Episode 462: Cryptic Coloration

Thanks to Måns, Sam, Owen and Askel for this week’s suggestions!

Further reading:

Shingleback Lizard

What controls the colour of the common mānuka stick insect?

The mossy leaf-tailed gecko has skin flaps that hide its shadow. There’s a lizard in this photo, I swear! [photo by Charles J. Sharp – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=92125100]:

A shingleback lizard, pretending it has two heads:

The beautiful wood nymph is a beautiful moth but also it looks like a bird poop:

The Indian stick insect (photo by Ryan K Perry, found on this page):

The buff tip moth mimics a broken-off stick. This person has a whole handful of them:

A cuttlefish can change colors quickly [photo by Σ64 – Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=77733806]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about a few types of camouflage, a suggestion by Måns, and we’ll also talk about some camouflaged animals suggested by Sam, Owen and Aksel, Dylan, and Nina.

There are lots of types of camouflage, not all of it visual in nature. Back in episode 191 we talked about some toxic moths that generate high-pitched clicks that bats hear, recognize, and avoid. Naturally, some non-toxic moths also generate the same sounds to mimic the toxic moths.

Måns specifically suggested cryptic coloration, also called crypsis. It’s a type of camouflage that allows an animal to blend into their surroundings, which can involve multiple methods.

Some animals have cryptic coloration mainly along the edges of the body, to defeat a skill many predators use called edge detection. A lot of amphibians and reptiles have patches surrounded by an outline, with dark patches having a darker outline and light patches having a lighter outline. This acts as disruptive camouflage, hiding the outline of an animal’s body as it moves around. Some animals take this camouflage even further, with a way to hide their own shadow.

This is the case with the mossy leaf-tailed gecko, which is native to the forests of eastern Madagascar. It can grow up to 8 inches long, or 20 cm, not counting its tail, and it’s nocturnal. Its tail is flat and broad, sort of shaped like a leaf, but it doesn’t disguise itself as a leaf.

The mossy leaf-tailed gecko has a complicated gray and brown pattern that looks like tree bark, and it can change its coloration a little bit to help it blend in even more. At night it’s well hidden in tree branches as it climbs around looking for insects, but in the day it needs to hide really well to avoid becoming some other animal’s snack while it’s sleeping.

It does this by finding a comfortable branch and flattening its body and tail against it so that it just looks like another part of the branch. But to make it even more hidden, it has a flap of skin along its sides that wraps even farther around the branch. Not only do these skin flaps hide its edges, it hides its shadow, since the flaps are really flat and there’s no curved edge of a lizard belly pressed against a branch that a predator might notice.

The most common kind of cryptic coloration is called countershading, and it’s so common that you might not even have noticed it although you see it almost every time you see a fish, amphibian, reptile, and many birds and mammals. Countershading is an animal that’s darker on top and lighter underneath, like a brown mouse with a white belly. It’s even found in some insects and other invertebrates.

Countershading is another way to hide a shadow. If a dolphin, for instance, was gray all over, its underside would look darker because of shadows, since sunlight shines down from the sky and makes shadows underneath the body. That would make its body shape look rounder, meaning it stands out more and a predator would notice it more easily. But most dolphins are pale gray or even white underneath. There’s still a shadow, but it’s no longer darker than the rest of the body. The lighter colored underside makes the shadow paler, and as a result, from a distance the dolphin looks almost the same shade all over, which makes it appear flat and the edges of its body harder to see. We even know that some dinosaurs were countershaded, with lighter colored bellies.

Countershading is so common in animals that it’s almost impossible to pick one example. Dylan suggested we learn about the shingleback lizard, an amazing animal found in many parts of Australia. It’s also called the stumpy-tailed lizard, the bobtail lizard, or the two-headed lizard. All three of those names refer to the animal’s tail, which is short and fat and actually looks like a second head. This is an example of automimicry, similar to animals that have markings that look like eyes. The lizard is brown with darker and lighter speckles and it sometimes has yellow spots too. Its belly is pale with dark spots. Its scales are large and overlap each other, and its eyes are tiny, like little black beads. It grows about a foot long, or 30 cm.

The shingleback lives in arid and desert areas, and its tough skin and overlapping scales help reduce water loss. It eats snails, insects, flowers, and other small animals and plants. When threatened, it will open its mouth wide and stick out its large, dark blue tongue. It is an impressively blue, impressively big tongue, and the inside of the shingleback’s mouth is bright pink, so the lizard has a chance to escape while its predator is startled and wondering if the lizard is dangerous. The shingleback can give a painful bite, although it’s not venomous.

The shingleback mates for life, and the female gives birth to two or three live young every year instead of laying eggs. In many reptiles that give birth to live young, the eggs basically remain in the mother’s body until they hatch, and then she gives birth. But in the shingleback’s case, her babies develop in placentas in a process very similar in many ways to placental mammals. The babies eat the placenta after they’re born, giving them a quick first meal, and they’re born ready to take care of themselves.

Sam suggested we talk about animals that can be confused with inanimate objects, which is a type of camouflage referred to as mimicry. Mimicry of all kinds is a really common type of camouflage, like all those harmless insects that have yellow and black stripes to mimic bees and wasps that can sting.

My favorite inanimate object mimic is a moth we talked about in episode 191, the beautiful wood nymph of eastern North America. It has a wingspan of 1.8 inches, or 4.6 cm, and it is indeed a beautiful little moth. Its front wings are mostly white with brown along the edges and a few brown and yellow spots, while the rear wings are a soft yellow-brown with a narrow brown edge. It has furry legs that are white with black tips. But when the moth folds its wings to rest, suddenly those pretty markings make it look exactly like a bird dropping. It even stretches out its front legs so they resemble a little splatter on the edge of the poop.

If you think about it, it makes sense that a tiny animal like an insect would want to resemble something common in its environment that’s also not eaten by very many other animals. For instance, a stick.

Owen and Aksel wanted to learn more about the walking stick, since it’s been a long time since we talked about it, episode 93. Walking stick insects are also called stick insects or phasmids. When I was a kid I was terrified of the whole idea of a stick insect, although I don’t know why. I think I thought one day I’d climb a tree and discover that some of those sticks were not actually part of the tree. I guess I spent a lot of time climbing trees, but I never actually saw a walking stick insect. Maybe that’s because they were so well camouflaged that I thought they were sticks!

Walking sticks live in trees and bushes, naturally, especially in warm areas, but they’re found on every continent except Antarctica. They’re long, thin insects with long, thin legs and they really do look like sticks. Some are green, some are brown or gray, and many have little patterns, projections, and ridges that make them look even more like real sticks. They’re closely related to another type of phasmid called a leaf insect, which as you may have already guessed, mimics a leaf. All phasmids eat leaves and other plant material and most are nocturnal.

Some phasmids can even change colors to help blend in with their background. The Indian stick insect, which is indeed found in southern India although it’s been introduced in many other parts of the world and is considered invasive in some places, grows up to about 4 inches long, or 10 cm. It’s usually brown, but it can change its color in response to light levels by moving pigment granules in its cuticle that absorb and scatter light. The Indian stick insect has many other ways to hide in plain sight. If it feels threatened, it will stretch out with its rear legs folded flat against its body and its front pair of legs stretched forward to make it look even longer. It will stay perfectly stiff even if someone picks it up, but if it thinks it’s in danger, it will spread its front legs to show a patch of red at the base of the legs. This can startle or frighten a potential predator long enough to let the stick insect get away.

One interesting thing about the Indian stick insect is that almost all individuals are females. Females don’t need to mate with a male to reproduce. The female’s babies are little clones of herself, and she drops an egg every so often onto the ground. It looks like a tiny seed, and ants think it’s a seed and will collect it and take it back to the nest to be stored for later. The egg is then protected until it hatches, when the larval insect leaves the ant nest and finds a tree or bush to hide in.

The buff tip moth also looks like a twig or branch when its wings are folded, but not in the same way the walking stick insect does. It looks like a broken-off branch instead. It’s a fairly large moth with a wingspan more than 2 and a half inches across, or 7 cm, and its wings are mostly gray with a rounded buff patch at the end. The end of its abdomen is buff too, so that it looks like the inside part of a tree branch, that’s paler than the bark. It lives throughout much of Europe and Asia, and different populations look slightly different because they’ve evolved to resemble the branches of different species of tree.

Let’s finish with Nina’s suggestion, about an animal that can change colors really fast to blend in with its background. That’s the cuttlefish, and Nina wanted to know how it changes colors so fast, and while we’re at it, why octopuses are so flexible.

The cuttlefish is a cephalopod, closely related to octopuses and squid, but is quite small in comparison. It has eight arms and two feeding tentacles, just like the squid, but its arms are really small in comparison to its mantle. There are over 100 species known so far, most of which are small enough to fit in the palm of your hand. But unlike the squid or the octopus, the cuttlefish has an internal structure called the cuttlebone. It’s not a bone at all but a modified shell, which is your reminder that cephalopods are mollusks and are distantly related to clams, snails, and many other animals that have shells. The cuttlebone helps the cuttlefish stay buoyant without effort, and it also incidentally makes the body a little more structured than its squid and octopus cousins.

Octopuses are flexible because they have no bones. Basically the only hard structure in an octopus is its beak. A cephalopod’s mouth is in the middle of its arms, so it’s usually hidden from view. Way back in episode 142 we talked about how octopus muscles work, so let’s revisit that briefly. In animals with bones, muscles are attached to the bones. But octopuses don’t have bones.

The octopus’s muscles are structured differently than muscles in animals with bones. Our muscles are made up of fibers that contract in one direction. Let’s say you pick up something heavy. To do so, you contract the fibers in some muscles to shorten them, which makes the bone they’re attached to move. Then, when you push a heavy door closed, you contract other muscles and at the same time you relax the muscles you used to pick up something heavy. This pulls the arm bone in the other direction.

But in the octopus, the fibers in its muscles run in three directions. When one set of fibers contracts, the other two tighten against each other and form a hard surface for the contracted fibers to move. So they’re muscles that also sort of act like bones. It’s called a muscular hydrostat, and it actually can result in muscle movements much more precise than muscle movements where a bone is involved.

So, if you combine the octopus’s strong, precise muscle movements with its general lack of hard structures, you get a very flexible animal. Basically an octopus can squish itself through extremely small openings, as long as its beak will fit through. This can make it really hard to keep an octopus in captivity, because in addition to being flexible and squishy, the octopus is also really intelligent. It can survive for short periods of time out of the water, and it can figure out how to open its enclosure and get out to explore, or just escape.

But, back to the cuttlefish, which is small and needs to hide from predators. Like other cephalopods, the cuttlefish can change color and pattern in less than a second, and can even change the texture of its skin if it wants to look bumpy like the rocks around it.

Cephalopods have specialized cells called chromatophores in their skin. A chromatophore consists of a sac filled with pigment and a nerve, and each chromatophore is surrounded by tiny muscles. When a cuttlefish wants to change colors, its nervous system activates the tiny muscles around the correct chromatophores. That is, some chromatophores contain yellow pigment, some contain red or brown. Because the color change is controlled by the nervous system and muscles, it happens incredibly quickly, in just milliseconds.

But that’s not all, because the cuttlefish also has other cells called iridophores and leucophores. Iridophores are layers of extremely thin cells that can reflect light of certain wavelengths, which results in iridescent patches of color on the skin. While the cuttlefish can control these reflections, it takes a little longer, several seconds or sometimes several minutes.

Like other cephalopods, the cuttlefish uses its ability to change color and pattern in order to hide from predators. It also uses these abilities to communicate with other cuttlefish, because it’s a social animal. It will also sometimes frighten potential predators away with a bright, sudden display of color changing.

The most amazing thing of all is that cuttlefish can’t see colors. They have no color receptors in their eyes. But they accurately change color to match their background, even though they can’t see the color, and they can even do so if it’s almost completely dark. While scientists have some theories as to how the cuttlefish manages this, we don’t yet know how they do it for sure. So it is still a mystery!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, corrections, or suggestions, email us at strangeanimalspodcast@gmail.com.

Thanks for listening!

Episode 251: Modern Mimics and HIREC

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

This week let’s look at some animals that have evolved rapidly to adapt to human-caused environmental pressures. Thanks to Otto and Pranav for their suggestions!

Further reading:

Long-term changes of plumage between urban and rural populations of white-crowned sparrows (Zonotrichia leucophrys)

A light-colored peppered moth (left) and darker-colored peppered moths (right):

Soot is hard to clean off buildings and other items (image from this page):

A white-crowned sparrow in the California countryside:

A (deceased museum specimen being photographed) white-crowned sparrow from the city of San Francisco, CA (taken from the study linked above):

A decorator crab that has attached bits of plastic and other trash to its body (image from this page):

The hermit crab sometimes uses trash instead of shells to hide in:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have two listener suggestions. Otto suggested we learn about camouflage that mimics modern things, and Pranav suggested animals that show rapid evolution due to humans.

We’ve talked about animals that use camouflage in lots of episodes, especially episode 191, Masters of Disguise. If you want to learn more about camouflage itself, that’s a good one to listen to. In addition, rapid evolution due to humans is a hot area of research right now. It even has its own scientific term, human-induced rapid evolutionary change, often shortened to the acronym HIREC.

Let’s start this episode with the story of a humble moth, because it’s a classic example of both HIREC and modern camouflage.

The peppered moth lives throughout much of the northern hemisphere. Its wingspan is a little over 2 inches across, or about 6 centimeters, and its caterpillar looks just like a little twig. Not only that, the caterpillar can change its coloring to match the twigs of the tree it’s on. But it’s not the caterpillars we’re talking about today.

The peppered moth gets its name from the coloring of its wings, which are white with black speckles, like pepper spilled on a plate. The pattern of speckles is unique to each individual, with some moths having more pepper speckles than others. Some moths have so many speckles that they look gray. But in the 19th century, geneticists studying moths in England noticed that the peppered moth seemed to be changing color as a species. Specifically, some of the peppered moths were completely black.

Black peppered moths had never been documented before 1811. They were still rare in the mid-19th century, but by 1900 almost all of the peppered moths in cities in England were black. Scientists noticed this and tried to figure out what was going on.

Pollution is what was going on. The industrial revolution was in full swing, but all those factories and trains and even ordinary houses were burning coal. Burning coal results in soot that’s carried on smoke and settles on everything. If you have a coal fire in your house, your walls and furniture are going to end up dark with soot. My aunt and uncle renovated a house from the late 19th century and had a lot of trouble cleaning soot from the walls and woodwork, even the old curtains that had been in the house. Similarly, when I lived briefly near Pittsburgh, Pennsylvania, there were still a lot of brick and stone buildings that were black from soot, but one beautiful old church had recently been cleaned and it turned out that the stone it was built from was pale gray, not black.

It wasn’t coal soot getting on the moths, though. It was coal soot on the trees where the moths spent most of their time. Most tree trunks are gray, but with all that coal soot in the air, the trees were coated with it and were much darker gray or even black. A light-colored moth that settled on a black tree branch showed up to predators, but a black moth on the same branch was camouflaged. The black moths survived more often to lay eggs while the white or gray moths didn’t, passing on the genetic likelihood that their babies would grow up to be dark-colored instead of light-colored.

It wasn’t just peppered moths that this happened to, either. More than 100 species of moth were documented to be dark gray or black during this time when they were ordinarily much lighter in color. Scientists call this industrial melanism.

Soot is made up of tiny particles that work their way into the crevices of wood and stone and everything else they come in contact with. You can’t just wipe or rinse it off. It’s acidic too and will kill plants, especially lichens that grow on trees, and it even eats away at stone and brick. It’s dangerous to breathe because the tiny particles lodge in your lungs and eventually stop you from being able to absorb oxygen as efficiently. If you’ve heard of the infamous London smog from the olden days, a big contributor to the smog was coal smoke. In 1952 a five-day smog event in London killed an estimated 12,000 people. That led directly to the Clean Air Act of 1956, and these days London doesn’t have that kind of deadly smog anymore.

Once factories and homes switched to electricity, natural gas, or other alternatives to burning coal, and trains switched to diesel fuel, trees stopped being coated with soot. Older trees that had survived were still dark, but young ones grew up with normal colored trunks and branches. Gradually, the black moths became less and less numerous compared to light-colored moths.

Cities in general result in rapid evolution of animals, including how they camouflage themselves. A study published in May of 2021 found that some birds living in cities are developing different colored feathers. Specifically, white-crowned sparrows living in San Francisco, California have much duller, darker feathers on their backs than white-crowned sparrows living outside of the city. Other studies have found that birds in cities sing much louder and at a higher pitch than birds in the countryside, since they have to compete with traffic and other noise.

A Swiss study on the effects of light on ermine moths indicated that while moths who developed from caterpillars collected from the countryside showed a normal attraction to light, moths from caterpillars collected in the city ignored the light. Since moths often die when they collide with electric lights, the city moths who survived to lay eggs were the ones who didn’t fly into a hot lightbulb.

Another study compared the genomes of white-footed mice that live in various parks in New York City with white-footed mice that live in state parks well outside of the city. The mice in city parks showed a lot less genetic diversity, naturally, since those mice are isolated populations. Mice can’t take cabs to visit mice in other parks, much less leave the city for a vacation. But the city mice showed another surprising difference. Their digestive systems have adapted to a much different diet than their country cousins. Some researchers suggest that the city mice may eat more junk food, which people throw away and the mice find, while other researchers think it’s just a difference in the kinds of insects and plants available in city parks for the mice to eat. Either way, it’s a distinct genetic difference that shows how the city mice are evolving to adapt to their urban environments.

Another example is a type of reptile called the crested anole. It’s related to the iguana and is native to the Americas. There are lots of species and subspecies of anole, many of which live on islands and show distinct adaptations to various habitats. The crested anole lives in Puerto Rico and on some nearby islands and grows up to 3 inches long, or 7.5 cm, not counting its long tail. The male is more brightly colored than the female, usually green or brown with darker spots. It’s not related to the chameleon but it is able to change color. It eats small animals, including insects, worms, even other anoles. Anoles are really interesting animals that deserve their own episode one day, so let’s just talk about how the crested anole that lives in cities has adapted to urban life.

One thing the crested anole is known for is its ability to climb right up tree trunks and even perch head-down in a tree. Its toe pads have microscopic scales and hairs that help them adhere to smooth surfaces, something like a gecko’s toes. But there’s a big difference in a tree trunk, no matter how smooth it is, and a pane of glass. Anoles in cities can climb up and down windows and painted walls. Researchers examined the toe pads of city crested anoles and compared them to the toe pads of crested anoles who lived in the countryside. They found that the city anoles had larger toes with more scales, and they even had longer legs. The research team also raced anoles along various surfaces and filmed them in slow motion to study how they were able to maneuver, which sounds like a great day at work.

The crested anoles have only lived in cities for a few decades, so their differences from country anoles evolved very quickly. But not all species of anole can adapt as well and as rapidly as the crested anoles have. Other city anole species don’t show differences from their country cousins.

Human-induced rapid evolutionary change isn’t restricted to cities. Trophy hunters who target the biggest animals with the biggest horns or antlers and leave smaller individuals alone have resulted in only smaller males with smaller horns or antlers surviving to breed. Many populations of bighorn sheep now actually only have small horns. Similarly, elephants have been killed for their tusks for long enough that many elephants are being born without tusks, because tuskless elephants are the ones that survive to breed. Entire populations of some fish species are smaller overall after many generations of being caught with nets, because only the individuals who are small enough to escape the nets survive to breed.

I tried hard to find more examples of animals that camouflage themselves to blend in to human-made items like roads. I’m sure this is happening throughout much of the world, but I couldn’t find any scientific studies about it. If any of you are thinking of going into biology, that might be an interesting field of study. But I did find one other example.

Self-decoration is a type of camouflage I don’t think we’ve talked about before. It’s where an animal decorates its body with items that help it blend in with its surroundings. Some caterpillars will stick little bits of lichen or other plant pieces to their bodies to help them hide, and some invertebrates of various kinds actually pile their own poop on their back as a disguise.

A group of crabs called decorator crabs will stick plants, sponges, and other items to their backs, and different species have preferences as to what items they use. Some species prefer stinging or toxic decorations, such as certain sea anemones which they basically pick up and plant on their backs. Researchers think the sea anemones actually benefit from being used as camouflage, because crabs are messy eaters and the anemones can catch and eat pieces of food that float away from the crab’s mouthparts. A decorator crab’s carapace is often rough in texture with tiny hooks to help things stick to it like Velcro.

Some decorator crabs don’t seek out particular decorations but just make use of whatever small items they find in their local environment. In the past few decades, scientists, divers, and other people who find crabs interesting have noticed more and more decorator crabs using little pieces of trash as decoration. This includes fragments of plastic and pieces of fishing nets.

This is similar to what’s happening with hermit crabs, which we talked about in episode 182. In many places hermit crabs are using trash like bottle caps instead of shells since there’s so much trash on beaches these days. This is your reminder to pick up any trash you find on the beach, but be careful not to cut yourself and also make sure you’re picking up actual trash and not a camouflaged crab.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!