Category Archives: Europe

Episode 303: Weird and Mysterious Animal Sounds



Thanks to Emory for suggesting this week’s topic, mysterious animal sounds!

Further reading/watching:

The Story of Elk in the Great Smoky Mountains

Terrifying Sounds in the Forests of the Great Smoky Mountains

Evidence found of stingrays making noise

This New AI Can Detect the Calls of Animals Swimming in an Ocean of Noise

The wapiti [pic from article linked above]:

The stingray filmed making noise [stills from video linked to above]:

The tawny owl makes some weird sounds:

The fox says all kinds of things:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Emory suggested we do a new episode about strange and mysterious animal sounds a while back, which is one of my favorite topics. The problem is, it’s hard to find good audio clips to share. It’s taken me a while, but I think I’ve found some good ones.

In late September 2018, in the Great Smoky Mountains in North Carolina, some hikers recorded a terrifying animal sound. The sound wasn’t a mystery for long, though, because they soon saw the animal making it. Here’s what it sounded like:

[elk bugle]

It’s the bugle of a male elk, which I’m going to call wapiti to avoid confusion. It’s a sound that wasn’t heard in the Smoky Mountains for at least a century. The eastern wapiti was once common throughout eastern North America but was driven to extinction in the late 19th century, although the last wapiti in North Carolina was killed almost a century earlier than that. All North American wapiti almost went extinct by about 1900, and hunters and conservationists worked to get nature preserves set aside to save it and its habitat. Starting in the 1990s, wapiti from western North American subspecies were reintroduced in the southeast, with reintroductions in the Smokies starting in 2001. There are now at least 200 wapiti living in the mountains, probably more. I’ve seen them myself and they’re beautiful animals!

The wapiti is a type of deer. We talked about it way back in episode 30 along with the moose. Various species of wapiti live throughout Europe and Asia as well as North America, although it’s been hunted to extinction in many areas. As we mentioned in episode 30, the name elk is used for the moose in parts of Europe, which causes a lot of confusion, which is why I’ve chosen to call it by its Algonquin name of wapiti.

The wapiti is a really big animal, one of the biggest deer alive today. Only the moose is bigger. It’s closely related to the red deer of Eurasia but is bigger. A male, called a bull, can stand about 5 feet tall at the shoulder, or 1.5 meters, with an antler spread some four feet wide, or 1.2 meters. Females, called cows, are smaller and don’t grow antlers. Males grow a new set of antlers every year, which they use to wrestle other males in fall during mating season. At the end of mating season the wapiti sheds its antlers.

The bugling sound males make during mating season is extremely loud. The sound tells females that the bull is strong and healthy, and it tells other bulls not to mess with it.

[elk bugle]

Our next sound is from an animal that scientists didn’t realize could even make sounds. There’ve been reports for a long time of stingrays making clicking noises when they were alarmed or distressed, but it hadn’t been documented by experts. A team of scientists recently decided to investigate, with their report released in July of 2022. They filmed stingrays of two different species off the coasts of Indonesia and Australia making clicking sounds as divers approached. They think it may be a sound warning the diver not to get too close. This is what it sounds like:

[Stingray making clicking sounds]

One exciting new technological development is being used to detect underwater sounds and hopefully help identify them. It’s called DeepSqueak, because it was originally developed to record ultrasonic calls made by mice and rats. This is an example of a mouse sound slowed down enough that humans can hear it, specifically a male mouse singing to attract a mate, which we talked about in episode 8:

[mouse song]

But DeepSqueak also works really well to detect sounds made by whales and their relatives, and researchers are currently using it to determine whether offshore wind farms cause problems for whales.

With DeepSqueak and other listening software, it turns out that a lot of animals we thought were silent actually make noise. For instance, this sound:

[Pelochelys bibron]

That’s a grunting sound made by the southern New Guinea giant softshell turtle.

And here’s a caecilian, a type of burrowing reptile that we talked about in episode 82:

[Typhlonectes compressicauda]

Let’s finish with a strange and mysterious sound heard on land. In January and February of 2021, some residents of London, England started hearing a weird sound at night.

[mystery sound]

Because the animal making the sound moved around so much, some people thought it must be a bird. One suggestion is that it was a tawny owl, especially the female tawny owl who makes a chirping sort of sound to answer the male’s hoot. This is what the male and female tawny owl sound like:

[owl sounds]

The tawny owl also sometimes makes an alarm call that sounds like this:

[tawny owl alarm call]

But the sound didn’t really match up with what residents were hearing. Here it is again:

[mystery sound]

Finally someone pointed out that red foxes make a lot of weird sounds, mostly screams and sharp barks, but occasionally this sound:

[fox sound]

That seems to be a pretty good match for what people were hearing in early 2021, although since no one got a look at the animal they heard, we can’t know for sure. So it’s still a mystery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 299: Entombed in Stone!



This week’s episode rates one out of five ghosts on the spookiness scale. It’s not too spooky unless the thought of being ENTOMBED IN STONE creeps you out! Which it might, if you are a frog.

Further reading:

A Tenacious Pterodactyl

Further watching:

“One Froggy Evening”

A frog supposedly found mummified in a stone:

The Texas horned lizard kind of looks like a pointy toad with a tail:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’re getting really close to Halloween and our 300th episode, and it’s going to be a spooky one! This week, though, I rate this episode as one ghost out of five on our spookiness scale, meaning it’s not very spooky at all…unless you’re a frog!

Most of us know this story. A worker helping to demolish a building finds a mysterious box hidden in the building’s cornerstone. He opens the box and discovers a living frog—a frog that can sing and dance! But only when no one else is looking!

That’s the classic Looney Tunes cartoon “One Froggy Evening,” and while it’s really funny, it’s also based on many stories about frogs, toads, and other animals supposedly discovered entombed but alive, or only recently dead, in clay, bricks, tree trunks, coal, and even rocks.

For example, in 1782, the American politician and naturalist Benjamin Franklin was living in France, and while he was there he heard about some workmen in a quarry who had found some living toads encased in stone. I’ll quote from Franklin’s writing:

“At Passy, near Paris, April 6th, 1782, being with M. de Chaumont, viewing his quarry, he mentioned to me, that the workmen had found a living toad shut up in the stone. On questioning one of them, he told us, they had found four in different cells which had no communication; that they were very lively and active when set at liberty; that there was in each cell some loose, soft, yellowish earth, which appeared to be very moist. We asked, if he could show us the parts of the stone that formed the cells. He said, No; for they were thrown among the rest of what was dug out, and he knew not where to find them. We asked, if there appeared any opening by which the animal could enter. He said, No. […] We asked, if he could show us the toads. He said, he had thrown two of them up on a higher part of the quarry, but knew not what became of the others.

“He then came up to the place where he had thrown the two, and, finding them, he took them by the foot, and threw them up to us, upon the ground where we stood. One of them was quite dead, and appeared very lean; the other was plump and still living. The part of the rock where they were found, is at least fifteen feet below its surface, and is a kind of limestone. A part of it is filled with ancient seashells, and other marine substances. If these animals have remained in this confinement since the formation of the rock, they are probably some thousands of years old.”

Since limestone generally takes about a million years to form, and requires considerable pressure and lots of chemical reactions to do so, we can be certain that the toads were not in the limestone for all that long. But limestone is porous, and the mention of damp yellow earth inside the capsules of stone suggests that there were significant fissures in the stones where the toads were found. Limestone dissolves in water, although it takes a long time. That’s how caves form. Maybe over many years, tiny cracks and holes had formed in the limestone, large enough for some well developed tadpoles or young toads to end up in the holes, maybe during a rainstorm or flood.

Then again, the whole thing might have been a mistake. The toads might not have actually been inside the stones, only nearby when the stones were broken open. The workers might have thought they were inside. Or it might just have been a hoax made up by a bored quarry worker.

Stories of animals found encased in stone or other impossible conditions go back hundreds of years, in many parts of the world, but for some reason they got really popular around the mid-19th century in England. Suddenly people were finding toads and other animals in all sorts of weird places, or said they had. The Rev. Robert Taylor of St. Hilda’s Church, Hartlepool, for instance, exhibited a toad and the stone it was found in, with the chamber inside the stone being exactly the size and shape of the toad before it was broken open and freed in April 1865. But a geologist who examined the stone found obvious chisel marks where it had been hollowed out and shaped to look like the toad had been inside.

It wasn’t just toads found in rocks, of course, although those were the most popular. A mouse was supposedly found in a rock in 1803, three salamanders of a presumed extinct species were supposedly found in a rock sometime before 1818, and a horned toad was supposedly found in a building cornerstone in 1928. The horned toad is actually a lizard, in this case a Texas horned lizard that lives in various parts of the south-central United States and northeastern Mexico.

The Texas horned lizard does actually resemble a toad in some ways. Its body is broad and rounded and its face has a blunt, froglike snout. A big female grows about 5 inches long, or almost 13 cm, not counting its tail, while males are smaller. It’s covered with little pointy scales, and if it feels threatened, it will puff up its body so that the scales stick out even more. It also has true horns on its head, little spikes that are formed by projections of its skull.

The Texas horned lizard eats insects, especially a type of red ant called the harvester ant. The harvester ant is venomous but the horned lizard is resistant to the venom and is specialized to eat lots and lots of the ants. Its esophagus produces lots of mucus when it’s eating, which collects around the ants and stops them from being able to bite before they die.

The horned lizard supposedly found in a cornerstone of a building was nicknamed Ol’ Rip after Rip Van Winkle, the main character in a short story by Washington Irving who fell asleep and woke up 20 years later. Ol’ Rip the Texas horned lizard was supposedly placed into the hollow cornerstone brick as part of a time capsule when the Eastland County Courthouse was being built in 1897.

In 1928, the courthouse was torn down and a newspaper reporter advertised the opening of the time capsule, including the story about the horned lizard. Sure enough, a live horned lizard was removed from the cornerstone when it was opened, which by the way was the inspiration for the “One Froggy Evening” cartoon.

Ol’ Rip became a celebrity and was displayed all over the United States, and the Texas horned lizard became such a popular pet that the population declined severely, since people went out and caught them to sell as pets. Since the horned lizard eats a lot of insects that damage crops, its decline in numbers actually led to farmers losing money to insect damage. The Texas horned lizard is still endangered, for that matter, and is now a protected species that isn’t allowed to be kept as a pet. Ol’ Rip died less than a year after he was supposedly discovered in the cornerstone.

Even at the time, a lot of people were skeptical that Ol’ Rip had really been in the cornerstone brick for 31 years. It’s much more likely that one of the officials presiding over the time capsule’s opening brought a horned lizard with him and pretended to find it in the brick.

For one thing, the Texas horned lizard needs bright sunshine to survive. Its body can only produce vitamin D when it gets a lot of sunshine, and without vitamin D it will eventually die. It spends a lot of time sunbathing and while it does dig a burrow to sleep in at night, as soon as the sun’s out in the morning, the lizard comes out to bask in the sunshine. A Texas horned lizard trapped in a brick without food, water, air, or sunshine wouldn’t survive long.

The weirdest animal ever supposed to have been found in a stone was reported in the Illustrated London News in 1856. According to the article, during the construction of a railway tunnel in France, a huge block of stone was dislodged with dynamite. The workers were breaking it into smaller pieces when they exposed a chamber inside the rock. A creature emerged that looked something like an enormous bat, but was obviously not a bat. It had a long neck, sharp teeth in its mouth, four long legs with long claws on its talons, and its front and hind legs were connected with flying membranes. It was black with bare skin.

The animal shook its wings but promptly dropped dead, and was sent to a naturalist who identified it as Pterodactylus anas, which had died 64 million years before. Its wingspan was measured as 10 feet, 7 inches across, or 3 meters, 22 cm.

There is no species of pterodactyl named Pterodactylus anas, but anas is Latin for duck. The word for duck in French is canard, which in English means something more like “a hoax or tall tale.”

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 291: The Ediacaran Biota



This week let’s find out what lived before the Cambrian explosion!

A very happy birthday to Isaac!

Further reading:

Some of Earth’s first animals–including a mysterious, alien-looking creature–are spilling out of Canadian rocks

Say Hello to Dickinsonia, the Animal Kingdom’s Newest (and Oldest) Member

Charnia looks like a leaf or feather:

Kimberella looks like a lost earring:

Dickinsonia looks like one of those astronaut footprints on the moon:

Spriggina looks like a centipede no a trilobite no a polychaete worm no a

Glide reflection is hard to describe unless you look at pictures:

Trilobozoans look like the Manx flag or a cloverleaf roll:

Cochleatina looked like a snail:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the last week of August 2022, so let’s close out invertebrate August with a whole slew of mystery fossils, all invertebrates.

But first, we have a birthday shoutout! A humongous happy birthday to Isaac! Whatever your favorite thing is, I hope it happens on your birthday, unless your favorite thing is a kaiju attack.

We’ve talked about the Cambrian explosion before, especially in episode 69 about some of the Burgess shale animals. “Cambrian explosion” is the term for a time starting around 540 million years ago, when diverse and often bizarre-looking animals suddenly appear in the fossil record. But we haven’t talked much about what lived before the Cambrian explosion, so let’s talk specifically about the Ediacaran (eedee-ACK-eron) biota!

I was halfway through researching this episode when I remembered I’d done a Patreon episode about it in 2021. Patrons may recognize that I used part of the Patreon episode in this one. You’d think that would save me time but surprise, it did not.

The word Ediacara comes from a range of hills in South Australia, where in 1946 a geologist noticed what he thought were fossilized impressions of jellyfish in the rocks. At the time the rocks were dated to the early Cambrian period, and this was long before the Cambrian explosion was recognized as a thing at all, much less such an important thing. But since then, geologists and paleontologists have reevaluated the hills and determined that they’re much older than the Cambrian, dating to between 635 to 539 million years ago. That’s as much as 100 million years before the Cambrian. The Ediacaran period was formally designated in 2004 to mark this entire period of time, although fossils of Ediacaran animals generally start appearing about 580 million years ago.

Here’s something interesting, by the way. During the Ediacaran period, every day was only 22 hours long instead of 24, and there were about 400 days in a year instead of 365. The moon was closer to the earth too. And life on earth was still sorting out the details.

Fossils from the Ediacaran period have been discovered in other places besides Australia, including Namibia in southern Africa, Newfoundland in eastern Canada, England, northwestern Russia, and southern China. Once the first well-preserved fossils started being found, in Newfoundland in 1967, paleontologists started to really take notice, because they turned out to be extremely weird. The fossils, not the paleontologists.

Many organisms that lived during this time lived on, in, or under microbial mats on the sea floor or at the bottoms of rivers. Microbial mats are colonies of microorganisms like bacteria that grow on surfaces that are either submerged or just tend to stay damp. Microbial mats are still around today, usually growing in extreme environments like hot springs and hypersaline lakes. But 580 million years ago, they were everywhere.

One problem with the Ediacaran biota, and I should explain that biota just means all the animals and plants that live in a particular place, is that it’s not always clear if a fossil is actually an animal. Many Ediacaran fossils look sort of plant-like. At this stage, the blurry line between animals and plants was even more blurry than it is now, with the added confusion that sometimes non-organic materials can resemble fossils, and vice versa.

For instance, the fossil Charnia, named after Charnwood Forest in England where it was first discovered. In 1957, a boy named Roger, who was rock-climbing in the forest, found a fossil that looked like a leaf or feather. He took a rubbing of the fossil and showed his father, who showed it to a geologist. The year before, in 1956, a 15-year-old girl named Tina saw the same fossil and told her teacher, who said those rocks dated to before the Cambrian and no animals lived before the Cambrian, so obviously what she’d found wasn’t a fossil.

Tina’s teacher was wrong about that, of course, although he was correct that the rocks dated to before the Cambrian, specifically to about 560 million years ago. But while Charnia looks like a leaf, it’s not a plant. This was about 200 million years before plants evolved leaves, and anyway Charnia lived in water too deep for plants to survive. It anchored itself to the sea floor on one end while the rest of the body stuck up into the water, and some specimens have been found that were over two feet long, or 66 cm. Some researchers think it was a filter feeder, but we have very little evidence one way or another.

One common animal found in Australia and Russia is called Kimberella, which lived around 555 million years ago and might have been related to modern mollusks or to gastropods like slugs. It might have looked kind of like a slug, at least superficially. It grew up to 6 inches long, or 15 cm, 3 inches wide, or 7 cm, and an inch and a half high, or 4 cm, which was actually quite large for most animals that lived back then. It was shaped roughly like an oval, with one thin end that stuck out, potentially showing where its front end was, although it didn’t have a head the way we think of it today. The upper surface of its body was protected by a shell, but not the type of shell you’d find on the seashore today. This was a flexible, non-mineralized shell, basically just thick, toughened tissue with what may be mineralized nodules called sclerites embedded in it. All around its body was a frill that might have acted as a gill. The underside of Kimberella was a flat foot like that of a slug.

We know Kimberella lived on microbial mats on the sea floor, and it might have had a feeding structure similar to a radula. That’s because it’s often found associated with little scratches on its microbial mat that resemble the scratches made by a radula when a slug or related animal is feeding on a surface. The radula is a tongue-like organ studded with hard, sharp structures that the animal uses to scrape tiny food particles from a surface.

Kimberella displays bilateralism, meaning it’s the same side to side. That’s the case with a lot of modern animals, including all vertebrates and a lot of invertebrates too, like insects and arachnids. But other Ediacarans showed radically different body plans. Charnia, for instance, exhibits glide reflection, where both sides are the same as in bilateralism, but the sides aren’t exactly opposite each other. If you walk along a beach and make footprints in the sand, your trail of footprints actually demonstrates glide reflection. If you stand on the sand and jump forward with both feet together, your footprints demonstrate bilateralism since the prints are side by side. (This is confusing to describe, sorry.) Pretty much the only living animals with this body pattern are some sea pens, which get their name because they resemble old-fashioned quill pens. Many sea pens look like plants, and for a long time researchers thought Charnia might be an ancient relation to the sea pen. These days most researchers are less certain about the relationship.

A similar-looking animal that lived around the same time as Charnia was Dickinsonia. It looks sort of like a leaf too, but a more broad oval-shaped leaf instead of a long thin one like Charnia. It’s also not a leaf. Some are only a few millimeters long, but some are over 4 1/2 feet long, or 1.4 meters.

Dickinsonia may be related to modern placozoans, a simple squishy creature only about one millimeter across. It travels very slowly across the sea floor and absorbs nutrients from whatever organic materials it encounters. But we don’t know if Dickinsonia was like that or if it was something radically different. Until a few years ago a lot of paleontologists thought Dickinsonia might be some kind of early plant or algae. Then, in 2016, a graduate student discovered some Dickinsonia fossils that were so well preserved that researchers were able to identify molecular information from them. They found cholesteroids in the preserved cells, and since only animals produce cholesteroids, Dickinsonia was definitely an animal. But that’s still about all we know about it so far.

Spriggina is another animal that at first glance looks like a leaf or feather. Then it sort of resembles a trilobite, or a segmented worm, or a possible relation to Dickinsonia. It looks like all sorts of animals but doesn’t really fit with anything known. It grew up to two inches long, or 5 cm, and had what’s referred to as a head shield although we don’t know for sure if it was actually its head. The head shield might have had eyes and might have had some kind of antennae, and some fossils seem to show a round mouth in the middle of the head, but it’s hard to tell. The rest of its body was segmented in rings. What Spriggina didn’t have was legs, or at least none of the fossils found so far show any kind of legs. Some species of Spriggina show a glide reflection body plan, while others appear to show a more ordinary bilateral body plan.

Three Ediacaran animals have such a weird body plan that they’ve been placed in their own phylum, Trilobozoa, meaning three-lobed animals. They show tri-radial symmetry, meaning that they have three sections that are identical radiating out from the center. They lived on microbial mats and were only about 40 mm across at most, which is about an inch and a half. Tribrachidium was roughly round in shape although its relations looked more like tiny cloverleaf rolls. Cloverleaf rolls are made by putting three little round pieces of dough together and baking them so that the roll has three lobes, although Trilobozoans probably didn’t taste as good. Also, Trilobozoans were covered with little grooves from center to edge and had three curved ridges, one on each lobe. The ridges were originally interpreted as arms or tentacles, but they seem to have just been ridges. Researchers think the little grooves directed water over the body’s surface and the ridges acted as tiny dams that slowed the water down just enough that particles of food carried in the water would fall onto the body so that the animal could absorb the nutrients, although we don’t know how that worked.

Many other Ediacaran animals had radial symmetry like modern echinoderms and jellyfish, including the ancestors of jellyfish. Some Ediacaran animals even had shells of various kinds, and they’re generally referred to as small shelly fossils. They were rarely more than a few millimeters across at most and are sometimes found mixed in with microbial mats. Cochleatina, for instance, is less than a millimeter across and all we know about it is that it had a ribbon-like spiral shell like a really simple snail’s shell. It wasn’t a snail, though. We don’t even know if it was an animal. It might have been some kind of algae or it might have been something else. Unlike most small shelly fossils, Cochleatina survived into the Cambrian period.

We’re also not sure why most Ediacaran organisms went extinct at the beginning of the Cambrian, but it’s probable that most were outcompeted by newly evolved animals. There may also have been a change in the chemical makeup of the ocean and atmosphere that caused an extinction event of old forms and allowed the rapid expansion of new animal forms that we call the Cambrian explosion.

We can also learn a lot about what we don’t find in the Ediacaran rocks. Pre-Cambrian animals didn’t appear to burrow into the sea floor, or at least we haven’t found any burrows, just tracks on the surface. Most Ediacaran animals also didn’t have armored bodies or claws or so forth. Researchers think that predation was actually pretty rare back then, with most animals acting as passive filter feeders to gather nutrients from the water, or they ate the microbial mats. It wasn’t until the Cambrian explosion that we see evidence that some animals evolved to kill and eat other animals exclusively.

With every new Ediacaran fossil that’s found and studied, we learn more about this long-ago time when multi-cellular life was brand new.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 280: Lesser-Known Sharks



Thanks to Tobey and Janice this week for their suggestions of lesser-known sharks!

Further reading/watching:

CREATURE FEATURE: The Spinner Shark [this site has a great video of spinner sharks spinning up out of the water!]

Acanthorhachis, a new genus of shark from the Carboniferous (Westfalian) of Yorkshire, England

150 Year Old Fossil Mystery Solved [note: it is not actually solved]

The cartoon-eyed spurdog shark:

The spinner shark spinning out of the water:

The spinner shark not spinning (photo by Andy Murch):

A Listracanthus spine:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about three sharks you may have never heard of before! The first was suggested by my aunt Janice and the second by listener Tobey. The third is a mystery from the fossil record.

You may have heard about the findings of a study published in November of 2021, with headlines like “Venomous sharks invade the Thames!” My aunt Janice sent me a link to an article like this. Nobody is invading anything, though. The sharks belong where they are. It was their absence for decades that was a problem, and the study discovered that they’re back.

The Thames is a big river in southern England that empties into the North Sea near London. Because it flows through such a huge city, it’s pretty badly polluted despite attempts in the last few decades to clean it up. It was so polluted by the 1950s, in fact, that it was declared biologically dead. But after a lot of effort by conservationists, fish and other animals have moved back into the river and lots of birds now visit it too. It also doesn’t smell as bad as it used to. One of the fish now found again in the Thames is a small shark called the spurdog, or spiny dogfish.

The spurdog lives in many parts of the world, mostly in shallow water just off the coast, although it’s been found in deep water too. A big female can grow almost three feet long, or 85 cm, while males are smaller. It’s a bottom dweller that eats whatever animals it finds on the sea floor, including crabs, sea cucumbers, and shrimp, and it will also eat jellyfish, squid, and fish when it can catch them. It’s even been known to hunt in packs.

It’s gray-brown in color with little white spots, and it has large eyes that kind of look like the eyes of a cartoon shark. It also has a spine in front of each of its two dorsal fins, which can inject venom into potential predators. The venom isn’t deadly to humans but would definitely hurt, so please don’t try to pet a spurdog shark. If the shark feels threatened, it curls its body around into a sort of shark donut shape, which allows it to jab its spines into whatever is trying to grab it.

The spurdog used to be really common, and was an important food for many people. But so many of them were and are caught to be ground into fertilizer or used in pet food that they’re now considered vulnerable worldwide and critically endangered around Europe, where their numbers have dropped by 95% in the last few decades. It’s now a protected species in many areas.

The female spurdog retains her fertilized eggs in her body like a lot of sharks do. The eggs hatch inside her and the babies develop further before she gives birth to them and they swim off on their own. It takes up to two years before a pup is ready to be born, and females don’t reach maturity until they’re around 16 years old, so it’s going to take a long time for the species to bounce back from nearly being wiped out. Fortunately, the spurdog can live almost 70 years and possibly longer, if it’s not killed and ground up to fertilize someone’s lawn. The sharks like to give birth in shallow water around the mouths of rivers, where the water is well oxygenated and there’s lots of small food for their babies to eat, which is why they’ve moved back into the Thames.

Next, Tobey suggested we talk about the spinner shark. It’s much bigger than the spurdog, sometimes growing as much as 10 feet long, or 3 meters. It lives in warm, shallow coastal water throughout much of the world. It has a pointy snout and is brown-gray with black tips on its tail and fins, and in fact it looks so much like the blacktip shark that it can be hard to tell the two species apart unless you get a really good look. It and the blacktip shark also share a unique feeding strategy that gives the spinner shark its name.

The shark eats a lot of fish, especially small fish that live in schools. When the spinner shark comes across a school of fish, it swims beneath it, then upward quickly through the school. As it swims it spins around and around like an American football, but unlike a football it bites and swallows fish as it goes. It can move so fast that it often shoots right out of the water, still spinning, up to 20 feet, or 6 meters, before falling back into the ocean. The blacktip shark sometimes does this too, but the spinner shark is an expert at this maneuver.

There’s a link in the show notes to a page where you can watch a video of spinner sharks spinning out of the water and flopping back down. It’s amazing and hilarious. Tobey mentioned that the spinner shark is an acrobatic shark, and it certainly is! It’s like a ballet dancer or figure skater, but with a lot more teeth. And fewer legs.

Because spinner sharks mainly eat fish, along with cephalopods, they almost never attack humans because they don’t consider humans to be food. Humans consider the spinner shark food, though, and they’re listed as vulnerable due to overhunting and habitat loss.

We’ll finish with a mystery shark. I’ve had Listracanthus on my ideas list for a couple of years, hoping that new information would come to light, but let’s go ahead and talk about it now. It’s too awesome to wait any longer.

We know very little about Listracanthus even though it was around for at least 75 million years, since it’s an early shark or shark relative with a cartilaginous skeleton. Cartilage doesn’t fossilize very well compared to bone, so we don’t have much of an idea of what the shark looked like. What we do have are spines that grew all over the fish and that probably made it look like it was covered with bristles or even weird feathers. The spines are a type of denticle that could be up to 4 inches long, or 10 cm. They weren’t just spines, though. They were spines that had smaller spines growing from their sides, sort of like a feather has a main shaft with smaller shafts growing from the sides.

The spines are fairly common in the fossil record from parts of North America, dating from about 326 million years ago to about 251 million years ago. Listracanthus was closely related to another spiny shark-like fish, Acanthorhachis, whose spines have been found in parts of Europe and who lived around 310 million years ago, but whose spines are less than 3 inches long at most, or 7 cm.

Some researchers think the spines were only present on parts of the shark, maybe just the head or down the back, but others think the sharks were covered with the spines. Many times, lots and lots of the spines are found together and probably belong to a single individual whose body didn’t fossilize, only its spines. Some researchers even think that the flattened denticles from a shark or shark relation called Petrodus, which is found in the same areas at the same times as Listracanthus, might actually be Listracanthus belly denticles.

The spines probably pointed backwards toward the tail, which would reduce drag as the fish swam, and they might have been for display or for protection from predators, or of course both. The main parts of the spine were also hollow and there’s evidence there were capillaries inside, so they might have had a chemosensory or electrosensory function too.

Modern sharks have denticles that make their skin rough, sort of like sandpaper. One modern shark, the sandy dogfish, Scyliorhinus canicula, which is common in shallow water off the coasts of western Europe and northern Africa, and in the Mediterranean, has especially rough denticles on its tail. They aren’t precisely spines, but they’re more than just little rough patches. The sandy dogfish is a small, slender shark that barely grows more than about three feet long, or about a meter, and it eats anything it can catch. Young dogfish especially like small crustaceans, and sometimes they catch an animal that’s too big to swallow whole. In that case, the shark sticks the animal on the denticles near its tail, which anchors it in place so it can tear bite-sized pieces off. Some other sharks do this too, so it’s possible that Listracanthus and its relations may have used its spines for similar behavior.

We don’t know much about these sharks because all we have are their spines. Only one probable specimen has been found, by a paleontologist named Rainer Zangerl. Dr. Zangerl found the remains of an eel-like shark in Indiana that was covered in spines, but unfortunately as the rock dried out after being uncovered, the fossil literally disintegrated into dust.

In August of 2019, a fossil hunter posted on an online forum for fossil enthusiasts to say he’d found a Listracanthus specimen. He posted pictures, although since the fossil hasn’t been prepared it isn’t much to look at. It’s just an undulating bump down a piece of shale that kind of looks like a dead snake. Fortunately, the man in question, who goes by RCFossils, knew instantly what he’d found. He also knew better than to try to clean it up himself. Instead, he’s been working on trying to find a professional interested in taking the project on. In May of 2022 he posted again to say he’d managed to get an X-ray of the fossil, which shows a backbone but no sign of a skull. He’s having trouble finding anyone who has the time and interest in studying the fossil, but hopefully he’ll find someone soon and we’ll all learn more about this mysterious pointy shark.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 279: Mean Piggies



Thanks to Molly for suggesting andrewsarchus and entelodont, our mean “piggies” we learn about this week!

Further reading:

Andrewsarchus, “Superb Skull of a Gigantic Beast”

Dark Folklore by Mark Norman and Tracey Norman

Further listening:

The Folklore Podcast

Andrewsarchus (taken from article linked above):

Andrewsarchus’s skull. I’m not sure who the guy holding it is, but I like to think his name is Andrew:

Entelodont:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’m getting really backed up on listener suggestions, so over the next few months I plan to cover as many of them as possible. We’ll start with two suggestions by Molly, who wanted to learn about Andrewsarchus and the related Entelodont. We talked about entelodonts briefly back in episode 116, and if you remember that episode, you may remember that entelodonts are sometimes referred to as the terminator pig or the hell pig. So yes, we are going to learn about some mean piggies this week, with a bonus fun mystery piggy at the end.

Andrewsarchus mongoliensis lived in what is now central Asia about 42 million years ago. It’s only known from a single skull found in 1923 in Inner Mongolia, which is part of China these days. The skull has a long snout and is big and wide, over 2.5 feet long, or 83 cm. It has huge, strong teeth that look ferocious.

When the skull was first found, some paleontologists on the team thought it was from a huge wolf-like carnivore. But others weren’t so sure. They thought it was the skull of a pig relative, and pigs are omnivores. Without more fossil remains, we can’t know for sure what Andrewsarchus’s body looked like, but these days scientists mostly think it was closely related to entelodonts.

Despite being called the terminator pig, entelodonts weren’t very closely related to pigs, although they and Andrewsarchus are in the order Artiodactyla. That’s the order that includes all even-toed hoofed mammals and their close relations, including pigs, but also including hippos and whales. Hippos and whales are actually pretty closely related, and entelodonts and Andrewsarchus were more closely related to hippos than to pigs.

Daeodon [DIE-oh-don] was the biggest entelodont known, and it may have stood up to 7 feet tall at the shoulder, or just over 2 meters. It lived in North America, but there was another species from Eurasia, Paraentelodon intermedium, that was probably close to the same size. Both lived about 22 million years ago.

Entelodonts had big, wide skulls with flared cheekbones and knob-like bony protrusions, so its head may have looked something like a warthog’s head. It also had cloven hooves. We don’t know if Andrewsarchus had hooves since we haven’t found anything but that one huge skull. The larger species of Entelodont had a humped shoulder something like a bison for the attachment of strong neck muscles to support the head’s weight, and Andrewsarchus probably had this too. The rest of the body was much more lightly built, with short, slender legs and a skinny little tail.

Even though Entelodont teeth are fearsome-looking, and at least some species of Entelodont were probably active hunters, they’re considered omnivores and Andrewsarchus probably was too. In fact, because Andrewsarchus was found on what was once a beach along the ocean, some researchers think it might have used its big forward-pointing front teeth to dig shellfish out of the sand. Most likely it ate pretty much anything it could find or catch, including shellfish, turtles, and other small animals, carrion, and plant material like fruit, nuts, and roots.

The teeth of some entelodont species show wear marks that indicate it probably bit through bones pretty frequently, possibly while scavenging already dead animals but possibly also when killing prey. One fossil skull of a herbivorous artiodactyl that lived in North America was found with an entelodont incisor embedded in it.

On the other hand, we have a set of fossil tracks in Nebraska, in the United States, that shows the behavior of what may have been an entelodont called Archaeotherium. Archaeotherium lived around 30 million years ago and grew up to 5 feet tall at the shoulder, or 1.5 meters, although most specimens found were closer to 4 feet tall, or 1.2 meters. The fossil tracks are from three animals: a type of rhinoceros, a predator of some kind, possibly the hyena-like Hyaenodon, and a species of Archaeotherium. The rhinoceros tracks show that it was walking along, then suddenly took off at a run. The Hyaenodon tracks are nearby and possibly indicate pursuit of the rhino, or it might have just happened to be nearby and frightened the rhino. The Archaeotherium tracks, meanwhile, zigzag back and forth. What on earth is going on with that?

Entelodonts had a very good sense of smell, much like pigs do, and walking in a zigzag pattern would allow Archaeotherium to smell things more efficiently. Some researchers suggest it might have been keeping an eye on the rhino hunt, and that if the Hyaenodon managed to bring down its prey, Archaeotherium might have decided to chase Hyaenodon away from its kill. It might also have been waiting for one or both animals to become tired, and then it could attack. Then again, it might just have been looking for some yummy fruit to eat. While some places online will tell you Archaeotherium was hunting the rhino, that’s not what the tracks indicate.

Entelodonts could open their mouths really, really wide. If you’ve ever seen a hippo with its humongous mouth open, that’s what we’re talking about here. Male hippos sometimes fight by jaw-wrestling each other, and researchers think entelodonts might have done something similar. A lot of entelodont skulls show healed puncture wounds in places consistent with jaw-wrestling. The knobby protrusions on its skull might have been an adaptation to this behavior, with thickened skin over them to keep a rival’s teeth from biting too deeply. This is the case with some pigs with similar skull protrusions, which we talked about in episode 128. The head bite wounds are only seen in adult animals, and younger animals didn’t have the massive cheek and jaw muscles seen in adults.

The big question is whether Andrewsarchus was actually an entelodont or just closely related to the entelodonts. That’s the same thing paleontologists have been discussing for the last century. Until we find more Andrewsarchus fossils, though, there’s only so much we can determine about the animal, including how similar it was to the entelodonts. For instance, while entelodonts did have cloven hooves, the two halves of the hoof could spread apart like fingers, which is similar to the way camel feet are structured. This would have helped it walk on soft ground, like sand or mud. If Andrewsarchus turns out to have similar feet, it was probably an entelodont.

Finding more Andrewsarchus remains will allow us to get a good idea of how big it could grow, too. Estimates based on the same proportions seen in entelodonts suggest it might have stood about 6 feet tall at the shoulder, or 1.8 meters.

As we’ve established, entelodonts and Andrewsarchus weren’t actually pigs, although they probably looked a lot like weird oversized warthogs with some features seen in wild boars. There’s no evidence they had a pig-like snout, called a nasal disk, which is flattened at the end. Entelodonts had nostrils on the sides of the snout, something like a horse’s nostrils.

But let’s finish with an actual pig, the mystery of the sewer pig. I got this information from a fantastic book called Dark Folklore by Mark and Tracey Norman, and I read the book because I listen to The Folklore Podcast, which is by folklorist Mark Norman, although I think Tracey Norman helps out with it too. I’ll just quote from the book, and definitely check the show notes for a link if you want to order your own copy.

“Foreshadowing the 1980s panic about baby alligators being taken home as pets and subsequently flushed down the toilet into the sewer system of New York, 1859 London was overtaken by a panic about the Sewer Pigs of Hampstead.

“The sewer pigs were thought to be a monstrous porcine family living entirely below ground in the London sewer system, and even featured in the Daily Telegraph newspaper. A sow had apparently become trapped, it was said, and had given birth to a litter of piglets, the entire family living off the rubbish that accumulated in the sewers and producing litter after litter. The population lived in fear of these terrible creatures escaping from the sewer system and running riot throughout London.

“Obviously, there is nothing within a sewer system that would sustain a pig, let alone a number of them. The fear connected to this particular urban legend is disease and it arose after the hot summer of 1858 caused a devastating outbreak of typhoid and cholera in the city. Unsurprisingly, there has never been any evidence of pigs in London’s sewers, monstrous, lost or otherwise.”

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 277: Rewilding Scotland



This week is Caitie Sith and Dave’s episode! They want to learn about animals reintroduced to Scotland, especially the Highland wildcat!

The Scottish (or Highland) wildcat:

The Eurasian lynx:

The Eurasian beaver (with babies!):

The white-tailed eagle:

Reindeer in Scotland:

The pine marten:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week is Caitie Sith and Dave’s episode, where we’ll learn about the re-wilding of Scotland! Re-wilding is the process of restoring an ecosystem to its natural state, basically reversing habitat loss. Most of the time there’s a lot more to it than just reintroducing native animals, but sometimes that’s all that’s required.

Scotland is a part of the island of Great Britain, north of England. People have lived there since the last glaciers melted at the end of the Pleistocene, around 12,000 years ago. During the Pleistocene and a few thousand years after the glaciers melted, Scotland was connected to Europe by a lot of marshy land where today there’s ocean, and naturally many animals lived in Scotland that were also found in Europe at the time. Some of the ice age megafauna that lived in Scotland included the woolly rhinoceros, woolly mammoth, bison, aurochs, wild boar, saiga antelope, giant deer, red deer, reindeer, moose, wild horse, beaver, walrus, Polar bear, brown bear, lynx, wolf, Arctic fox, and cave lion. Many fossil and subfossil remains of Pleistocene animals were destroyed by the formation and movement of thick glacier ice, which scoured the land down to bedrock in many places, so those are only the animals we know for sure lived in Scotland.

But Scotland wasn’t covered by glaciers all the time. The Pleistocene wasn’t a single ice age but a series of cold events interspersed with warming trends. During these interglacial periods, which lasted some 10- to 15,000 years at a time, animals would move to Scotland from other places or become more numerous than before. Then the climate would start cooling again, glaciers would slowly form over many years, and animals would move to areas where there was more food. This happened repeatedly over a period of more than 2.5 million years.

In other words, while we have some fossils of Pleistocene animals that once lived in Scotland, we don’t have nearly as many as have been found in England, Ireland, and Wales. But what we do know is that Scotland was once teeming with all kinds of animals we’d never associate with the country today, like cave lions and Polar bears!

Much of the ice age megafauna went extinct around 12,000 years ago when the last glaciers melted and the climate started warming. Cold-adapted animals couldn’t always survive in a warmer climate, not to mention that as the climate changed, the types of plants available to eat changed too. Some animals migrated away or went extinct, while some were able to stay in Scotland successfully. This included the red deer, reindeer, wild boar, walrus, brown bear, and lynx.

If you’re wondering why that list is full of animals that don’t actually live in Scotland these days, like the brown bear and lynx, it’s because humans hunted many of the native Scottish animals to extinction. Others went extinct due to habitat loss or competition with introduced animals. Many surviving species are endangered today for the same reasons.

For example, the Scottish wildcat, also called the Highland wildcat. We talked about it briefly in episode 52 way back in early 2018. One of the animals that migrated to Scotland after the Pleistocene, but before sea levels rose and cut the British Isles off from Europe, was the European wildcat. The Scottish population has been separated from the European population for at least 7,000 years, and some researchers think it should be classified as a subspecies of European wildcat.

The Scottish wildcat is a little larger than a domestic cat and is always tabby striped. It has a bushy tail with a black tip, a striped face and legs, never any white markings, and is usually dark in color with black paws. It’s a solitary animal that mostly lives in woodlands, where it eats mice, voles, and other rodents, rabbits, and birds. It used to be common throughout much of the British Isles, but these days it’s only found in parts of Scotland.

You’d think people would be excited to have a genuine wildcat living in their country, since wildcats are pretty awesome and eat animals that can damage crops. But for some reason, until recently people thought these wildcats were pests and would shoot them on sight. Some people thought the wildcats were killing game birds, which is rare, or that they were dangerous, which isn’t true. At the same time, the people shooting wildcats were letting their domestic cats roam freely, which has caused an even bigger problem to wildcats than getting shot at.

Like other wildcat species, the Scottish wildcat can and will cross-breed with domestic cats. The resulting kittens are fertile, meaning they can have babies with either wildcats or domestic cats. Kittens are great, of course, but domestic cats are a different species from wildcats. Hybrid cats are less suited to live in the wild, but too wild to be good pets, and if too many domestic cats breed with wildcats, soon there won’t be any real wildcats left. Not only that, domestic cats carry diseases that wildcats can catch.

The Scottish wildcat is a protected species these days, with conservation efforts in place to keep the wildcats and their habitat as safe as possible. One important step is to encourage people to get their domestic cats neutered. This is healthier for pet cats anyway and will help keep tomcats from spraying and fighting, and of course it stops them from having kittens with wildcats.

Another felid that once lived in Scotland is the Eurasian lynx. It still lives in parts of Asia and Europe, but it went extinct in Scotland several hundred years ago, mainly due to deforestation and hunting for its fur. It’s about 28 inches tall at the shoulder, or 70 cm, and is a heavily built animal with thick spotted fur and a short bobtail. The tip of its tail is black although the rest of the animal is mostly tan or brown with darker brown spots, and it has long black tufts of fur on the tips of its ears. It’s slightly bigger than the related Canadian lynx.

Conservationists have wanted to reintroduce the Eurasian lynx to Scotland for years. Since the lynx is threatened in the rest of its range by habitat loss and hunting, reintroducing it to its former range in Scotland would help it and the ecosystem in general. With no large predators to keep their numbers in check, the population of roe deer in Scotland is too high to be healthy, and the lynx loves to eat roe deer.

Some people worry that if the lynx is reintroduced to Scotland, it will be dangerous to humans and livestock. But the lynx is a shy, solitary animal that avoids humans as much as possible. There are enough roe deer alone to sustain a population of over 400 lynxes in the wilder parts of Scotland, especially in the Highlands. The lynx also spends almost all of its time in forests and doesn’t like open pastures. It’s been successfully reintroduced to its former range in other countries, with a nice side effect being increased tourism to national parks where it’s now found.

Scotland also used to have beavers, which were hunted to extinction in the 16th or 17th century. Then, in 2009, the Eurasian beaver was reintroduced to parts of Scotland and is doing great! There are more than 1,000 beavers living in Scotland now. Beavers are considered a keystone species, a term we haven’t really examined on the podcast before, but it means that an animal is so important to an ecosystem that if it goes extinct in an area, the ecosystem sort of falls apart and many other animals go locally extinct soon after.

Beaver ponds create a winter habitat for many types of fish, and beaver dams don’t stop fish like salmon that migrate upriver to spawn. The dams help reduce flooding, improve water quality, and create cover for lots of fish and other animals.

Naturally, though, some people complain about the beavers, because there will always be someone who complains about anything. Some people think beavers eat fish and will eat up all the fish that humans want to catch. Beavers actually don’t eat fish at all, they only eat plant material. Some people think beavers carry the giardia parasite, which causes a bacterial infection sometimes called beaver fever that’s spread in water, but giardia is actually mostly spread by domestic dogs. Some people complain that beavers fell trees and build ponds, and both these things are true. But the beaver is just doing what it’s supposed to do, and as we just learned, this tree felling and pond-making are good for the environment—unlike humans, who chop down lots of trees and make artificial ponds when landscaping, while simultaneously draining wetlands, which doesn’t help the local environment at all. Besides, the beavers are cute and attract tourists who want to get pictures of them, which is also good for the local economy. Everybody wins when there are beavers around, is what I’m trying to say.

The beavers reintroduced in 2009 aren’t the only beavers in Scotland. In 2001, people started seeing them around the river Tay—but no one knew where they came from. Well, presumably someone knew, because the beavers didn’t get there without help. If this reminds you of episode 48, where we talked about some mystery beavers that appeared in Devon, England, the Devon beavers showed up in 2013, twelve years after the Scottish mystery beavers. At first the Scottish government planned to capture the Tayside beavers and keep them in captivity, but the beavers are still there and doing very well.

It’s great that over a thousand beavers live in Scotland now, but that’s actually not very many. Still, it’s a whole lot better than the number of Eurasian beavers about 150 years ago, when researchers think there may have been as few as 300 individuals alive in the whole world.

Another animal that once lived in Scotland, was hunted to extinction, and then mysteriously reappeared recently is the wild boar. They first appeared in the 1990s and by now there are thousands of them in Scotland. It’s possible they escaped from farms, where they’re sometimes raised for meat like domestic pigs. While they’re a native species, they don’t have any predators in Scotland and are causing a lot of damage as they become more numerous. The wild boar’s natural predator is the wolf, and the last wolf in Scotland was killed in 1743. Lynxes will also kill wild boar piglets.

Some birds have been reintroduced to Scotland too. The white-tailed eagle is a type of sea eagle, closely related to the bald eagle of North America although it’s slightly larger than the bald eagle. The biggest ever reliably measured was a specimen from Greenland with a wingspan of 8 feet 4 inches across, or 2.53 meters, just a smidge larger than the largest bald eagle wingspan known. It’s mostly brown and gray with a yellow bill and feet, and a white tail. It lives around water and eats a lot of fish, but it also eats lots of carrion, gulls and other birds, and occasionally small mammals like rabbits. It always lives near water but it prefers wooded areas, especially lowlands and forested islands.

The white-tailed eagle went extinct throughout Britain in the early 20th century when people decided they wanted all those fish the eagle eats for themselves. Never mind that even a thousand eagles couldn’t eat as many fish that a single commercial fishing boat catches in a day. People also decided that eagles killed lambs, even though this is extremely rare. White-tailed eagles would much rather eat fish and seagulls than lamb. The last white-tailed eagles in Scotland were shot and killed in 1916.

As if that wasn’t bad enough, white-tailed eagles were also killed throughout the rest of their range and were especially vulnerable to the chemical called DDT. DDT was a popular pesticide developed in the 1950s and used to kill insects on crops and gardens. But DDT is dangerous, because like other pesticides it doesn’t just do its job and evaporate. It stays in the environment and ends up in the bodies of animals, including people. It’s especially bad for birds that eat a lot of fish, since a lot of pesticides end up in the water, and it causes their eggshells to become so thin and weak that the eggs break when the mother tries to keep them warm. This is the same thing that almost drove the bald eagle to extinction in North America. By the time DDT use was banned in many countries and the white-tailed eagle was declared a protected species, it was almost too late.

Conservation efforts have helped stop the white-tailed eagle from going extinct and its numbers are slowly growing. Starting in 1975, young eagles were brought from Norway to Scotland, where they were successfully reintroduced in the inner Hebrides islands and have now expanded to other parts of Scotland. Some people still complain about the eagles and sometimes shoot or poison them even though it’s illegal, but most people are happy to have them around, especially birdwatchers.

Scotland even has some reindeer these days. Reindeer probably lived in Scotland until around the 12th century, and in 1952 a Swiss herdsman thought they should still be there. He brought a small herd to the Cairngorm mountains, which is now a national park. The reindeer are semi-domesticated but roam free, and they attract tourists who hope to catch a glimpse of them.

At the same time that many native animals have gone extinct, lots of non-native animals have been introduced to Scotland, including wallabies, American mink, gray squirrels, various species of crayfish, and many more. Conservationists are working to minimize the damage these introduced species cause. Many invasive species were animals kept as pets that either escaped or were released into the wild. We talked about the invasive eastern gray squirrel versus the native red squirrel in episode 241, for instance. People released gray squirrels into parks in England because they were so cute, and a hundred years later, the gray squirrels are taking over in many places. They’re increasingly common in Scotland, although Scotland has a small predator called the pine marten that loves to eat squirrels.

The pine marten is a type of mustelid, or weasel relative, that’s common throughout much of Europe and Asia. It grows about two and a half feet long, or 75 cm, including its bushy tail. It mostly lives in wooded areas and spends a lot of its time in trees, hunting squirrels and other small animals like frogs, insects, and birds. It will also eat carrion, bird eggs, and sometimes fruit. It’s mostly brown with a cream-colored throat. It even has partially retractable claws like a cat to help it climb trees, although it’s not related to the cat.

The pine marten is especially good at catching squirrels, and it tends to target the gray squirrel because it’s easier to catch. The red squirrel is more cautious. Where there are pine martens, there are fewer or no gray squirrels. The problem is, the pine marten is considered a pest that kills game birds, so some people shoot or poison it even though it’s a protected species. Then those same people complain about all the gray squirrels around. The pine marten is doing well in many parts of Scotland, though, and has even expanded its range slightly in the last few years.

Scotland is a beautiful country known for its wild and rugged countryside. It wouldn’t take much to rewild it properly, a process that’s well underway with keystone species like beavers already re-established in many places. The main problem is people who don’t understand that a healthy ecosystem requires predators. Without lynxes, wolves, bears, and other large predators, animals like roe deer and wild boar become so numerous that they can’t find enough to eat and either starve or destroy crops and gardens.

Fortunately, many more people in Scotland do understand the importance of building healthy ecosystems. After all, they’re naturally proud of where they live and want to make it even better.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 276: Hominins and Art



It’s Nicholas’s episode this week, and Nicholas wants to learn more about hominins, the ancestors and cousins of modern humans!

Happy birthday to Autumn! I hope you have a great birthday!

Further listening:

Humans Part One

Further reading:

Were Neanderthals the Earliest Cave Artists?

Neanderthals Built Mysterious Stone Circles

DNA reveals first look at enigmatic human relative

What does it mean to have Neanderthal or Denisovan DNA?

Hand and footprint art dates to mid-Ice Age

Risky food-finding strategy could be the key to human success

A stone circle in a cave was probably built by Neandertals:

A deer bone with carving on it probably made by Neandertals:

Some cave paintings probably made by Neandertals:

Show transcript:

Welcome to Strange Animals Podcast! I’m your host, Kate Shaw.

This week is Nicholas’s episode! Nicholas wanted an updated episode about hominins, our ancient ancestors or species closely related to modern humans. The last time we talked about hominins was way back in episodes 25 and 26, so it’s definitely time to revisit the topic.

But first, a big birthday shout-out to Autumn! Happy birthday, Autumn, and I hope you have the best birthday so far!

If you haven’t listened to episode 25 in a while, or ever, I recommend you go back and give it a listen if you want background information about how humans evolved and our closest extinct relatives, Neandertals and Denisovans. I’ve transcribed that episode finally, so you can read the episode instead of listen to it if you prefer. There’s a link in the show notes.

Results of a study published in January 2022 in the journal Nature has finally dated the oldest known Homo sapiens remains found so far. The remains were found in Ethiopia in the 1960s but the volcanic ash found over them was too fine-grained to date with any certainty. Finally, though, the eruption has been determined to come from a volcano almost 250 miles, or 400 km, away from the remains. The Shala eruption was enormous and took place 230,000 years ago, so since the remains were found below the ash, the person had to have lived at least 230,000 years ago too.

We’re still learning more about humans and our closest relations because new hominin fossils are being found and studied all the time. But the fossil record doesn’t tell the whole story. Only a small percentage of bones ever fossilize, and of those, only a tiny fraction are ever found by scientists. But technological advances in genetic testing means that scientists can now extract DNA from the soil. All animals shed fragments of DNA all the time, from skin cells and hairs to poop. A study published in 2021 was able to isolate Neandertal DNA from sediments in three different caves. The DNA matched the known fossils found at the sites and gave more information besides. Instead of being restricted to a single individual whose bones were found and tested, genetic testing of sediments gives genetic information about lots of individuals. In the case of a cave in northern Spain, where lots of stone tools have been found but only a single Neandertal toe bone, it turns out that two different populations of Neandertal had lived in the cave over 100,000 years ago.

In episode 25, I mentioned that Neandertals didn’t seem to make things the way humans do, especially art. Some researchers even suggest that they couldn’t think symbolically the way humans do. But in the five years or so since that episode, we’ve learned a lot more about Neandertals–and they seem to have been pretty artistic after all.

The main problem is that historically, whenever scientists found rock art or carvings from prehistoric times, they assumed humans made it. We might be a little biased. Some art originally thought to be made by humans is now thought to have been made by Neandertals. Most of it is found in caves. Remains of animals are often found in caves because the cave protects them from weather and other factors that can destroy them, and the same is true for archaeological remains.

In 1990, a team of cavers dug into a narrow collapsed cave entrance and entered Bruniquel Cave in southwest France that no human—in fact, no animal from the surface world—had entered since the entrance collapsed during the Pleistocene. That was at least 24,000 years ago and probably much, much longer.

The cavers found the bones of long-extinct Pleistocene megafauna near the entrance, including cave bears. But it wasn’t until they reached a chamber deeper inside the cave that they made a stupendous discovery.

The chamber held a big stone circle made of broken-off pieces of stalactite and stalagmite and other rock formations. The pieces are all about the same size and are arranged in a circle almost 22 feet across, or 6.7 meters. There’s a smaller semicircle in the chamber too and heaps of more stone pieces. Some of the stones show signs of fires being lit on top of them, and a piece of burnt bone from a bear or other large animal was found near the semicircle.

The cavers alerted local scientists, who came to investigate. At first they thought the structures had been built by early humans. They took samples for testing, and that’s when they got another shock. The burnt bone, the fire residue, and the minerals growing over both revealed an age long before 40,000 years ago, which is when humans first moved into the area. The stone circle was built 176,000 years ago. And the only hominin known to live in Europe that long ago was the Neandertal.

We don’t know what Neandertals used the stone circles for. It might have been a living space, but it might have been religious in nature instead. Either way, it shows that even that long ago, Neandertals had full control over fire to the point that they could make light sources to find their way deep into a cave, and had the curiosity to want to explore deeper into a cave than they really needed to go for shelter.

There are lots of other examples of Neandertal art and intelligence found in Europe. For instance, paintings in a cave in Spain have been dated to at least 65,000 years ago. Remember, humans didn’t reach Europe until about 40,000 years ago. The paintings are made of red mineral pigment, including elaborate rows of dots, geometric figures, and occasionally animal figures and hand stencils. Other caves in the area also have similar rock art dating to Neandertal times.

In a cave in Germany, researchers found a piece of deer bone dated to 51,000 years ago that has a carved pattern in it. The carving is too elaborate to be simple butcher marks, but again, humans hadn’t yet moved into Europe 51,000 years ago. The bone actually comes from the leg of a giant deer, once called the Irish elk, that we talked about way back in episode 4. In another cave in Gibraltar, cross-hatched patterns carved in the rock have been dated to more than 39,000 years ago and are associated with artifacts made by Neandertals.

Archaeologists have also found a lot of toe bones from eagles that are etched with cut marks, found in various sites throughout southern Europe. They think Neanderthals in this area wore eagle talons as jewelry, and most likely feathers too.

There’s still controversy when it comes to Neandertals and art. Some researchers think Neandertals only used art after they saw humans making it. Some think the art isn’t art at all but something else, like accidental marks left by other activities. Some think the dating methods used to determine the age of paintings is flawed.

Another criticism is that we don’t actually know that Neandertals made the art; we just know it probably couldn’t have been humans. But there were other human relations living at the same time.

One of those is the Denisovan people, named for Denisova Cave in the mountains of Siberia. Hominins didn’t ordinarily live in caves, but sometimes they did. This seems to be the case in Denisova Cave, where evidence of human habitation, Neandertal habitation, and habitation by another hominin goes back some 180,000 years.

Researchers knew about humans and Neandertals living in the cave, but it wasn’t until 2010 that they realized a third hominin had lived there at various times. The Denisovan people were closely related to both Neandertals and humans and probably looked a lot like Neandertals, with a robust build and big teeth. We still don’t know a whole lot about them, but they lived in parts of what is now Asia and possibly nearby areas, and they might not have gone extinct until about the same time that Neandertals did, around 30,000 years ago.

We talked about the Denisovans in episode 25, but since then new remains have been discovered in other caves. The most exciting is a partial jawbone with two teeth that was found by a Buddhist monk in a cave on the Tibetan plateau in 1980, but not studied until much later. It was identified as a Denisovan mandible in 2019 and dated to 160,000 years ago.

Genetic testing of Denisovan remains indicate that Denisovans and Neandertals were probably more closely related to each other than to humans, although all three species were very closely related. Since there are so few Denisovan remains known, we don’t have a very good idea yet of where they lived and what they were like. We do have genetic markers that indicate the Denisovans had dark skin, brown hair, and brown eyes, while Neandertals, like humans, were more varied in skin, hair, and eye color.

Geneticists have identified traces of Denisovan DNA in some populations of modern humans, including in Asia, New Guinea and surrounding areas, and Australia. This is a reminder that even though some human populations contain DNA traces from our extinct cousins, all humans are thoroughly human. Those bits and bobs of ancient DNA are too small to be significant.

We do have what seems to be art made by Denisovans, although not everyone agrees that it was intended to be art in the way we think of it. It was found in the Tibetan Plateau and we now know that Denisovans lived in the area, although when it was found in 1998 we didn’t even know Denisovans existed. The art was found near hot springs and dated to as much as 226 thousand years ago, although it might have been closer to 169 thousand years ago. Either way, it was well before modern humans are known to have lived in the area. The art consists of footprints and hand prints pressed into the mud, probably by two individuals. The artists pressed their hands, feet, fingers, thumbs, and in one case a forearm into the mud around the hot springs, making patterns. But the thing is, these prints are small even by human standards. Researchers are pretty sure they were made by children, so while it’s certainly possible the children were creating art, they also might just have been messing around having fun in the mud. But the fact that they were making patterns points to an artistic intelligence. Puppies play and may stomp their feet in mud, but they don’t get interested in making patterns of their footprints in the mud. Human children do.

There’s still at least one other hominin that lived at the same time as Neandertals, Denisovans, and humans. We only know about that hominin because researchers have identified their DNA in genetic studies of Denisovans, which means they interbred. It’s a ghost lineage that no one guessed existed until genetic studies of Denisovans and Neandertals were completed in the early 2010s. It might turn out to be a known hominin such as Homo erectus but it might be a completely unknown species.

Of course we have lots of information about art made by ancient humans. It’s been found throughout the world. No one’s in any doubt that our prehistoric ancestors were just as intelligent and artistic as humans who live today, they just didn’t have the technology we have. I can go to an art supply store and buy paints in any color I want, assuming I don’t just want to paint digitally, but in prehistoric times human artists had to make their own paints from the things they found in nature. This included minerals like red ochre and yellow ochre, umber, calcite, hematite, iron oxide, and lots more. They used burnt bones and charcoal for black. These minerals are all still used to make modern oil paints (used in art, not for painting a room or a house), with names like bone black and lime white.

Many minerals have to be processed before they can be used as pigments. Ochre, for instance, has to be heated to 850 degrees Fahrenheit, or 750 Celsius, to change into the rich red-orange that ancient artists especially liked. After processing, the pigments were ground into powder, then mixed with various substances to make a paste. These substances included fat, blood, spit, plant oils, tree sap, water, bone marrow, and even urine.

Ancient artists used their fingers to paint, but they also used twigs, brushes made from animal hair, and mats of lichen. Sometimes they blew pigment onto a surface with their breath, first putting the paint into a hollow tube and then blowing into the tube to spray paint. This is the same way airbrushes work, but no one gets light-headed using an airbrush because a machine is doing the blowing air part. If the artist was working in a cave, they also needed a light source, specifically fire, so they could see what they were doing. It’s all a lot of work.

Aside from all the details involved in getting ready to paint, making art takes one other really important commodity: time. Great apes spend most of their time finding food and eating it. How did ancient humans find time to paint without starving?

A study released in early 2022 points out that hominins developed a much different strategy for getting food than our more distant ape relations. Apes mostly eat plant material, especially fruit, which is nutritious but takes a lot to fulfill the calorie needs of an adult. Early hominins were hunter-gatherers, meaning they both hunted animals and gathered plant material to eat. But because hominins are intensely social and share food, we could take risks that other animals can’t. A group of ancient humans could go out to hunt something big knowing that even if they failed, when they got home they wouldn’t go hungry. Other people would have been gathering food all day and would share. But if the hunters got lucky and brought home a big animal like a deer, everyone had lots and lots of high calorie food to go around. With food available to everyone, people could take time to do things that didn’t directly relate to finding food, like art.

Not only that, another study published in 2019 discovered that some early hominins had already figured out how to preserve food several hundred thousand years ago. The food in question was bone marrow, which is found inside bones and which is extremely nutritious. Researchers have always assumed hominins would crack the bones of animals they killed to get at the marrow as soon as possible. But deer bones found in a cave near Tel Aviv, Israel were stored unbroken, with the skin still on. Researchers determined that the bones were kept in the cave for up to nine weeks before being broken open. By keeping the skin on the bones and storing them in the cave, where the temperature was cool, the marrow stayed fresh. That way there was always something nutritious to eat in the cupboard, so to speak.

Art doesn’t have to be paintings or carvings. Ancient humans were probably using plant fibers to make things more than 34,000 years ago. The fibers are from wild flax plants, and flax is still used today to make linen fabric. Fragments of flax fibers were found in a cave in the Republic of Georgia (which is a country, not the American state of Georgia) where other human artifacts were found. Since flax isn’t edible, at least not by humans, researchers think the fiber might have been used to make thread, rope, baskets, and possibly even cloth. You know, clothing.

One thing to remember is that humans, Neandertals, and Denisovans were so closely related that they could and did interbreed and produce fertile offspring. That means not only were our extinct cousins very similar to us physically, they were probably pretty similar to us mentally too. It would be more surprising if they didn’t produce art that represented symbolic thinking, since it’s such an important part of the human experience.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 265: Penguins!



Thanks to Page for suggesting we talk about penguins this week!

A big birthday shout-out to EllieHorseLover this week too!

Further reading:

March of the penguins (in Norway)

Rare Yellow Penguin Bewilders Scientists

Giant Waikato penguin: school kids discover new species

An ordinary king penguin with the rare “yellow” king penguin spotted in early 2021 (photo by Yves Adams, taken from article linked above):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I was looking over the ideas list recently and noticed that Page had suggested we cover a specific bird way back in 2020! It’s about time we get to it, so thanks to Page we’re going to learn about penguins this week, including a penguin mystery.

But first, we have a birthday shout-out! Happy birthday to EllieHorseLover, whose birthday comes right before next week’s episode comes out. Have a fantastic birthday, Ellie, and I agree with you about horses. They are awesome and so are you.

Also, a quick correction from last week’s episode about Dolly the dinosaur. If you listened to episode 264 the day it came out, you heard the incorrect version, but I was able to correct it and upload the new version late that day. Many thanks to Llewelly, who pointed out that Dolly hasn’t actually been identified as a Diplodocus, just as a sauropod in the family Diplodocidae. Paleontologists are still studying the fossil and probably will be for some time. Also, I said that sauropods aren’t related to birds but that’s not the case. Sauropods share a common ancestor with birds and that’s why they both have the same kind of unusual respiratory system.

So, speaking of birds, it’s time to learn about penguins! We’ve talked about penguins twice before, but not recently at all. It’s about time we really dug into the topic.

Penguins live in the southern hemisphere, including Antarctica. The only exception is the Galapagos penguin, which we talked about in episode 99, which lives just north of the equator. Penguins are considered aquatic birds because they’re so well adapted to swimming and they spend most of their time in the ocean finding food. Instead of wings, their front limbs are flippers that they use to maneuver in the water. They’re incredibly streamlined too, with a smooth, dense coat of feathers to help keep them warm in cold water without slowing them down.

One of the ways a penguin keeps from freezing in the bitterly cold winters of Antarctica and in cold water is by a trick of anatomy that most other animals don’t have. The artery that supplies blood to the flippers crosses over the veins that return blood from the flippers deeper into the body. The arterial blood is warm since it’s been through the body’s core, but the blood that has just traveled through the flippers has lost a lot of heat. Because the veins and the arteries cross several times, the cold venal blood is warmed by the warm arterial blood where the blood vessels touch, which means the blood returning into the body’s core is warm enough that it doesn’t chill the body.

Penguins groom their feathers carefully to keep them clean and spread oil over them. The oil and the feathers’ nanostructures keep them from icing over when a penguin gets out of the water in sub-zero temperatures. The feathers are not only super-hydrophobic, meaning they repel water, their structure acts as an anti-adhesive. That means ice can’t stick to the feathers no matter how cold it is. In 2016 researchers created a nanofiber membrane that repels water and ice with the same nanostructures found in penguin feathers. It could eventually be used to ice-proof electrical wires and airplane wings.

Penguin feathers also trap a thin layer of air, which helps the penguin stay buoyant in the water and helps keep its skin warm and dry.

While a penguin is awkward on land, it’s fast and agile in the water. It mostly eats small fish, squid and other cephalopods, krill and other crustaceans, and other small animals, and it can dive deeply to find food. The emperor penguin is the deepest diver, with the deepest recorded dive being over 1,800 feet, or 565 meters. The gentoo penguin has been recorded swimming 22 mph underwater, or 36 km/hour.

Penguins are famous for being mostly black and white, but in 2010, a study of an extinct early penguin revealed that it looked much different. The fossil was found in Peru and is incredibly detailed. The flipper shape is clear, proving that even 36 million years ago penguins were already fully aquatic. Even some of the feathers are preserved, allowing researchers to reconstruct the bird’s coloration from melanosomes in the fossilized feathers. They show that instead of black and white, the extinct penguin was reddish-brown and gray. The bird was also one of the biggest penguins known, up to five feet long, or 1.5 meters.

Another species of extinct penguin was discovered in 2006 in New Zealand by a group of school children on a field trip. The New Zealand penguin lived between about 28 and 34 million years ago and while it wasn’t as big as the Peru fossil penguin, it had longer legs that made it about 4.5 feet tall, or 1.4 meters. It was described as a new species in September of 2021 and somehow I missed that one when I was researching the 2021 discoveries episode.

The smallest penguin alive today is the fairy penguin, which only grows 16 inches tall at most, or 40 cm. It lives off the southern coasts of Australia and Chile, and all around New Zealand’s coasts. It’s also called the little blue penguin because its head is gray-blue. The largest penguin is the emperor penguin, which lives in Antarctica and can grow over four feet tall, or 130 cm.

The king penguin looks like a slightly smaller version of the emperor penguin, which makes sense because they’re closely related. It can stand over 3 feet tall, or 100 cm. Its numbers are in decline due to climate change that has caused some of the small fish and squid the penguins eat to move away from the penguin’s nesting grounds. Large-scale commercial fishing has also reduced the number of fish available to penguins. As a result, the penguins have a hard time finding enough food for themselves and their babies. King penguins are protected, though, and conservation efforts are in place to stop commercial fishing near their nesting grounds. A ban on commercial fishing around Robben Island in South Africa, where the endangered African penguin nests, increased the survival of chicks by 18%, so hopefully the same will be true for the king penguin.

In early 2021, a Belgian wildlife photographer named Yves Adams was leading a group of photographers on an island where king penguins live. They spotted a group of the penguins swimming nearby when Adams noticed that one of the penguins seemed really pale. It was yellowish-white instead of black and white, although it did have the yellow markings on its head and breast that other king penguins have. It and the other penguins came ashore and Adams got lots of pictures of it. Ornithologists who have studied the pictures aren’t sure what kind of genetic anomaly has caused the penguin’s coloration, but with luck scientists will be able to find it again and take a genetic sample.

The king penguin is also the subject of a small penguin mystery, but the mystery starts with the great auk. As we talked about in episode 78, the name penguin was originally used for a bird also called the great auk or gairfowl, which lived in the northern hemisphere. It was common throughout its range until people decided to start killing them by the thousands for their feathers and meat. By 1844, the last pair of great auks were killed. The great auk was a black and white aquatic bird that looked a lot like a penguin due to convergent evolution.

The story goes that in the late 1930s people started seeing great auks on the Lofoten Islands off the coast of Norway. Since this was 70 years after the great auk officially went extinct, the reports caused a flurry of excitement.

While a small, scattered population of great auks probably did persist for years or even decades after their official extinction, once an expedition investigated the Lofoten Islands they discovered not auks but penguins. Specifically, a small group of king penguins. How did the penguins get there from their natural range in various sub-Antarctic islands on the other side of the world?

Some reports say whalers captured some penguins as pets and later released them, but it actually appears that the introduction of nine king penguins to two islands off the coast of Norway was done by the Nature Protection Society, backed by the Norwegian government, in 1936. The penguins were still there until at least 1944, with the last sighting coming from 1954.

These weren’t the only penguins released in the islands. In 1938 the Norwegian government released around 60 other penguins from various species onto the islands. The goal was to establish penguin breeding colonies in Norwegian waters in a confused attempt to claim the Antarctic for Norwegian whaling. The real mystery is why they thought that would work.

Very occasionally, a stray penguin is found in the northern hemisphere with no idea how it got there. In the past, people assumed the penguin got lost and swam the wrong way or got pushed away from its homeland by storms, but these days biologists think these lost penguins were transported by fishing boats. Sometimes a penguin will get tangled in a fishing net and hauled aboard by accident, and the fishers will untangle it and keep it as a pet for a while before setting it free. It would be better if the penguin was set free immediately so it could return to its home, but it’s better than being killed. Just ask the penguin.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 262: Animals Discovered in 2021



It’s the second annual discoveries episode! Lots of animals new to science were described in 2021 so let’s find out about some of them.

Further reading:

First description of a new octopus species without using a scalpel

Marine Biologists Discover New Species of Octopus

Bleating or screaming? Two new, very loud, frog species described in eastern Australia

Meet the freaky fanged frog from the Philippines

New alpine moth solves a 180-year-old mystery

Meet the latest member of Hokie Nation, a newly discovered millipede that lives at Virginia Tech

Fourteen new species of shrew found on Indonesian island

New beautiful, dragon-like species of lizard discovered in the Tropical Andes

Newly discovered whale species—introducing Ramari’s beaked whale (Mesoplodon eueu)!

Scientists describe a new Himalayan snake species found via Instagram

The emperor dumbo octopus (deceased):

The star octopus:

New frog just dropped (that’s actually the robust bleating tree frog, already known):

The slender bleating tree frog:

The screaming tree frog:

The Mindoro fanged frog:

Some frogs do have lil bitty fangs:

The hidden Alpine moth, mystery solver:

The Hokie twisted-claw millipede:

One of 14 new species of shrew:

The snake picture that led to a discovery:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This episode marks our 5th year anniversary! I also finally got the ebook download codes sent to everyone who backed the Kickstarter at that level. The paperback and hardback books will hopefully be ready for me to order by the end of February and I can get them mailed out to backers as soon as humanly possible. Then I’ll focus on the audiobook! A few Kickstarter backers still haven’t responded to the survey, either with their mailing address for a physical book or for names and birthdays for the birthday shout-outs, so if that’s you, please get that information to me!

Anyway, happy birthday to Strange Animals Podcast and let’s learn about some animals new to science in 2021!

It’s easy to think that with all the animals already known, and all the people in the world, surely there aren’t very many new animals that haven’t been discovered yet. But the world is a really big place and parts of it, especially the oceans, have hardly been explored by scientists.

It can be confusing to talk about when an animal was discovered because there are multiple parts to a scientific discovery. The first part is actually finding an animal that the field scientists think might be new to science. Then they have to study the animal and compare it to known animals to determine whether it can be considered a new species or subspecies. Then they ultimately need to publish an official scientific description and give the new animal a scientific name. This process often takes years.

That’s what happened with the emperor dumbo octopus, which was first discovered in 2016. Only one individual was captured by a deep-sea rover and unfortunately it didn’t survive being brought to the surface. Instead of dissecting the body to study the internal organs, because it’s so rare, the research team decided to make a detailed 3D scan of the octopus’s body instead and see if that gave them enough information.

They approached a German medical center that specializes in brain and neurological issues, who agreed to make a scan of the octopus. It turned out that the scan was so detailed and clear that it actually worked better than dissection, plus it was non-invasive so the preserved octopus body is still intact and can be studied by other scientists. Not only that, the scan is available online for other scientists to study without them having to travel to Germany.

The emperor dumbo octopus grows around a foot long, or 30 cm, and has large fins on the sides of its mantle that look like elephant ears. There are 45 species of dumbo octopus known and obviously, more are still being discovered. They’re all deep-sea octopuses. This one was found near the sea floor almost 2.5 miles below the surface, or 4,000 meters. It was described in April of 2021 as Grimpoteuthis imperator.

Oh, and here’s a small correction from the octopus episode from a few years ago. When I was talking about different ways of pluralizing the word octopus, I mispronounced the word octopodes. It’s oc-TOP-uh-deez, not oc-tuh-podes.

Another octopus discovered in 2021 is called the star octopus that has a mantle length up to 7 inches long, or 18 cm. It lives off the southwestern coast of Australia in shallow water and is very common. It’s even caught by a local sustainable fishery. The problem is that it looks very similar to another common octopus, the gloomy octopus. The main difference is that the gloomy octopus is mostly gray or brown with rusty-red on its arms, while the star octopus is more of a yellowy-brown in color. Since individual octopuses show a lot of variation in coloration and pattern, no one noticed the difference until a recent genetic study of gloomy octopuses. The star octopus was described in November 2021 as Octopus djinda, where “djinda” is the word for star in the Nyoongar language of the area.

A study of the bleating tree frog in eastern Australia also led to a new discovery. The bleating tree frog is an incredibly loud little frog, but an analysis of sound recordings revealed that not all the calls were from the same type of frog. In fact, in addition to the bleating tree frog, there are two other really loud frog species in the same area. They look very similar but genetically they’re separate species. The two new species were described in November 2021 as the screaming tree frog and the slender bleating tree frog.

This is what the slender bleating tree frog sounds like:

[frog call]

This is what the screaming tree frog sounds like:

[another frog call]

Another newly discovered frog hiding in plain sight is the Mindoro fanged frog, found on Mindoro Island in the Philippines. It looks identical to the Acanth’s fanged frog on another island but its mating call is slightly different. That prompted scientists to use both acoustic tests of its calls and genetic tests of both frogs to determine that they are indeed separate species.

Lots of insects were discovered last year too. One of those, the hidden alpine moth, ended up solving a 180-year-old scientific mystery that no one even realized was a mystery.

The moth was actually discovered in the 1990s by researchers who were pretty sure it was a new species. It’s a diurnal moth, meaning it’s active during the day, and it lives throughout parts of the Alps. Its wingspan is up to 16mm and it’s mostly brown and silver.

Before they could describe it as a new species and give it a scientific name, the scientists had to make absolutely sure it hadn’t already been named. There are around 5,000 species of moth known to science that live in the Alps, many of them rare. The researchers narrowed it down finally to six little-known species, any one of which might turn out to be the same moth as the one they’d found.

Then they had to find specimens of those six species collected by earlier scientists, which meant hunting through the collections of different museums throughout Europe. Museums never have all their items on display at any given time. There’s always a lot of stuff in storage waiting for further study, and the larger a museum, the more stuff in storage it has. Finding one specific little moth can be difficult.

Finally, though, the scientists got all six of the other moth species together. When they sat down to examine and compare them to their new moth, they got a real surprise.

All six moths were actually the same species of moth, Dichrorampha alpestrana, described in 1843. They’d all been misidentified as new species and given new names over the last century and a half. But the new moth was different and at long last, in July 2021, it was named Dichrorampha velata. And those other six species were stricken from the record! Denied!

You don’t necessarily need to travel to remote places to find an animal new to science. A professor of taxonomy at Virginia Tech, a college in the eastern United States, turned over a rock by the campus’s duck pond and discovered a new species of millipede. It’s about three quarters of an inch long, or 2 cm, and is mostly a dark maroon in color. It’s called the Hokie twisted-claw millipede.

Meanwhile, on the other side of the world on the island of Sulawesi, a team of scientists discovered FOURTEEN different species of shrew, all described in one paper at the end of December 2021. Fourteen! It’s the largest number of new mammals described at the same time since 1931. The inventory of shrews living on Sulawesi took about a decade so it’s not like they found them all at once, but it was still confusing trying to figure out what animal belonged to a known species and what animal might belong to a new species. Sulawesi already had 7 known species of shrew and now it has 21 in all.

Shrews are small mammals that mostly eat insects and are most closely related to moles and hedgehogs. Once you add the 14 new species, there are 461 known species of shrew living in the world, and odds are good there are more just waiting to be discovered. Probably not on Sulawesi, though. I think they got them all this time.

In South America, researchers in central Peru found a new species of wood lizard that they were finally able to describe in September 2021 after extensive field studies. It’s called the Feiruz wood lizard and it lives in the tropical Andes in forested areas near the Huallaga River. It’s related to iguanas and has a spiny crest down its neck and the upper part of its back. The females are usually a soft brown or green but males are brighter and vary in color from green to orangey-brown to gray, and males also have spots on their sides.

The Feiruz wood lizard’s habitat is fragmented and increasingly threatened by development, although some of the lizards do live in a national park. Researchers have also found a lot of other animals and plants new to science in the area, so hopefully it can be protected soon.

So far, all the animals we’ve talked about have been small. What about big animals? Well, in October 2021 a new whale was described. Is that big enough for you? It’s not even the same new whale we talked about in last year’s discoveries episode.

The new whale is called Mesoplodon eueu, or Ramari’s beaked whale. It’s been known about for a while but scientists thought it was a population of True’s beaked whale that lives in the Indian Ocean instead of the Atlantic.

When a dead whale washed ashore on the South Island of New Zealand in 2011, it was initially identified as a True’s beaked whale. A Mātauranga Māori whale expert named Ramari Stewart wasn’t so sure, though. She thought it looked different than a True’s beaked whale. She got together with marine biologist Emma Carroll to study the whale and compare it to True’s beaked whale, which took a while since we don’t actually know very much about True’s beaked whale either.

The end result, though, is that the new whale is indeed a new species. It grows around 18 feet long, or 5.5 meters, and probably lives in the open ocean where it dives deeply to find food.

We could go on and on because so many animals were discovered last year, but let’s finish with a fun one from India. In June of 2020, a graduate student named Virender Bhardwaj was stuck at home during lockdowns. He was able to go on walks, so he took pictures of interesting things he saw and posted them online. One day he posted a picture of a common local snake called the kukri snake.

A herpetologist at India’s National Centre for Biological Sciences noticed the picture and immediately suspected it wasn’t a known species of kukri snake. He contacted Bhardwaj to see where he’d found the snake, and by the end of the month Bhardwaj had managed to catch two of them. Genetic analysis was delayed because of the lockdowns, but they described it in December of 2021 as the Churah Valley kukri snake.

The new snake is stripey and grows over a foot long, or 30 cm. It probably mostly eats eggs.

It just goes to show, no matter where you live, you might be the one to find a new species of animal. Learn all you can about your local animals so that if you see one that doesn’t quite match what you expect, you can take pictures and contact an expert. Maybe next year I’ll be talking about your discovery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 260: Danger! Newts!



Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Enzo for suggesting this week’s topic, newts from least dangerous to most dangerous!

Further reading:

One snake’s prey is another’s poison

The Corsican brook salamander is not toxic (photo by Paola Mazzei, from iNaturalist):

The smooth newt is a little bit toxic (photo by Fred Holmes and taken from this site) – this is a male during breeding season:

The Hong Kong warty newt has an orange-spotted belly and is toxic:

The chonky Spanish ribbed newt will stab you with its own toxin-covered bones (photo by Eduardo José Rodríguez Rodríguez, taken from this site):

Yeah maybe don’t touch the Japanese fire belly newt if you don’t need to:

Warning! Do not eat the California newt:

The safest newt to handle is this toy newt. I really want one:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s topic is a suggestion from Enzo, who wants to learn about newts “from least dangerous to most dangerous.” There are at least 60 species of newt known with more being discovered every year, but I’ll do my best to hit the highlights.

A newt is a type of salamander, specifically a semi-aquatic salamander in the subfamily Pleurodelinae. All newts are salamanders but not all salamanders are newts. Newts live throughout much of the northern hemisphere, including northern Africa and the Middle East, Eurasia, and North America.

Female newts lay their eggs in freshwater, usually attaching them to vegetation or in little crevices in rocks. A few weeks later, the eggs hatch into larvae with external gills. The larvae are called tadpoles like frog larvae, and they mostly eat algae and tiny insects. They metamorphose over several months just like frogs do when they develop from tadpoles, but where frogs develop their hind legs first, newt tadpoles develop front legs first. The newt tadpole finally absorbs its gills and grows lungs instead, at which point it emerges from the water as an immature newt called an eft. Efts are juvenile newts and live exclusively on land, although like other amphibians they have to keep their skin damp so you’ll usually find them in leaf litter and under rotting logs. Efts that live in North America return to the water when they become full adults, but most newts in other parts of the world stay on land the rest of their lives except during breeding season. Efts and adult newts eat worms, insects and insect larvae, slugs, frog tadpoles, and any other small animals they can catch.

The Corsican brook salamander is a type of newt that lives on the island of Corsica in the Mediterranean Sea. It grows about five inches long at most, or 13 cm, and is brown or olive-green, sometimes with a mottled pattern of orange or red on its back. It’s an exception to the rule that newts outside of North America usually live their adult lives on land. Not only does the Corsican brook salamander live in freshwater most of the time as an adult, it doesn’t even have working lungs. It spends most of its time in fast-moving streams and rivers in higher elevations, where it absorbs oxygen from the water through its skin.

As Enzo undoubtedly knows, many newts produce toxins. This is why it’s not a good idea to handle a newt, or any other amphibian for that matter, unless you’re absolutely certain it’s a species that’s not toxic. In most cases, a newt’s toxin won’t hurt you if it just touches your skin, but if it gets in a cut or if you have some of the toxin on your finger and then rub your eye or put your finger in your mouth, the toxin can make you really sick. Some newts are even deadly.

The Corsican brook salamander we just talked about is not toxic, so we’ll call it the least dangerous newt. The smooth newt, on the other hand, produces a relatively mild toxin. You’d have to actually eat a bunch of smooth newts to get sick from its toxins, and why are you eating newts at all? Stop that immediately and have a banana instead.

The smooth newt lives throughout much of Europe and parts of Asia. It grows just over 4 inches long, or 11 cm, and most of the time it’s brown with darker spots. The male also has a bright orange stripe on his belly. During breeding season, though, the male develops a wavy crest down his spine and brighter colors. Both males and females move into the water during breeding season, so both males and females develop tail fins on the top and bottom of their tails to help them swim.

The males of many newt species develop brighter colors and crests during breeding season to attract females. In the case of the Hong Kong warty newt, in breeding season the male develops a white stripe on his tail. He attracts the attention of females by wagging his tail in the water, where the white stripe shows up well even in dim light. The Hong Kong warty newt lives in Hong Kong and grows up to 6 inches long, or 15 cm. It’s brown with orange patches on its belly and its skin appears bumpy like the skin of an orange. If it feels threatened, it sometimes rolls onto its back and pretends to be dead, which not only may deter some predators, it shows off the bright orange markings on its belly. This signals to a potential predator that this newt is toxic, and another thing it does when it plays dead is secrete toxins from its skin. In other words, don’t bite this newt or touch it. It’s also a protected species in Hong Kong so you shouldn’t be trying to eat it anyway. Its eggs are toxic too.

Some newts deliver their toxins to potential predators in a way you might not expect. If an animal tries to bite the Spanish ribbed newt, it secretes toxins from special glands on its sides and then pushes the sharp points of its own ribs out through the tubercles where the poison glands are located. The pointed ribs become coated with toxins as they emerge and are sharp enough to stab a predator right in the mouth. The toxin causes severe pain when injected and can even cause death in small animals. The newt itself isn’t injured by this process, which it can do repeatedly whenever it needs to. Newts, like all amphibians, heal extremely quickly.

The Spanish ribbed newt lives in the southern Iberian Peninsula in Europe and Morocco in northern Africa. It’s larger than the newts we’ve talked about so far, growing up to a foot long, or 30 cm. It’s dark gray with rusty-red or orange spots on its sides, one spot per poison gland. It actually spends most of its adult life in the water and especially likes deep, quiet ponds and wells.

Finally, we’ve reached the most dangerous newt in the world. I’m nominating two newts for this honor because they both secrete the neurotoxin tetrodotoxin, which we’ve talked about before. It’s the same kind of toxin found in pufferfish and some frogs. The toxin can irritate your skin even if you only touch it, and if a little of the toxin gets into a scratch or cut, it can cause numbness, shortness of breath, and dizziness. If you accidentally swallow any of the toxin, you can die within six hours. There’s no antidote.

Our two most dangerous newts are the Japanese fire belly newt and the California newt. The Japanese fire belly newt grows about 5.5 inches long, or 14 cm, and lives in parts of Japan in ponds, lakes, and ditches. It has pebbly skin and is brown or black with red speckles, but its belly is bright orange or red. The California newt has slightly bumpy gray or gray-brown skin on its back but a bright orange or yellow belly. It can grow up to 8 inches long, or 20 cm. It lives in parts of California, especially near the coast and in the southern Sierra Nevada Mountains.

The reason the California newt has such a potent toxin is that its main predator, the common garter snake, has a great resistance to the toxin. Only the most toxic newts are more likely to survive if a garter snake grabs it, and only the most resistant snakes are more likely to survive eating it. It’s a predator-prey arms race that’s been going on for at least 40 million years, resulting in a newt that is boss fight level toxic to most predators but just barely ahead of the game when it comes to garter snakes. It’s likely that something similar has occurred with the Japanese fire belly newt.

If you live in the areas where these toxic newts also live, be especially careful with your pets. Keep your dog on a leash so you can be sure it doesn’t try to bite or play with one of these newts. Some people actually keep the Japanese fire belly newt as a pet, but obviously if you do this you need to be extremely careful, especially if you have pets or small children. Maybe you should get a toy newt instead.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!