet a sand striker.

Remember how I said the sand striker grows 4 inches or longer? That’s actually the low end of its size. The average sand striker is about 2 feet long, or 61 centimeters, but it can sometimes grow 3 feet long, or 92 centimeters, or even more. Sometimes a lot more.

In January 2009, someone noticed something in a float along the side of a mooring raft in Seto Fishing Harbor in Japan. The mooring raft had been in place for 13 years at that point and no one knew that a sand striker had moved into one of the floats. It had a nice safe home to use as a burrow. Sand strikers grow quickly and this one was living in a more or less ideal situation, so it just grew and grew until when it was found, it was just shy of 10 feet long, or 3 meters. Even so, it was still only about an inch thick, or 25 millimeters.

There are unverified reports of even longer sand strikers, some up to 50 feet long, or 15 meters. Look, seriously, do not pet it. Since sand strikers spend most of the time in burrows, it’s rare to get a good look at a full-length individual in the wild and we don’t know how long they can really get.

In case you’d forgotten, though, we started the episode talking about a fossilized burrow. In a fossil bed in northeast Taiwan, a team of paleontologists uncovered hundreds of strange burrows dating to about 20 million years ago. The burrows were L-shaped and as much as 6.5 feet long, or 2 meters, and about an inch across, or 2.5 centimeters. Even more confusingly, the fossilized sediment showed feather-like shapes in the upper section of the burrows.

The team of scientists studying the burrows had no idea what the feather-like structures were. The burrows were mysterious from start to finish anyway, since they were so much larger than most burrows in the seafloor.

They decided to do something unusual to solve some of the mysteries. They reached out not only to marine biologists but to marine photographers and aquarium keepers to get their insights. And, as you’ve probably guessed by now, the fossilized burrows most closely match those of the sand striker.

They even found out what the feather-shaped structures were. When a sand striker grabs a fish or other prey and drags it into its burrow, a lot of time it’s still alive, at least at first. Its struggles to get away can cause the sides of the burrow to shift. The sediment can’t collapse all the way because the worm lines it with mucus, so the partial collapsing and shifting results in feathery shapes.

These fossilized burrows are the first trace fossils known to be made by a marine ambush predator, which is pretty awesome. It’s even more awesome that some modern sand strikers are using the same type of burrows over 20 million years later.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 103: Trace Fossils



You may know what fossils are (I hope), but have you heard of trace fossils? You have now!

A giant ground sloth footprint with a human footprint inside it, made some 11,000 years ago:

Climactichnites:

A “devil’s corkscrew”:

A Paleocastor fossil found at the bottom of its fossilized burrow:

Stromatolite:

Coprolites:

Gastroliths found with a Psittacosaurus:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going back in time to look at fossils, but these aren’t regular fossils. They’re called trace fossils, or ichnofossils. Instead of fossilized bones and other body parts, trace fossils are records of where organisms were and what they were doing.

Fossil footprints are one of the most common trace fossils. We have lots of dinosaur footprints, and from them we know that dinosaurs held their tails off the ground, that some dinosaurs traveled in herds with the young in the middle, and things like that. A fossil footprint is formed when an animal steps in soft mud or sand, usually near water, and the resulting footprints were covered with sediment which then dried, protecting the footprints. If the footprints continued to be protected from water and other processes that might wipe them out, over the years more and more sediment was deposited on top, eventually compacting it so that pressure and chemical reactions within the sediment turned it to stone. This is why we sometimes have two impressions of the same footprints: the actual footprints and a cast of the footprints made by the sediment that filled them initially.

The White Sands National Monument in New Mexico has so many footprints of so many animals around what was once a lake that it’s referred to as a megatrack. Seriously, we’re talking hundreds of thousands of footprints. In 2014 a team studying the tracks found a set of ancient human footprints, the first ones found in the park. But while the tracks were well preserved, the team couldn’t pinpoint how old they were. They invited other researchers to come examine the prints to help date them.

In 2016 a British paleontologist named Matthew Bennett came to examine the prints, but while he was there, he took a look at some giant ground sloth prints nearby. And when he did, he made an amazing discovery. There was a sloth footprint with a human footprint on top of it, actually within the sloth’s footprint. The sloth’s print was 20 inches long, or almost 51 cm. And after that, the next sloth footprint also had a human footprint in it. And after that another. And another. And another. Ten sloth footprints in a row had human footprints inside.

Since the tracks were made in sandy lake mud and both tracks were reasonably clear, the researchers determined that the tracks were probably left on the same day. In other words, the human was probably trailing the sloth.

But that’s not all. Bennett and the other scientists at the site followed the tracks of both sloth and human and found marks where the sloth turned around and reared on its hind legs to face the approaching human. And there are more human prints that approach at a different angle—not just human prints, but prints that suggest the human was actually tip-toeing.

The most likely explanation is that the humans were hunting the sloth, with one human getting its attention while a second crept up behind it. But we don’t know for sure. One odd thing is that the human trailing the sloth actually had to stretch to step inside each sloth print. Even small giant ground sloths were enormous, nine or ten feet long, or about three meters, with long curved claws. Ground sloths were plant-eaters that used their claws to strip leaves from branches and dig giant burrows, but the claws made formidable weapons too. It’s possible that the ancient human was just amusing himself by stepping exactly in the sloth’s prints.

Since this initial finding, researchers have found more sites where sloths appear to have turned to face an aggressor, possibly humans. The age determined for the prints, around 11,000 years old, corresponds with the time that giant ground sloths went extinct in North America. Researchers have long suspected that humans hunted them to extinction, and now we may have some direct evidence that this happened.

But fossil footprints aren’t just of big animals. Small squidgy ones leave footprints too, or trails that show where an animal traveled even if it didn’t actually have feet. For instance, 510 million years ago, during the Cambrian period, a creature lived along the shores of a shallow sea and left tracks that have been found in North America. The fossil tracks are called Climactichnites and while we don’t know what animal actually left them, paleontologists have determined that there were two species and that they were probably slug-like in appearance, possibly an early mollusk, since modern slugs and their relatives sometimes leave similar tracks. We even have some body prints of the stationary animal, and some of them were 27 inches long, or 69 cm.

Similarly, fossilized burrows are considered trace fossils. But often fossilized burrows don’t actually look like holes in the ground. Instead, the burrow has filled up with soil that then fossilizes, leaving the shape of the burrow behind in a rock that looks different from the surrounding rock. And these can be remarkably difficult to identify in some cases.

Back in 1891, a rancher in Nebraska showed a visiting geologist some weird formations he’d found. The geologist, Erwin Barbour, didn’t know what they were. He and the rancher dubbed the formations “devil’s corkscrews,” and probably had a laugh. But the formations did look like corkscrews—but they were enormous, taller than a full-grown man and always situated straight up and down. Some were as long as ten feet, or three meters.

Barbour suggested that the corkscrews were freshwater sponges, since the prevailing belief was that the area had once been a lake. Other scientists thought they might be the remains of fossilized tree or other plant roots. And a couple of people thought they might be fossilized burrows of an unknown rodent.

Those people were right, of course, but at the time, no one knew for sure. And if the corkscrews were burrows, what made them?

The mystery was solved when fossils of a beaver relative called Paleocastor was found at the bottom of one of the corkscrews. Unlike modern beavers, it wasn’t an aquatic rodent but a burrowing one, and it lived around 25 million years ago. Once the Paleocastor fossil was discovered, it was clear that the marks noted on some of the corkscrews, which had been interpreted as scratch marks from claws, were actually tooth marks. They perfectly matched Paleocastor’s teeth, which meant the beaver excavated its corkscrew-shaped burrow by chewing through the dirt instead of digging through it.

So why did Paleocastor dig burrows with such an odd shape? The answer may lie in another fossil found not in the bottom of the burrow but stuck in the corkscrews. Zodiolestes was an extinct weasel relative. Possibly it had gone down the burrow while hunting beavers, become stuck in the tight corkscrew turns in the tunnels, and died.

More recent research shows that Paleocastor burrows were frequently connected to one another with side passages, sometimes hundreds of burrows joined together like the burrows and tunnels of modern prairie dogs. This suggests that Paleocastor was a sociable animal that lived in colonies.

As it happened, Dr. Barbour had been right about one thing. The area where the devil’s corkscrews were initially found had once been a lake. His mistake was not realizing that the structures had been dug into the ground where the lake had once been.

Some of the oldest fossils known are trace fossils called stromatolites. These are stones that were formed by microbes. Early life consisted of microbial mats, colonies of microorganisms like bacteria that grow on surfaces that are either submerged or just tend to stay damp. Microbial mats are still around today, often growing in extreme environments like hot springs and hypersaline lakes. When microbial mats grow on a sea or lake floor, they tend to build upwards, forming columns or even reefs that rise out of the mud and toward the light. But while stromatolites are formed by bacteria, they’re not formed of bacteria. Instead, the stones are formed from grains of sand and other sediments that were trapped and cemented together within the mats, which forms a thin layer of limestone. The layers grow over time, giving stromatolites a banded or striped pattern. But it can be really hard to tell them apart from regular old non-stromatolite rocks that also happen to have a banded pattern. Geologists spend a lot of time studying stromatolites and suspected stromatolites to find out more about them. Microbial mats evolved almost 3.5 billion years ago and it’s possible they were around as much as 4 billion years ago. The earth is about 4.5 billion years old, if you were wondering.

But let’s return to more modern times, with animals and fish and things. Another trace fossil is one I’ve mentioned here a few times, the coprolite. A coprolite is a fossilized poop. Most of the original organic material has been mineralized, preserving it. Coprolites are valuable since paleontologists can cut them open to find out what the animal was eating, if it had intestinal parasites, and lots of other information. Coprolites are also frankly hilarious. Did you know that if you become a scientist whose area of study is coprolites, you’re called a paleoscatologist?

We’ve also talked about gastroliths before. Gastroliths are small stones swallowed by an animal to help digest its food. The stones especially help grind up plant material, which eventually causes the stones to become smooth. Lots of animals use gastroliths for digestion, including birds that eat plants, crocodiles and alligators, seals and sea lions, although they may swallow them by accident, and many dinosaurs, especially sauropods. We know sauropods swallowed stones to help in digestion, because we’ve found gastroliths associated with sauropod fossils.

Other trace fossils include marks an animal may have made during its life, like those tooth marks preserved in the devil’s corkscrews. Skin imprints, or fur or feather imprints, are also trace fossils but are incredibly rare. Sometimes a skin imprint remains in place around an animal’s fossilized body parts, which gives paleontologists incredible insight into what an animal looked like while it was alive. That’s how we know a lot of dinosaurs had feathers. Root cavities are trace fossils too, caused not by animals but by plant roots that burrow into the soil but rot away, leaving a hole that fills with dirt and later fossilizes in the shape of the original roots. There’s even a type of trace fossil called a urolite, which was caused when an animal urinated and the urine stream left marks on soft ground.

Since trace fossils are usually hard to match up with the animal that made them, trace fossils are given scientific names of their own. This allows scientists to refer to them without guessing at what made them, and it reduces confusion.

Trace fossils are remains of biological activity. But animals and plants aren’t the only things that can move soft soil. Cracks in dried-out mud are sometimes fossilized, as are ripple marks from water and little dimples made by raindrops or bubbles. Geologists use these fossilized moments in time to help determine how the rock strata have been shifted by geologic forces. They know that a rock that shows ripple marks was once flat, so if it’s been tipped up sideways or deformed into a curve, they can determine what forces were at work on the rocks over the centuries.

It’s not all that uncommon to find these non-biological traces alongside trace fossils and body fossils. I’ve seen big flat rocks that show the bottom of a shallow sea, with ripple marks, the tracks of tiny animals that trundled around looking for food in the sandy mud, and the occasional fossil like a bryozoan or fragment of shell. It’s the closest thing we have to photographs of prehistoric times.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!