Episode 450: Geckos and the Snow Leopard

Thanks for Preston and Pranav for suggesting this week’s topics!

Further reading:

DNA has revealed the origin of this giant ‘mystery’ gecko

Snow Leopards Dispersed Out of Tibetan Plateau Multiple Times, Researchers Say

Conquest of Asia and Europe by snow leopards during the last Ice Ages uncovered

The crested gecko AKA the eyelash gecko:

The fluffy snow leopard:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a couple of suggestions from Preston and one from Pranav! This is the first episode I’ve recorded in my new apartment, so let’s make it a good one.

First, Preston wanted to learn more about the crested gecko, mainly because he has a pet crested gecko named George Washington. That is one of the best gecko names ever!

The crested gecko is also called the eyelash gecko. We’ve talked about it a few times, but not recently at all. It’s native to a collection of remote Pacific islands called New Caledonia, where it spends most of its time in trees, eating insects and other small animals, but also fruit, nectar, and lots of other food. It’s an omnivore and nocturnal, and can grow more than 10 inches long, or 25 cm. It gets its names from the tiny spines above its eyes that look like eyelashes, and more spines in two rows down its back, like a tiny dragon. It can be brown, reddish, orange, yellow, or gray, with various colored spots, which has made it a popular pet. These days all pet crested geckos were bred in captivity, since it’s now protected in the wild.

The crested gecko has tiny claws on its toes, which is unusual since most geckos don’t have claws. It can drop its tail like other geckos if a predator is after it, but the tail doesn’t grow back. Since its tail is prehensile and helps it climb around in trees, you’d think the gecko would have trouble climbing after it loses its tail, but it doesn’t. Maybe that’s because in addition to claws, like other geckos it has basically microscopic hairlike structures on its toes that allow it to climb smooth surfaces like windows and walls and the trunks of smooth trees. It can also jump long distances to get to a new branch.

The crested gecko was discovered by science in 1866, but wasn’t seen after that in so long that people thought it was extinct. Then in 1994, a German herpetologist out looking for specimens after a tropical storm found a single crested gecko. It turns out that the geckos had been fine all along, but because they’re nocturnal and mostly live in trees, scientists just hadn’t spotted any.

While we’re talking about geckos, Pranav requested that we revisit Delcourt’s giant gecko with some updated information. We did mention the new findings back in episode 389, but it’s really interesting so let’s go over it again.

Way back in episode 20 we talked about Delcourt’s giant gecko, which is only known from a single museum specimen donated in the 19th century. In 1979 a herpetologist named Alain Delcourt, working in the Marseilles Natural History Museum in France, noticed a big taxidermied lizard in storage and wondered what it was. It wasn’t labeled and he didn’t recognize it, surprising since it was the biggest gecko he’d ever seen—two feet long, or about 60 cm. He sent photos to several reptile experts and they didn’t know what it was either. Finally the specimen was examined and in 1986 it was described as a new species.

No one knew anything about the stuffed specimen, including where it was caught. At first researchers thought it might be from New Caledonia since a lot of the museum’s other specimens were collected from the Pacific Islands. None of the specimens donated between 1833 and 1869 had any documentation, so it seemed probable the giant gecko was donated during that time and probably collected not long before. More recently there was speculation that it was actually from New Zealand, since it matched Maori lore about a big lizard called the kawekaweau.

In June of 2023, Delcourt’s gecko was finally genetically tested and determined to belong to a group of geckos from New Caledonia, the same archipelago of islands where the crested gecko is from. Many of its close relations are large, although not as large as it is. It’s now been placed into its own genus.

Of course, this means that Delcourt’s gecko isn’t the identity of the kawekaweau, since it isn’t very closely related to the geckos of New Zealand, but it might mean the gecko still survives in remote parts of New Caledonia. It was probably nocturnal and lived in trees, hunting birds, lizards, and other small animals.

Now we’re done with geckos for today, but we’re not done with this episode! Preston also wanted to learn about the snow leopard, and it’s amazing that we’ve never talked about it before! The snow leopard is a big cat that’s most closely related to the tiger, although they don’t look very much alike. The term big cat refers to tigers, lions, leopards, snow leopards, and jaguars, but it can also include cheetahs and cougars depending on who you ask. Big cats have round pupils instead of slit pupils like domestic cats and other smaller cats.

The snow leopard mostly lives in cold, mountainous areas in parts of Asia, from Siberia to India. It prefers to live in rocky areas where its coat pattern hides it from its prey. Its fur is thick and it can be anywhere from pure white to tan or gray, with black spots and rosettes. Its head is small, its legs relatively short, and its tail is very fluffy and incredibly long. A big male can grow up to 1.5 meters long, or 5 feet, plus a tail that’s almost as long as his body, but he’s only about two feet tall at the shoulder, or not quite 60 cm.

The snow leopard is well adapted to cold and snow. Fur grows on the underside of its paws to keep its feet warm, its paws are really large to act as snowshoes, and its ears are small and rounded to keep the tips from being frostbitten. Its long tail helps it balance when climbing over rocks. Its tail also stores fat, and is so long and fluffy that the snow leopard can use its tail as a blanket when it’s sleeping. Built-in blanket!

Unfortunately for the snow leopard, its thick, beautiful fur has been used as a blanket by humans for a long time, and it’s still sometimes killed for its fur even though it’s a protected species almost everywhere it lives. It’s also sometimes killed by farmers and herders who think the snow leopard will kill their livestock. It actually doesn’t attack livestock very often, and almost never attacks people. It eats small animals of various kinds depending on where it lives, like mice and rats, hares and rabbits, wild goats and sheep, marmots, deer, civets, and even rhesus macaques. It mainly only kills livestock where its wild prey has been reduced because of human activity. It’s also vulnerable to habitat loss and climate change.

Snow leopards are mostly solitary, although a mated pair will hunt together and of course the mother snow leopard teaches her babies to hunt as they get older. Individuals leave scent marks and spray urine to let other snow leopards know they’re around. Males roam widely but females usually stay to a territory that they’re familiar with, although the territory may be quite large.

Most snow leopard cubs are born in the early summer, and a female usually only has two or three babies in a litter. The mother takes care of her babies by herself. She makes a den among rocks and lines it with her belly fur, but cubs are born with a lot of fur already to keep them warm. The mother takes care of them for about two years until they finally leave to find their own territories.

Lions, tigers, leopards, and jaguars can all roar. Snow leopards, cheetahs, and cougars can’t. But snow leopards, cheetahs, and cougars can purr, while lions, tigers, leopards, and jaguars can’t. The ability to roar is due to special adaptations in the larynx, but these adaptations also mean the animal can’t purr. So basically a cat can either roar or purr but not both and the snow leopard can purr.

We actually don’t know a whole lot about the snow leopard because it lives in such remote places, and one big mystery is how the snow leopard ended up adapted to cold. Most cats, large and small, prefer hot climates. Until recently, we didn’t even have any snow leopard fossils to give us a clue.

Then a collection of leopard fossils revealed some snow leopard fossils mixed in. They’re about a million years old, collected in parts of China, France, and Portugal. A study of the fossils, and a beautifully preserved partial skeleton found in Portugal, has shed light on the migration and evolution of the snow leopard.

The snow leopard was already well adapted for mountainous areas, but when the climate became colder during the Pleistocene, AKA the Ice Age, it evolved to thrive in a cold climate. It spread into many parts of Asia and Europe, especially mountainous areas, out-competing other predators like leopards that weren’t well adapted to cold. With the warming climate after the ice ages ended, the snow leopard was at a disadvantage and gradually died out except around the Tibetan plateau where it still lives today, and we’re very lucky to still have it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 449: The Gloucester Sea Serpent

This is a chapter of the Beyond Bigfoot and Nessie book, which you can buy or request at the library!

Further reading:

Debunking a Great New England Sea Serpent

A narwhal. I use this picture all the time:

The diseased black snake that was taken for a baby sea serpent:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to have a sea monster episode! This is actually a chapter of the book that I published a few years ago now, Beyond Bigfoot and Nessie, and it’s called the Gloucester Sea Serpent. We had a Patreon episode recently that was about a different sea serpent, and while I was researching that, it was driving me completely nuts, because I kept trying to find the episode where I talked about the Gloucester sea serpent, and I finally remembered that that wasn’t an episode at all. It was just a chapter in the book. Maybe it’s time to record it.

While the Gloucester sea serpent was first mentioned in a traveler’s journal in 1638, it really came to prominence almost two centuries later. On August 6, 1817, two women said they’d seen a sea monster in the Cape Ann harbor. A fisherman said he’d seen it too, but neither the fisherman nor the women were believed. A 60-foot, or 18-meter, sea serpent in the harbor? Ridiculous!

Only a few days later, though, the monster started showing up in Gloucester Bay and attracted major attention—not because it was elusive, but because it was so commonly seen. Sailors, fishers, and even people on shore saw what was described as a huge serpent in the waters of Gloucester Bay, Massachusetts, in the northeastern United States. On one occasion more than two hundred people watched it for nearly four hours.

The creature’s length was described as anywhere up to 150 feet long, or 46 meters, and many people said it had a horse-sized head. Some people described its head as being about the same shape as a horse’s too, although with a shorter snout. The body was snake-like and about the thickness of a barrel.

Many people thought the sea monster had humps along the back, usually referred to as bunches or occasionally joints. Others said it undulated through the water in an up-and-down motion, which looked like humps. Others said it had no bunches or humps at all. Most people agreed that its back was dark brown.

One of the earlier witnesses, a man named Amos Story, watched the sea serpent from shore for an hour and a half. He was adamant that it had no bunches, that he only saw at most about 12 feet of its length at one time, or 3.6 meters, and that its head resembled that of a sea turtle. It was also fast, with Story claiming it covered a mile in only three minutes or so. That’s about 20 miles per hour, or 32 kilometers per hour—an incredible speed for an animal in the water.

As it happens, the leatherback sea turtle has been recorded as swimming that fast, and it can grow over 7 feet long, or 2.2 meters, and possibly much longer. It lives throughout the world’s oceans and is just as happy in cold waters as it is in tropical waters. In other words, it’s possible Story actually saw a huge leatherback turtle, which would explain why it had a turtle-like head that it held above the surface of the water at least part of the time. This is something leatherback turtles do. Then again, the leatherback has distinctive ridges and serrations on its back that Story didn’t mention.

So many people reported seeing the sea serpent that the Linnaean Society of New England decided it needed to investigate. The society had only formed a few years before, in 1814, to promote natural history. By 1822 it had disbanded, but in those eight years it accomplished quite a bit, including opening a small museum in Boston. Its most controversial endeavor was the sea serpent investigation.

Members of the Linnaean Society interviewed witnesses, making careful notes that were signed by the interviewees to indicate the details were accurate. These statements tell us a lot about what people saw, although it hasn’t helped us determine what the sea serpent actually was.

For instance, Captain Solomon Allen saw the creature more than once and gave a clear description of it. It was at least 90 feet long, or 27.5 meters, with as many as fifty joints, or bunches. Its head was snake-like—specifically rattlesnake-like, presumably meaning it was wider at the back and had a narrower snout—but the size of a horse’s head. It was dark brown, plain in color, and swam with an undulating side-to-side motion. It dived by sinking straight down, moved quickly, and sometimes seemed to play in the water by swimming in circles.

All this is great information, but it doesn’t resemble any known animal. It also doesn’t necessarily resemble the other witness statements. Let’s go over some of the more detailed sightings and see if we can come to some conclusions.

A man named William Foster reported bunches along the monster’s length, although he also described them as rings. When the animal’s head rose from the water, the first thing Foster saw was what he described as a prong or spear. It was about a foot long, or 30 centimeters, and tapered to a point. His interviewer asked if the spear might have been a tongue, but Foster didn’t think so.

Three men on a schooner named the Laura, becalmed in the mouth of the harbor, witnessed the monster in late August. Sewall Toppan, master of the ship, reported that the monster’s head was the size of a 10-gallon keg, which would have been about 18 inches tall, or 46 centimeters, and 16 inches in diameter, or 40 centimeters. He said its head was held about 6 inches out of the water, or 15 centimeters, and that he could see 10 or 15 feet of its length disappearing into the water, or 3 to 4.5 meters. He didn’t see any kind of prong, but two of his sailors did.

One of the two sailors was Robert Bragg, who reported that the monster was swimming rapidly toward the ship with its head and about 15 feet of its body out of the water, or 4.5 meters. As it drew closer he saw its tongue, which he described as looking like a harpoon about 2 feet long, or 61 centimeters. He even reported that the animal raised its tongue almost straight up several times. He also said it was dark brown and smooth.

The third Laura witness, helmsman William Somerby, corroborated Bragg’s details, including the animal’s tongue, which he mentioned was light brown. As the monster passed within 40 feet of the ship, or 12 meters, Somerby even saw one of its eyes clearly. He said it was the size of an ox’s eye and was completely dark brown or possibly black. He and Bragg both noted that the animal had a bunch above its eyes, presumably meaning a bump or knob of some kind.

All three men said that they were familiar with whales and the animal was not a whale.

August 14 was a warm day and the water was calm. A man named Matthew Gaffney, a ship’s carpenter by trade but in his heart a monster hunter, borrowed a boat and took his brother and a friend with him to row. He also took a musket.

As the small boat approached cautiously, the monster was spiraling around in the water, as various people reported it doing on and off throughout the day. Gaffney waited until the boat was as close as it could safely approach without risking being capsized, then fired a shot at the monster’s head.

He was a good marksman and was certain he hit the animal, which sank immediately below the surface and vanished. Worried that the wounded monster would be enraged once its initial shock wore off, Gaffney and all the other boats on the harbor took off for shore. But when the sea monster resurfaced some distance off, it was obviously unbothered by being shot at. It continued its apparently playful circling around in the harbor.

Several witnesses who saw the monster on August 14, before and after Gaffney’s attempt to shoot it, gave statements. William H. Foster said it at first moved slowly, but then sped up and twisted and turned through the water. Sometimes its head would bend around toward its tail, and Foster specifically said that when that happened, parts of its body between the bunches would raise up as much as 8 inches out of the water, or 20 centimeters, showing that the animal was at least 40 feet long, or 12 meters.

Lonson Nash saw the sea serpent and reported that it moved quickly and left a long wake, and that while it swam underwater sometimes, it didn’t seem to be very far under. He could track its progress underwater by the disturbance it made on the surface. He also saw it double around so that its head was sometimes near its tail, but he mentioned that when it was swimming forward, it appeared perfectly straight.

Later that day, a shipmaster named Epes Ellery saw the monster’s head through a spyglass. He reported that it was flattened on top like a snake’s and that its mouth resembled a snake’s mouth—presumably meaning it had a thin lower jaw. He reported that its joints were the size of two-gallon kegs and rose about 6 inches above the surface, or 15 centimeters. He said the animal swam with a vertical motion, not a side-to-side motion.

An unnamed woman reported that the sea monster’s bunches looked like gallon kegs tied in a line. Another man said he saw the creature’s bunches at the surface as it lay still for a while, and that around 50 feet, or 15 meters, of its length was visible although he couldn’t see its head or tail. Other witnesses that same day reported much the same thing.

Captain Elkanah Finney saw the sea monster from shore later in August, after his son reported seeing something strange in the harbor. Finney first thought it was a bunch of seaweed, but when he looked at it through his spyglass he realized it was an animal moving quickly through the water. He said it might have been 100 feet long, or 30 meters, with 30 or 40 bunches down its length. In fact, he said it looked like a string of buoys and that each bunch was about the size of a barrel.

There are lots of other reports, all of them similar to these. The sea monster, whatever it was, spent a lot of time in and around Gloucester Bay that summer and even returned the following two summers. People were obviously seeing something. The question is what.

Let’s look at the sightings where the monster had a prong or that it stuck out a long, straight tongue. This sounds a lot like a narwhal. A narwhal can grow up to about 18 feet long, or 5.5 meters, and males, and some females, have a brown or brownish spiral tusk that can grow just over 10 feet long, or 3 meters. Many people think the narwhal’s tusk is a horn that sticks up from its forehead, but it’s actually an elongated tooth that grows through the upper lip. That would explain why some of the witnesses thought it was a tongue.

A young narwhal is black or dark brown, although it grows lighter throughout its life so that old narwhals are almost white. A young animal would also have a short tusk. A narwhal often swims with its head out of the water and a male will sometimes lift his tusk up and down in the air. He can do this easily because, unlike most whales, the narwhal’s neck vertebrae aren’t fused and can bend the head around.

Most importantly, the narwhal is an Arctic animal and isn’t typically found as far south as Massachusetts, although it’s certainly been seen in that part of the ocean on rare occasions. Its rareness, together with its odd appearance compared to other whales, might lead witnesses to think it wasn’t a whale at all but some kind of monster.

That doesn’t explain the bunches, though. The witnesses on the schooner Laura didn’t report seeing any bunches on their sea monster (whose “tongue” reportedly looked like a harpoon), but William Foster’s pronged sea monster did have bunches.

Some researchers have dismissed the bunches, or humps, as a string of narwhals or other small whales traveling in a line. That’s definitely a possibility, but too many witnesses described the bunches as being always partially out of the water, not moving up and down. Not only that, the bunches were seen when the sea monster was lying quietly on the placid surface, not moving, often for long stretches.

Remember, though, that many witnesses described the bunches as resembling a line of buoys or kegs tied on a line. The animal often seemed to swim in circles until its head nearly touched its tail. William Foster reported that when it did this, its body between the bunches would rise several inches out of the water. Lonson Nash said when it was swimming forward, its body appeared perfectly straight.

Maybe witnesses weren’t seeing a long serpentine animal with bumps along its back. Maybe they were seeing a string of kegs used as buoys to keep fishing nets afloat, that had become tangled around a small whale’s tail.

Small kegs or large pieces of cork were sometimes used for this purpose at the time, including in Newfoundland and Norway. If a net tangled around a narwhal’s tail, the animal might have become used to dragging its burden around until the net eventually rotted away and freed the whale. This is something that still happens to whales today with nets and other fishing gear, although these days the nets are all plastic and won’t rot.

Narwhals mostly eat fish and squid, and often dive deeply to find food along the ocean floor. Our entangled narwhal chasing fish underwater might appear to be traveling in playful circles as the net dragged along behind and above it. Pulling all the buoys underwater would probably be difficult for the whale, which would explain why it mostly stayed near the surface.

It’s not a perfect match, of course, but the tangled-narwhal hypothesis fits a lot of the details reported for the Gloucester sea serpent. Narwhals also often travel in small groups, so if the entangled narwhal was with a few friends, that would explain why not every witness saw the bunches.

As for the Linnaean Society of New England, their investigation of the sea monster was excellent for the time. They took the sightings seriously and tried to remain impartial, although the members did seem to start from an assumption that the animal was an actual serpent of some kind.

Unfortunately, they made one fatal blunder. In late September 1817, someone found and killed a snake 3.5 feet long, or a little over a meter, that had bunches all down its spine. It was found only a few miles from Gloucester Harbor. The Linnaean Society decided it had to be a baby sea serpent.

They said so loudly and even proposed a scientific name for the sea serpent. But it wasn’t long before the “baby sea serpent” was identified as a common black snake. The body was dissected and the bunches turned out to be tumors from a diseased spine. The society’s investigation became a joke. But at least we still have the eyewitness accounts they gathered.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 448: Tennessee water mysteries

While I’m at Dragon Con, here’s an old Patreon episode about Tennessee water mysteries, including some spooky sightings of what were probably bears, and some mystery fish!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As this episode goes live, I should be at Dragon Con, so I decided to go ahead and schedule an old Patreon episode to run instead of trying to get a new episode ready in time. It’s about some water mysteries in my home state of Tennessee, although I actually just moved away from Tennessee to Georgia.

Tennessee is in the southeastern United States, a long thin state divided into three geographical sections. East Tennessee borders the southern Appalachian Mountains, Middle Tennessee is on the Cumberland Plateau, and West Tennessee borders the Mississippi River. The only natural lake in the state is Reelfoot in northwestern Tennessee, a shallow, swampy body of water formed in the early 19th century.

Before 1811, instead of a lake a small river flowed through the area, a tributary of the Mississippi. In earlier accounts, Reelfoot River is called Red Foot River. Most of the residents of the area at the time were Choctaw, although white settlers lived in the small town of New Madrid near the bank of the Mississippi.

From December 1811 through February 1812, a series of earthquakes in the New Madrid Seismic Zone changed the land radically. There were three main quakes and innumerable smaller ones, ranging from an estimated 6.7 for the smallest quake to a possible 8.8 for the largest.

In the initial quake and aftershocks on 16 December 1811, chimneys collapsed, trees fell, and fissures opened and closed, projecting water or sand high in the air. Boats on the Mississippi capsized as huge waves crashed from bank to bank.

A woman named Eliza Bryan, who lived in New Madrid, wrote an account of the quakes:

On the 16th of December, 1811, about 2 o’clock a.m., a violent shock of earthquake, accompanied by a very awful noise, resembling loud but distant thunder, but hoarse and vibrating, followed by complete saturation of the atmosphere with sulphurous vapor, causing total darkness. The screams of the inhabitants, the cries of the fowls and beasts of every species, the falling trees, and the roaring of the Mississippi, the current of which was retrograde for a few minutes, owing, as it is supposed, to an eruption in its bed, formed a scene truly horrible.

From this time on until the 4th of February the earth was in continual agitation, visibly waving as a gentle sea. On that day there was another shock…and on the 7th, at about 4 o’clock a.m., a concussion took place so much more violent than those preceding it that it is denominated the ‘hard shock.’

The Mississippi first seemed to recede from its banks, and its waters gathered up like a mountain… Then, rising 15 or 20 feet perpendicularly and expanding, as it were, at the same time, the banks overflowed with a retrograde current rapid as a torrent.

A riverboat captain reported in another account that his boat was caught in a ferocious current on the Mississippi, crashing across waves he estimated as six feet high, or 1.8 m. He also reported whirlpools that he estimated were 30 feet deep, or 9 m. He saw all the trees on either bank fall at once.

The December quake was so large it was felt across North America, from Canada to the Gulf Coast. Then, only five weeks later, it happened again, followed by the third major earthquake on 7 February. Only 15 miles, or 24 km, from the epicenter, the land dropped 20 feet, or 6 m, and created a basin that immediately filled with water. Reelfoot Lake was formed, Tennessee’s only natural lake.

Reelfoot is a state park these days, popular with boaters, fishers, hunters, and birdwatchers. The only cryptid sighting I could find took place in the Glass community near Obion, within ten miles, or 16 km, of the lake. A man who grew up in Glass reported in 2009 that a bipedal creature 8 or 9 feet tall, or 2.5-2.7 m, and covered in off-white hair was well-known to the residents of the community. They referred to it as “the white thing.” The man had seen it several times as a child and his father, who was initially a skeptic, changed his mind when he found huge tracks in the woods.

Technically, Tennessee has two natural lakes, but the “Lost Sea” is underground. It’s located in a large cave system called Craighead Caverns in the foothills of the Great Smoky Mountains. It’s one of the largest underground lakes ever found, although it hasn’t been fully explored so its actual size isn’t known. The lake doesn’t support any known animals, although scientific explorations haven’t been conducted as far as I could find. In the 1960s the cave owners stocked the lake with rainbow trout in hopes that they would discover an exit to the surface. They didn’t, and the fish have to be fed and restocked since they have no natural food sources and won’t spawn in the lake. The cave, and the lake, are a local tourist attraction.

Besides Reelfoot Lake, Tennessee is home to many man-made lakes. Most are in East Tennessee. During the Great Depression, President Roosevelt set up the New Deal plan, creating government-funded projects to employ out-of-work Americans. The Tennessee Valley Authority was founded in 1933 to improve the lives of people who lived along the Tennessee River and its tributaries. To curb seasonal flooding and stop the spread of malaria, and to bring electricity to residents, TVA built numerous hydroelectric dams.

I grew up in a town built in the 1930s to house workers on Norris Dam, which formed Norris Lake from the Clinch River. Norris Dam was TVA’s first large project, completed in 1936. This makes the lake only 85 years old, but that’s certainly long enough for local lore to grow up around it. As a kid I heard about monster catfish—as big as a VW Beetle—living at the bottom of the spillway. The largest fish ever caught in the lake, however, was a 49.5 pound, or 22.45 kg, striped bass in 1978. The largest catfish ever caught in Tennessee was a blue catfish that weighed 112 pounds, or 50.8 kg. That’s huge, but not the size of a car.

There are other strange reports from around Norris Lake. On the night of 3 March 2012, two men went to a clearing near the first man’s house, in a swampy area near the lake’s edge, to build a bonfire and talk. They noticed footsteps and the sound of a large animal moving around in the trees nearby but assumed it was a white-tailed deer, although both men did have the sensation of being watched throughout the evening. Around midnight, when the men decided to leave, they heard sticks breaking in the trees as though being stepped on. One of the men knocked on a tree with a piece of wood and heard knocking in response, and then both were frightened by a loud, deep, long growl.

Black bears do occasionally stray into the Norris area from the nearby Smoky Mountains, but black bears don’t growl—they make distinctive moaning or chuffing noises instead. They also usually stay away from humans and fire.

In the late 1980s, possibly September of 1988, a woman returning to her car after a day of fishing with her family saw a huge hairy Bigfoot-type figure cross the trail ahead of her at speed. She only caught a quick glimpse of it at dusk but estimated it was 8 or 9 feet tall, or 2.5-2.7 m, with long arms that swung oddly as it took huge strides.

Other Tennessee lakes have their share of mysteries too. The “catzilla” legend is repeated in just about every waterway, with the catfish’s size usually compared to that of a small car. There really are some enormous fish in Tennessee’s lakes, though. In January of 2021 a man caught and released an American paddlefish in Cherokee Lake that might have approached the world record weight of 151 pounds, or 68.5 kg. It was six feet long, or 1.8 m.

There’s also a 19th century mystery associated with the Tennessee River. The earliest report of it I could find is from April 1878 in the Chattanooga Daily Times, an account from an old resident about river monster sightings from earlier that century. The first sighting by a white settler is from 1822, when a man named Buck Sutton was fishing and sighted the monster. The next reported sighting was near the same area five years later, when a man named Billy Burns saw the monster while crossing the ferry. Jim Windom was fishing in 1829 when he saw it. All three men died the summer after their encounters, although subsequent sightings (including 1836 and 1839) didn’t lead to anyone’s death.

The sightings all apparently took place in a part of the Tennessee River near Chattanooga, now dammed to form Chickamauga Lake. At the time the river there was relatively sluggish and shallow, with many shoals.

The monster was described as serpent-like and about the length of a canoe, or around 20 to 25 feet long, or 6 to 7.6 m. At least one report says it had a doglike head. Billy Burns reported that its belly was yellow and its back was blue. The most interesting detail comes from at least two reports, that of a tall black fin on its back that stood at least 18 inches high, or 45 cm, or possibly two feet high, or 61 cm.

The Tennessee River has its share of unusual animals, from tiny freshwater jellyfish to the paddlefish, a filter feeder with an elongated rostrum, but nothing with such a large and prominent dorsal fin. The lake sturgeon, which can grow well over seven feet long, or 2.2 m, has bony plates on its back and an elongated snout, which doesn’t fit the description given by witnesses. The alligator gar can grow 10 feet long, or 3 m, but like the lake sturgeon, its dorsal fin is small and set far back on the body. The longnose gar can grow six feet long, or 1.8 m, but again, its dorsal fin is small and set far back on its body, and as its name implies, its jaws are elongated.

In shallow water the tail fins of any of these fish or others can show above the surface higher than the dorsal fin, but not two feet out of the water. Moreover, all these fish were much more common in the early 19th century than they are now, and locals would likely recognize all of them.

Alligators do occasionally show up in Tennessee, although not historically. Most alligator sightings are quite recent. The American alligator can grow up to 15 feet long, or 4.5 m, but even if one occasionally strayed into the Tennessee River in the 19th century, it has no structure on its back that could be mistaken for a tall fin.

On rare occasions, a bull shark could find its way into the Tennessee River. The Tennessee is a tributary of the Ohio River, which in turns flows into the Mississippi, which then empties into the Gulf of Mexico. While bull sharks do occasionally swim up the Mississippi, no genuine sighting of one in the Ohio or Tennessee rivers has ever been documented. It’s not impossible, though. An exceptionally large bull shark can grow up to 13 feet long, or 4 m, and it prefers shallow water. Tennesseans in the early 19th century would have no knowledge of sharks and might consider it a monster, not an ordinary fish.

It’s possible that the Tennessee River was once home to a large fish with a tall dorsal fin, one that was already rare in the early 19th century and which went extinct soon after. It’s also possible that the story was just a newspaper hoax, written to fill space on a slow news day. The article from 1878 was a “contribution…from an old citizen of Chattanooga” who was not named, talking about events that took place more than fifty years before. In 1885 another newspaper, the Chattanooga Daily Commercial, ran a nearly identical article—obviously taken from the 1878 one, often word-for-word—that claims the reporter heard the story “yesterday while listening attentively to the conversation of one of Chattanooga’s oldest citizens.”

We may never know what the strange Tennessee River animal was, just as we may not know whether bigfoot-type creatures live near Tennessee’s lakes. I have my doubts that there are catfish in Tennessee bigger than cars, though—but just to be on the safe side, I’m staying in the boat.

Thanks for your support, and thanks for listening!

Episode 447: So Many Legs!

Thanks to Mila for suggesting one of our topics today!

Further reading:

The mystery of the ‘missing’ giant millipede

Never-before-seen head of prehistoric, car-size ‘millipede’ solves evolutionary mystery

A centipede compared to a millipede:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Let’s finish invertebrate August this year with two arthropods. One is a suggestion from Mila and the other is a scientific mystery that was solved by a recent discovery, at least partially.

Mila suggested we learn about centipedes, and the last time we talked about those animals was in episode 100. That’s because centipedes are supposed to have 100 legs.

But do centipedes actually have 100 legs? They don’t. Different species of centipede have different numbers of legs, from only 30 to something like 300. Like other arthropods, the centipede has to molt its exoskeleton to grow larger. When it does, some species grow more segments and legs. Others hatch with all the segments and legs they’ll ever have.

A centipede’s body is flattened and made up of segments, a different number of segments depending on the centipede’s species, but at least 15. Each segment has a pair of legs except for the last two, which have no legs. The first segment’s legs project forward and end in sharp claws with venom glands. These legs are called forcipules, and they actually look like pincers. No other animal has forcipules, only centipedes. The centipede uses its forcipules to capture and hold prey, and to defend itself from potential predators. A centipede pinch can be painful but not dangerous unless you’re also allergic to bees, in which case you might have an allergic reaction to a big centipede’s venom. Small centipedes can’t pinch hard enough to break a human’s skin.

A centipede’s last pair of legs points backwards and sometimes look like tail stingers, but they’re just modified legs that act as sensory antennae. Each pair of a centipede’s legs is a little longer than the pair in front of it, which helps keep the legs from bumping into each other when the centipede walks.

The centipede lives throughout the world, even in the Arctic and in deserts, but it needs a moist environment so it won’t dry out. It likes rotten wood, leaf litter, soil, especially soil under stones, and basements. Some centipedes have no eyes at all, many have eyes that can only sense light and dark, and some have relatively sophisticated compound eyes. Most centipedes are nocturnal.

The largest centipedes alive today belong to the genus Scolopendra. This genus includes the Amazonian giant centipede, which can grow over a foot long, or 30 cm. It’s reddish or black with yellow bands on the legs, and lives in parts of South America and the Caribbean. It eats insects, spiders–including tarantulas, frogs and other amphibians, small snakes and lizards, birds, and small mammals like mice. It’s even been known to catch bats in midair by hanging down from cave ceilings and grabbing the bat as it flies by.

Some people think that the Amazonian giant centipede is the longest in the world, but this isn’t actually the case. Its close relation, the Galapagos centipede, can grow 17 inches long, or 43 cm, and is black with red legs.

But if you think that’s big, wait until you hear about the other animal we’re discussing today. It’s called Arthropleura and it lived in what is now Europe and North America between about 344 and 292 million years ago.

Before we talk about it, though, we need to learn a little about the millipede. Millipedes are related to centipedes and share a lot of physical characteristics, like a segmented body and a lot of legs. The word millipede means one thousand feet, but millipedes can have anywhere from 36 to 1,306 legs. That is a lot of legs. It’s probably too many legs. The millipede with 1,306 legs is Eumillipes persephone, found in western Australia and only described in 2021. It lives deep underground in forested areas, where it probably eats fungus that grows on tree roots. It’s long and thin with short legs and no eyes. It’s only about 1 mm in diameter, but can grow nearly 4 inches long, or almost 10 cm.

Millipedes mostly eat decaying plant material and are generally chunkier-looking than centipedes. They have two pairs of legs per segment instead of just one, with the legs attached on the underside of the segment instead of on the sides. A millipede usually has short, strong antennae that it uses to poke around in soil and decaying leaves. It can’t pinch, sting, or bite, although some species can secrete a toxic liquid that also smells terrible. Mostly if it feels threatened, a millipede will curl up and hope the potential predator will leave it alone.

The biggest millipede alive today is probably the giant African millipede, which can grow over 13 inches long, or almost 34 cm, but because millipedes are common throughout the world and are often hard for scientists to find, there may very well be much larger millipedes out there that we just don’t know about.

As an example, in 1897 scientists discovered a new species of giant millipede in Madagascar and named it Spirostreptus sculptus. One specimen found was almost 11 inches long, or over 27 cm. But after that, no scientist saw the millipede again—until 2023, when a scientific expedition looking for lost species rediscovered it, along with 20 other species of animal. It turns out that the millipede isn’t even uncommon in the area, so the local people probably knew all about it.

But Arthropleura was way bigger than any millipede or centipede alive today. It could grow at least 8 ½ feet long, or 2.6 meters, and possibly longer. It probably weighed over 100 lbs, or 45 kg. We have plenty of fossilized specimens, but not one of them has an intact head. Then scientists discovered two beautifully preserved juvenile specimens in France, and CT scans in 2024 revealed that both specimens had nearly complete heads.

The big question about Arthropleura was whether it was more closely related to millipedes or centipedes, or if it was something very different. Without a head to study, no one could answer that question with any confidence, although a lot of scientists had definite opinions one way or another. Studies of the head scans determined that Arthropleura was indeed more closely related to modern millipedes—but naturally, since it lived so long ago, it also had a lot of traits more common in centipedes today. It also had something not found in either animal, eyes on little stalks.

There are still lots of mysteries surrounding Arthropleura. For instance, what did it eat? Because of its size, scientists initially thought it might be a predator. Now that we know it was more closely related to the millipede than the centipede, scientists think it might have eaten like a millipede too. That would mean it mostly ate decaying vegetation, but we don’t know for sure. We also don’t know if it could swim or not. We have a lot of Arthropleura tracks that seem to be made along the water’s edge, so some scientists hypothesize that it could swim or at least spent part of its time in the water. Other scientists point out that Arthropleura didn’t have gills or any other way to absorb oxygen while in the water, so it was more likely to be fully terrestrial. The first set of scientists sometimes comes back and argues that we don’t actually know how Arthropleura breathed or even why it was able to grow so large, and maybe it really did have gills. A third group of scientists then has to come in and say, hey, everyone calm down, maybe the next specimen we find will show evidence of both lungs and gills, and it spent part of its time on land and part in shallow water, so there’s no need to argue. And then they all go for pizza and remember that they really love arthropods, and isn’t Arthropleura the coolest arthropod of all?

At least, I think that’s how it works among scientists. And Arthropleura is really cool.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 446: Termites

Thanks to Yonatan and Eilee for this week’s suggestion!

Further reading:

Replanted rainforests may benefit from termite transplants

A vast 4,000-year-old spatial pattern of termite mounds

A family of termites has been traversing the world’s oceans for millions of years

Worker termites [photo from this site]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a topic I’ve been wanting to cover for a while, suggested by both Yonatan and Eilee. It’s the termite episode!

We talk a lot about animals that eat termites, and in many cases termite-eating animals also eat ants. I’ve always assumed that termites and ants are closely related, but they’re not. Termites are actually closely related to cockroaches, which are both in the order Blattodea, but it’s been 150 million years since they shared a common ancestor. They share another trait too, in that no one wants either insect infesting their house.

Like most cockroach species, though, most termite species don’t want anything to do with humans. They live in the wild, not in your house, and they’re incredibly common throughout most of the world. That’s why so many animals eat termites almost exclusively. There are just so many termites to eat!

There are around 3,000 species of termite and about a third of them live in Africa, with another 400 or so in South America, 400 or so in Asia, and 400 or so in Australia. The rest live in other parts of the world, but they need warm weather to survive so they’re not very common in cold areas like northern Europe.

A termite colony consists of a queen, soldiers, and workers, which sounds very similar to ants, but there are some major differences. Worker termites take care of the nest and babies, find and process food so the other termites can eat it, and store the processed food. They also take care of the queen. Unlike ants and bees, worker termites aren’t only female and aren’t always sterile. Soldiers are bigger and stronger than workers, with much bigger heads and jaws so they can fight off potential predators. In some species, the soldiers have such big jaws that they can’t actually eat without help. Worker termites feed them. Finally, the queen is the largest individual in the colony, usually considerably larger than workers, but unlike queen bees and ants, she has a mate who stays with her throughout her life, called a king. Some termite queens can live to be as much as 50 years old, and she and the king spend almost their entire lives underground in a nesting chamber.

The larger the colony, the more likely it is that the colony has more than one queen. The main queen is usually the one that started the colony along with her king, and when it was new they did all the work—taking care of the eggs and babies, foraging for food, and building the nest itself. As the first workers grew up, they took on more of those tasks, including expanding the nest.

Workers are small and their bodies have little to no pigment, so that they appear white. Some people call them white ants, but of course they’re not ants. Workers have to stay in a humid environment like the nest or their bodies dry out. Workers and soldiers don’t have eyes, although they can probably sense light and dark, and instead they navigate using their antennae, which can sense humidity and vibrations, and chemoreceptors that sense pheromones released by other termites.

Termites have another caste that’s not as common, usually referred to as reproductives. These are future kings and queens, and they’re larger and stronger than workers. They also have eyes and wings. When outside conditions are right, usually when the weather is warm and humid, the reproductive termites leave the nest and fly away. Males and females pair off and search for a new nesting site to start their own colony.

Termites mainly eat dead plant material, including plant material that most other animals can’t digest. A termite’s gut contains microbes that are found nowhere else in the world, which allow the termite to digest cellulose found in plants, especially wood. Baby termites aren’t born with these microbes, but they gain them from worker termites when the babies are fed or groomed.

In some areas termites will eat the wood used to build houses, which is why people don’t like them, but termites are actually important to the ecosystems where they live, recycling nutrients and helping break down fallen trees so other plants can grow. They also host nitrogen-fixing bacteria, which are important to plant life.

A recent study in Australia determined that termites are really important for rainforest health. In some parts of Australia, conservation groups have started planting rainforest trees to restore deforested areas. Decomposers like termites are slower to populate these areas, with one site that was studied 12 years after planting showing limited termite activity. That means it takes longer for fallen branches, logs, and stumps to decay, which means it takes longer for the nutrients in those items and others to be available for other plants to use.

The problem seems to be that the new forests don’t have very many dead trees yet, so the termites don’t have a lot to eat. The team is considering bringing in fallen logs from more established forests so the termites have food and can establish colonies more easily.

Some species of termite in Africa, Australia, and South America build mounds, and those mounds can be huge. A mound is built above ground out of soil and termite dung, held together with termite saliva. It’s full of tunnels and shafts that allow the termites to move around inside and which bring air into the main part of the nest, which is mostly below ground. Different species build differently-shaped mounds, including some that are completely round.

Some termite mounds can be twice the height of a tall person, and extremely big around. The biggest measured had a diameter of almost 100 feet around, or 30 meters. But in at least one place on earth, in northeastern Brazil, there’s a network of interconnected termite mounds that is as big as Great Britain.

The complex consists of about 200 million mounds, each of them about 8 feet tall, or 2.5 meters, and about 30 feet across, or 9 meters. They’re just huge piles of soil excavated from underground, and tests have determined that the mounds range in age from 690 years old to at least 3,820 years old and are connected by tunnels–but the nests under the mounds are still in use!

Not all termite species build mounds or even live underground. A group called drywood termites live in wood and usually have much smaller colonies than other termites. They probably split off from other termites about 100 million years ago, and a 2022 genetic study determined that they probably originated in South America. But drywood termites have spread to many other parts of the world, and scientists think it’s because their homes float. They estimate that over the last 50 million years, drywood termites have actually floated across entire oceans at least 40 times. When their floating log homes washed ashore, the termites colonized the new land and adapted to local conditions.

A lot of people worry that termites will damage their homes, but in many parts of the world, people eat termites. The termites are fried or roasted until they’re nicely crunchy, and they’re supposed to have a nut-like flavor. They’re also high in protein and important fats. So the next time you worry about your house, you can shout at any potential termites that if they’re around, you might just eat them as a snack.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 445: Salinella

It’s a tiny mystery animal!

Further reading:

Salinella – what the crap was it?

Some of Frenzel’s drawings of Salinella:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Johannes Frenzel was a German zoologist in the 19th century. He worked in Argentina for several years, studying microscopic and near-microscopic animals, and seemed to be a perfectly good scientist who did good work but didn’t make a real splash. But these days he’s remembered for a mystery animal that is still causing controversy in the scientific community.

Frenzel described a strange worm-like animal he named Salinella salve in 1892, and Salinella hasn’t been seen since. According to Frenzel’s description of it, Salinella is very different from every other animal known. It’s so different, in fact, that some scientists think Frenzel just made the whole thing up.

In 1890 or 1891, a colleague gave Frenzel a soil sample reportedly from the salt pans in Argentina. We don’t know exactly where it came from, just that it’s somewhere in the Río Cuarto region. Frenzel put the sample in an aquarium and added water, although apparently some iodine got mixed in too, either on purpose or maybe by accident. Then he forgot all about the sample for a few weeks. It wasn’t covered and Frenzel reported that some dead flies had fallen into the aquarium.

When Frenzel finally got around to examining the sample, he discovered something he had never seen before. No one else had either, before or since. He said it was a worm-like animal about 2 millimeters long, and there wasn’t just one of them. There were quite a few in the sample, some in the soil and some attached to the glass.

When he studied the tiny worms, he discovered they had a very basic, very unusual body plan. It was basically just a tube open at both ends, with a single layer of cells around the interior sac. Each cell was covered with cilia on both the exterior side of the animal and the interior side. Cilia are hair-like structures, and salinella used them to move around, a method of propulsion called ciliary gliding. It didn’t have any organs or even tissues—basically nothing you’d expect even in a very simple animal. It reproduced by splitting down the middle, called transverse fission.

Assuming Frenzel was describing a real animal, and was describing it accurately, this body plan is unlike any other animal known. It’s most similar to what scientists think the body plan was of the precursors to sea sponges. It’s also similar in some ways to a group of parasitic animals called Mesozoa, which are wormlike, very simple, only a few millimeters long at most, and which have an outer layer of ciliated cells. Mesozoans aren’t well understood and most scientists these days think the group is made up of animals that aren’t closely related to each other. Salinella has sometimes been considered a mesozoan, but it’s still not that close of a match.

Frenzel took detailed notes and made careful drawings of Salinella, and compared it to known animals like protozoans. His description of the animal is solid, and he described many other animals in his career that are well-known to scientists today. The main reason some scientists now think Frenzel made Salinella up is because it’s so weird and no one has been able to find it since. Frenzel died in 1897 without ever having the chance to look for more specimens.

In 1963 an American biologist placed Salinella in its own phylum, which he named Monoblastozoa. In the early 2010s, a team of German scientists visited various saline lakes in Argentina and Chile in hopes of finding Salinella specimens, but without luck. The area where the original soil sample came from has mostly been converted to farmland, so if Salinella was restricted to that one spot, it might well be extinct now.

So what happened to the type specimens that Frenzel collected? We don’t know. They vanished sometime between 1891 when Frenzel moved back to Germany from Argentina, and now. It might even be that he couldn’t preserve the specimens, since he reported that every time he tried to preserve one, it disintegrated.

While I was researching this episode, I wondered if Salinella actually came from the flies that reportedly fell into the aquarium. Many parasites evolve to become very simple, like Myxozoa that we talked about in episode 422. But Frenzel observed Salinella apparently eating organic matter in the soil, which isn’t something a fly parasite would or could do.

At this point, unless we can find a living Salinella specimen, there’s no way to know if the animal was real or a figment of Frenzel’s imagination. Some scientists even suggest that Frenzel was mistaken in his description and the real animal might actually be very different from what he described. Considering how detailed and careful Frenzel’s notes and drawings are, and how many other species he described without causing any controversy at all, I think Salinella was a real animal, just a weird one. Let’s hope that one day it’s discovered again so we can learn more about it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 444: Diskagma and Horodyskia

It’s Invertebrate August! These creatures are the most invertebrate-y of all!

Further reading:

Dubious Diskagma

Horodyskia is among the oldest multicellular macroorganisms, finds study

A painting of diskagma, taken from the top link above:

Little brown jug flowers (not related to diskagma in any way!):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This episode started out as the March 2025 Patreon episode, but there was more I wanted to add to it that I didn’t have time to cover in that one. Here’s the expanded version to kick off Invertebrate August, which also happens to be episode 444 and releasing on August 4th! It’s about two mystery fossils.

The first is named Diskagma, which means disc-shaped fragment, and it was only described in 2013. That’s partly because it’s so small, barely two millimeters long at most, and partly because of where it’s found. That would be fossilized in extremely old rocks.

When I saw the illustration accompanying the blog post where I learned about Diskagma, I thought it was a cluster of cup-like flowers, sort of like the flowers of the plant called little brown jug. I was ready to send the link to Meredith Hemphill of the Herbarium of the Bizarre podcast, which by the way you should be listening to. But then I saw how old Diskagma is.

It’s been dated to 2.2 billion years old. That’s older than any plant, probably by as much as a billion years.

Even more astounding, it lived on land.

As a reminder, the Cambrian explosion took place about half a billion years ago, when tiny marine animals diversified rapidly to fill new ecological niches. That happened in the water, though, mainly in shallow, warm oceans. If you go back to around 850 million years ago, that may have been roughly the time that land plants evolved from green algae that lived in fresh water. Plant-like algae, or possibly algae-like plants, might be as old as 1 billion years old. But before then, scientists don’t find evidence of anything except microbes living on land, and they were probably restricted to lakes and other bodies of fresh water. That’s because there wasn’t much soil, just broken-up rock that contained very few nutrients and couldn’t retain much water.

Diskagma was shaped like a tiny elongated cup, or an urn or vase, with what looks like a stem on one end and what looks like an opening at the other end. The opening contained structures that look like little filaments, but the filaments didn’t fill the whole cup. Most of the cup was diskagma’s body, so to speak, although we don’t know what it contained. We also don’t know what the filaments were for. We do know that the stem actually did connect diskagma to other cups, so that they lived in little groups. We don’t know if it was a single animal with multiple cuplike structures or if it was a colony, or really anything.

That’s the problem. We don’t know anything about diskagma except that it existed, and that it lived on land 2.2 billion years ago. Tiny as it was, though, it wasn’t microscopic, and it definitely appears more complex than would be expected that long ago, especially from something living on dry land.

One suggestion is that the main part of its body contained a symbiotic bacteria that could convert chemicals to nutrients. As in many modern animals, especially extremophiles, the bacteria would have had a safe place to live and the diskagma would have had nutrients that allowed it to live without needing to eat.

Diskagma lived at an interesting time in the earth’s history, called the great oxygenation event, also called the great oxidation event. We talked about it in episode 341 in conjunction with cyanobacteria, because cyanobacteria basically started the great oxygenation event. Cyanobacteria are still around, by the way, and are doing just fine. They’re usually called blue-green algae even though they’re not actually algae.

Cyanobacteria photosynthesize, and they’ve been doing so for far longer than plants–possibly as much as 2.7 billion years, although scientists think cyanobacteria originally evolved around 3.5 billion years ago. The earth is about 4.5 billion years old, if you were wondering.

Like most plants also do, cyanobacteria produce oxygen as part of the photosynthetic process, and when they started doing so around 2.7 billion years ago, they changed the entire world. Before then, earth’s atmosphere hardly contained any oxygen. If you had a time machine and went back to more than two billion years ago, and you forgot to bring an oxygen tank, you’d instantly suffocate trying to breathe the air. But back then, even though animals and plants didn’t yet exist, the world contained a whole lot of microbial life, and none of it wanted anything to do with oxygen. Oxygen was toxic to the lifeforms that lived then, but cyanobacteria just kept producing it.

Cyanobacteria are tiny, but there were a lot of them. Over the course of about 700 million years, the oxygen added up until other lifeforms started to go extinct, poisoned by all that oxygen in the oceans and air. By two billion years ago, pretty much every lifeform that couldn’t evolve to use or at least tolerate oxygen had gone extinct.

Since Diskagma lived during the time of the great oxygenation event, some scientists suggest that it contained microbes that photosynthesized sunlight into nutrients diskagma could use. And, as in cyanobacteria, the side effect of photosynthesis is oxygen, so diskagma might have been contributing to the oxygen in the air that allows us to breathe these days. On the other hand, it might not have had anything to do with photosynthesis and the great oxygenation event might have driven diskagma to extinction. We have no way to know right now.

What we do know is that 700 million years after diskagma lived, something similar appears in the fossil record. It’s called Horodyskia and its fossils have been found in rocks dating between 1.5 billion years ago to 550 million years ago. Unlike diskagma, which has only been found in rocks from South Africa, horodyskia fossils have been found in Australia, China, and North America. That doesn’t mean diskagma wasn’t widespread, just that we haven’t found it anywhere else. There aren’t all that many rocks that are over two billion years old.

Horodyskia lived in the water, specifically at the bottom of the ocean, probably in shallow water. It’s been described as looking like a row of beads on a thread. The thread seemed to be buried in the sand, and growing up from it in intervals were little pear-shaped bulbs, each no larger than a millimeter long, that stuck up through the sand into the water. There may have been little root-like structures called holdfasts that grew from the bottom of the thread to help keep it in place.

We don’t know a lot about horodyskia either. It wasn’t a plant, since it also lived long before plants evolved. A 2023 study determined that it was a multicellular creature and that it was most likely a protist. Protists are related to animals, plants, and fungi, but aren’t any of those things, and they’re an incredibly diverse group. Most are single-celled and microscopic, but not always. They include algae, amoebas, slime molds, and lots more. Horodyskia’s bulbs might have been encased in a jelly-like substance, as is common in a lot of protists. Some horodyskia specimens found in younger rocks, the ones about 550 million years old, are much smaller than the earlier specimens, with each bulb barely a fraction of a millimeter in size.

We might not know much about these strange life forms, but knowing they existed tells us that even two billion years ago, life was a lot more varied than we used to think. And that’s the most exciting thing of all.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

The Books Have Been Claimed! and a bonus mouse

I just wanted everyone to know that a listener has claimed the books and magazines I offered for giveaway in episode 443. You can also learn about 60 seconds’ worth of information about the African pygmy mouse.

The tiniest mouse [photo by Alouise Lynch – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=59068329]:

Episode 443: Ant Lions and the Horrible Seal Problem

Thanks to Jayson and warblrwatchr for suggesting this week’s invertebrates!

Further reading:

Parasite of the Day: Orthohalarachne attenuata

Trap-jaw ants jump with their jaws to escape the antlion’s den

Get out of my noooooose:

An ant lion pit:

An ant lion larva:

A lovely adult antlion, Nannoleon, which lives in parts of Africa [photo by Alandmanson – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=58068259]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s almost August, and of course we’re doing invertebrate August again this year. Let’s get ready by talking about a few extra invertebrates this week, with suggestions from Jayson and warblrwatchr.

Before we get started, I have some quick housekeeping. First, a big shout-out to Nora who emailed me recently. I just wanted to say hi and I hope you’re having a good day. Next, I’m moving in just a few weeks to Atlanta, Georgia! I know I was talking forever about moving to Bloomington, Indiana, but I changed my mind. The next few episodes are already scheduled so I can concentrate on moving.

I’m about 75% packed at this point and have given away or sold a lot of stuff, including a lot of books. But I have a collection that a listener might be interested in. I offered it to the patrons last month but no one grabbed it, so I’ll offer it here.

I have every issue of the little magazine Flying Snake ever published, 30 in all. They’re a fun hodgepodge of articles, reprinted newspaper clippings, old photos, and other stuff more or less associated with cryptozoology and weirdness in general. I’ve decided they take up too much space on my shelves to take with me to Atlanta. If you’re interested in giving them a home, let me know and I’ll box them up and send them to you for free. The first person who says they’ll take them will get them, but the catch is that you have to take them all. I won’t just send you a few. I’ll also throw in all four volumes of the Journal of Cryptozoology. This offer stands until mid-August when I move, because if I have to move them to my new apartment, I’m just going to keep them.

Okay, now let’s learn about some invertebrates! First, Jayson wanted to learn about a tiny invertebrate called Orthohalarachne attenuata. It doesn’t have a common name because most people will never ever encounter it, or think about it, and I kind of wish I didn’t have to think about it because it’s gross. Thanks a lot, Jayson. It’s a mite that lives in the nasal passages of seals, sea lions, and walruses. It’s incredibly common and usually doesn’t bother the seal very much, although sometimes it can cause the seal to have difficulty breathing if the infestation is heavy.

The adult mite spends its whole life anchored in the seal’s nasal passages with sharp little claws, although it can move around if it wants to. Its larvae are more active. The mite is mainly spread by seals sneezing on each other, which spreads the larvae onto another seal, and the larvae crawl into the new seal’s nose and mouth.

Unless you’re a seal or other pinniped, this might sound gross but probably doesn’t bother you too much. But consider that in 1984, a man went to the doctor when one of his eyes started hurting. The doctor found a mite attached to his eyeball, and yes, it was Orthohalarachne attenuata. The man had visited Sea World two days before he started feeling pain in his eye, and happened to be close to some walruses that were sneezing.

Luckily for pinnipeds kept in captivity in zoos that give their animals proper care, mite infestations can be treated successfully by veterinarians.

Let’s move on quickly to an invertebrate that isn’t a parasite that can get in your eyes, the ant lion! It was suggested by warblrwatchr and I’ve been wanting to cover it for a while. When I was a kid, there was a strip of soft powdery dirt under the eaves of the school gym that always had ant lions in it, and I would squat down during recess and watch to see if any ants would fall in and get caught. Sometimes this did actually happen and the resulting battle between ant and ant lion was exciting and kind of horrible to witness.

The ant lion is actually the larva of antlion lacewing, which look like a small damselfly that is mainly active at dusk. Ant lions live throughout the world, with more than 2,000 species known. Some wait for prey while hidden in leaf litter, while some hide in rock crevices and become camouflaged by lichens growing on them. Many others dig little pits in sand or soft dirt. They’re also called the doodlebug in some places, because when they’re looking for a place to dig a little pit, they make a loopy pattern in the dirt as they’re walking around.

The ant lion’s body is robust and has little backwards-pointing bristles that help it dig itself into the dirt and stay there without moving until it needs to. It waits at the bottom of the pit, hidden underground with just its long, sharp jaws showing through the dirt, until an ant or other insect falls in. The ant can’t climb out because the sides of the pit are so sharply angled that they start to cave in, sending the ant down to the bottom of the pit. If that doesn’t work, the ant lion kicks dirt at the ant so that it falls. Then the ant lion grabs the ant in its fearsome jaws and injects venom and digestive enzymes into it, and that is the end of the ant. The jaws actually have little projections that are hollow and act like horrible little straws, so that the ant lion sucks the liquefied ant insides into its digestive system.

One species of ant, the trap-jaw ant, can sometimes escape the ant lion’s pit by using its own fearsome jaws as a spring to bounce itself to safety. There are many species of trap-jaw ant that live in tropical and subtropical areas throughout much of the world, including Africa, Asia, Australia, and much of the Americas. Its long jaws can snap closed extremely quickly and with a lot of force, allowing it to kill prey, bite pieces off of food, and lots of other activities. They can also jump with their jaws, and this improves their ability to bounce right out of the ant lion pit.

The ant lion can remain in its larval stage for years, maturing slowly. It has no anus but it doesn’t expel the waste products that it can’t digest, it just stores them in its body. When it does finally pupate, it uses a lot of the waste to produce silk for its cocoon. Whatever is left over it leaves behind when it emerges from its cocoon.

The cocoons are naturally hidden underground, and when the adult antlion lacewing emerges, it digs its way to the surface and rests while its wings open. Compared to the tough little larva, the adult is delicate and not very robust. It doesn’t live very long, usually no more than a few weeks, and most species eat pollen or nectar, or maybe tiny insects. It mainly just seeks out a mate, and the female lays her eggs in soft soil. When they hatch, they build their first tiny pits and the cycle starts again. And nobody gets into anybody’s eyeballs.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 442: Trees and Megafauna

Further reading:

The Trees That Miss the Mammoths

The disappearance of mastodons still threatens the native forests of South America

Study reveals ancient link between mammoth dung and pumpkin pie

A mammoth, probably about to eat something:

The Osage orange fruit looks like a little green brain:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Way back at the end of 2017, I found an article called “The Trees That Miss the Mammoths,” and made a Patreon episode about it. In episode 320, about elephants, which released in March of 2023, I cited a similar article connecting mammoths and other plants. Now there’s even more evidence that extinct megafauna and living plants are connected, so let’s have a full episode all about it.

Let’s start with the Kentucky coffeetree, which currently only survives in cultivation and in wetlands in parts of North America. It grows up to 70 feet high, or 21 meters, and produces leathery seed pods so tough that most animals literally can’t chew through them to get to the seeds. Its seed coating is so thick that water can’t penetrate it unless it’s been abraded considerably. Researchers are pretty sure the seed pods were eaten by mastodons and mammoths. Once the seeds traveled through a mammoth’s digestive system, they were nicely abraded and ready to sprout in a pile of dung.

There are five species of coffeetree, and the Kentucky coffeetree is the only one found in North America. The others are native to Asia, but a close relation grows in parts of Africa. It has similar tough seeds, which are eaten and spread by elephants.

The African forest elephant is incredibly important as a seed disperser. At least 14 species of tree need the elephant to eat their fruit in order for the seeds to sprout at all. If the forest elephant goes extinct, the trees will too.

When the North American mammoths went extinct, something similar happened. Mammoths and other megafauna co-evolved with many plants and trees to disperse their seeds, and in return the animals got to eat some yummy fruit. But when the mammoths went extinct, many plant seeds couldn’t germinate since there were no mammoths to eat the fruit and poop out the seeds. Some of these plants survive but have declined severely, like the Osage orange.

The Osage orange grows about 50 or 60 feet tall, or 15 to 18 meters, and produces big yellowish-green fruits that look like round greenish brains. Although it’s related to the mulberry, you wouldn’t be able to guess that from the fruit. The fruit drops from the tree and usually just sits there and rots. Some animals will eat it, especially cattle, but it’s not highly sought after by anything. Not anymore. In 1804, when the tree was first described by Europeans, it only grew in a few small areas in and near Texas. The tree mostly survives today because the plant can clone itself by sending up fresh sprouts from old roots.

But 10,000 years ago, the tree grew throughout North America, as far north as Ontario, Canada, and there were seven different species instead of just the one we have today. 10,000 years ago is about the time that much of the megafauna of North and South America went extinct, including mammoths, mastodons, giant ground sloths, elephant-like animals called gomphotheres, camels, and many, many others.

The osage orange tree’s thorns are too widely spaced to deter deer, but would have made a mammoth think twice before grabbing at the branches with its trunk. The thorns also grow much higher than deer can browse. Trees that bear thorns generally don’t grow them in the upper branches. There’s no point in wasting energy growing thorns where nothing is going to eat the leaves anyway. If there are thorns beyond reach of existing browsers, the tree must have evolved when something with a taller reach liked to eat its leaves.

The term “evolutionary anachronism” is used to describe aspects of a plant, like the Osage orange’s thorns and fruit, that evolved due to pressures of animals that are now extinct. Scientists have observed evolutionary anachronism plants throughout the world. For instance, the lady apple tree, which grows in northern Australia and parts of New Guinea. It can grow up to 66 feet tall, or 20 meters, and produces an edible red fruit with a single large seed. It’s a common tree these days, probably because the Aboriginal people ate the fruit, but before that, a bird called genyornis was probably the main seed disperser of the lady apple.

In episode 217 we talked about the genyornis, a flightless Australian bird that went extinct around 50,000 years ago but possibly more recently. It grew around 7 feet tall, or over 2 meters, and recent studies suggest it ate a lot of water plants. It would have probably eaten the lady apple fruit whenever it could, most likely swallowing the fruits whole and pooping the big seeds out later.

Way back in episode 19 we talked about a tree on the island of Mauritius that relied on the dodo’s digestive system to abrade its seeds so they could sprout. It turns out that study was flawed and the seeds don’t need to be abraded to sprout. They just need an animal to eat the flesh off the seed, either by just eating the fruit and leaving the seed behind, or by swallowing the entire fruit and pooping the seed out later, and that could have been done by any number of animals. The dodo probably did eat the fruits, but so did a lot of other animals that have also gone extinct on Mauritius.

In June of 2025, a study was published showing that the gomphothere Notiomastodon, which lived in South America until about 10,000 years ago, definitely ate fruit. Notiomastodon was an elephant relation that could probably grow almost ten feet tall, or 3 meters. It probably lived in family groups like modern elephants and probably looked a lot like a modern elephant, at least if you’re not an elephant expert or an elephant yourself. The 2025 study examined a lot of notiomastodon teeth, and it discovered evidence that the animals ate a lot of fruit. This means it would have been an important seed disperser, just like the African forest elephant that we talked about earlier.

Another plant that nearly went extinct after the mammoth did is a surprising one. Wild ancestors of modern North American squash plants relied on mammoths to disperse their seeds and create the type of habitat where the plants thrived. Mammoths probably behaved a lot like modern elephants, pulling down tree limbs to eat and sometimes pushing entire trees over. This disturbed land is what wild squash plants loved, and if you’ve ever prepared a pumpkin or squash you’ll know that it’s full of seeds. The wild ancestors of these modern cultivated plants didn’t have delicious fruits, though, at least not to human taste buds. The fruit contained toxins that made them bitter, which kept small animals from eating them. Small animals would chew up the seeds instead of swallowing them whole, which is not what the plants needed. But mammoths weren’t bothered by the toxins and in fact probably couldn’t even taste the bitterness. They thought these wild squash were delicious and they ate a lot of them.

After the mammoth went extinct, the wild squash lost its main seed disperser. As forests grew thicker after mammoths weren’t around to keep the trees open, the squash also lost a lot of its preferred habitat. The main reason why we have pumpkins and summer squash is because of our ancient ancestors. They bred for squash that weren’t bitter, and they planted them and cared for the plants. So even though the main cause of the mammoth’s extinction was probably overhunting by ancient humans, at least we got pumpkin pies out of the whole situation. However, I personally would prefer to have both pumpkin pie and mammoths.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!