Episode 336: The Turtle Ant and the Alien Butt Spider

Thanks to Kari for suggesting this week’s topics! Definitely check out her book Butt or Face?, which is funny and has lots of animal information!

Further reading:

Butt or Face? by Kari Lavelle

GBIF: Araneus praesignis [the spider pictures below come from this site]

The turtle ant’s body is flattened and the soldier caste ants have specialized head shapes to block the nest entrances:

The alien butt spider has a butt that looks like an alien’s face!

The alien butt spider hides during the day in its leaf fort:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two really weird invertebrates suggested by Kari. One of these two animals is her favorite and the other is a weird ant from a book she wrote. Kari’s full name is Kari Lavelle and her book is for kids, called Butt or Face? It actually releases tomorrow as this episode goes live, so if you’re listening to this episode on Monday, July 10, 2023, you still have time to preorder the book, or you can just wait a day and run out to your local bookstore or library to get a copy.

Kari was nice enough to send me a copy of the book and it’s really funny and interesting. It’s partly a game where you look at a picture and decide whether it shows an animal’s butt or its face. It’s a lot harder than you’d think! You make your guess and turn the page to find out if you’re right and learn about the animal. It’s very fun and I actually guessed wrong on one animal, but I’m not telling you which one. There’s a link in the show notes if you want to learn more about the book and maybe order a copy for yourself.

Anyway, let’s talk about the ant first, because it’s actually one I’ve had on the list to talk about for a while. I was really excited to see it in Kari’s book. It’s called the turtle ant, sometimes called the “door head” ant. That gives you a clue as to whether its picture in the book features its butt or its face.

The turtle ant is any of the well over 100 species of ant in the genus Cephalotes, which are native to the Americas. Most live in Central and South America, especially in tropical and subtropical areas. Almost all species live in trees, nesting in cavities originally made by beetle larvae.

For the most part, turtle ants are pretty typical compared to other ant species. They have a generalized diet, eating pretty much anything they find. This includes plant material, dead insects and other animals they find, bird poop, nectar, and even pollen in some species. Each colony has a single queen that mates with multiple males and lays all the eggs for the colony. Worker ants tend the eggs and larvae, gather food, and keep the colony clean. But as in some other ants, many species of turtle ant have a soldier caste. These are worker ants who are specialized to defend the nest. We talked about army ants recently, in episode 328, and also back in episode 185, and army ant soldiers have massive sharp mandibles that can inflict painful bites. But the turtle ant soldiers don’t have sharp mandibles and aren’t aggressive. They have one job, and that job is to stand at the nest’s entrances and stop them up with their heads, only moving when another ant needs to get through.

As a result, turtle ant soldiers have weird-shaped heads. The head shape varies from species to species, with some looking more normal and some being heavily armored and strangely shaped. Well, they’re not strangely shaped except in comparison to an ordinary ant head. They’re shaped exactly right to do the job they’ve evolved to do, be a door. In some species, the top of the soldier’s head is completely round and flattened, just the right size and shape to block the entrance.

Turtle ants have another ability that they share with some other ants. If an ant falls from the twig or branch it’s climbing on, instead of just falling to the ground, it can glide back to the tree trunk. Turtle ants have flattened bodies, which helps catch the air like a tiny ant-shaped parachute. Unlike other ants that do this, which glide head-first, the turtle ant glides abdomen-first. It uses its legs and head to adjust which way it’s gliding, and most of the time it lands safely on the tree trunk.

There are undoubtedly more turtle ant species than we know about so far, and we actually don’t know very much about most of the species we have discovered. Most turtle ants live in trees, and that makes them hard to study.

There’s actually a spider called the ant-mimicking crab spider that eats turtle ants. It looks so much like a turtle ant worker that it can get close to the actual ants before it’s recognized as a predator, at which point it has a good chance of grabbing an ant to eat before the ant can run away. But that’s not actually the type of spider we’re talking about next.

The other animal we’re talking about today isn’t one from the book, it just happens to be one of Kari’s favorite animals *cough*sequel*cough*. It’s called the alien butt spider and it is completely awesome, as you can tell from the name.

The alien butt spider lives in Queensland, Australia, and it gets its name because—maybe you should just guess. I’ll wait.

Yes, you’re right! The abdomen of the spider has black or dark blue-green markings that look for all the world like the face of a tiny space alien from a movie. The spider itself is mostly green and very small, with a big female only growing about 8 mm long, although its legspan can be 20 mm across. Males are smaller, mostly because the male has a much smaller abdomen.

Its scientific name is Bijoaraneus praesignis, changed in December 2021 from Araneus praesignis. It’s also called the outstanding orbweaver or green orbweaver. Like many spiders, especially orbweavers, it’s mostly active at night. It spins a big round web that looks like the kind you see on Halloween decorations, because that’s the kind of web most orbweavers make, and at night it waits on or near the web for an insect to get stuck in it. During the day, though, the alien butt spider needs to hide. It makes what’s called a retreat in a leaf that’s partially closed or curled. The spider spins a thick layer of silk across the edges of the leaf that turns it into basically a little leaf fort, then crawls inside. The underside of the spider is plain greenish-yellow with no markings, so it’s hard to see against the leaf, especially through the layer of silk.

The spider’s abdomen is green with a yellow or white pattern on top, with black eye spots visible from the rear. The eye spots show up really well against the yellow or white pattern. But the spider also has black markings at the front of its abdomen, which also look like eyespots from some angles. The rest of its body is green, greeny-yellow, and brown, which helps it blend into leafy backgrounds.

Naturally, the alien butt spider is not actually trying to look like an alien. That’s something humans have decided it looks like because it’s green and the eyespots are so large. The spider just wants potential predators to see the eyespots and think, “Darn, that animal already saw me so I can’t sneak up on it. I won’t waste my energy trying to grab it.” Or maybe, “Uh oh, look at the size of that animal’s eyes! I must be looking at the head of a very large animal that might eat me, plus it’s looking right at me. I’d better run.”

Even though it looks kind of spooky, the alien butt spider is completely harmless to humans. We also don’t know much about it, so while it seems to be a common spider within its range, we don’t know for sure if it’s potentially endangered. It’s best to leave this little alien alone no matter how cute it is (and it is very cute).

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 332: Hunting Partners and Mutualism

Thanks to Vaughn and Jan for their suggestions this week! We’re going to learn about mutualism of various types.

Further reading:

The odd couple: spider-frog mutualism in the Amazon rainforest

What Birds, Coyotes, and Badgers Know About Teamwork

Octopuses punch fishes during collaborative interspecific hunting events

An Emotional Support Dog Is the Only Thing That Chills Out a Cheetah

Buddies [picture from the first link above]:

The honeyguide bird:

Cheetahs and dogs can be friends:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about a topic that I’ve been wanting to cover for a long time, mutualism. It’s a broad topic so we won’t try to cover everything about it in this episode, just give an overview with some examples. Vaughn suggested symbiotic behavior ages ago, and Jan gave me a great example of this, also ages ago, so thanks to both of them!

Mutualism is similar to other terms, including symbiosis, often referred to as “a symbiotic relationship.” I’m using mutualism as a general term, but if you want to learn more you’ll quickly find that there are lots of terms referring to different interspecies relationships. Basically we’re talking about two unrelated organisms interacting in a way that’s beneficial to both. This is different from commensalism, where one organism benefits and the other doesn’t but also isn’t harmed, and parasitism, where one organism benefits and the other is harmed.

We’ll start with the suggestion from Jan, who alerted me to this awesome pair of animals. Many different species have developed this relationship, but we’ll take as our specific example the dotted humming frog that lives in parts of western South America.

The dotted humming frog is a tiny nocturnal frog that barely grows more than half an inch long from snout to vent, or about 2 cm. It lives in swamps and lowland forests and spends most of the day in a burrow underground. It comes out at night to hunt insects, especially ants. It really loves ants and is considered an ant specialist. That may be why the dotted humming frog has a commensal relationship with a spider, the Colombian lesserblack tarantula.

The tarantula is a lot bigger than the frog, with its body alone almost 3 inches long, or 7 cm. Its legspan can be as much as 8 and a half inches across, or 22 cm. It’s also nocturnal and spends the day in its burrow, coming out at night to hunt insects and other small animals, although not ants. It’s after bigger prey, including small frogs. But it doesn’t eat the dotted humming frog. One or even more of the frogs actually lives in the same burrow as the tarantula and they come out to hunt in the evenings at the same time as their spider roommate.

So what’s going on? Obviously the frog gains protection from predators by buddying up with a tarantula, but why doesn’t the tarantula just eat the frog? Scientists aren’t sure, but the best guess is that the frog protects the spider’s eggs from ants. Ants like to eat invertebrate eggs, but the dotted humming frog likes to eat ants, and as it happens the female Colombian lesserblack tarantula is especially maternal. She lays about 100 eggs and carries them around in an egg sac. When the babies hatch, they live with their mother for up to a year, sharing food and burrow space.

This particular tarantula also gets along with another species of frog that also eats a lot of ants. Researchers think the spiders distinguish the frogs by smell. The ant-eating frogs apparently smell like friends, or at least useful roommates, while all other frogs smell like food. Or, of course, it’s possible that the ant-eating frogs smell and taste bad to the spider. Either way, both the frogs and the tarantulas benefit from the relationship–and this pairing of tiny frogs and big spiders is one that’s actually quite common throughout the world.

Mutualism is everywhere, from insects gathering nectar to eat while pollenating flowers at the same time, to cleaner fish eating parasites from bigger fish, to birds eating fruit and pooping out seeds that then germinate with a little extra fertilizer. Many mutualistic relationships aren’t obvious to us as humans until we’ve done a lot of careful observations, which is why it’s so important to protect not just a particular species of animal but its entire ecosystem. We don’t always know what other animals and plants that animal depends on to survive, and vice versa.

Sometimes an individual animal will work together with an individual of another species to find food. This may not happen all the time, just when circumstances are right. Sometimes, for example, a coyote will pair up with a badger to hunt. The coyote is closely related to wolves and can run really fast, while the American badger can dig really fast. Both are native to North America. They also both really like to eat prairie dogs, a type of rodent that can run really fast and lives in a burrow. Some prairie dog tunnels can extend more than 30 feet, or 10 meters, with multiple exits. The badger can dig into the burrow and if the prairie dog leaves through one of the exits, the coyote chases after it. When one of the predators catches the prairie dog, they don’t share the meal but they will often continue to hunt together until both are able to eat.

Other animals hunt together too. Moray eels will sometime pair up with a fish called the grouper in a similar way as the coyote and badger. The grouper is a fast swimmer while the eel can wriggle into crevices in rocks or coral. The grouper will swim up to the eel and shake its head rapidly to initiate a hunt, and if the grouper has seen a prey item disappear into a crevice, it will lead the eel to the crevice and shake its head at it again.

Groupers also sometimes pair up with octopuses to hunt together, as will some other species of fish. Like the eel, the octopus can enter crevices to chase an animal that’s trying to hide. But the octopus isn’t always a good hunting partner, because if the grouper catches a fish, sometimes the octopus will punch the grouper and steal its fish. Not cool, octopus.

Birds have mutualistic relationships too, including the honeyguide that lives in parts of Africa and Asia. It’s a little perching bird that’s mostly gray and white or brown and white, with the males of some species having yellow markings. It eats insects, spiders, and other invertebrates, and it especially likes bee larvae. But it’s just a little bird and can’t break open wild honeybee hives by itself.

Some species of honeyguide that live in Africa have figured out that humans can break open beehives. When the honeyguide bird finds a beehive, it will fly around until it hears the local people’s hunting calls. The bird will then respond with a distinct call of its own, alerting the people, and will guide them to the beehive. This has been going on for thousands of years. The humans gather the honey, the honeyguide feasts on the bee larvae and wax, and everyone has a good day except the bees.

The honeyguide is also supposed to guide the honey badger to beehives, but there’s no definitive evidence that this actually happens. Honey badgers do like to eat honey and bee larvae, though, and when a honey badger breaks open a beehive, honeyguides and other birds will wait until it’s eaten what it wants and will then pick through the wreckage for any food the badger missed. But the honeyguide might lead the honey badger to the hive, we just don’t know for sure.

Humans sometimes even help other animals into a commensal relationship. Vaughn gave me an example of a cheetah in a zoo who became best friends with a dog. This hasn’t just happened once, it’s happened lots of times because zookeepers have found that it helps cheetahs kept in captivity. Cheetahs are social animals but sometimes a zoo doesn’t have a good companion for a cheetah cub. The cub could be in danger from older, unrelated cheetahs, but a cheetah all on its own is prone to anxiety. It’s so important for a cheetah to have a sibling that if a mother cheetah only has one cub, or if all but one cub dies, a lot of times she’ll abandon the single cub. If this happens in the wild, it’s sad, but if it happens in captivity the zoo needs to help the cub.

To do this, the zoo will pair the cub with a puppy of a sociable, large breed of dog, such as a Labrador or golden retriever. The cub and the puppy grow up together. The cheetah has a mellow friend who helps alleviate its anxiety, and the dog has a friend who’s really good at playing chase.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 314: Animals Discovered in 2022

Let’s learn about some of the animals discovered in 2022! There are lots, so let’s go!

Further Reading:

In Japanese waters, a newly described anemone lives on the back of a hermit crab

Rare ‘fossil’ clam discovered alive

Marine Biologists Discover New Giant Isopod

Mysterious ‘blue goo’ at the bottom of the sea stumps scientists

New Species of Mossy Frog Discovered in Vietnam

A Wildlife YouTuber Discovered This New Species of Tarantula in Thailand

Meet Nepenthes pudica, Carnivorous Plant that Produces Underground Traps

Scientists discover shark graveyard at the bottom of the ocean

Further Watching:

JoCho Sippawat’s YouTube channel

A newly discovered sea anemone (photo by Akihiro Yoshikawa):

A mysterious blue blob seen by a deep-sea rover:

A newly discovered frog:

A newly discovered tarantula (photo by JoCho Sippawat):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the 2022 discoveries episode, where we learn about some of the animals discovered in 2022! Most of the time these animals were actually discovered by scientists before 2022, but the description was published in that year so that’s when we first learned about them. And, of course, a lot of these animals were already known to the local people but had never been studied by scientists before. There are lots of animals in the world but not that many scientists.

The great thing is, so many animals get discovered in any given year that I have to pick and choose the ones I think listeners will find most interesting, which in a stunning coincidence turns out to be the ones that I personally find most interesting. Funny how that works out.

We’ll start in the ocean, which is full of weird animals that no human has ever seen before. It’s about a hermit crab who carries a friend around. The hermit crab was already known to science, but until a team of scientists observed it in its natural habitat, the deep sea off the Pacific coast of Japan, no one realized it had an anemone friend.

The sea anemone is related to jellyfish and is a common animal throughout the world’s oceans. Some species float around, some anchor themselves to a hard surface. Many species have developed a symbiotic relationship with other animals, such as the clownfish, which is sometimes called the anemonefish because it relies on the anemone to survive. Anemones sting the way jellyfish do, but it doesn’t sting the clownfish. Researchers aren’t sure why not, but it may have something to do with the clownfish’s mucus coating. Specifically, the mucus may have a particular taste that the anemone recognizes as belonging to a friend. If the anemone does accidentally sting the clownfish, it’s still okay because the fish is generally immune to the anemone’s toxins.

The clownfish lives among the anemone’s tentacles, which protects it from predators, and in return its movements bring more oxygen to the anemone by circulating water through its tentacles, its droppings provide minerals to the anemone, and because the clownfish is small and brightly colored, it might even attract predators that the anemone can catch and eat.

Anemones also develop mutualistic relationships with other organisms, including a single-celled algae that lives in its body and photosynthesizes light into energy. The algae has a safe place to live while the anemone receives some of the energy from the algae’s photosynthesis. But some species of anemone have a relationship with crabs, including this newly discovered anemone.

The anemone anchors itself to the shell that the hermit crab lives in. The crab gains protection from predators, who would have to go through the stinging tentacles and the shell to get to the crab, while the anemone gets carried to new places where it can find more food. It also gathers up pieces of food that the crab scatters while eating, because crabs are messy eaters.

The problem is that hermit crabs have to move into bigger shells as they grow. Anemones can move, but incredibly slowly. Like, snails look like racecar drivers compared to anemones. The anemone moves so slowly that the human eye can’t detect the movement.

What the team of scientists witnessed was a hermit crab spending several days carefully pushing and pinching the anemone to make it move onto its new shell. If it wasn’t important, the crab wouldn’t bother. The sea anemone hasn’t yet been officially described since it’s still being studied, but it appears to be closely related to four other species of anemone that also attach themselves to the shells of other hermit crab species.

In other marine invertebrate news, a researcher named Jeff Goddard was turning rocks over at low tide at Naples Point, California a few years ago. He was looking for sea slugs, but he noticed some tiny clams. They were only about 10 mm long, but they extended a white-striped foot longer than their shells. Goddard had never seen anything quite like these clams even though he was familiar with the beach and everything that lived there, so he took pictures and sent them to a clam expert. The expert hadn’t seen these clams before either and came to look for the clams in person. But they couldn’t find the clams again. It took ten trips to the beach and an entire year before they found another of the clams.

They thought the clam might be a new species, but part of describing a new species is examining the literature to make sure the organism wasn’t already described a long time ago. Eventually the clam research team did find a paper with illustrations of a clam that matched, published in 1937, but that paper was about a fossilized clam.

They examined the 1937 fossil shell and compared it to their modern clam shell. It was a match! But why hadn’t someone else noticed these clams before? Even Goddard hadn’t seen them, and he’s a researcher that spends a lot of time along the coast looking specifically for things like little rare clams. Goddard thinks the clam has only recently started extending its range northward, especially during some marine heatwaves in 2014 through 2016. He suspects the clam’s typical range is farther south in Baja California, so hopefully a future expedition to that part of the Pacific can find lots more of the clams and we can learn more about it.

We talked about deep-sea isopods just a few weeks ago, in episode 311. They’re crustaceans related to crabs and lobsters, but also related to roly-polies that live on land. The deep-sea species often show deep-sea gigantism and are referred to as giant isopods, and that’s what this newly discovered species is. It was first found in 2017 in the Gulf of Mexico and is more slender than other giant isopods. The largest individual measured so far is just over 10 inches long, or 26 cm, which is almost exactly half the length of the longest giant isopod ever measured. It’s still pretty big, especially if you compare it to its roly-poly cousins, also called pillbugs, sow bugs, or woodlice, who typically grow around 15 mm at most.

Before we get out of the water, let’s talk about one more marine animal. This one’s a mystery that I covered in the October 2022 Patreon episode. It was suggested by my brother Richard, so thank you again, Richard!

On August 30, 2022, a research team was off the coast of Puerto Rico, collecting data about the sea floor. Since the Caribbean is an area of the ocean with high biodiversity but also high rates of fishing and trawling, the more we can learn about the animals and plants that live on the sea floor, the more we can do to help protect them.

When a remotely operated vehicle dives, it sends video to a team of scientists who can watch in real time and control where the rover goes. On this particular day, the rover descended to a little over 1,300 feet deep, or around 407 meters, when the sea floor came in view. Since this area is the site of an underwater ridge, the sea floor varies by a lot, and the rover swam along filming things and taking samples of the water, sometimes as deep as about 2,000 feet, or 611 meters.

The rover saw lots of interesting animals, including fish and corals of various types, even a fossilized coral reef. Then it filmed something the scientists had never seen before. It was a little blue blob sitting on the sea floor.

The blue blob wasn’t moving and wasn’t very big. It was shaped roughly like a ball but with little points or pimples all over it and a wider base like a skirt where it met the ground, and it was definitely pale blue in color.

Then the rover saw more of the little blue blobs, quite a few of them in various places. The scientists think it may be a species of soft coral or a type of sponge, possibly even a tunicate, which is also called a sea squirt. All these animals are invertebrates that don’t move, which matches what little we know about the blue blob.

The rover wasn’t able to take a sample from one of the blue blobs, so for now we don’t have anything to study except the video. But we know where the little blue blobs are, so researchers hope to visit them again soon and learn more about them.

It wouldn’t be a newly discovered species list without at least one new frog. Quite a few frogs were discovered in 2022, including a tree frog from Vietnam called Khoi’s mossy frog. It lives in higher elevations and is pretty big for a tree frog, with a big female growing over 2 inches long, or almost 6 cm, from snout to vent. Males are smaller. It’s mostly brown and green with little points and bumps all over that help it blend into the moss-covered branches where it lives. That’s just about all we know about it so far.

Our next discovery is an invertebrate, a spider that lives in bamboo. Specifically it lives in a particular species of Asian bamboo in Thailand, and when I say it lives in the bamboo, I mean it really does live inside the bamboo stalks. Also, when I say it’s a spider, specifically it’s a small tarantula.

It was first discovered by a YouTuber named JoCho Sippawat, who travels around his home in Thailand and films the animals he sees. I watched a couple of his videos and they’re really well done and fun, and he’s adorable even when he’s eating gross things he finds, so I recommend his videos even if you don’t speak the language he speaks. I’m not sure if it’s Mandarin or another language, and I’m not sure if I’m pronouncing his name right either, so apologies to everyone from Thailand for my ignorance.

Anyway, Sippawat found a tarantula where no tarantula should be, inside a bamboo stalk, and sent pictures to an arachnologist. That led to a team of scientists coming to look for more of the spiders, and to their excitement, they found them and determined right away that they’re new to science. It was pretty easy to determine in this case because even though there are more than 1,000 species of tarantula in many parts of the world, none of them live in bamboo stalks. The new spider was placed in a genus all to itself since it’s so different from all other known tarantulas.

It’s mostly black and dark brown with narrow white stripes on its legs, and its body is only about an inch and a half long, or 3 1/2 cm. It can’t make holes into the bamboo plants itself, so it has to find a hole made by another animal or a natural crack in the bamboo. It lines its bamboo stalk with silk to make a little home, and while there’s a lot we don’t know yet about how it lives, it probably comes out of its home to hunt insects and other small animals since tarantulas don’t build webs.

Finally, let’s wrap around to the sea anemone again, at least sort of. If you remember episode 129, we talked about the Venus flytrap sea anemone, which is an animal that looks kind of like a carnivorous plant called the Venus flytrap. We then also talked about a lot of other carnivorous plants, including the pitcher plant. Well, in 2022 a new species of pitcher plant was discovered that has underground traps.

The pitcher plant has a type of modified leaf that forms a slippery-sided pitcher filled with a nectar-like liquid. When an insect crawls down to drink the liquid, it falls in and can’t get out. It drowns and is dissolved and digested by the plant. Almost all known carnivorous plants are pretty small, but the largest are pitcher plants. The biggest pitcher plant known is from a couple of mountains in Malaysian Borneo, and its pitchers can hold over 2 ½ liters of digestive fluid. The plant itself is a messy sort of vine that can grow nearly 20 feet long, or 6 meters. Mostly pitcher plants just attract insects, especially ants, but these giant ones can also trap frogs, lizards, rats and other small mammals, and even birds.

The newly discovered pitcher plant grows in the mountainous rainforests of Indonesian Borneo and is relatively small. Unlike every other pitcher plant known, its pitchers develop underground and can grow a little over 4 inches long, or 11 cm. Sometimes they grow just under the surface, with leaf litter or moss as their only covering, but sometimes they grow deeper underground. Either way, they’re very different from other pitcher plants in other ways too. For one thing, scientists found a lot of organisms actually living in the pitchers and not getting eaten by the plant, including a new species of worm. Scientists aren’t sure why some animals are safe in the plant but some animals get eaten.

The new pitcher plant is found in parts of Indonesian Borneo that’s being turned into palm oil plantations at a devastating rate, leading to the extinction or threatened extinction of thousands of animal and plant species. The local people are also treated very badly. Every new discovery brings more attention to the plight of the area and makes it even more urgent that its ecosystems are protected from further development. The fastest way to do this would be for companies to stop using so much palm oil. Seriously, it’s in everything, just look at the ingredients list for just about anything. I try to avoid it when I’m grocery shopping but it’s just about impossible. I didn’t mean to rant, but the whole palm oil thing really infuriates me.

You know what? Let’s have one more discovery so we don’t end on a sour note.

A biodiversity survey of two of Australia’s marine parks made some really interesting discoveries in 2022. This included a new species of hornshark that hasn’t even been described yet. It’s probably related to the Port Jackson shark, which grows to around five and a half feet long, or 1.65 meters, and is a slow-moving shark that lives in shallow water off the coast of most of Australia. Instead of a big scary mouth full of sharp teeth, the Port Jackson shark has a small mouth and flattened teeth that allow it to crush mollusks and crabs. The newly discovered shark lives in much deeper water than other hornsharks, though, around 500 feet deep, or 150 meters.

Another thing they found during the survey wasn’t a new species of anything, but it’s really cool so I’ll share it anyway. It was a so-called shark graveyard over three miles below the ocean’s surface, or 5400 meters. The scientists were trawling the bottom and when they brought the net up to see what they’d found, it was full of shark teeth–over 750 shark teeth! They were fossilized but some were from modern species while some were from various extinct species of shark, including a close relative of Megalodon that grew around 39 feet long, or 12 meters. No one has any idea why so many shark teeth are gathered in that particular area of the sea floor.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 191: Masters of Disguise!

Thanks to Nicholas and Pranav for their suggestions which led to this episode about animals that are especially good at disguising themselves!

If you’d like to listen to the original Patreon episode about animal mimics, it’s unlocked and you can listen to it on your browser!

Don’t forget to contact me in some way (email, comment, message me on Twitter or FB, etc.) if you want to enter the book giveaway! Deadline is Oct. 31, 2020.

Further watching:

An octopus changing color while asleep, possibly due to her dreams

Crows mobbing an owl!

Baby cinereous mourner and the toxic caterpillar it’s imitating:

The beautiful wood nymph is a moth that looks just like bird poop when it sits on a leaf, but not when it has its wings spread:

The leafy seadragon, just hanging out looking like seaweed:

This pygmy owl isn’t looking at you, those are false eyespots on the back of its head:

Is it a ladybug? NO IT’S A COCKROACH! Prosoplecta looks just like a (bad-tasting) ladybug:

The mimic octopus:

A flower crab spider with lunch:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s look at some masters of disguise. This is a suggestion from Nicholas, but we’ll also learn about how octopuses and other animals change colors, which is a suggestion from Pranav. Both these suggestions are really old ones, so I’m sorry I took so long to get to them. A couple of years ago we had a Patreon episode about animal mimics, so I’ll be incorporating parts of that episode into this one, but if you want to listen to the original Patreon animal mimics episode, it’s unlocked so anyone can listen to it. I’ll put a link to it in the show notes.

Most animals are camouflaged to some degree so that they blend in with their surroundings, which is also called cryptic coloration. Think about sparrows as an example. Most sparrows are sort of brownish with streaks of black or white, which helps hide them in the grass and bushes where they forage. Disruptive coloration is a type of camouflage that breaks up the outlines of an animal’s body, making it hard for another animal to recognize it against the background. Many animals have black eye streaks or face masks that help hide the eyes, which in turn helps hide where their head is.

But some animals take camouflage to the extreme! Let’s learn about some of these masters of disguise.

We’ll start with a bird. There’s a bird that lives in parts of South America called the cinereous mourner that as an adult is a pretty ordinary-looking songbird. It’s gray with cinnamon wing bars and an orange spot on each side. It mostly lives in the tropics. In 2012, researchers in the area found a cinereous mourner nest with newly hatched chicks. The chicks were orangey-yellow with dark speckles and had long feather barbs tipped with white. While the researchers were measuring the chicks and making observations, they noticed something odd. The chicks started moving their heads back and forth slowly. If you’ve ever seen a caterpillar moving its head back and forth, you’d recognize the chicks’ movements. And, as it happens, in the same areas of South America, there’s a large toxic caterpillar that’s fluffy and orange with black and white speckles.

It’s rare that a bird will mimic an insect, but mimicry in general is common in nature. We’ve talked about some animal mimics in earlier episodes, including the orchid mantis in episode 187 that looks so much like a flower that butterflies sometimes land on it…and then get eaten. Stick insects, also known as phasmids, which we talked about in episode 93, look like sticks. Sometimes the name just fits, you know? Some species of moth actually look like bird poop.

Wait, what? Yes indeed, some moths look just like bird poop. The beautiful wood nymph (that’s its full name; I mean, it is beautiful, but it’s actually called the beautiful wood nymph) is a lovely little moth that lives in eastern North America. It has a wingspan of 1.8 inches, or 4.6 cm, and its wings are quite lovely. The front wings are mostly white with brown along the edges and a few brown and yellow spots, while the rear wings are a soft yellow-brown with a narrow brown edge. It has furry legs that are white with black tips. But when the moth folds its wings to rest, suddenly those pretty markings make it look exactly like a bird dropping. It even stretches out its front legs so they resemble a little splatter on the edge of the poop.

But it’s not just insects that mimic other things. We’ve talked about frogfish before in episode 165. It has frills and protuberances that make it look like plants, rocks, or coral, depending on the species. The leafy seadragon, which is related to seahorses and pipefish, has protrusions all over its body that look just like seaweed leaves. It lives off the coast of southern and western Australia and grows over nine inches long, or 24 cm, and it moves quite slowly so that it looks like a piece of drifting seaweed. Not only are the protuberances leaf-shaped, they’re green with little dark spots, or sometimes brown, while the body can be green or yellowish or brown like the stem of a piece of seaweed.

Many animals have false eyespots, which can serve different purposes. Sometimes, as in the eyed click beetle we talked about in episode 186, the false eye spots are intended to make it look much larger and therefore more dangerous than it really is. Sometimes an animal’s false eyespots are intended to draw attention away from the animal’s head. A lot of butterflies have false eyespots on their wings that draw attention away from the head so that a predator will attack the wings, which allows the butterfly to escape. Some fish have eyespots near the tail that can make a predator assume that the fish is going to move in the opposite direction when startled.

Even some species of birds have false eyespots, including many species of pygmy owl. The Northern pygmy owl is barely bigger than a songbird, just six inches tall, or 15 cm. It lives in parts of western North America, usually in forests although it also likes wetlands. It’s mostly gray or brown with white streaks and speckles, but it has two black spots on the back of its head, fringed with white, that look like eyes. Predators approaching from behind think they’ve been spotted and are being stared at.

But some larger birds of prey have false eyespots too, including the American kestrel and northern hawk owl. What’s going on with that?

You’ve probably seen or heard birds mobbing potential predators. For instance, where I live mockingbirds will mob crows, while crows will mob hawks. The mobbing birds make a specific type of angry screaming call while divebombing the predator, often in groups. They mostly aim for the bird’s face, especially its eyes, in an attempt to drive it away. This happens most often in spring and summer when birds are protecting their nests. Researchers think the false eyespots that some birds of prey have help deflect some of the attacks from other birds. The mobbing birds may aim for the false eyespots instead of the real eyes. Despite its small size, the northern pygmy owl will eat other birds, and it’s also a diurnal owl, meaning it’s most active during the day, and it does sometimes get mobbed by other birds.

Sometimes, instead of blending in to its surroundings, an animal’s appearance jumps out in a way that you’d think would make it easy to find and eat. But like the cinereous mourner chicks mimicking toxic caterpillars, something in the mimic’s appearance makes predators hesitate.

A genus of cockroaches from the Philippines, Prosoplecta, have evolved to look like ladybugs, because ladybugs are inedible to many predators. But cockroaches don’t look anything like ladybugs, so the modifications these roaches have evolved are extreme. Their hind wings are actually folded up and rolled under their carapace in a way that has been found in no other insect in the world. The roach’s carapace is orangey-red with black spots, just like a ladybug.

In the case of a lot of milkweed butterfly species, including the monarch butterfly, which are all toxic and which are not related to each other, researchers couldn’t figure out at first why they all look pretty much alike. Then a zoologist named Fritz Müller suggested that because all the butterflies are toxic and all the butterflies look alike, predators who eat one and get sick will afterwards avoid all the butterflies instead of sampling each variety. That’s called Mullerian mimicry.

A lot of insects have evolved to look like bees, wasps, or other insects with powerful stings. The harmless milksnake has similar coloring to the deadly coral snake. And when the mimic octopus feels threatened, it can change color and even its body shape to look like a more dangerous animal, such as a sea snake.

And that brings us to the octopus. How do octopuses change color? Is it the same in chameleons or is that a different process? Let’s find out and then we’ll come back to the mimic octopus.

We’ve talked about the octopus in many episodes, including episodes 100, 142, and 174, but while I’ve mentioned their ability to change color before, I’ve never really gone into detail. Octopuses, along with other cephalopods like squid, have specialized cells called chromatophores in their skin. A chromatophore consists of a sac filled with pigment and a nerve, and each chromatophore is surrounded by tiny muscles. When an octopus wants to change colors, its nervous system activates the tiny muscles around the correct chromatophores. That is, some chromatophores contain yellow pigment, some contain red or brown. Because the color change is controlled by the nervous system and muscles, it happens incredibly quickly, in just milliseconds.

But that’s not all, because some species of octopus also have other cells called iridophores and leucophores. Iridophores are layers of extremely thin cells that can reflect light of certain wavelengths, which results in iridescent patches of color on the skin. While the octopus can control these reflections, it takes a little longer, several seconds or sometimes several minutes.

Leucophores are cells that scatter light, sort of like a mirrored surface, which doesn’t sound very helpful except when you remember how light changes as it penetrates the water. Near the surface, with full spectrum light from sunshine, the leucophores just appear like little white spots. But water scatters and absorbs the longer wavelengths of light more quickly than the shorter wavelengths. We’ve talked about this before here and there, mostly when talking about deep-sea animals.

To make it a little simpler, think of a rainbow. A rainbow is caused when there are a lot of water droplets in the air. Light shines through the droplets and is scattered, and the colors are always in the same pattern. Red will always be on the top of the rainbow because it has the longest wavelength, while violet, or purple, will always be on the bottom because it has the shortest wavelength. The same thing happens when sunlight shines into the water, but it doesn’t form a rainbow that we can see. Red light is absorbed by the water first, which is why so many deep-sea animals are unable to perceive the color red. There’s no reason for them to see it, so there’s no need for the body to put effort into growing receptors for that color.

Blue, by the way, penetrates water the deepest. That’s why clear, deep water looks blue. Solid particles in the water also affect how light scatters, so it can get complicated. But to get back to an octopus with leucophores, the leucophores reflect the color of the light that shines on them. So if an octopus is deeper in the water and the light shining on it is mostly in the green and blue spectrum, the leucophores will reflect green and blue, helping make the octopus look sort of invisible.

But wait, it gets even more complicated, because some octopuses can also change the texture of the skin. Sometimes that just means it can make its skin bumpy to help it blend in with rocks or coral, but some species can change the shape of the skin more drastically.

We still don’t fully understand how cephalopods know what colors they should change to. While octopuses mostly have good eyesight, at least some species are colorblind. But they can still match the background colors exactly. Some preliminary research into cuttlefish skin appears to show that the cuttlefish has a type of photosensor in the skin that allows it to sense light wavelengths and brightness without needing to use its eyes. Basically the skin acts like its own eye. This is getting weirder and weirder, but that happens when we talk about cephalopods because they are peculiar and fascinating animals. In 2019, marine biologists released footage of a captive octopus changing colors in her sleep. Some researchers think she may have been dreaming, and her dream prompted the color changes.

Let’s get back to the mimic octopus now that we’ve learned the basics of how octopuses change color. The mimic octopus lives throughout much of the Indo-Pacific, especially around Indonesia, and has an armspan of about two feet across, or 60 cm. It generally lives in shallow, murky water, where it forages for small crustaceans and occasionally catches small fish. It’s usually light brown with darker brown stripes, but it’s good at changing both its color and its shape to mimic other animals.

So far, researchers have documented it mimicking 15 other animals, including a sea snake where it hides all but two of its legs, a lion fish where it holds its legs out to look like spines, jellyfish, sting rays, frogfish, starfish, sponges, tube-worms, flatfish, and even a crab. It actually imitates a crab in order to approach other crabs, which it then grabs and eats. So obviously it’s not using its mimicry ability randomly. It will imitate a sea snake if it feels threatened by an animal that is eaten by sea snakes, for instance. And it was only discovered in 1998 and hasn’t been studied very well yet.

Unfortunately, the mimic octopus is rare to start with and threatened by pollution and habitat loss. Once it was discovered, people immediately wanted to own them. But the mimic octopus doesn’t do well in captivity, usually dying within weeks or even days. Even octopus experts have trouble keeping them alive for very long. One expert reported that the mimic octopus is incredibly shy and spends most of its time hiding deep under the sand. It’s mostly active at night and doesn’t like bright light. It’s incredibly sensitive to temperature changes, water quality, and even the type of salt used in saltwater aquariums, and most importantly, he reported that in captivity, it doesn’t do any imitating.

Chameleons are also famous for their ability to change color and pattern, but not every species can do so. The ones who can use a very different process for color changing compared to octopuses. The chameleon has a layer of skin that contains pigments with a layer beneath that contains crystals of guanine, a reflective molecule that’s used in cosmetics to make things look shimmery, like nail polish. The chameleon can move the crystals to change the way light reflects off them, which affects the color, especially when combined with the pigments in the upper layer of skin. The color change takes about 20 seconds and different species are able to change into different colors and patterns.

Not all mimics use appearance. A number of moths are toxic to bats, but it’s no use evolving bright colors to advertise their toxicity to predators who use echolocation to hunt. Instead, the moths generate high-pitched clicks that the bats hear, recognize, and avoid. And naturally, some non-toxic moths also generate the same sounds to mimic the toxic moths.

Let’s finish with a tiny spider that also changes color. It’s called the white crab spider or the goldenrod crab spider or the banana crab spider, or just the flower spider. It’s a small, common spider that lives throughout the northern hemisphere. You’ve probably seen a few of them in your time, probably when you’re leaning down to sniff a flower. It hangs out on flowers and can be white or yellow in color. A big female can be 10 mm long, not counting her legs, while males are barely half that size. They’re called crab spiders because they often run sideways like a crab. The flower spider doesn’t build a web. Instead, it just sits on a flower.

The male flower spider climbs around from flower to flower, looking for a mate. The female generally stays put on a particular flower until it fades, and then she’ll find a new one. If she moves from a yellow flower to a white one, or vice versa, she can change color to match, but it’s not a quick process. It takes at least ten days and sometimes up to 25 days to change from white to yellow, since the spider has to secrete yellow pigment into its cells, while changing from yellow to white usually takes less than a week. If she’s on a flower that is another color, she’ll usually remain white. Only the female can change color, and some females may have small red or pink markings that don’t change color. The male is usually yellow or off-white in color.

The flower spider is so well camouflaged that it can be hard to spot even if you’re looking for it. It eats butterflies and moths, bees, and other insects that visit the flowers. Males will also eat pollen. Its venom is especially toxic to bees, although it’s harmless to humans. It really likes to eat bumblebees. Its first pair of legs are longest and curve forward to make it easier for the spider to grab a bumblebee and sink its fangs into it. Meanwhile, the bumblebee has black and yellow stripes to advertise to potential predators that it will sting, but that doesn’t help it when it comes to the little crab spider. Danger in the bee world!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Don’t forget to contact me if you want to enter the book giveaway contest, which will run through October 31, 2020! If you want to enter, just let me know by any means you like.

Thanks for listening!

Episode 155: Extreme Sexual Dimorphism

Many animals have differences between males and females, but some species have EXTREME differences!

The elephant seal male and female are very different sizes:

The huia female (bottom) had a beak very different from the male (top):

The eclectus parrot male (left) looks totally different from the female (right):

The triplewart seadevil, an anglerfish. On the drawing, you can see the male labeled in very small letters:

The female argonaut, also called the paper nautilus, makes a delicate see-through shell:

The male argonaut has no shell and is much smaller than the female (photo by Ryo Minemizu):

Lamprologus callipterus males are much larger than females:

The female green spoonworm. Male not pictured because he’s only a few millimeters long:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I still have a lot of listener suggestions to get to, and don’t worry, I’ve got them all on the list. But I have other topics I want to cover first, like this week’s subject of extreme sexual dimorphism!

Sexual dimorphism is when the male of a species looks much different from the female. Not all animals show sexual dimorphism and most that do have relatively small differences. A lot of male birds are more brightly colored than females, for instance. The peacock is probably the most spectacular example, with the males having a brightly colored, iridescent fan of a tail to show off for the hens, which are mostly brown and gray, although they do have iridescent green neck feathers too.

But eclectus parrot males and females don’t even look like the same bird. The male is mostly green while the female is mostly red and purple. In fact, the first scientists to see them thought they were different species.

Males of some species are larger than females, while females of some species are larger than males. In the case of the elephant seal, the males are much larger than females. We talked about the northern elephant seal briefly last week, but only how big the male is. A male southern elephant seal can grow up to 20 feet long, or 6 meters, and can weigh up to 8,800 pounds, or 4,000 kg. The female usually only grows to about half that length and weight. The difference in this case is because males are fiercely territorial and fight each other, so a big male has an advantage over other males and reproduces more often. But the female doesn’t fight, so her smaller size means she doesn’t need to eat as much.

Another major size difference happens in spiders, but in this case the female is far larger than the male in many species. For instance, the body of the female western black widow spider, which lives throughout western North America, is about half an inch in length, or 16 mm, although of course that doesn’t count the legs. But the male is only half this length at most. Not only that, the male is skinny where the female has a large rounded abdomen, and the male is brown with pale markings, while the female is glossy black with a red hourglass marking on her abdomen. Female western widows can be dangerous since their venom is strong enough to kill many animals, although usually their bite is only painful and not deadly to humans and other mammals. But while the male does have venom, he can only inject a tiny amount with a bite so isn’t considered very dangerous in comparison.

The reason many male spiders are so much smaller than females is that the females of some species of spider will eat the male after or even during mating if she’s hungry. The smaller the male is, the less of a meal he would be and the less likely the female will bother to eat him. In the case of the western black widow, the male prefers to mate with females who are in good condition. In other words, he doesn’t want to spend time with a hungry female.

If you remember episode 139, about skunks and other stinky animals, we talked about the woodhoopoe and mentioned the bill differences between males and females. The male woodhoopoe has a longer, more curved bill than the female because males and females eat a slightly different diet of insects so they won’t compete for the same food sources.

But a bird called the huia took beak differences to the extreme. The huia lived in New Zealand, although it officially went extinct in 1907. It was a wattlebird, which gets its name from the brightly colored patch of skin on either side of the face, called wattles. In the case of the huia, the wattles were orange, while the feathers over most of the body were glossy black. It also had a strip of white at the tip of the long tail. The male’s beak was fairly long and pointy, although it also curved down slightly. But the female’s beak was much longer and more slender, curving downward in an arc.

The huia lived in forests in New Zealand, where it ate insects, especially beetle grubs that live in rotting logs. People used to think that a mated pair worked together to get at grubs and other insects. The male would use his shorter, stouter bill to break away pieces of rotting wood until the grub’s tunnel was exposed, and then the female would use her longer, more slender bill to fish the grub out of the tunnel. But actual observations of the huia before it went extinct indicate that it actually didn’t do this. Like the woodhoopoe, males and females preyed on different kinds of insects. The male did break open rotting wood with its beak in a way that’s very different from woodpeckers, though. Instead of hammering at the wood, it would wedge its bill into a crevice of the wood and open its beak, and the muscles and other structures it used to do so were so strong that it could easily break pieces of wood off. This action is known as gaping and other birds do it too, but the huia was probably better at it than any other bird known.

The huia went extinct partly due to habitat loss as European settlers cleared forests to make way for farming, and partly due to overhunting. Museums wanted stuffed huias for display, and the feathers were in demand to decorate hats. And as a result, we don’t have any huias left.

Sometimes the size difference between males and females reaches extreme proportions. We’ve talked about the anglerfish several times in different episodes, and it’s a good example. It’s a deep-sea fish with a bioluminescent lure on its head that it uses to attract prey. Different species grow to different sizes, but let’s just talk about one this time, the triplewart seadevil.

The triplewart seadevil is found throughout much of the world’s oceans, preferably in medium deep water but sometimes in shallow water and sometimes as deep as 13,000 feet, or 4000 meters. The female grows to about a foot long, or 30 cm. It’s black in color, although young fish are brown. Its body is covered with short spines and it has a lure on its head like other anglerfish. The lure is called an illicium, and it’s a highly modified dorsal spine that the fish can move around, including extending and retracting it. At the end of the illicium is a little bulb that contains bioluminescent bacteria. Whatever animals are attracted to the glowing illicium, the fish gulps down with its great big mouth.

But that’s the female triplewart seadevil. The male is tiny, only 30 mm long at the most. The male doesn’t have an illicium; instead, his jaws and teeth are specialized for one thing: to bite onto the female and never let go. When a male finds a female, he chooses a spot on her underside to latch on, and once he does, his mouth and one side of his body actually fuse to the female’s body. Their circulatory and digestive systems fuse too. Before the male finds a female, he has great big eyes, but once he fuses with a female his eyes degenerate because he no longer needs them. He’s fully dependent on the female, and in return she always has a male around to fertilize her eggs. But this attachment is actually pretty rare, because it’s hard for deep-sea fish to find each other.

Another sea creature where the females are much larger and very different from the males is the argonaut, or paper nautilus. The argonaut is an octopus that lives in the open ocean in tropical and subtropical waters. Instead of living on the bottom of the ocean, though, the paper nautilus lives near the surface, and while the female looks superficially similar to a nautilus, it’s only distantly related.

The female argonaut generally grows to about 4 inches long, or 10 cm, although the shell she makes can be up to a foot across, or 30 cm. In contrast, males are barely half an inch long, or 13 mm. The female’s eight arms are long because she uses them to catch prey, with two of her arms being larger than the others. She grabs small animals like sea slugs, crustaceans, and small fish and bites it with her beak, and like other octopuses she can inject venom at that point too. But the male has tiny little short arms except for one, which is slightly larger.

Like other cephalopods, the male uses one of his arms to transfer sperm to the female so she can fertilize her eggs. In most cephalopods that means an actual little packet of sperm that the male places inside the female’s mantle for her to use later. But in the argonaut, the male’s larger modified arm is called a hectocotylus, and it has little grooves that hold sperm. The male inserts the hectocotylus into the female’s mantle, then detaches it and leaves the arm inside her. Then he leaves and regrows the arm, as far as researchers know. We don’t actually know for sure since it’s never been observed, but octopuses do have the ability to regenerate lost arms. The female usually keeps the hectocotylus and sometimes ends up with several.

At that point the female creates a shell by secreting calcite from the tips of her two larger arms. The shell is delicate, papery, and white, and it resembles the shell of the ammonite, which we talked about in episode 86. The female lays her eggs inside the shell, then squeezes inside too, although she can come and go as she likes.

There’s still a lot we don’t know about the argonaut, but we know more than we used to. In the olden days people thought the female used her two larger arms as sails at the surface of the water. Eventually scientists figured out that was wrong, but they were still confused as to why there only seemed to be female argonauts. They didn’t know that the males were so small and so different, and in fact when early researchers found hectocotyluses inside the females, they assumed they were parasitic worms of some kind. Eventually they worked that part out too.

But still, for a very long time researchers thought the argonaut’s shell was just for protecting the eggs, but it turns out that the female uses the shell as a flotation device. She can control how much air the shell contains, which allows her to control how close to the surface she stays. In a 2010 study of argonauts rescued from fishing nets and released into a harbor, if the shell doesn’t contain enough air, the argonaut will jet to the surface and stick the top of its shell above the water. The shell has small openings at this point so air can get in, and once the argonaut decides it’s enough, she seals the holes by covering them with two of her arms. Then she jets downward again until she’s deep enough below the surface that the pressure compresses the air inside the shell and cancels out the weight of the shell. This means the argonaut won’t bob to the surface but she also won’t sink, and instead she can just swim normally by shooting water from her funnel like other octopuses.

A species of cichlid fish from Lake Tanganyika in Africa, Lamprologus callipterus, also differs in size due to a shell, but not like the argonaut. Instead, the male is much larger than the female. The male can be up to five inches long, or nearly 13 cm, while the female is less than two inches long, or 4 ½ cm. The females lay their eggs in shells, but not shells they make. The shells come from snails, so the male needs to be larger so he can pick up and carry a big empty shell. The female, though, still needs to be small enough to fit inside the shell.

A moth called the rusty tussock moth is also sexually dimorphic. Its caterpillar grows around 1 to 1.5 inches long, or 3 to 4 cm, with females being a little larger than male caterpillars but otherwise very similar. But after the caterpillars pupate, they’re much different. The male moth has orangey or reddish-brown wings and a wingspan of about 1.5 inches, or almost 4 cm. The female doesn’t have wings at all. She emerges from her cocoon and perches next to it, and releases pheromones that attract a male. After the female mates, she lays her eggs on her old cocoon and dies, as does the male.

Let’s finish up with an animal you may never have heard of, the green spoonworm. It’s a marine worm that lives throughout much of the Mediterranean and the northeastern Atlantic Ocean. It lives on the sea floor in shallow water, partly buried in gravel and sand. The female grows up to about six inches long, or 15 cm, and sort of looks like a mostly deflated dark green balloon, although it may also look kind of lumpy. It also has a feeding proboscis that it can extend several feet, or about a meter.

As a larva, the green spoonworm floats around in the water, but whether it becomes male or female depends on where it settles. If it lands on the seafloor it transforms into a female and starts secreting a toxin called bonellin. Bonellin is what gives the green spoonworm its dark green color. The bonellin is mostly concentrated in the feeding proboscis and allows the spoonworm to paralyze and kill the tiny animals it eats.

But if the larva happens to land on a female green spoonworm, contact with the bonellin causes it to become a male. And the male is only a few mm long, doesn’t produce bonellin, and can’t even survive on its own. The female sucks the male into her body through the feeding proboscis, but instead of digesting him, he lives inside her and fertilizes her eggs. In return she provides him with all the nutrients he needs. A female may have more than one male living inside her, making sure that her eggs will always be fertilized.

There are lots more animals that show extreme sexual dimorphism, of course, but that at least gives you an idea of how different animals evolve to fit different environmental pressures. Weird as they seem to us, to the animals in question, it’s just normal–and it’s our appearance and how we do things that would seem weird to them. Perspective is everything.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or whatever platform you listen on. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!