Episode 372: Mystery Bovids

Thanks to Will and Måns for their suggestions this week! Let’s learn about some mystery bovids, or cows and cow relations!

Further reading:

A Book of Creatures: Songòmby

Kouprey: The Ultimate Mystery Mammal

A musk ox (top) and a wild yak (bottom):

A young kouprey bull from the 1930s:

Sculpture of two grown kouprey bulls [photo by Christian Pirkl – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=73848355]:

A banteng bull (with a cow behind him) [photo taken from this site]:

A qilin/kilin/kirin looking backwards:

The “purple” calf:

The Milka purple cow:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some mystery bovids, or cow relations, suggested by Will and Måns, whose name I am probably mispronouncing.

We’ll start with a mystery about the musk ox, which is not otherwise a mysterious animal. Måns emailed about reading a children’s book about animals that had a picture of a musk ox in the part about the Gobi Desert. The problem is, the musk ox is native to the Arctic and was once found throughout Greenland, northern Canada, Alaska, and Siberia. So the question is, was the book wrong or are there really musk oxen in the Gobi Desert?

We’ll start by learning about the musk ox and the Gobi Desert. The musk ox can stand up to 5 feet tall at the shoulder, or 1.5 meters. It has thick, dense, shaggy fur all over, a tiny tail only about four inches long, or 10 cm, and horns that curve down close to the sides of its head and then curve up again at the ends.

The musk ox is well adapted to the cold, which isn’t a surprise since it evolved during the ice ages. Its ancestors lived alongside mammoths, woolly rhinos, and other Pleistocene megafauna. Like many cold-adapted animals, its fur consists of a thick undercoat that keeps it warm, and a much longer layer of fur that protects the softer undercoat. The undercoat is so soft and so good at keeping the animal warm in bitterly cold temperatures that people will sometimes keep musk oxen in order to gather the undercoat in spring when it starts to shed, to use for making clothing and blankets. But it’s definitely not a domesticated animal. It can be aggressive and extremely dangerous.

A warm coat isn’t the musk ox’s only cold adaptation. The hemoglobin in its blood is able to function well even when it’s cold, which isn’t the case for most mammals. It lives in small herds that gather close together in really cold weather to share body heat, and if a predator threatens the herd, the adults will form a ring around the calves, their heads facing outward. Since a musk ox is huge, heavy, and can run surprisingly fast, plus it has horns, if a wolf or other predator is butted by a musk ox it might end up fatally injured.

The main predator of the musk ox is the human, who hunted it almost to extinction by the early 20th century. It was completely extirpated in Alaska but was reintroduced there and in parts of Canada in the late 20th century. Similarly, it was reintroduced to parts of Siberia and even parts of northern Europe, although not all the European introductions were successful.

So what about the Gobi Desert? It’s nowhere near the Arctic. Not all deserts are hot. A desert just has limited rainfall, and the Gobi is a cold desert. Parts of the Gobi are grasslands and parts are sandy or rocky, and it covers a huge expanse of land in central Asia, mainly divided between northern China and southern Mongolia. Some parts of it do get limited rainfall in the summer and limited snowfall and frost in the winter, but for the most part it’s dry and therefore has limited vegetation for animals to eat.

Animals do live in the Gobi, though. The wild Bactrian camel, which has two humps, is found nowhere else in the world and is critically endangered. The Mongolian wild ass lives in parts of the Gobi, as do several species of antelope and gazelle, wild sheep, and ibex. The Gobi bear, which is the rarest bear in the world, also lives in the Gobi, along with smaller animals like hares, foxes, polecats, marmots, and various lizards, snakes, and birds. Occasionally wolves and snow leopards visit parts of the Gobi. So do humans, specifically nomadic herders who travel through parts of the desert to find food for their animals.

Of all the animals found in the Gobi, and in central Asia in general, the musk ox is not listed on any scholarly site I could find. Despite its name, it’s not actually closely related to other cattle and is instead most closely related to goats and sheep. However, a close relation of the domestic cow and its ancestors is the wild yak, the ancestor of the domestic yak. The wild yak lives mostly in the Himalayas these days but was once much more widespread, and the domestic yak is farmed by nomadic herders in the colder, more mountainous parts of the Gobi.

The yak isn’t closely related to the musk ox, but it does have a very similar-looking long, shaggy coat. Its horns point forward and up like cattle horns, but to someone who doesn’t really know much about yaks or musk ox, it would be easy to get the two confused. This seems to be what has happened in the case of the children’s book Måns read and in various non-academic websites. I think we can call this mystery solved.

Next, let’s go on to Will’s suggestion of mystery bovids. The family Bovidae includes not just the domestic cow and its relations but goats, sheep, antelopes, and many other animals with cloven hooves who chew the cud as part of the digestive process–but not deer or giraffes, and not the pronghorn even though people call it an antelope. Many bovids have horns, usually only two but sometimes four or even six, and those horns are never branched. Sometimes only the male has horns, sometimes both the male and female. Bovids don’t have incisors in the front of the upper jaw, only in the lower jaw, and instead has a tough dental pad that helps it grab plants.

One mystery bovid is a creature from Madagascar, called the habeby. It’s supposed to look like a big white sheep with brown or black spots. It has cloven hooves and droopy ears but not horns, and it’s supposed to be nocturnal and never seen in the daytime. Its eyes are very large and staring. It’s shy and fortunately not dangerous. Bovids are almost always diurnal, so a nocturnal bovid would be quite unusual.

Since sheep and other bovids aren’t native to Madagascar, it’s much more likely that the habeby is a type of large lemur that looks enough like a sheep at a distance that people thought it was a sheep. Either it’s extinct now or it lives in such remote areas that it’s never seen anymore.

Another Madagascar mystery animal is called the songòmby, which either looks like a wild ox or a horse depending on the story. Like the habeby it has floppy ears, a spotted coat, and hooves. Some stories say it has a single horn, some stories say it has a pair of horns, and other stories say it has no horns at all. It lives in mountainous areas and can run incredibly fast uphill, but is much slower downhill because its long ears flop over its eyes and it has trouble seeing where it’s going. This is fortunate, because it’s also supposed to eat people.

One clue to the songòmby’s possible real identity comes from some stories that state it always looks backwards over its back, and is only ever seen from the side. This is reminiscent of how the Chinese kilin is often represented, and also explains why the songòmby has a varying number of horns and looks like a cow or horse but is supposed to eat people. The kilin is often depicted as having both hooves and fangs, and may have a single horn, a pair of horns, or no horns at all. Arab traders began stopping in Madagascar around a thousand years ago and would have brought Chinese goods, including some items decorated with kilins. It’s possible that the kilin artwork inspired the story of the songòmby, but it’s also so similar to the habeby in some ways that details of that animal may have been incorporated into the story of the songòmby, or vice versa.

Way back in episode 100 we talked briefly about an animal called the kouprey. It’s a wild ox native to southeast Asia, sometimes called the forest ox. It can stand over six feet tall at the shoulder, or two meters, and while bulls are dark brown, cows and calves are a lighter brownish-gray. Both have white lower legs with a dark stripe down the front of the front legs. The bull’s horns look like those of a domestic cow or wild yak, but are extremely large and curve forward, but the cow’s horns grow up and back, more like an antelope’s horns. As a bull ages, the tips of his horns start to fray and end up looking almost tassled. A bull also develops a large dewlap as he ages, which in older bulls can actually be so big it touches the ground.

By 1937, when a kouprey was sent to a zoo in Paris, the animal was probably mostly restricted to the forests of Cambodia. Before then it had been completely unknown to science, but after that, European big game hunters went to Cambodia to kill as many as possible. It was already rare and by the 1950s there were probably fewer than 500 individuals left alive. By the 1960s, there were probably no more than 100 animals left alive. The last verified sighting of one was in 1983.

Recently, some scientists have questioned whether the kouprey actually existed at all. Its description sounds a lot like another bovid, the wild banteng. A bull banteng is dark brown or black while the cows are light brown or reddish-brown. Both have white lower legs and a white patch on the rump. Some scientists started to think that either the kouprey was a misidentification of the banteng or the hybrid offspring of a banteng and a domestic cow.

A 2006 genetic study suggested that this was the case, that the kouprey was just a hybrid animal. But a follow-up study, including genetic testing of a kouprey skull that dated back to before cattle were domesticated, came to a different conclusion. The kouprey was a distinct species, not a hybrid animal. The real mystery now is whether it’s still alive or if it has gone extinct in the last 40 years.

We’ll finish with a domestic cow that’s a little bit of a mystery. A popular brand of chocolate in Europe is Milka, and since 1973 many of its advertisements have included a light purple and white cow with a bell around her neck. Well, in 2012 a calf was born in Serbia that actually looked like the Milka purple cow. It was a purple cow!

In January of 2012 a bull calf was born on a small farm in Serbia. There’s not a lot of information available about it, but it looks like it was a breed of cattle called the busa, or maybe a busa cross. The busa is mainly raised in the mountainous parts of Serbia and mostly raised as a meat animal. It’s rare these days but was once extremely popular in the area, so a lot of cattle raised in Serbia have at least some busa ancestry. The busa can be white with darker markings, or a solid color with no white or very little white. It can be red-brown, black, or gray.

In pictures, the purple calf’s mother looks to be black and white. The calf itself is white with markings that look pale blue-gray, almost lilac. The pictures aren’t very good so it’s hard to tell. The farmer was surprised when he saw the calf and called a veterinarian to make sure it was healthy, which it was. The veterinarian suggested the calf’s strange coloration was just a rare color mutation.

As it happens, a blue-gray coloration is common in a variety of busa cattle raised in Macedonia. It’s also a common coloration in other breeds of cattle. A pale version of this color can look almost like a shade of lilac. Since I can’t find a follow-up to the 2012 articles about the calf, it’s probable that as he grew up, his spots darkened to look more gray than purple. The farmer said that he would be keeping the little purple cow instead of slaughtering him to make steaks and hamburgers, so hopefully there’s still a handsome purple and white bull living his best life in the mountains of Serbia.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 371: The Peacock

Thanks to Ari for suggesting this week’s episode, about the peacock!

Further reading:

Peacock tail feathers shake at resonance and hold eye-spots still during courtship displays

Indian peafowls’ crests are tuned to frequencies also used in social displays

An ocellated turkey (not a peacock but related):

An Indian peacock male:

An Indian peahen with chicks [photo from this site]:

Close-up of a male Indian peacock’s crest [photo by Jatin Sindhu – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=49736186]:

A male Indian peacock with train on display [photo by Thimindu Goonatillake from Colombo, Sri Lanka – Peacock Dance, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=19395087]:

A green peacock [photo from this site]:

The mysterious Congo peacock [photo by Terese Hart, taken from this site]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about a beautiful bird that almost everyone has seen pictures of, and a lot of people might have seen in zoos and parks. It’s a suggestion by Ari, who wants to learn about the peacock!

The name peacock is technically only used for the male bird, with the female called a peahen and the birds all together referred to as peafowl. Most people just say peacocks, though, because the male peacock has such a fabulous tail that it’s what people think of when they think of peafowl. I’m happy to report that baby peafowl are called peachicks.

The peacock most people are familiar with is native to India, specifically called the Indian peafowl. It’s a surprisingly large bird, with a big male weighing more than 13 lbs, or 6 kg. Females are smaller. It’s the size of a wild turkey and in fact it’s related to the turkey, along with pheasants, partridges, and chickens. Back in episode 144 we talked about a bird called the ocellated turkey, a brightly colored turkey that lives in the Yucatan Peninsula, which is part of Mexico. The male’s tail feathers have the same type of colorful eyespots seen on a peacock’s tail.

But the peacock’s tail is way bigger than any turkey’s tail. It’s called a train and most of the time it’s folded so that it’s not in the way. A big male can grow a train that’s much longer than the rest of his body, more than five feet long, or 1.5 meters. Most of the train’s elongated feathers end in a colorful eye-spot, around 200 of them in total. The eyespot pattern really does resemble a big eye, with a dark blue spot in the middle surrounded by a ring of blue-green and a bigger ring of bronze. The bronze color is surrounded by pale green and the rest of the feather is a darker green. As far as we know, the eyespots aren’t supposed to look like eyes the way some animal markings are. A leopard or other predator doesn’t attack the tail thinking it’s a peacock’s head. It’s just a pattern.

For a long time scientists were divided as to what the peacock’s train was really used for. Not everyone thought it was for showing off for peahens. Some thought it was just for camouflage in the jungle. The main confusion was why the peacock would grow such a long, conspicuous train, which can be a hindrance to him in thick undergrowth and can attract the attention of predators. But many male birds have long, ornamental tails that may impede their mobility, such as various bird of paradise species, that are definitely meant to show off for females. This appears to be the case for the peacock too.

During mating season, male peacocks gather at what’s called a lekking site, where they hang out waiting for females. When a female approaches a male, he spreads his train into a fan and shivers it, which rattles the feathers together and also shows off the iridescent colors. The male struts around, showing off his tail, and the female may ignore him completely or take a good look at his tail. In studies where scientists snipped all the eyespots off a male’s train feathers, females never bothered to even look at the male, but since immature males don’t have eyespots, it could be the females thought the eyespot-less male was just a kid.

A 2016 study took a closer look at the shivering motion that the male produces during displays. Not only does the sound interest the female, the study discovered that the eyespots are locked together with microscopic hooks that help them stay still while the remainder of any particular feather moves, since it isn’t locked with other feathers. This makes it look like the eyespots are floating against a shimmery green background. Who wouldn’t love watching that? The brighter the eyespot’s iridescence, the more attractive the male is to females.

The rest of the Indian peacock is bright too. His back and most of his body is bronze, while his long neck is a brilliant green-blue. He has white markings on his face and a crest growing from the back of his head. The crest consists of a bundle of mostly bare feather shafts, with a little tuft of blue-green at the end. The female has a similar crest but it’s brown in color along with most of the rest of her feathers, although she does have some metallic green on her neck. She doesn’t have a long train, but she will sometimes spread her tail feathers and rattle them to communicate warnings to other peafowl. A 2018 study learned that the crests of both male and female peafowl are sensitive to vibrations, specifically to the sound frequencies produced by tail rattling.

Peafowl eat plant materials like seeds, fruit, and flower buds, but they also eat a lot of worms, insects, frogs, and other small animals, including small snakes. Because they’re so beautiful and do well in captivity, lots of zoos and parks keep peacocks. They’ve even been selectively bred to produce different colors, including a white peacock and a mostly black peacock.

Ari specifically mentioned hearing that peacocks cry happy tears. Crying tears as a result of emotions, whether happy or sad, is very specific to humans, and scientists aren’t sure why we do it. It seems to be a visual signal to other humans that the person crying needs help or support in some way. Other animals sometimes have weepy eyes, but that’s due to simple eye discharge, not emotions.

The idea that peacocks cry tears dates back many centuries. Medieval bestiaries published in Europe said that the peacock was vain of his beauty and strutted around proudly, but whenever he noticed his ugly feet he would cry. Similar proverbs date back at least several thousand years from ancient Rome and India. Some proverbs say that the peacock tries to hide his feet and that’s why he doesn’t fly very often, or that he cries first thing every morning when he first wakes up, either because he sees his feet and thinks they’re ugly, or because he’s worried he’s lost his beautiful feathers overnight. Some proverbs say that when the peacock cries at his ugly feet, the peahen will swallow one of his tears and that’s how her eggs are fertilized instead of in the usual way.

These stories are interesting, but they don’t have any basis in fact. The peacock doesn’t care what his feet look like because he’s a bird, not a human. Anyway, he has big, handsome feet that let him walk around as much as he wants. The peacock also doesn’t actually cry tears, whether happy or sad.

What he does do, though, is make a wailing noise that can sound like someone crying. It sounds like this:

[peacock sound]

Most of the time it’s only the male bird that makes these calls, as a way to attract a mate or just announce that he’s around. It’s also an alarm call if the peacock spots a potential predator. People in the olden days observed this behavior and thought the peacock might really be crying. That led to the stories about his supposedly ugly feet, because the rest of the bird is so beautiful that he couldn’t possibly be crying about the rest of his appearance.

There’s another species of peacock that’s just as spectacular as the Indian peacock, although it’s less well known because it’s harder to keep in captivity. The green peafowl lives in many parts of southeast Asia and is endangered due to habitat loss, poaching, and capture for the illegal pet trade. It’s more lightly built than the Indian peacock but the male can have an even longer train, over six and a half feet long, or 2 meters. The male is green and blue all over. The female is also mostly green, but with coppery speckles on her neck. Both have crests, although they point straight up instead of back.

That brings us to a mystery peacock, although fortunately it’s not a mystery anymore, or not as much of one.

At the beginning of the 20th century, the Congo basin in central Africa was colonized by Belgium, and Belgian authorities kept hearing interesting reports from local people and colonizers alike about a strange, shy animal that lived in the forest. In 1913 a small expedition was sent to find the animal, but it failed. Eventually the animal was discovered by scientists, and we know it by the name okapi. We talked about it in episode 218. (It’s not a peacock, it’s a relative of the giraffe.) One of the scientists in the expedition was James Chapin, and while he was in Africa he bought some feather headdresses from local people and took them home to examine the feathers.

He was able to identify all but one of the feathers. The mystery feather looked like it came from a guineafowl or pheasant, but it was too big and didn’t quite match any known species. Chapin set the mystery feather aside to look at again when he had more time.

Twenty-one years later, in 1936, Chapin visited a museum in Belgium to study a big collection of taxidermied birds that had been donated in 1914. The museum specialized in items and animals from central Africa, so when Chapin noticed two stuffed birds that looked like pheasants, he knew there was something weird going on with them. True pheasants aren’t found in Africa. The card attached to the specimens said they were young peacocks, and that didn’t make sense either. Peacocks are only found in Asia.

Chapin examined the birds and realized that they really were an unusual type of peacock. Not only that, he recognized the feathers. His mystery feather from 1915 matched the mystery peacock.

The following year, Chapin traveled to the Congo to look for the bird in the wild. Sure enough, it was there!

The Congo peacock looks a lot like a turkey at first glance, or a big guineafowl. Instead of a long train, the male has a more turkey-like fan of tail feathers, but they’re deep blue and black in color. He also has blue on his wings and his neck is red, with a black head with a black and white crest. The female has a red neck with a red crest, and her back is green while the rest of her is a soft brown. We don’t know a whole lot about the bird, but it’s increasingly threatened by habitat loss and hunting.

The Congo peacock isn’t a true peacock, although it’s very closely related. While the male does fan his tail during courtship displays, he’s actually fanning a different set of feathers than true peacocks. A peacock’s train is actually made up of the upper tail coverts, a set of feathers near the tail but not actually making up the tail. A peacock’s actual tail feathers are shorter and bronzey-brown in color.

All peacocks can fly, even males with the longest trains, although they prefer to spend most of the time on the ground. Outside of mating season, males shed the long feathers of their train and regrow them the following year. Many zoos that keep peacocks will collect these shed feathers and sell them so that people can use them in crafts and decorations, because everyone loves peacock feathers.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 370: Animals Discovered in 2023

Let’s look at some of the most interesting animals discovered last year!

Further reading:

Newly-discovered ‘margarita snails’ from the Florida Keys are bright lemon-yellow

Tiny spirits roam the corals of Japan—two new pygmy squids discovered

Strange New Species of Aquifer-Dwelling Catfish Discovered in India

Bizarre New Species of Catfish Discovered in South America

Unicorn-like blind fish discovered in dark waters deep in Chinese cave

New Species of Hornshark Discovered off Australia

Cryptic New Bird Species Identified in Panama

New Species of Forest Hedgehog Discovered in China

New species of voiceless frog discovered in Tanzania

The weird new spiny katydid:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s time for our annual discoveries episode, where we learn about some animals discovered in the previous year! There are always lots more animals discovered than we have time to talk about, so I just choose the ones that interest me the most.

That includes the cheerfullest of springtime-looking marine snails discovered in the Florida Keys. The Florida Keys are a group of tropical islands along a coral reef off the coast of Florida, which is in North America. A related snail was also discovered off the coast of Belize in Central America that looks so similar that at first the scientists thought they were the same species with slightly different coloration. A genetic study of the snails revealed that they were separate species. The one found in the Keys is a lemony yellow color while the one from Belize is more of a lime green.

The snails have been placed into a new genus but belong to a group called worm snails. When a young worm snail finds a good spot to live, it sticks its shell to a rock or other surface and stays there for the rest of its life. Its shell isn’t shaped like an ordinary snail shell but instead grows long and sort of curved or curly. The snail spreads a thin layer of slime around it using two little tentacles, and the slime traps tiny pieces of food that float by.

The new snails are small and while the snail’s body is brightly colored, its shell is drab and helps it blend in with the background. Scientists think that the colorful body may be a warning to potential predators, since its mucus contains toxins. It mainly lives on pieces of dead coral.

Another invertebrate discovery last year came from Japan, where two new species of pygmy squid were found living in seagrass beds and coral reefs. Both are tiny, only 12 mm long, and are named after little forest spirits from folklore. Despite its small size, it can eat shrimp bigger than it is by grabbing it with its little bitty adorable arms. Both species have been seen before but never studied until now. The scientists teamed up with underwater photographers to find the squid and learn more about them in their natural habitats.

As for invertebrates that live on land, an insect called the blue-legged predatory katydid was discovered in the rainforests of Brazil. It’s a type of bush-cricket that’s dark brown in color except for the last section of its legs, which are greenish-blue. Those parts of its legs are also really spiny. That is literally all I know about it except for its scientific name, Listroscelis cyanotibiatus, but it’s awesome.

Let’s leave the world of invertebrates behind and look at some fish next. This was the year of the catfish, with new species discovered in both India and South America. Catfish can be really weird in general and both these new species are pretty strange.

The first is tiny, only 35 mm long at most, or a little over an inch, and it has four pairs of barbels growing from its face. It looks red because its blood shows through its skin, because its skin doesn’t have any pigment. The fish also doesn’t have any eyes. If this makes you think it’s a cave-dwelling fish, you’re exactly right, but instead of an ordinary cave it actually lives in an aquifer.

An aquifer is a source of water underground. It’s actually a layer of rock that’s broken up or otherwise permeable so that water can get through it, but with a non-permeable layer underneath. The water is trapped in the layer, sometimes far underground. If you’ve ever seen a spring, where water bubbles up from the ground, that water comes from an aquifer that has found its way to the surface. If you’ve ever drunk water pumped or dipped up from a well, the well-water also comes from an aquifer. The water gets into the aquifer in the first place when rain soaks into the ground, but it takes a long time to fill up.

There are really deep aquifers that are completely sealed off from the surface, created thousands or even millions of years ago. As far as we know, nothing lives in those, although we could be wrong. Aquifers that are closer to the surface with some surface openings develop unique ecosystems, including animals that are found nowhere else on earth. That’s the case with the tiny red catfish found in the state of Kerala in India.

Scientists asked people in the area to watch out for any unusual animals when they had a new well dug or cleaned, and before long people from four towns reported finding the little red fish. Three other related species had previously been found in the state.

On the other side of the world, in South America, a much different type of catfish was discovered in Bolivia and Brazil. This one is an armored catfish, and the male actually grows short dermal teeth on the sides of his head that he uses to fight other males. Dermal teeth are teeth that grow on the skin instead of in the mouth, and it’s surprisingly common in fish, especially armored catfish.

The new catfish has been named Sturisoma reisi and it grows about 8 inches long, or 20 cm. It’s actually been known to scientists for a long time, but until recently no one realized it wasn’t one of five other catfish in the genus Sturisoma. They all look kind of similar. It’s a slender, active catfish with a long tail and a pointy rostrum that lives in swift-moving rivers. It was actually described in 2022, not 2023, but I only just realized I have the wrong year so let’s just move along quickly to another fish.

This one isn’t a catfish but it looks like one at first glance since it has barbels around its mouth. These are the whisker-like feelers that give the catfish its name. The newly discovered fish needs feelers because it doesn’t have working eyes, and it also doesn’t have scales or pigment in its skin. It was found in a cave in China, and in fact it’s only been found in a single pool of water in a single cave. The pool is only about 6 feet across, or 1.8 meters, and about two and a half feet deep, or 80 cm, but it’s home to a perfectly healthy population of fish. The fish grow about 5 inches long on average, or 13 cm.

The fish is a new member of the genus Sinocyclocheilus, and of the 76 known species in the genus, most live in caves. The new fish has been named S. longicornus because of a structure on its head that kind of looks like a unicorn horn, if the unicorn was a pink cave fish and its horn was shaped sort of like the tip of a ballpoint pen, also called a biro.

Some other species in this genus also have a so-called horn, although the new fish’s is larger than most. It juts forward and extends above what we can describe as the fish’s forehead. Scientists have absolutely no idea what it’s for. Since the fish can’t see, it can’t be to attract a mate. It’s also not likely to be a navigational aide since the fish has its barbels and a well-developed lateral line system to find its way around. Besides, it lives in a pool of water not much bigger than the desk I’m sitting at. It doesn’t exactly travel very far throughout its life.

Scientists have a lot of other questions about the fish, including how it survives in such a tiny pool of water.

Speaking of fish with horns, a new species of hornshark was discovered last year off the northern coast of Australia. Hornsharks live in shallow warm waters throughout much of the Pacific and Indian oceans, where they spend most of the time at the bottom looking for small invertebrates like crustaceans to crunch up, although sea urchins are their favorites. They’re also called bullhead sharks because they all have short snouts and broad heads with prominent brows. The name hornshark comes from the fins, some of which have spines.

One species of hornshark is the zebra hornshark, which lives in the Indo-Pacific, from southern Japan down to northern Australia. As you may guess from the name, it has stripes, which makes it popular in aquariums and zoos. It only grows to about 4 feet long, or 1.25 meters. Until last year, scientists thought that all the zebra hornsharks around Australia belonged to the same species. Then they noticed that one population that lives off of northwestern Australia has a different stripe pattern and only grows about two feet long, or 60 cm. After a genetic study, it turns out that it’s a totally different species.

A lot of animal discoveries are like this, where everyone thinks an animal is one species, but after close study and genetic testing they find out it’s two or more species that just look very similar. That’s one of the great things about DNA testing being so effective and quick these days, but it’s not always as cut and dried as it sounds. There’s no easy way to determine for sure if animals are different species, subspecies, or just the same species with population variants. Scientists can’t just rely on genetics, but they also can’t always rely on observations of the animal’s physical traits or its behavior in the wild. They have to look at all the data available, and then they still argue about the best interpretation of the data.

The notion of a separate species or subspecies is an artificial one that gives us a way to better understand a natural process. If a population of animals is separated from another population, eventually both will develop separately until they’re two related but very different animals. There’s no way to point at a specific generation and say, “well, NOW they’re different from the last generation” because the process is so slow and the changes are usually so small. It’s like looking at a rainbow and trying to determine exactly the point where red turns into orange and orange turns into yellow.

Take the slaty-backed nightingale-thrush as an example. It’s a dark gray songbird with a short tail and bright orange legs and beak, and it lives in the mountains of Central and northern South America. It spends most of its time in thickets where it’s hard to see but easy to hear, since it has a lovely song. This is an example of what it sounds like, although its song varies depending on where it lives.

[bird song]

It turns out that there’s a lot of variation in the bird’s song because the slaty-backed nightingale-thrush probably isn’t all one species. In late 2023 a team of researchers published a ten-year study of the bird, looking at everything from song variations to genetics. They determined that not only was it not a single species, it was most likely seven different species and four subspecies. Because the bird lives in the mountains and doesn’t fly very far during its lifetime, populations that are separated by steep mountains and valleys have developed into separate species.

Naturally, not everyone agrees with these findings, but it’s always good when a little-studied animal gets some attention. Until last year, no one knew much about this shy little bird, and the controversy of whether it’s one species or lots of closely related species will hopefully lead us to learn even more about it. One population of the bird discovered in Panama had never been documented before, too.

This episode is getting pretty long for someone who just got over a cold, so let’s cover one newly discovered mammal and a newly discovered frog. A new species of forest hedgehog was discovered in China last year and it’s adorable! It’s related to the hedgehogs found in Europe and other areas, but is most closely related to four known species of forest hedgehog that live mostly in central Asia. The new species was discovered in eastern China, over 1,000 km away from the nearest population of other forest hedgehogs. Another species was only discovered in 2007 from southwestern China.

Unlike most hedgehogs, the new species is sexually dimorphic, meaning that males and females don’t look identical. Males are mostly gray while females are more reddish-brown in color.

Let’s finish with another adorable animal, a little frog from Tanzania, a country in east Africa. It’s a type of spiny-throated reed frog, which are all rare and increasingly threatened. They’re also very small, not much bigger than an inch long, or about 30 mm. The male has tiny little spines on his throat that researchers think might be a way that females recognize the males of their own species during mating season instead of by a distinctive croaking sound. That’s because spiny-throated reed frogs can’t make sounds, leading to their other common name of the voiceless frog.

In 2019, researchers were in the Ukaguru Mountains in Tanzania looking for a completely different frog, the beautiful tree toad, which may be extinct. While they didn’t find any of the toads, they did find a little greenish-brown frog with copper-colored eyes that turned out to be completely new to science. It was found in a nature reserve and appears to be common locally, which is good, but the nature reserve is also very small, which is not so good. Hopefully now that we know the little frog exists, it will lead to further protections of the area that will help all the other animals and plants where it lives, including the beautiful tree toad.

This is what the voiceless frog sounds like:

[silence]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 369: Animals and Ultraviolet Light

Sorry to my Patreon subscribers, since this is mostly a rerun episode from April 2019. It’s a fun one, though!

The teensy pumpkin toadlet [photo by Diogo B. Provete – http://calphotos.berkeley.edu, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=6271494]:

The electromagnetic spectrum. Look how tiny the visible light spectrum is on this scale! [By NASA – https://science.nasa.gov/ems/, Public Domain, https://commons.wikimedia.org/w/index.php?curid=97302056]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This was supposed to be the 2023 discoveries episode, but not only have I had a really busy week that’s kept me from finishing the research, I’m also coming down with a cold. My voice still sounds okay right now but considering how I feel, it’s not going to sound good for long, and I need to finish the March Patreon episode too! I decided to rerun a very old Patreon episode this week to allow me time to finish the March Patreon episode before my voice turns into an unintelligible croak. I did drop in some fresh audio to correct a mistake I made in the original episode and add some new information.

This is one of my favorite Patreon episodes and I hope you like it too. It’s about animals that can see ultraviolet light.

I was going to make this a frog news episode, but I started writing about a tiny frog from

Brazil called the pumpkin toadlet and the episode veered off in a very interesting direction. But let’s start with that frog.

It’s called the pumpkin toadlet because it’s an orangey-yellow color that is just about the same color as pureed pumpkin. It’s poisonous and lives in the forests of Brazil. During mating season, the pumpkin toadlet comes out during the day, walking around making little buzzing noises. Researchers assumed those were mating calls until they started studying how the pumpkin toadlet and its relations process sounds. It turns out that the pumpkin toadlet probably can’t even hear its own buzzing noise. But they did discover that the pumpkin toadlet fluoresces brightly under UV light.

We’ve talked about this phenomenon before, back in the Patreon episode about animals that glow. Quite a lot of frogs turn out to fluoresce in ultraviolet light, which is a component of daylight. That explains why the pumpkin toadlet comes out during the day in mating season. It wants to be seen by potential mates. It’s actually the frog’s bones that fluoresce, but since it has very thin skin without dark pigment cells, the ultraviolet light can light up the bones.

I wanted to make sure I gave everyone the correct information about ultraviolet light, so I started researching it…and that led me down this rabbit hole. What animals can see in ultraviolet light? Can any humans see ultraviolet light? What does it look like?

Light is made up of waves of varying lengths. The retina at the back of your eyeball contains two types of cells, rods and cones, which are named for their shapes. Rods are for low-light vision and cones are for detail and color vision.

Humans have more cones than rods because we’re diurnal animals, meaning we’re most active during the day. Animals that are mostly nocturnal have more rods than cones, which help them see in low light although they don’t see color as well or sometimes at all as a result.

Most humans can see any color that’s a mixture of red, green, and blue, since we have three types of cone cells that react to wavelengths roughly equivalent to those three colors. Some people have what’s called red-green color blindness, which means either the person doesn’t have cones that sense the color red or cones that sense the color green. Various shades of green and red look alike for these people. Red-green color blindness is much more common in men than in women, with as many as 8% of men having the condition. A lot of times they don’t even know it. When I did my student teaching in a first grade class, one day I prepared a math lesson for the students that involved them sorting a little cup of candy into colors, and after they did the math problems associated with the different colors, they got to eat the candy. One little boy kept sorting certain colors of Skittles into the same column, and when I asked him, he didn’t realize they were different colors. They looked the same to him. So that day I learned to be careful about what kind of candy I used for sorting lessons, and he learned that he had red-green color blindness. My own dad was color blind too. It’s pretty common. Occasionally a person is born without the ability to see colors at all, but that’s extremely rare.

The visible light spectrum, also sometimes called the color spectrum, runs from violet to red. Just below violet is the wavelength referred to as ultraviolet. Many insects and birds can see ultraviolet, but typically an animal that can see ultraviolet can’t see infrared, which is the wavelength of light just past red. Birds that can see ultraviolet can usually see red, but not infrared.

In the original Patreon episode, this is where I said that humans can see ultraviolet light a little, but I was actually wrong. I thought blacklights worked by allowing us to see ultraviolet light, but that’s not the case. Blacklights are lamps that emit mostly ultraviolet light, but we only see a dark purple or blue that the blacklight’s filter allows through. While very few humans can see anything but the purple or blue, insects can see ultraviolet light and are attracted to it. That’s why bug zappers include blacklights. People also like blacklights because the ultraviolet light makes some things glow, which is fun to play with. It can also be useful in surprising ways. A lot of countries print paper money and other important documents with ink patterns that only show up under ultraviolet light. It’s easy to tell if the money or document is a fake if those hidden patterns don’t glow under a blacklight. Some diseases cause the sick person’s urine to glow specific colors under ultraviolet light, which helps a doctor determine what’s wrong with the person so they can be treated. If you have access to a blacklight, remember that even though you can’t see most of the light it emits, it can still hurt your eyes, so don’t stare into it.

Sometimes a person’s eye is diseased or damaged so they have to have the lens replaced with an artificial lens. Very rarely when that happens, the person wakes up after surgery and discovers they’re seeing ultraviolet way more than the rest of us. They report that the color is a pale purplish shade. This sounds cool, except that they have to wear special glasses that block ultraviolet light when they’re outside, since ultraviolet light can damage the eyes. It’s also the spectrum of light that causes sunburns. That’s what the UV means in products that say they block UV light; UV just means ultraviolet.

Many birds have a special cone cell that reacts specially to ultraviolet wavelengths. Urine reflects ultraviolet light, which allows predatory birds to track their prey by following urine trails. Some rodents and marsupials also have this cone cell. Researchers think having four types of cone cells, the three humans have plus the ultraviolet one, used to be the default in all animals, but some have evolved to not have the ultraviolet cone cell since they don’t need it. Some animals only have two types of cone cells, like mice, who can’t see as many colors as humans.

Researchers are just learning that many mammals are able to see ultraviolet much more than the typical human can. Reindeer, for instance, and some common animals like dogs, cats, and ferrets. Since power lines give off ultraviolet light, sometimes in bursts called coronal discharges, researchers now realize animals are affected by the light even though humans can’t see it. Reindeer have always avoided power lines, and now we know why. To them, the coronal discharges are a blaze of bright color that probably hurts their eyes, especially when it reflects off snow. Conservationists are calling for better shielding on power lines to cut down on the light they give out.

Some humans are born with ultraviolet-sensing cone cells, a condition called tetrachromacy. Since the lens of the human eye naturally filters out most ultraviolet light, people can have this extra cone cell and not even know it. They just tend to be better at differentiating colors than people without it. Some studies suggest that as many as 50% of women and 8% of men may be tetrachromatic—and that tetrachromatic women are also carriers of the trait of red-green color blindness. Since my dad was colorblind, that means I carry that trait from the genetic material I inherited from him, but I see colors really well…so maybe I have those extra cone cells! That’s exciting! Maybe you have it too!

But before we all get too excited, think about the mantis shrimp. Instead of four types of cone cells, it has up to 16 types.

Ultraviolet lightwaves are short. Shorter than that are X-rays, and shorter than those are gamma rays, which are ridiculously teeny. If your eyes could see X-rays, it basically just means you’d see a lot of skeletons walking around and it would feel bright all the time even if you closed your eyes, since X-rays penetrate less dense material like skin. If you could see gamma rays, all it would mean is that you could see stuff that was radioactive. Useful, yes, but not everyday useful.

Infrared is a different case, since infrared wavelengths are extremely long. Some animals can see infrared, but mostly they actually sense heat signatures given off by other animals. Night vision goggles work like this, basically allowing whoever wears them to see in infrared. Wavelengths longer than infrared are microwaves and radio waves, which nothing can see because it would pretty much just overwhelm the vision and you could see nothing but light, much of it the afterglow of the Big Bang, when the universe came into being.

A few years ago, a team of scientists working with an infrared laser started reporting occasionally seeing flashes of light where there shouldn’t be visible light. They were scientists, so of course they investigated with a scientific study of the infrared laser on human vision. This was a powerful laser that only emitted infrared light, and emitted it in quick pulses that released a set number of photons at a time. A photon is one particle of light, something along the lines of an atom. I’m not a physicist and don’t really understand it. The study revealed that sometimes, when the laser’s pulses were extremely close together, two photons would be absorbed by a single photopigment in the eye, which was enough to activate the pigment and allow the person to see a flash of light. But because the eye combined the photons, the eye reacted as though the wavelength of the light was half its length, which made it look green.

By the way, rod cells, the ones that help us see in low light, take a few minutes to achieve full sensitivity. That’s why it takes a few minutes for your eyes to adjust after you turn the light out at night.

It’s mind-blowing to think that light is an actual physical thing that actually physically goes into your eyeballs to let you see. There’s more to it than that, of course—nerves and the brain have a lot to do with how we are able to make sense of visual images. If something goes wrong with the eyeball, the nerves that connect it to the brain, or the part of the brain that deals with vision, it can lead to blindness of one kind or another. But at the very basic level, when you see, for instance, a hedgehog, it’s because light photons bounced off that hedgehog and into your eyeball. And that also means that when you look up at the night sky and see stars, you’re seeing the actual physical lightwaves given off by stars millions of light years away that physically go into your eyeball and bounce off the cone and rod cells, activating them and allowing your brain to form an image. That’s amazing, no matter if you can see ultraviolet or if you get the colors of candy mixed up because they look alike to you.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Episode 368: The Bison

Thanks to Jason for suggesting this week’s topic, the bison!

Further reading:

New research documents domestic cattle genetics in modern bison herds

Higgs Bison: Mysterious Hybrid of Bison and Cattle Hidden in Ice Age Cave Art

A cave painting of steppe bison and other animals:

An American bison [photo by Kim Acker, taken from this site]:

Some European bison [photo by Pryndak Vasyl, taken from this site]:

The bison sound in this episode came from this site.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about the bison, a suggestion from Jason. There are two species of bison alive today, the American bison and the European bison. Both are sometimes called buffalo while the European bison is sometimes called the wisent. I’m mostly going to call it the wisent too in this episode so I only have to say the word bison 5,000 times instead of 10,000.

Bison are herd animals that can congregate in huge numbers, but these big herds are made up of numerous smaller groups. The smaller groups are made up of a lead female, called a cow, who is usually older, other cows, and all their offspring, called calves. Males, called bulls, live in small bachelor groups. The American bison mostly eats grass while the European bison eats a wider selection of plants in addition to grass.

The bison is a big animal with horns, a shaggy dark brown coat, and a humped shoulder. The American bison’s shoulder is especially humped, which allows for the attachment of strong neck muscles. This allows the animal to clear snow from the ground by swinging its head side to side. The European bison’s hump isn’t as pronounced and it carries its head higher. The bison looks slow and clumsy, but it can actually run up to 35 mph, or 55 km/hour, can swim well, and can jump obstacles that are 5 feet tall, or 1.5 meters.

The American bison can stand over six and a half feet high at the shoulder, or 2 meters, while the European bison stands almost 7 feet tall at the shoulder, or 2.1 meters. This is massively huge! Bison are definitely ice age megafauna that once lived alongside mammoths and woolly rhinos, so we’re lucky they’re still around. Both species almost went extinct in recent times and were only saved by a coordinated effort by early conservationists.

The American bison in particular has a sad story. Before European colonizers arrived, bison were widespread throughout North America. Bison live in herds that migrate sometimes long distances to find food, and many of the North American tribes were also migratory to follow the herds, because the bison was an important part of their diet and they also used its hide and other body parts to make items they needed. The colonizers knew that, and they knew that by killing off the bison, the people who depended on bison to live would starve to death. Since bison were also considered sacred, the emotional and societal impact of colonizers killing the animals was also considerable.

In the 19th century, colonizers killed an estimated 50 million bison. A lot of them weren’t even used for anything. People would shoot as many bison as possible from trains and just leave the bodies to rot, and this practice was actually encouraged by the railroads, who advertised these “hunting” trips. The United States government also encouraged the mass killing of bison and even had soldiers go out to kill as many bison as possible. Bison that escaped the coordinated slaughter often caught diseases spread by domestic cattle, and the increased plowing and fencing of prairie land reduced the food available to bison. By 1900, the number of American bison in the world was probably only about 300.

As early as the 1860s people started to sound the alarm about the bison’s impending extinction. Some ranchers kept bison, partly as meat animals and partly to just help stop them from all dying out. The Yellowstone National Park had been established in 1872, and 25 bison survived there, although many others were poached by hunters. Members of various Plains tribes, who had been forced onto reservations by the United States government so the government could give their land to colonizers, collected as many bison as they could to keep them safe.

These days the American bison is out of immediate danger, although its numbers are still very low. Because there were so few bison when conservation efforts started, the genetic diversity is also low. Bison will also hybridize with domestic cattle and the resulting female calves are fertile, so the main goal of modern conservationists is to genetically test herds to determine which bison have a larger percentage of cattle genes, and mainly only breed the ones that have the least. A 2022 study determined that there is no population of American bison alive today that doesn’t have at least a small percentage of cattle genes. Cattle are domesticated animals, and it’s never a good thing when a wild animal ends up with the DNA of a domestic counterpart. Bison need their wildness in order to survive and stay safe.

There are two living subspecies of American bison, the wood bison and the plains bison. I’m happy to report that the scientific name of the plains bison is Bison bison bison. The wood bison mainly lives in Canada, where it’s classified as threatened.

As for the European bison, or wisent, it was once common throughout much of Europe and Asia. As the human population increased after the ice age, the wisent’s numbers decreased until it was mostly restricted to a few areas of Russia, Transylvania, Poland, and Lithuania. Even as early as the 16th century, people were aware it was endangered. Local rulers declared it a protected animal in most of its range.

During World War I, German troops occupying Poland killed hundreds of wisents, and as the troops retreated at the end of the war, they shot as many of the bison as they could find and left them to rot. Only nine individuals remained alive and by 1921 they had died too. By 1927, the very last wisent in the wild was killed by a poacher.

But 12 animals remained, kept in various zoos. In 1923 a preservation society was set up, modeled after the one in the United States that had helped save the American bison from extinction. Poland in particular worked hard to increase the wisent’s numbers and re-introduce it to its forest home, although its efforts were interrupted by World War II. These days the wisent is out of danger of extinction, although like the American bison its numbers are still relatively low.

American and European bison are related and can crossbreed, but they’re not as closely related genetically as was once thought. Genetic studies are ongoing, but it appears that the wisent is most closely related to domestic cattle while the American bison is most closely related to the yak.

We recently talked about the steppe bison in episode 357, which is about mammoth meat. The steppe bison is an ancestor of the American bison and lived throughout Europe and Asia across to North America, during the Pleistocene when Asia and North America were connected by the land bridge Beringia. It only went extinct around 3,000 years ago. It had much larger horns than modern bison, with a horn spread of almost seven feet across, or over 2 meters.

About 17,000 years ago, in a cave in what is now France, an ancient artist picked up a stick of charcoal and made a drawing of a bison alongside many other bison drawings made by many artists over the years. According to a study published in 2016, there are two different types of bison depicted in the cave. One type is the steppe bison, but the other is distinctly different. After a genetics study of bison in Europe, researchers made a surprising discovery. The second type of bison depicted in the cave is actually a hybrid animal. Hybrids come about when two species of closely related animals interbreed. The more closely related the species are, the more likely they are to interbreed where their territories overlap, and the more likely that the offspring will be fertile. This is exactly what happened toward the end of the Pleistocene, when climate change made it harder for the steppe bison to survive. Instead, a hybrid of steppe bison and the aurochs, the wild ancestor of the domestic cow, not only became common throughout much of Europe, eventually the hybrid species was so numerous that it became a distinct species of its own.

This hybrid bison had small horns and a smaller hump than the steppe bison, although it was still a really big animal. Eventually it gave rise to the modern European bison while the steppe bison gave rise to the antique bison, which itself is the direct ancestor of the American bison. So many bison!

This is what a bison sounds like, specifically an American bison recorded in Yellowstone National Park:

[bison sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 367: The Marozi

Thanks to Pranav for suggesting this mystery big cat this week, the marozi!

Further reading:

From Black Lions to Living Sabre-Tooths: My Top Ten Mystery Cats

Spotted Lions

A young lioness who still has some of her cub spots:

Subadult lions who still have a lot of cub spots:

The skin of an animal supposedly killed in 1931 and said to be a marozi:

Two photos of a “leopon,” a lion-leopard hybrid bred in captivity in a Japanese zoo:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about a mystery animal suggested by Pranav. It’s the marozi, a big cat from the mountains of Kenya.

Kenya is in east Africa, and humans have lived in what is now Kenya since humans existed. Because of this, usually when we talk about Kenya or east Africa, we’re talking about hominins, but today we’re talking about big cats.

Kenya is home to a lot of animals you think of when someone mentions the animals of Africa, like elephants and giraffes, and it’s also home to three big cats: lions, leopards, and cheetahs. The lion is generally a tawny brown color although different individuals and populations can be various shades of brown or gray. A lion cub is born with dark spots, and as it grows the spots fade. Sometimes a young adult lion will still have some spots, especially on its legs and belly, but in general an adult lion has no spots at all. In comparison, both the leopard and the cheetah are famous for their spots.

The lion prefers to live in savannas and open woodlands. These days it’s only found in a few parts of India, along with various places in sub-Saharan Africa. This just means south of the Sahara desert. In the past, though, the lion had a much larger range. It lived throughout most of Africa, the Middle East, southern Asia, and even southern Europe. Overhunting drove it to extinction in many parts of its historic range, which is called extirpation. I’ve used the term before but it specifically means that an animal has been driven to extinction in one area where it once lived, but it isn’t extinct in other areas. Some subspecies of lion have gone extinct, and the lions who remain are vulnerable to habitat loss, poaching, and many other factors. Just because lions are common in zoos doesn’t mean lions in the wild are doing fine.

The same is true of the cheetah, which has an even smaller range than the lion these days but which was once common throughout Africa and the Middle East along with a lot of southern Asia and Europe. We talked about the cheetah in episode 145. It’s actually not closely related to the lion or the leopard, and in fact genetic testing reveals that it’s most closely related to the puma of North America.

The leopard, on the other hand, is a very close relation to the lion. Both belong to the same genus, Panthera, which also includes tigers, jaguars, and snow leopards, but the lion and leopard are the closest cousins. While it’s also vulnerable to habitat loss, poaching, and other factors, it’s more widespread than the lion and cheetah. It lives throughout much of sub-Saharan Africa, Asia–especially India–and even parts of eastern Russia, and in the past it was even more widespread. It prefers forests where its spots help it blend in with dappled sun and shade.

So, the lion, the leopard, and the cheetah all live in Kenya, but there’s another big cat that’s supposed to live there too. It’s called the marozi, also sometimes called the spotted lion.

Stories of lions that have spots like a leopard go back for centuries among the local people. The spotted lion is supposed to be small and the male either has no mane or only a small one. It’s supposed to live in the mountains and is solitary instead of living in family groups like ordinary lions. In fact, “marozi” supposedly means “solitary lion” in the local language. Instead of living in open grasslands, it lives in thick forest where a spotted coat and smaller body size would be useful, allowing it to maneuver through the trees more easily while not being seen.

It wasn’t until the colonial era in the late 19th and early 20th centuries that Europeans became aware of the marozi. The first known sighting of a spotted lion by a European occurred in 1903, when a British soldier reported seeing more than one in the mountains of Kenya. He said the lions were darker in color than an ordinary lion, with leopard-like rosette markings. In 1924, a game warden reported killing a spotted lioness and her cubs, with the lioness having just as many spots as the babies.

In 1931 a farmer shot two small spotted lions in the mountains. He said they were fully grown despite their small size, but they had even more spots than lion cubs do. One was a male and he had a sparse, short mane. The farmer kept the male’s skin, which eventually made its way to the Natural History Museum in London, possibly with the lion’s skull too, although it’s not clear if the skull actually belongs to the same animal. As far as I could find out, no one has tried to test the skin and skull genetically.

Other people, including hunters and game wardens, reported seeing spotted lions in high elevations where ordinary lions didn’t live, with stories continuing through at least the 1960s. Similar stories of a spotted lion have been collected from mountains in other parts of east and central Africa, including Ethiopia, Rwanda, Uganda, and Cameroon, where it has different local names. But so far we don’t have any photographs or a specimen.

There are a few hypotheses about what the marozi might be. One suggestion is that it’s actually a hybrid of a leopard and a lion. Because leopards and lions are so closely related, they can interbreed and produce offspring, although as far as we know this has only happened in captivity. In the wild, lions are actually aggressive towards leopards. A lion will steal a leopard’s food and will sometimes even kill leopards, and as a result leopards try to avoid lions. Since leopards prefer thick forest and lions prefer open forest or grasslands, they don’t cross paths all that often anyway.

In the late 1950s into the early 1960s, a zoo in Japan kept a male leopard and a female lion in the same enclosure to see if they would mate. They did, and eventually they had two litters together. The cubs were larger and heavier than leopards but not as big as lions, and while they generally looked like lions they had leopard spots. The males had small manes.

This sounds a lot like reports of the marozi, but again, in the wild lions and leopards mostly avoid each other. The only time a lion and a leopard would consider each other potential mates instead of potential trouble is when they’re put together artificially as in the Japanese zoo. Even if an occasional leopard and lion do sometimes breed in the wild, it wouldn’t happen often enough to cause all the sightings documented about the marozi. Besides, the marozi is only reported from the mountains, where lions don’t live.

Another hypothesis is that there’s a population of ordinary lions that have moved into the mountains to escape factors like habitat loss, poaching, and a decline in prey animals, and that people occasionally see a young adult lion that hasn’t completely lost its cub spots. This isn’t too likely either since stories of the marozi go back to long before these modern pressures on lion populations.

There might very well be an unknown, very rare species or subspecies of lion that has always lived in the mountains in parts of east and central Africa, and that it does actually have spots as an adult. If this is the case, hopefully it’s safe in its mountain habitat from the pressures faced by ordinary lions. Let’s hope also that it comes to the attention of scientists soon so it can be studied and protected.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 366: The Muntjac AKA Deer with Fangs

Thanks to Chuck for suggesting this week’s topic, a weird little deer called the muntjac!

Further reading:

Dam Project Reveals Secret Sanctuary of Vanishing Deer

Wildlife camera trap surveys provide new insights into the occurrence of two threatened Annamite endemics in Viet Nam and Laos

Getting ahead (or two?) with Vietnam’s Viking Deer – the Long-Running Saga of a Slow-Running Mystery Beast

A giant muntjac [photo by Mark Kostich, taken from article linked above]:

A Reeve’s muntjac [photo by Don Southerland, taken from this site]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Chuck, who wanted to learn about a small hoofed animal that I don’t think we’ve ever covered before, the muntjac. It’s a deer, but it’s a very weird deer.

In fact, it’s not just one deer, it’s at least 12 different species that are native to parts of south and southeast Asia, although it used to have a much broader range. Muntjac fossils have been found throughout Europe in particular. It prefers thick forests with lots of water around. Most species live in tropical or subtropical areas, although it can tolerate colder temperatures. It eats leaves, grass, fruit, seeds, and other plant parts, and it will also sometimes eat bird eggs and small animals when it finds them. It will even sometimes eat carrion.

The typical muntjac is small, barely larger than a fox. The largest species, the giant muntjac, stands a little over two and a half feet tall at the shoulder, or 80 cm, while there are several species of muntjac that don’t grow taller than 15 inches high, or 40 cm. It’s brown or reddish-brown, sometimes with darker or lighter markings depending on species. The muntjac appears hump-backed in shape like a rabbit, since instead of having a mostly level back, its back slopes upward from the shoulders to the rump. Its tail is very short and males grow short antlers that either have no branches or only one branch. Males also have a single pair of sharp, curved fangs that grow down from the upper jaw, more properly called tusks.

The muntjac is usually a solitary animal, with each individual defending a small territory. Both males and females have a large gland near the eye that secretes an oily substance with a strong smell. It also has another pair of scent glands on the forehead. The muntjac rubs its face on the ground to mark the edges of its territory with scent. It can even flare its scent glands open to communicate with other muntjacs by smell more effectively.

Unlike many deer species, the muntjac doesn’t have a particular mating season. Females, called does, can come into season any time of the year, so males are always ready to fight with other males for a doe’s attention. The male loses and regrows his antlers yearly, but mainly he only uses them to push an opponent over. He does the real fighting with his fangs.

There are other types of hoofed animals with fangs. We talked about the musk deer and the chevrotain in episode 116, but even though the chevrotain in particular looks a lot like the muntjac, it’s not closely related to it at all. Neither is the musk deer. In fact, neither the musk deer nor the chevrotain are actually deer, and they’re not even closely related to each other.

The southern red muntjac is one of the smallest species of muntjac known and is fairly common throughout much of southeast Asia, although we don’t know much about it. One thing we do know is that it has the smallest number of chromosomes of any mammal ever studied. Males have 7 diploid chromosomes and females only have 6. In comparison, the common Reeve’s muntjac has 46 diploid chromosomes. Scientists have no idea why there’s so much difference in chromosome count between species, but it works for the muntjac.

Many species of muntjac are common and are doing just fine, but others are endangered due to habitat loss, hunting, and the other usual factors we talk about a lot. But the muntjac is small, solitary, and very shy, so there are also species that are probably still waiting to be discovered.

The giant muntjac, also called the large-antlered muntjac, was only discovered in 1994 from a skull found in Vietnam. Scientists were eager to learn more about the animal, especially whether it was still alive or had gone extinct. They talked to hunters and other local people in Vietnam and Laos, and set up camera traps, and went on expeditions searching for it. The hunters said it was still around but the scientists just couldn’t find any. It wasn’t until 1997 that a camera trap took a few pictures of one near a newly constructed dam, which gave everyone hope that this animal could be saved from possible extinction.

Scientists had been searching for the giant muntjac for so long, and had only finally gotten a photograph after 13 years of trying, that they figured it would be an even longer time before they learned more about it. But then, suddenly, only four months after the first pictures of the giant muntjac were captured, a team of conservationists working to relocate animals from the flood area of the new dam ended up capturing 38 of the deer.

When a new dam is constructed across a river or other waterway, it doesn’t flood right away. It takes a long time for the water to back up behind the dam and turn into a lake or large pond, sometimes several years depending on the size of the dam and the waterway. There’s time to relocate animals to higher ground so they’ll be safe, and that’s exactly what Ulrike Streicher and her team were doing in 2007. Not only that, they made sure to transport the animals to a protected area where they’d be safer from hunters. Before they released the giant muntjacs, they had the opportunity to study them and fit some of them with radio collars so the scientists could track where they went. It turned out that the muntjacs settled into their new home just fine, so although the giant muntjac is still classified as critically endangered, at least we know that one small population is doing well.

Another muntjac search involves a camera trap in Vietnam and Laos too, but it’s still an ongoing mystery. The story actually starts back in 1929 when a dead muntjac was sent to the Field Museum in Chicago. The scientists at the museum couldn’t identify it as any known species of muntjac, so they described it in 1932 as Muntiacus rooseveltorum, also called Roosevelt’s muntjac. Modern genetic testing of the specimen determined that it’s a subspecies of Fea’s muntjac that lives in a small area of southern Myanmar and Thailand. Fea’s muntjac itself is so rare and so little known that we don’t even know if it’s extinct or not. As for Roosevelt’s muntjac, no one had seen it since the 1929 specimen was killed and it was presumed extinct.

Then, starting in 2014, a team of scientists conducted surveys in parts of the Annamites, a mountain range along the Vietnam/Laos border. Over the next five or six years, camera traps recorded every animal that passed by them in various remote locations. In addition to lots of animals the scientists expected to see, they found three animals that were either extremely rare or thought extinct. One of these was the Annamite striped rabbit we talked about in episode 254, but the other two were muntjacs.

One of the muntjacs captured on camera was identified as Roosevelt’s muntjac while the other was identified as the Annamite muntjac, a species that was only identified in 1997. The problem is that we only have pictures of the animals, and only a single specimen of Roosevelt’s muntjac to compare the pictures to. Scientists disagree as to whether Roosevelt’s muntjac is for sure still alive and well in the Annamite mountains, or whether the pictures are of a totally different species of muntjac. At least the pictures were taken in a nature reserve, so we know the muntjacs should be safe.

Muntjacs are such strange, attractive animals that rich people used to keep them as pets to show off. Sometimes they would escape into the wild, or were even released on purpose, and that’s why Japan, England, Wales, Belgium, the Netherlands, and Ireland all have invasive populations of Reeve’s muntjac. Reeve’s muntjac is common in southeastern China and Taiwan and only grows a little over a foot high at the shoulder, or maybe half a meter. The male has stubby little antlers and long tusks, so that his tusks are almost as long as his antlers. Cute as the animals are, they’re also bad for the local ecosystems, since they reproduce quickly and eat food that native animals need.

Rumors have circulated for a few decades now of another possible mystery muntjac, usually referred to as the quang khem. Supposedly it’s a large muntjac with unbranched antlers that lives in remote areas of Vietnam. So far it hasn’t been discovered, if it exists at all, but there’s definitely a chance that it’s yet another muntjac that’s just waiting to be spotted by scientists or their camera traps.

The muntjac is sometimes called the barking deer because of its alarm call. This is what a muntjac sounds like:

[muntjac barking sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 365: A New Temnospondyl

Let’s take a look at some new findings about the temnospondyls this week!

Further reading:

Ancient giant amphibians swam like crocodiles 250 million years ago

Fossil of Giant Triassic Amphibian Unearthed in Brazil

Kwatisuchus rosai was an early amphibian [picture taken from article linked above]:

Koolasuchus was a weird big-headed boi:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to revisit an animal we talked about way back in episode 172, the temnospondyl. That’s because a new species of temnospondyl has been named that lived about 250 million years ago, and some other new information has been published about temnospondyls in general.

In case you haven’t listened to episode 172 in a while, let’s brush up on some history. The temnospondyls arose about 330 million years ago during the Carboniferous period. Ocean levels were high, the continents were coming together slowly to form the supercontinent Pangaea, and much of the land was flooded with warm, shallow water that created enormous swampy areas full of plants. Naturally, a whole lot of animals evolved to live in the swamps, and the temnospondyls were especially successful.

Temnospondyls were semi-aquatic animals that probably looked a lot like really big, really weird salamanders. This was before modern amphibians evolved, and scientists still aren’t sure if the temnospondyls are the direct ancestors of modern amphibians or just cousins that died out with no living descendants. Temnospondyls do share many traits with modern amphibians, but they still had a lot in common with their fish ancestors.

Most temnospondyls had large heads that were broad and flattened in shape, often with a skull that was roughly triangular. Some had smooth skin but many had scales, including some species with scales that grew into armor-like plates. The earliest species had relatively small, weak legs and probably spent most of their time in the water, but it wasn’t long before species with stronger legs developed that probably lived mostly on land.

Many temnospondyls were small, but some grew really big. The biggest found so far is Prionosuchus, which is only known from fragmentary specimens discovered in Brazil in South America. It had an elongated snout something like a ghavial’s, which is a type of crocodilian that mostly eats fish, and a similar body shape. That’s why its name ends in the word “suchus,” which refers to a crocodile or an animal that resembles a crocodilian. Inside, though, prionosuchus probably had more in common with its fish ancestors than with modern crocodiles, and of course it wasn’t a reptile at all. It was an amphibian, possibly the largest one that’s ever lived. The biggest specimen found so far had a skull that measured just over 5 feet long, or 1.6 meters. That was just the skull! The whole animal, tail and all, might have measured as much as 30 feet long, or about 9 meters, although most paleontologists think it was probably more like 18 feet long, or 5-1/2 meters. That’s still incredibly big, as large as the average saltwater crocodile that lives today.

The resemblance of many temnospondyls to crocodilians is due to convergent evolution, since researchers think a lot of temnospondyls filled the same ecological niche as modern crocodiles. If you’re an ambush predator who spends a lot of time hiding in shallow water waiting for prey to get close enough, the best shape to have is a long body, short legs, a long tail that’s flattened side to side to help you swim, and a big mouth for grabbing, preferably with a lot of teeth. A study published in March of 2023 examined some trace fossils found in South Africa that scientists think were made about 255 million years ago by a temnospondyl. The fossils were found in what had once been a tidal flat or lagoon along the shore of the ancient Karoo Sea. You didn’t need to know it was called the Karoo Sea but I wanted to say it because it sounds like something from a fantasy novel. Truly, we live in a wonderful world. Anyway, there aren’t very many footprints but there are swirly marks made by a long tail and body impressions where the animal settled onto the floor to rest.

From those trace fossils, scientists can learn a lot about how the animal lived and moved. The swirly tail marks show that it used it tail to swim, not its legs. Since there are hardly any footprints, it probably kept its legs folded back against its body while it was swimming. When it stopped to rest, it may have been watching for potential prey approaching from above, since its eyes were situated on the top of its head to allow it to see upward easily. All these traits are also seen in crocodiles even though temnospondyls aren’t related to crocodilians at all.

Other big temnospondyls that filled the same ecological niche as crocodiles were species in the family Benthosuchidae. Some grew over 8 feet long, or 2.5 meters. That may not seem very big compared to a dinosaur or a whale, but this is your reminder that it was an early amphibian, and that amphibians are usually little guys, like frogs and newts.

The newly discovered fossil I mentioned at the beginning of this episode has been identified as a member of the family Benthosuchidae. It’s been named Kwatisuchus rosai and was discovered in Brazil in 2022. That’s a big deal, because while temnospondyl fossils have been found throughout the world, until Kwatisuchus, benthosuchids have only been found in eastern Europe. It was five feet long, or 1.5 meters, and it was probably an ambush predator that mostly ate fish.

Kwatisuchus lived only a few million years after the end-Permian extinction event, also called the Great Dying, which we talked about in episode 227. That extinction event wiped out entire orders of animals and plants. Temnospondyls in general survived the Great Dying and hung on for another 100 million years afterwards.

The last temnospondyl that lived, as far as the fossil record shows, was Koolasuchus. It lived in what is now Australia and went extinct about 120 million years ago. This is a lot more recent than most temnospondyls, so much so that when it was first discovered, scientists at first didn’t think it could be a temnospondyl. It was only described in 1997, although it was first discovered in 1978.

Not only was Koolasuchus the most recently living temnospondyl, it was also big and heavy and very weird-looking. It was about 10 feet long, or about 3 meters, and might have weighed as much as 1,100 lbs, or 500 kg. It lived in fast-moving streams and filled the same ecological niche as crocodiles, which eventually replaced it after it went extinct.

Like its relations, Koolasuchus had a roughly crocodile-shaped body with short legs and a fairly long tail, but its head was almost as big as its body. Most temnospondyls had big heads, and Koolasuchus’s was broad and rounded with a blunt nose. It also had what are called tabular horns that projected from the rear of the skull, which gave its head a triangular appearance. Its body was relatively slender compared to the chonky head, which made it look kind of like a really really big tadpole.

Remember, as an amphibian, Koolasuchus would have laid eggs that hatched into a larval form the same way frogs do today. We have a lot of larval temnospondyl fossils and even some fossilized eggs that paleontologists think were laid by a temnospondyl, which were attached to water plants the same way many species of frog do today. Larval temnospondyls did look a lot like tadpoles. In other words, Koolasuchus looked like a tadpole in shape but its larval form was also probably tadpole-like. Extra, extra tadpole-shaped.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 364: Animals Who Will Outlive Us All

Thanks to Oz from Las Vegas for suggesting this week’s topic!

Further reading:

Bobi, the supposed ‘world’s oldest dog’ at 31, is little more than a shaggy dog story

Greenland sharks live for hundreds of years

Scientists Identify Genetic Drivers of Extreme Longevity in Pacific Ocean Rockfishes

Scientists Sequence Chromosome-Level Genome of Aldabra Giant Tortoise

Giant deep-sea worms may live to be 1,000 years old or more

A Greenland shark [photo by Eric Couture, found at this site]:

The rougheye rockfish is cheerfully colored and also will outlive us all:

An Aldabra tortoise all dressed up for a night on the town:

Escarpia laminata can easily outlive every human. It doesn’t even know what a human is.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a great suggestion by Oz from Las Vegas. Oz wanted to learn about some animals that will outlive us all, and gave some suggestions of really long-lived animals that we’ll talk about. We had a similar episode several years ago about the longest lived animals,where for some reason we talked a lot about plants, episode 168, but this is a little different.

But first, a quick correction! Last week we talked about the dodo and some of its relations, including the Nicobar pigeon. I said that the Nicobar pigeon lived in the South Pacific, but Pranav caught my mistake. The Nicobar pigeon lives in the Indian Ocean on the Nicobar Islands, which I should have figured out because of the name.

Anyway, back in the olden days when I was on Twitter all the time, I came across a tweet that’s still my absolute favorite. Occasionally I catch myself thinking about it. It’s by someone named Everett Byram who posted it in January 2018. It goes:

“DATE: so tell me something about yourself

“ME: I am older than every dog”

Not only is it funny, it also makes you thoughtful. People live a whole lot longer than dogs. The oldest living dog is a chihuahua named Spike, who is 23 years old right now. A dog who was supposed to be even older, 31 years old, died in October of 2023, but there’s some doubt about that particular dog’s actual age. Pictures of the dog taken in 1999 don’t actually look like the same dog who died in 2023.

The oldest cat who ever lived, or at least whose age is known for sure, died in 2005 at the age of 38 years. The oldest cat known who’s still alive is Flossie, who was born on December 29th, 1995. If your birthday is before that, you’re older than every cat and every dog.

The oldest human whose age we know for sure was Jeanne Calment, who died in 1997 at the age of 122 years. We talked about her in episode 168. The oldest human alive today, as far as we know, is Maria Branyas, who lives in Spain and will turn 117 years old on her next birthday in March 2024.

It’s not uncommon for ordinary people to live well into their 90s and even to age 100, although after you reach the century mark you’re very lucky and people will start asking you what your secret for a long life is. You might as well go ahead and make something up now to tell people, because it seems to mainly be genetics and luck that allow some people to live far beyond the lives of any dog or cat or most other humans. Staying physically active as you age also appears to be an important factor, so keep moving around.

But there are some animals who routinely outlive humans, animals who could post online and say “I am older than every human” and the others of its species would laugh and say, “Oh my gosh, it’s true! I’m older than every human too!” But they don’t have access to the internet because they are, for instance, a Greenland shark.

We talked about the Greenland shark in episode 163. It lives in the North Atlantic and Arctic Oceans where the water is barely warmer than the freezing point. It can grow up to 23 feet long, or 7 meters, with females being larger than males. Despite getting to such enormous sizes, it only grows one or two centimeters a year, and that was a clue for scientists to look into how old these sharks can get.

In 2016, a team of scientists published a study about how they determined the age of Greenland sharks that had been accidentally caught by fishing nets or that had otherwise been discovered already dead. The lenses inside vertebrate eyeballs don’t change throughout an animal’s life. They’re referred to as metabolically inactive tissue, which means they don’t grow or change as the animal grows. That means that if you can determine how old the lens is, you know when the animal was born, or hatched in the case of sharks.

In the past, scientists have been able to determine the age of dead whales using their eye lenses, but the Greenland shark was different. It turns out that the shark can live a whole lot longer than any whale studied, so the scientists had to use a type of carbon-14 dating ordinarily used by archaeologists.

The Greenland shark may be the oldest-living vertebrate known. Its life expectancy is at least 272 years, and probably closer to 500 years. Individual sharks can most likely live much longer than that. It’s not even mature enough to have babies until it’s about 16 feet long, or 5 meters, and scientists estimate it takes some 150 years to reach that length. Females may stay pregnant for at least 8 years, and maybe as long as 18 years. Babies hatch inside their mother and remain within her, growing slowly, until they’re ready to be born.

The Greenland shark is so big, so long-lived, and lives in such a remote part of the ocean that taking so long to reproduce isn’t a problem. Its body tissues contain chemical compounds that help keep it buoyant so it doesn’t have to use very much energy to swim, and which have a side effect of being toxic to most other animals. Nothing much wants to eat the Greenland shark. But it is caught by accident by commercial fishing boats, with an estimated 3,500 sharks killed that way every year. Scientists hope that by learning more about the Greenland shark, they can bring more attention to its plight and make sure it’s protected. There’s still a lot we don’t know about it.

At least one species of whale does live much longer than humans. In 2007, researchers studying a dead bowhead whale found a piece of harpoon embedded in its skin. It turned out to be a type of harpoon that was manufactured between 1879 and 1885. After that, scientists started testing other bowhead whales that were found dead. The oldest specimen studied was determined to be 211 years old when it died, and it’s estimated that the bowhead can probably live well past 250 years if no one harpoons it and it stays healthy. It may be the longest-lived mammal. It has a low metabolic rate compared to other whales, which may contribute to its longevity.

Most small fish don’t live very long even if nothing eats them. Rockfish, for instance, only live for about 10 years even if they’re really lucky. Well, most rockfish. There is one species, the rougheye rockfish, that lives much, much longer. Its lifespan is at least 200 years old.

The rougheye rockfish has a lot of other common names. Its scientific name is Sebastes aleutianus. It can grow over 3 feet long, or 97 cm, and is red or orangey-red. It lives in cold waters of the Pacific, where it usually stays near the sea floor. It eats other fish along with crustaceans.

Naturally, scientists are curious as to why the rougheye rockfish lives so long but its close relations don’t. In 2021 a team of scientists published results of a genetic study of the rougheye rockfish and 87 other species. They discovered a number of genes associated with longevity, along with genes controlling inflammation that may help the fish stay healthy for longer.

The rougheye rockfish only evolved as a separate species of rockfish about ten million years ago. Because the longest-living females lay the most eggs, the genes for longevity are more likely to be passed on to the next generation, which means that as time goes on, lifespans of the fish overall get longer and longer. The rougheye also isn’t the only species of rockfish that lives a long time, it’s just the one that lives longest. At least one other species can live over 150 years and quite a few live past 100 years.

Another animal that can easily outlive humans is the giant tortoise, which we talked about in episode 95. Giant tortoises are famous for their longevity, routinely living beyond age 100 and sometimes more than 200 years old. The oldest known tortoise is an Aldabra giant tortoise that may have been 255 years old when it died in 2006. The Aldabra giant tortoise is from the Aldabra Atoll in the Seychelles, a collection of 115 islands off the coast of East Africa.

Scientists studied the Aldabran tortoise’s genetic profile in 2018 and learned that in addition to genes controlling longevity, it also has genes that control DNA repair and other processes that keep it healthy for a long time.

Oz also suggested the infinite jellyfish, also called the immortal jellyfish. An adult immortal jelly that’s starving or injured can transform itself back into a polyp, its juvenile stage. We talked about it in episode 343 in some detail, which was recent enough that I won’t cover it again in this episode. Scientists are currently studying the jelly to learn more about how it accomplishes this transformation and how long it can really live.

So far all the animals we’ve talked about, except the immortal jellyfish, are vertebrates. It’s when we get to the invertebrates that we find animals with the longest lifespans. The ocean quahog, a type of clam that lives in the North Atlantic Ocean, grows very slowly compared to other clams, and populations that live in cold water can live a long time. Sort of like tree rings, the age of a clam can be determined by counting the growth rings on its shell, and a particular clam dredged up from the coast of Iceland in 2006 was discovered to be 507 years old. Its age was double-checked by carbon-14 dating of the shell, which verified that it was indeed just over 500 years old when it was caught and died. Researchers aren’t sure how long the quahog can live, but it’s a safe bet that there are some alive today that are older than 507 years, possibly a lot older.

The real long-lived animals are very simple ones, especially sponges and corals. Some species of both can live for thousands of years. Various kinds of mollusks and at least one urchin can live for hundreds of years.

It’s probable that there are lots of other animals that routinely outlive humans, we just don’t know that they do. Scientists don’t always have a way to check an animal’s age, or they don’t think to do so while studying an organism. There are also plenty of animals that we just don’t know exist, especially ones that live in the ocean. For example, a species of tube worm named Escarpia laminata wasn’t even discovered until 1985, and it wasn’t until 2017 that scientists realized it lived for hundreds or even thousands of years.

The tube worm doesn’t have a common name, since it lives in the deepest parts of the Gulf of Mexico around what are called cold seeps, so no one ever needed to refer to it until it was discovered by scientists. A cold seep isn’t actually cold, it just isn’t as hot as a hydrothermal vent. In a cold seep, oil and methane are released into the ocean from fissures in the earth’s crust. Life forms live around these areas that live nowhere else in the world.

Many tube worms can grow quite long and can live over 250 years, with the giant tube worm growing almost 10 feet long, or 3 meters. Escarpia laminata is smaller, typically only growing about half that length. In a study published in 2017, a team of scientists estimated that it routinely lives for 250 to 300 years and potentially much, much longer. A tube worm doesn’t actually eat; instead, it forms a symbiotic relationship with bacteria that live in its body. The bacteria have a safe place to live and the tube worm receives energy from the bacteria as they oxidize sulfur released by the cold seeps. The tube worm, in other words, lives a stress-free life with a constant source of energy, and nothing much wants to eat it. The limit to its life may be the limit of the cold seeps where it lives. Cold seeps don’t last forever, although many of them remain active for thousands of years.

Humans are probably the longest-living terrestrial mammal. This may not seem too impressive compared to the animals we’ve talked about in this episode, but our lives are a whole lot more interesting than a tube worm’s.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 363: The Dodo and Friends

Thanks to Wilmer and Carson for suggesting we revisit the dodo!

Further reading:

Dodos and spotted green pigeons are descendants of an island-hopping bird

On the possible vernacular name and origin of the extinct Spotted Green Pigeon Caloenus maculata

Giant, fruit-gulping pigeon eaten into extinction on Pacific islands

A taxidermied dodo:

The Nicobar pigeon, happily still alive [photo by Devin Morris – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=110541928]:

The 1823 illustration of the spotted green pigeon:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to revisit a bird that everyone’s heard of but no one has seen alive, because it’s famously extinct. We talked about the dodo way back in episode 19, so it’s definitely time we talked about it again. Thanks to Wilmer and Carson for suggesting it! We’re also going to learn about some of the close relations of the dodo.

The first report of a dodo was in 1598 by Dutch sailors who stopped by the island of Mauritius in the Indian Ocean. Mauritius is east of Madagascar, which is off the eastern coast of Africa. The last known sighting of a dodo was in 1662, just 64 years later. The dodo went extinct so quickly, and was so little known, that for a couple of centuries afterwards many people assumed it was just a sailor’s story. But there were remains of dodos, and in the 19th century scientists gathered up everything they could find to study the birds. More remains were found on Mauritius.

In the wild, the dodo was a sleek bird that could run quite fast. It may have eaten crabs and other small animals as well as roots, nuts, seeds, and fruit. It was also probably pretty smart. People only thought it was dumb because it didn’t run away from sailors—but it had no predators on Mauritius so never had to worry about anything more dangerous than an occasional egg-stealing crab before.

When humans arrived on Mauritius, they killed and ate dodos and their eggs. What the sailors didn’t eat, the animals they brought with them did, like pigs and rats. It was a stark and clear picture of human-caused extinction, shocking to the Victorian naturalists who studied it.

A lot of the drawings and paintings we have of dodos were made from badly taxidermied birds or from overfed captive birds. At least eleven live dodos were brought to Europe and Asia, some bound for menageries, some intended as pets. The last known captive dodo was sent to Japan in 1647.

The dodo grew over three feet tall, or almost a meter, with brown or gray feathers, a floofy tuft of gray feathers as a tail, big yellow feet, and a weird head. The feathers stopped around the forehead, making it look sort of like it was wearing a hood. Its face was bare and the bill was large, bulbous at the end with a hook, and was black, yellow, and green. The dodo looks, in fact, a lot like what you might expect pigeons to evolve into if pigeons lived on an island with no predators, and that’s exactly what happened.

The dodo’s closest living relation is the Nicobar pigeon, which can grow 16 inches long, or over 40 cm. Like other pigeons, the dodo’s feathers probably had at least some iridescence, but the Nicobar pigeon is extra colorful. Its head is gray with long feathers around its shoulders like a fancy collar, and the rest of its body is metallic blue, green, and bronze with a short white tail. Zoos love to have these pigeons on display because they’re so pretty. It’s a protected animal, but unfortunately it’s still captured for sale on the pet black market or just hunted for food. It only lays one egg a year so it doesn’t reproduce very quickly, and all this combined with habitat loss make it an increasingly threatened bird. Scientists are trying to learn more about it so it can be better protected.

The Nicobar pigeon lives on a number of islands in the South Pacific and it can fly. Sometimes an errant individual is discovered in Australia, often after storms. Imagine going into your back yard one day and seeing a 40-centimeter-long bird whose feathers shine like jewels! The Nicobar pigeon lives in small flocks and eats seeds, fruit, and other plant material.

An even closer relative to the dodo is also the most mysterious. We don’t even know for sure if it’s extinct, although that’s very likely. It’s the spotted green pigeon and we only have one specimen–and we don’t even know where it was collected, just that it was an island somewhere in the South Pacific. There used to be two specimens, but no one knows what happened to the second one.

For a long time researchers weren’t even sure the spotted green pigeon was a distinct species or just a Nicobar pigeon with weird-colored feathers, but in 2014, DNA testing on two of the remaining specimen’s feathers showed it was indeed a separate species. Researchers think the spotted green pigeon, the dodo, and another extinct bird, the Rodrigues solitaire, all descended from an unknown pigeon ancestor that liked to island hop. Sometimes some of those pigeons would decide they liked a particular island and would stay, ultimately evolving into birds more suited to the habitat.

The specimen we have of the spotted green pigeon is 13 inches long, or 32 cm. Its feathers are dark brown with green iridescence and it has long neck feathers like the Nicobar pigeon. It also has little yellowish spots on its wings and a yellow tip to its bill. Researchers think it was probably a fruit-eating bird that lived in treetops.

The only reason we know there were once two specimens of this mystery bird is from a book about birds published in 1783, where the author mentions having seen two specimens. There was also an 1823 book about birds with an illustration of the spotted green pigeon that differs from the known specimen in some details. Researchers think the illustration might have been painted from the now-missing specimen.

There’s more to this mystery, though, because in 2020 an ornithologist studied a 1928 book about Tahiti that mentioned a bird that sounds a lot like the spotted green pigeon. It was even called a pigeon in the book. Since the author of that book had drawn on studies made by her grandfather almost a hundred years before, and since her grandfather had interviewed Tahitians about their history and traditions and they told him about the pigeon, the ornithologist suggested the spotted green pigeon might actually be from Tahiti. Now that scientists have a clue about where to start looking for remains of the bird, we might learn more about it soon.

Also in 2020, a study was published about another pigeon from the Pacific Islands. Fossils of it were found on the island of Tonga, and the scientists determined that the bird probably went extinct soon after humans first arrived on the island 2,850 years ago. The pigeon has been named Tongoenas burleyi. It grew about 20 inches long, or 50 cm, not counting its tail. It could fly and probably spent a lot of its time in trees, eating fruit. There are lots of different trees on the island that produce really big fruit, some of it as big as a tennis ball. Scientists think the pigeon was adapted to swallow these huge fruits whole, digest them, and poop out the seeds. The trees still exist but they’re in decline and scientists think it may be because no birds remain on the island that can spread their seeds effectively.

We don’t have any feathers from the newly described pigeon, but it was probably colorful. We do have a lot of bones, because many charred bones have been discovered in cooking pits excavated by archaeologists.

We don’t know yet how or if Tongoenas is related to the dodo. The Pacific islands are home to at least 90 living species of pigeon, and many of them we don’t know much about. There are undoubtedly many more waiting to be discovered by scientists, whether living or extinct.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!