Episode 321: Archaeopteryx

We have merch available again!

Thanks to Eilee for suggesting this week’s topic, Archaeopteryx!

Further reading:

Dinosaur feather study debunked

Archaeopteryx fossil provides insights into the origin of flight

An Archaeopteryx fossil [By H. Raab (User: Vesta) – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8066320]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’ve had a lot of mammal episodes lately, so this week let’s learn about a reptile…uh, a bird. Not quite a bird, not exactly a reptile. That’s right, it’s an episode about archaeopteryx, a suggestion by Eilee!

A quick note before we start to say that I finally got around to setting up merch again if you want to order a t-shirt or water bottle or whatever with the podcast’s logo on it. I’m using Redbubble this time because they have a lot more items available than our previous vendor. There’s a link in the show notes.

We also have new stickers and those are free, so if you want one, just drop me an email and let me know what your mailing address is. The new sticker is a drawing of a capybara made by me. Anyway, on to the archaeopteryx!

The first archaeopteryx fossils were discovered in Germany in 1861. Before the first skeleton of an archaeopteryx was discovered, though, a single feather impression was found in a limestone quarry that has produced a lot of spectacularly well-preserved fossils. When the full specimen turned up later that same year, palaeontologists decided the feather came from the same animal.

That decision has been questioned repeatedly over the years. A study conducted with laser imaging determined that the single feather was different from the feathers of other archaeopteryx specimens. Results of that study were published in 2019, but in October of 2020 results of a study conducted with a specialized electron microscope determined that the feather did come from an archaeopteryx. The 2020 study also found that the feather was black.

Archaeopteryx lived around 150 million years ago in what is now Europe. It was about the size of a crow but while it looked a lot like a bird, it also looked a lot like a little dinosaur. It had small teeth and a long lizard-like tail. Of the twelve Archaeopteryx fossils found so far, all but one have feather impressions that indicate it had flight feathers on its arms, or rather wings, but at least one specimen also had flight feathers on its legs, which are sometimes referred to as hind wings. These hind wings would have helped it maneuver through branches even though its front wings were limited in their range of motion. It was probably a slow flyer that ate whatever small animals it could catch.

The wing feathers of archaeopteryx were very similar to those of modern birds, and a study published in late 2020 discovered another similarity. Birds molt their feathers and replace them the same way mammals shed hairs and regrow them, but it’s a little trickier for birds. A bird that loses too many feathers from its wings can’t fly until new feathers grow in. Modern birds solve this issue by molting only one pair of wing feathers at a time, and once the replacement grows in, the next pair is shed. The study examined fossilized archaeopteryx wings using a process called laser-stimulated fluorescence imaging, which can reveal details that aren’t otherwise visible. It discovered feather sheaths hidden under what would have been the skin of the wings, ready to grow new feathers. The feather sheaths were the same on both wings and resembled the molting pattern seen in modern falcons.

Archaeopteryx also had feathers on the rest of its body, but they aren’t well preserved so paleontologists can’t determine too much about them. They might have been more fluffy than sleek, like the soft downy feathers in young modern birds, or it might be that the fluffy feathers just happened to be the ones that were most preserved.

Palaeontologists study archaeopteryx because it gives us so much information about how birds evolved from dinosaurs. Archaeopteryx was still very much a dinosaur even though it looked superficially like a bird. Microscopic examination of the fossilized cells and blood vessels inside its bones show that it actually grew very slowly. Modern birds grow extremely quickly when they’re young. One scientist pointed out that when you watch a flock of pigeons, you can’t really tell which ones are fully grown and which ones are still quite young, because baby pigeons grow to an adult size so quickly. Dinosaurs grew to their adult size much more slowly, even the small carnivorous dinosaurs that were ancestral to modern birds. The study determined that Archaeopteryx would probably have taken almost three years to grow to its adult size.

The Archaeopteryx fossil called “specimen number eight” was determined to be a different species from the others, in a study published in 2018. It’s about half a million years younger than the other known specimens and has characteristics found in modern birds that the others don’t have. Its adaptations would have made it a better, more efficient flyer. The differences weren’t noticed before because it’s not a very good specimen and many of the bones are damaged and still embedded in the rock where they can’t be seen. The study used a process called synchrotron microtomography to basically take a 3D scan of the fossil and its rock matrix so scientists can study the scan without breaking the rock open and destroying parts of the fossil.

At the time that archaeopteryx lived, the sea levels were much higher than they are now and Europe was mostly a series of large islands in a shallow sea. The part of Europe that’s now Germany was subtropical but fairly dry, without much rain. All the archaeopteryx specimens have been found in limestone that was once mud at the bottom of a placid lagoon, protected from ocean currents and waves by small islands covered with shrubby vegetation. Archaeopteryx probably lived on these small islands, and while we don’t know how it behaved, many paleontologists think it may have hunted both by running on its long hind legs and by flying, just like a lot of birds do today. We have fossilized remains of little lizards and insects that would have made good meals for a hungry archaeopteryx.

What we do know is that sometimes an archaeopteryx had a very bad day and ended up drowning in the lagoon. On rare occasions, the body floated around until it decomposed enough that it sank into the mud at the bottom. Over millions of years, this mud turned into fine-grained limestone that preserved the fossil archaeopteryx remains in incredible detail.

For a long time, people thought archaeopteryx was a so-called missing link between dinosaurs and birds, and that it was the first bird. We now know that isn’t true. There were other bird-like dinosaurs that could fly before archaeopteryx evolved, although archaeopteryx was a very early flying avian dinosaur.

More importantly, we now know that birds are basically very derived dinosaurs. Dinosaurs had so many features we associate with birds, and birds still have so many features we associate with dinosaurs, that it’s hard to decide whether an animal like archaeopteryx was a bird-like dinosaur or a dinosaur-like bird. I guess it was sort of both.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 320: More Elephants

Thanks to Connor and Pranav who suggested this week’s episode about elephants! It’s been too long since we had an elephant episode and there’s lots more to learn.

Further reading:

Asian elephants could be the maths kings of the jungle

Many wild animals ‘count’

A big difference between Asian and African elephants is diet

Study reveals ancient link between mammoth dung and pumpkin pie

The Asian elephant (left) and the African elephant (right):

The African bush elephant (left) and the African forest elephant (right) [photo taken from this page]:

The osage orange is not an orange and nothing wants to eat it these days:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We haven’t talked about elephants since episode 200! It’s definitely time for some elephant updates, so thanks to Conner and Pranav for their suggestions!

Conner suggested we learn more about the Asian elephant, which was one we talked about way back in episode 200. The biggest Asian elephant ever reliably measured was a male who stood 11.3 feet tall, or 3.43 meters, although on average a male Asian elephant, also called a bull, stands about 9 feet tall, or 2.75 meters. Females, called cows, are smaller. For comparison, the official height of a basketball hoop is 10 feet, or 3 meters. An elephant could dunk the ball every single time, no problem.

The Asian elephant used to live throughout southern Asia but these days it’s endangered and its range is reduced to fragmented populations in southeast Asia. There are four living subspecies recognized today although there used to be more in ancient times.

Elephants are popular in zoos, but the sad fact is that zoo elephants often don’t live as long as wild elephants, even with the best care. The elephant is adapted to roam enormous areas in a family group, which isn’t possible in captivity. In the wild, though, the elephant is increasingly endangered due to habitat loss and poaching. Even though the Asian elephant is a protected species, people kill elephants because their tusks are valuable as ivory. Tusks are a modified form of really big tooth, and it’s valuable to some people because it can be carved into intricate pieces of art that can sell for a lot of money. That’s it. That’s the main reason why we may not have any elephants left in another hundred years at this rate, because rich people want carvings made in a dead animal’s tooth. People are weird, and not always the good kind of weird.

In happier Asian elephant news, though, a 2018 study conducted in Japan using zoo elephants replicated the results of previous studies that show Asian elephants have numeric competence that’s surprisingly similar to that in humans. That means they understand numbers at least up to ten, and can determine which group of items has more or less items than another group. That sounds simple because humans are really good at this, but most animals can only understand numbers up to three. It goes one, two, three, lots.

Many animals do have a good idea of numbers in a general way even if they can’t specifically count. Gray wolves, for instance, know how many wolves need to join the hunt to successfully bring down different prey animals. Even the humble frog will choose the larger group of food items when two groups are available. But the Asian elephant seems to have an actual grasp of numbers. I specify the Asian elephant because studies with African elephants haven’t found the same numeric ability.

Elephants make a lot of sounds, such as the iconic trumpeting that they make using the trunk. Way back in episode 8 we talked about the infrasonic sounds elephants also make with their vocal folds, sounds that are too low for humans to hear. But the Asian elephant also sometimes makes a high-pitched squeaking sound and until recently, no one was sure how it was produced. It turns out that the elephant makes this sound by buzzing its lips the same way a human does when playing a brass instrument. It’s the first time this particular method of sound production has been found outside of humans.

This is what a squeaking Asian elephant sounds like:

[elephant squeak]

Pranav suggested we learn more about the African forest and bush elephants. Those are the two species of African elephants that are still alive, and they’re also endangered due to habitat loss and poaching. The forest elephant is critically endangered. The forest elephant lives in forests, as you probably guessed, especially rainforests, while the bush elephant lives in grasslands and open forests. It’s sometimes called the savanna elephant since it’s well adapted to life on the savanna.

The forest elephant is only a little larger on average than the Asian elephant, while the bush elephant is much bigger on average. A big bull bush elephant can stand as much as 13 feet tall, or 4 meters, which means it might not dunk the basketball every time because the basketball hoop is awkwardly low.

The bush elephant lives in areas where it’s often extremely hot and dry. Since large animals retain heat, the bush elephant has many adaptations to stay cool. Its ears are really big, for instance, and have lots of blood vessels. This means the blood is close to the surface of the skin where it can shed heat into the air. In hot weather the elephant can flap its ears to help cool its blood faster. But one big adaptation has to do with its skin. The bush elephant’s skin is covered with what look like wrinkles but are actually crevices in the skin only a few micrometers wide. The crevices retain tiny amounts of water that help keep the elephant cool. Since elephants don’t have sweat glands the way people do, they have to bathe in water and mud to get moisture in the crevices in the first place.

Elephants are megaherbivores, meaning they eat mega amounts of plants. This has an impact on forest dynamics, but until recently the only studies on elephant diets and ecological effects were on African elephants. A 2017 study on Asian elephants in Malaysia found that instead of mostly eating sapling trees, the elephants preferred to eat bamboo, grasses, and especially palms.

In comparison, the African bush elephant eats plant parts that other animals can’t chew or digest, including tough stems, bark, and roots. It also eats grass, leaves, and fruit. The African forest elephant eats a lot more fruit and softer plant parts than the bush elephant, and in fact the forest elephant is incredibly important as a seed disperser. Seeds that pass through the forest elephant’s digestive system sprout a lot faster than seeds that don’t, and they also have the added benefit of sprouting in a pile of elephant dung. Instant fertilizer! At least 14 species of tree need the elephant to eat their fruit in order for the seeds to sprout at all. If the forest elephant goes extinct, the trees will too.

Around 11,000 years ago, when the North American mammoths went extinct, something similar happened. Mammoths and other megafauna co-evolved with many plants and trees to disperse their seeds, and in return the animals got to eat some yummy fruit. But when the mammoths went extinct, many plants seeds couldn’t germinate since there were no mammoths to eat the fruit and poop out the seeds. Some of these plants survive but have declined severely, like the osage orange. It produces giant yellowish-green fruits that look like round greenish brains, and although it’s related to the mulberry, you wouldn’t be able to guess that from the fruit. Nothing much eats the fruit these days, but mammoths and other megafauna loved it. The osage orange mostly survives today because the plant can clone itself by sending up fresh sprouts from old roots.

Another plant that nearly went extinct after the mammoth did is a surprising one. Wild ancestors of modern North American squash plants relied on mammoths to disperse their seeds and create the type of habitat where the plants thrived. Mammoths probably behaved a lot like modern elephants, pulling down tree limbs to eat and sometimes pushing entire trees over. This disturbed land is what wild squash plants loved, and if you’ve ever prepared a pumpkin or squash you’ll know that it’s full of seeds. The wild ancestors of these modern cultivated plants didn’t have delicious fruits, though, at least not to human taste buds. The fruit contained toxins that made them bitter, which kept small animals from eating them, because the small animals would chew up the seeds instead of swallowing them whole. But the mammoths weren’t bothered by the toxins and in fact probably couldn’t even taste the bitterness. They thought these wild squash were delicious and they ate a lot of them.

After the mammoth went extinct, the wild squash lost its main seed disperser. As forests grew thicker after mammoths weren’t around to keep the trees open, the squash also lost a lot of its preferred habitat. The main reason why we have pumpkins and summer squash is because of our ancient ancestors. They bred for squash that weren’t bitter, and they planted them and cared for the plants. So even though the main cause of the mammoth’s extinction was probably overhunting by ancient humans, at least we got pumpkin pies out of the whole situation. I mean, I personally would prefer to have both pumpkin pie AND mammoths, but no one asked me.

World Elephant Day is on August 12, and this episode is going live in late March. That means you have a little over four months to get your elephant celebration plans ready!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 319: The Phascogale

Thanks to Kristie for suggesting this week’s topic, the phascogale!

Further reading:

Red-tailed phascogales (all photos below come from this site)

Sleeping phascogale:

Wide-awake phascogales:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Ages ago, Kristie suggested I look up the phascogale, a really cute Australian animal. It’s definitely adorable and a little bit weird, so let’s learn about it this week!

Like most mammals that live in Australia, the phascogale is a marsupial. That means that the babies are born very early, then finish developing in their mother’s pouch. In this case, though, the phascogale mother doesn’t have a real pouch. Instead, when the mother is pregnant she develops what’s called a pseudo-pouch. Pseudo means false, so it’s not really a pouch although it resembles one. The pseudo-pouch is made up of folds of skin that develop around the mother’s teats, which protects the babies and keeps them warm. Since every baby needs its own teat at this stage, and the mother only has eight teats, if more than eight babies are born, the extra ones die.

The babies stay in the pseudo-pouch for about a month and a half, at which point they’re big enough that the mother can’t carry them around anymore. She makes a nest for them in a hollow tree, where they stay for another several months. She leaves them in the nest while she finds food, but comes back periodically to take care of them.

The phascogale is silvery-gray or gray-brown with a long tail that’s fluffy and black toward the end. It looks sort of like a mouse or rat with a long nose and a squirrel-like tail that’s almost as long as its body. It’s almost as big as a squirrel, up to about 10 inches long not including its tail, or 26 cm. Despite its resemblance to a rodent, the phascogale isn’t related to rodents at all. Rodents are placental mammals, not marsupial mammals.

The phascogale is nocturnal and mostly eats insects and spiders, but it will eat birds and mice too. It especially likes to eat cockroaches, yum. It mostly lives in trees although it will also hunt on the ground or in low brush, and it can jump long distances.

During the day the phascogale sleeps in a little hollow in a tree. It actually enters torpor while it’s asleep in order to save energy, which means it lowers its metabolic rate and its body temperature. But it can rev itself up again in only a few minutes when it needs to.

The strangest thing about the phascogale is that after mating season the males die. Mating season takes place over about three weeks in mid-winter, during which time a female may mate with several males. She’s able to store sperm in her body until she’s ready to have babies several months later, at which point she uses the stored sperm to fertilize her eggs. As a result, babies born in a single litter may have different fathers.

The males expend so much energy during these three weeks of mating season that they die of stress-related illnesses. In captivity, where the males can be treated by a veterinarian, a male who survives his first mating season can live as long as three years, but he doesn’t mate again. The female usually only has one litter of babies in her life even if she lives for several years.

The phascogale is closely related to the antechinus, which looks similar but has a skinny tail instead of a fluffy one. Antechinus males also die after mating season, while females give birth to tiny babies who latch onto a teat in the pseudo-pouch and stay there while they continue to develop, just like phascogales. Unlike phascogales, though, which always have eight teats, female antechinuses have different numbers of teats. How many teats a female has depends on where she lives. (Just a reminder, the word teats is another word for nipples.) Populations that live in areas where there’s plenty of food have more nipples, up to 13 but usually 12 at most. Populations that live in areas where it’s hard to find enough food have as few as 6 nipples. Producing milk for 12 or 13 babies requires a lot of energy, so females with more nipples can only survive and successfully raise that many babies when they have plenty of food. Females with only 6 nipples can survive on less food while still producing enough milk for six babies.

It seems strange that phascogale and antechinus males die after mating, but from an evolutionary standpoint, it makes sense. Both these animals are small and very likely to end up eaten by a larger animal. Odds are good that any given male won’t live long enough to see a second mating season anyway, so instead of conserving energy to stay alive, he expends all his energy during his first mating season to make sure he passes his genes along to the next generation.

One last interesting fact about the phascogale is that the red-tailed phascogale doesn’t need to drink water. It gets all the moisture it needs from its diet, which remember consists of insects and other animals. I guess animals are pretty moist on the inside. Don’t think about that too hard.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 318: The Mysterious Malagasy Hippo

Thanks to the Tracing Owls podcast for this week’s suggestion. I’m a guest on that podcast so make sure to check it out (but while my episode is appropriate for younger listeners, most episodes are not, so be warned).

Further reading:

Huge Hippos Roamed Britain One Million Years Ago

Kenyan fossils show evolution of hippos

The Kilopilopitsofy, Kidoky, and Bokyboky: Accounts of Strange Animals from Belo-sur-mer, Madagascar, and the Megafaunal “Extinction Window”

A sort-of Malagasy hippo:

Actual hippo (not from Madagascar, By Muhammad Mahdi Karim – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=121282994):

A modern hippo skull. There’s a reason the hippo is more dangerous to humans than sharks are [By Raul654 – Darkened version of Image:Hippo skull.jpg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=242785]:

A pygmy hippo and its calf!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about a topic suggested by the host of the podcast Tracing Owls, because I’m actually a guest on that podcast in an upcoming episode! I think the episode releases later this week. I’ll put a link in the show notes, but be aware that while the podcast is interesting and often very funny, with topics that focus on weird stuff related to science, most episodes are not appropriate for younger listeners. (I think my episode should be okay.)

Several years ago now there was a movie called Madagascar, which is about a group of zoo animals that end up shipwrecked on the island of Madagascar. I love this movie, especially the lemur King Julian, but one of my favorite characters is a hippopotamus named Gloria, voiced by Jada Pinkett Smith. The island country of Madagascar is off the southeastern coast of Africa, but as we talked about in episode 77, it’s been separated from the continent of Africa for millions of years and the animals of that country have mostly evolved separately from the animals of Africa. That’s part of why the movie Madagascar is so funny, since the main characters in the movie are all native to Africa—a lion, a zebra, a giraffe, and Gloria the hippo—and don’t know anything about the animals they encounter on Madagascar. Like this guy:

[King Julian clip]

But it turns out that hippos did once live on Madagascar, and that’s what we’re going to learn about today.

We’re not sure when the first humans visited Madagascar, but it was at least 2500 years ago and possibly as much as 9500 years ago or even earlier. By 1500 years ago people were definitely living on the island. It’s likely that hunting parties would travel to Madagascar and stay there for a while, then return home with lots of food, but eventually people decided it would be a nice place to live.

Madagascar is a really big island, the fourth largest island in the world. It’s been separated from every other landmass for around 88 million years, and has been separated from Africa for about 165 million years. Many of the animals and plants that live on Madagascar are very different from the ones living anywhere else in the world as a result.

To put this into perspective, here’s your reminder that the closest living relative of the hippopotamus is the whale, and 60 million years ago the common ancestor of both hippos and whales was a small semi-aquatic animal. That was about 28 million years after Madagascar was on its own in the big wide ocean, and 105 million years after the landmass that we call Africa broke off from the supercontinent Gondwana and began moving very slowly into the position it’s in today. When Madagascar finally broke free of the landmass we now call India, dinosaurs were still the dominant land animal.

So why are there remains of small hippos on Madagascar? How did the hippos get to Madagascar and why aren’t they still around? Did the hippo originate in Africa or in some other place? So many questions!

The ancestors of modern cetaceans, which includes whales and dolphins and their close relations, are found in the fossil record about 52 million years ago, although it might have been 53 or even 54 million years ago depending on which scientist you ask. That’s when the whale side of the suborder Whippomorpha started developing separately from the hippo side. The “morpha” part of Whippomorpha just means “resembling,” and I’m happy to report that the “whippo” part is actually a combination of the words whale and hippo. Truly, it gave me great joy when I learned this fact, because I assumed “whippo” was something in Greek or Latin, or maybe referred to an animal with a whip-like tail. Nope, whale+hippo=whippo.

Anyway, while we know a fair amount about the evolution of cetaceans from their semi-aquatic ancestors, we don’t know much at all about the hippo’s evolution. There’s still a lot of controversy about whether hippos really are all that closely related to whales after all. They share a lot of similarities both physically and genetically, so they’re definitely relations, but whether they’re close cousins is less certain. The confusion is mainly due to not having enough fossils of hippopotamus ancestors.

The modern hippo, the one we’re familiar with today, usually called the common hippo, first appears in the fossil record about six million years ago. We have fossils of animals that were pretty obviously close relations to the common hippo, if not direct ancestors, that date back about 20 million years. But it’s the gap between the hypothesized shared ancestor of both hippos and cetaceans that lived around 60 million years ago, and the first ancestral hippos 20 million years ago, that is such a mystery.

What we do know, though, is that while the common hippo is native to Africa, its ancestors weren’t. Hippo relations once lived throughout Europe and Asia, and probably migrated to Africa around 35 million years ago. In fact, hippos were common throughout Eurasia until relatively recent times. In 2021, a fossilized hippopotamus tooth was found in a cave in Somerset, England that probably lived only one million years ago. That was well before humans migrated into the area, which was a good thing for the humans because this hippo was humongous. It probably weighed around 3 tons, or 3200 kg, while the common hippo is about half that on average.

This particular huge hippo, Hippopotamus antiquus, lived throughout Europe and only went extinct around 550,000 years ago as far as we know. This was during a time that Europe was a lot warmer than it is today and hippos migrated north from the Mediterranean as far as southern England. The common hippo, H. amphibius, the one still around today, also migrated back into Eurasia during this warm period and its fossilized remains have been found in parts of England too.

These days, there are only two living species of hippo, the common hippo and the pygmy hippo. We talked about the pygmy hippo briefly in episode 135, including the astonishing fact that it only grows around 3 feet tall, or 90 cm, and lives in deep forests in parts of west Africa. There also used to be some other small hippos that evolved on islands and exhibited island dwarfism, and which probably weren’t closely related to the pygmy hippo. These include the Cretan dwarf hippopotamus that lived on the Greek island of Crete until around 300,000 years ago and maybe much more recently, and the Cyprus dwarf hippopotamus that lived on the island of Cyprus until only around 10,000 years ago. The Cyprus hippo was the smallest hippo found so far, only about 2.5 feet tall, or 75 cm. There are dogs larger than that! But the small hippo we’re interested in is the Malagasy pygmy hippopotamus.

There actually wasn’t just one hippo species that lived on Madagascar. Scientists have identified three species, although this may change as more studies take place and as new remains are found. The different species probably didn’t all live on the island at the same time, and some researchers think they might have resulted from three different migrations of hippos to the island.

But how did they get to the island? Madagascar is 250 miles away from Africa, or 400 km, way too far for a hippo to swim. The Malagasy hippos were well established on the island, too, not just a few individuals who accidentally reached shore. That means there must have been some way for hippos to reach Madagascar fairly easily at different times.

The best hypothesis right now is that at times when the ocean was overall shallower than it is now, such as during the Pleistocene glaciations, there are enough small islands between Africa and Madagascar that hippos could travel between them pretty easily. Since those islands would be far underwater now, we don’t have any way to know for sure. We can’t exactly dive down and look for hippo fossils, unfortunately.

The really big question, of course, is whether any hippos still survive on Madagascar. We know they were around as recently as 1,000 years ago, because we have subfossil remains. (Just a reminder that subfossil means that the remains are either not fossilized, or only partially fossilized.) Not only that, the bones show butchering marks so we know people killed and ate the hippos. Right now scientists think the hippos were hunted to extinction by the humans who settled on Madagascar, but there’s some evidence that it happened much more recently than 1,000 years ago.

Over the last several hundred years, European colonizers of Madagascar collected stories from Malagasy natives about animals that resemble hippos. More recently, some stories have also been collected by scientists.

In 1995, a biologist named David Burney, who was studying recently extinct animals on Madagascar, interviewed some elderly residents in various villages. He wasn’t actually trying to learn about mystery animals, he was mostly just trying to find the paleontological sites scientists had found decades before. He figured the older residents would remember those scientists’ visits, and he was right. But the residents also had other stories to tell about the bones dug up by scientists. Some of them said those bones belonged to animals they had seen alive.

In one village, several different people told a story about a cow-sized animal that had occasionally entered the village at night. It was dark in color and made distinctive grunting sounds, and had large floppy ears. When some people approached it too closely, it ran back to the water and submerged.

Dr. Burney thought the residents might have seen pictures of an elephant and transferred some of its details to the mystery animal, especially the large size and floppy ears. But when he showed a picture of an elephant to them, they were clear that it wasn’t the same animal. They chose a picture of a hippo instead, but said the animal they’d seen had larger ears. Various witnesses also said the animal had a large mouth with really big teeth, that its feet were flat, and that it was the size of a cow but didn’t have horns. One man even imitated the animal’s call, which Burney reported sounded like a hippopotamus even though the man had never seen or heard a hippo.

Burney was cautious about publishing his findings, and in fact in his article he mentions that even at the time, he and his team of scientists were cautious about even pursuing information about living Malagasy hippos. They didn’t want to be seen as acting like cryptozoologists, which says a lot about how cryptozoologists conduct their research. Cryptozoology isn’t a scientific field of study despite its name. Biologists, paleontologists, and other experts research mystery animals all the time. That’s just part of their job; they don’t have to call themselves something special. It’s unfortunately common that people who call themselves cryptozoologists don’t have a scientific background and may not know how to conduct proper field research. Very often, cryptozoologists also don’t know very much about the animals that definitely exist, and how can you determine what a true mystery animal is if you don’t know about non-mystery animals?

Luckily, Dr. Burney and his team decided to pursue this particular mystery animal, along with some others they learned about. The last hippo-like animal sighting they could pin to a particular date happened in 1976. If the animal in question was a hippo, and it really was alive only about 50 years ago, it might have gone extinct since then. Or it might still be alive and hiding deep in the forests of Madagascar.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

This is what a hippo sounds like, and you hear it all the time on this podcast because I like it:

[hippo sound]