Episode 186: Velvet Animals

This week’s episode is about some invertebrates who look like they’re made of velvet! Thanks to Rosy and Simon for their suggestions!

Further reading:

Red Velvet Mite

Chigger Bites

Structure and pigment make the eyed elater’s eyespots black

The red velvet mite looks like a tiny red velvet cake but is NOT CAKE, NOT A SPIDER, NOT A SPIDER CAKE:

GIANT RED VELVET MITE:

Regular sized red velvet mites on a fingertip and one parasitizing a daddy long legs spider:

An eastern velvet ant female (it’s actually a wasp, not an ant):

Velvet worms on hands:

A blue velvet worm!

Look at its teeny mouf!

An eyed click beetle DO YOU SEE THE EYES(pots):

The velvet asity (maybe you notice that it’s uh not an invertebrate):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As we continue invertebrate August, we’ve got a nicely themed episode this week, velvet invertebrates! Thanks to Simon and Rosy for their suggestions!

First, let’s talk about Rosy’s suggestion, the red velvet mite. It sounds delicious, but only because it makes me think of red velvet cake. But the red velvet mite is an arachnid, related to spiders and scorpions–but it’s not actually a spider.

In English, the word mite, spelled m-i-t-e, means a tiny thing, and mites are tiny. Most are under a millimeter long. Scientists actually group mites into two kinds, parasitic mites that are closely related to ticks, and velvet mites that are closely related to chiggers. Chiggers, my least favorite. All the many species of velvet mite and chigger are in the order Trombidiformes.

You know what? Let’s talk briefly about chiggers, because there’s a lot of bad information about them out there. The chigger lives in vegetation, especially tall weeds and shrubs. Various species live throughout the world but it’s more common in warm, humid areas. In some places it’s called a harvest mite or scrub-itch mite.

The chigger is only parasitic as a larva. The larvae only have six legs, compared to adults that have eight. A larva waits on a blade of grass or a leaf for an animal to brush past it, and when it does, the larva grabs on. The longer you stay in one place, for instance when you’re blackberry picking, the more likely it is that a chigger will crawl onto you. It’s very nearly microscopic so you can’t look for chiggers and pick them off the way you can ticks. Like velvet mites, they’re red in color but generally paler than actual velvet mites.

A chigger bite causes intense itching, swelling, redness, and takes sometimes several weeks to heal, especially if you scratch it. It also gets infected easily. Many people believe that the chigger actually burrows into the skin. The chigger does eat skin cells from the layers of skin below the outer layer, but they don’t actually have mouthparts that can bite that deeply. They certainly can’t burrow into the skin. What they do instead is give the skin a little bite and inject digestive enzymes into the wound. The enzymes break down the skin cells they touch, and also harden the tissues around the wound. The chigger slurps up the liquefied skin cells and injects more enzymes, which seep down deeper into the skin, until basically what it’s created is a tube of hardened skin cells that reaches the lower layers of skin. The tube is called a stylosome, in case you were wondering. All this takes several days, so the best way to treat chigger bites before they get bad is to take a hot shower as soon as possible after you’ve been blackberry picking or whatever, and scrub well, especially around places where your clothing was tight. You also need to wash your clothes in hot, soapy water to kill any chiggers still on them.

The best way to deal with chiggers is to wear a good insect repellent and make sure to apply it all the way from your feet up, paying special attention to ankles, the backs of your knees, and around your waist and stomach.

Okay, that’s enough of that. Let’s talk about actual red velvet mites that don’t bite and that you can see. The red velvet mite is covered with short, dense hairlike structures that may act as sensors to help the mite find its way around in the dark or underground. The hairs are orangey-red, although some species may have white spots. Adults have eight legs like spiders do, but each pair of legs grows from a different part of the cephalothorax instead of from the same place like in spiders. Adult red velvet mites generally eat insect larvae and eggs. But the red velvet mite larvae are parasites—but not chigger-type parasites. They don’t bother people or pets, and in fact they only parasitize invertebrates like insects and spiders. A red velvet mite larva will grab onto certain types of insect like grasshoppers or beetles, or some spiders like daddy long-legs. It rides around on the insect and sucks its hemolymph like eensy-beensy insect ticks.

To attract a female, the male red velvet mite leaves droplets of sperm on twigs and grass in a little area and spins an intricate trail of silk leading to the droplets. The female examines the silk trail and if she finds it well-made, she’ll gather up some of the sperm to fertilize her eggs. But if another male comes across the trail, he’ll tear it up. The female lays her eggs in the soil.

There are thousands of species of velvet mite throughout the world, with many more undoubtedly yet to be discovered. Most are teensy, but there are some bigger species called giant red velvet mites.

There are actually two totally different mites called by that name. The first one lives in southwestern North America in dry areas, and includes several species in the genus Dinothrombium. The adults eat ants and termites. Like other mites, people are most likely to see them walking around on outside walls or patios or deck railings, usually lots of them in one area and often after summer rain. That’s why they’re sometimes called rain bugs. But while most velvet mites are just little moving red dots, the giant red velvet mite can grow up to 12 mm, which is almost half an inch long. In the mite world, that really is giant.

The other species called the giant red velvet mite lives in parts of northern India in dry areas, Trombidium grandissumum, and it can grow up to two cm long, or over ¾ of an inch. Like most other red velvet mites, it mostly lives underground and eats insect larvae, many of which are harmful to crops.

So why are red velvet mites so red? Surely that would make them easier for predators to see. Well, the red velvet mite contains compounds that make them taste bad and may be toxic, so the bright red color advertises that to predators.

The red velvet mite will curl its legs in to make itself smaller if it feels threatened, which is oddly sweet. Be safe, little mites.

Next, let’s learn about the velvet ant. It’s not an ant at all but a wasp, although wasps and ants are closely related. The female has no wings although the male does, but the male doesn’t have a stinger while the female does. Sometimes it’s called the cow killer ant because its sting is so painful that people think it could practically kill a cow. It can’t kill a cow. Or a person, for that matter, but one species of velvet ant was scored for how painful its sting was and it ranks right up there with bullet ants.

Like the red velvet mite, there are thousands of species of velvet ant that live throughout the world. The females and usually the males have plush-looking hairs, some species with orange or red hairs, some with other colors and patterns like black and white. In the case of the velvet ant, the bright coloration is to warn potential predators that this is a dangerous wasp and they should steer clear! It’s also a tough insect with a thick exoskeleton.

The biggest species of velvet ant is the eastern velvet ant, which lives in the eastern United States. It can grow almost two centimeters long, or three-quarters of an inch, and is orangey-red with a black stripe on its abdomen and black legs.

If you remember way back to episode 28, about crawdads and cicadas, we talked briefly about a huge wasp called the cicada killer. The cicada killer can grow up to two inches long, or 5 cm, which is simply enormous when one gets into your house and you worry it’s going to just move in and complain that the furniture is too small. Anyway, the cicada killer does something horrible to the cicada. The female stings a cicada, which paralyzes it but doesn’t kill it. Then it carries the cicada to its burrow and lays an egg on it. When the egg hatches a day or two later, the larva eats the still-living cicada.

Well, I bring this up because velvet ants do the same thing to cicada killers! Comeuppance in the insect world! The female velvet ant searches for cicada killer burrows, and when it finds one with a larva inside, eating a cicada, it lays an egg on the larva. The egg hatches and the velvet ant larva promptly eats the cicada killer larva which is in turn eating the cicada. This is a way different circle of life than they talked about in the Lion King.

Next, let’s talk about a different kind of invertebrate, the velvet worm. It’s not a worm and it’s also not fuzzy like the animals we’ve talked about so far, but its body does have a soft, velvety texture. There are about 180 species known in two families. It lives in tropical areas in Central and South America, the Caribbean, parts of Africa and Asia, and Australia and New Zealand, but we know it used to be more widespread because we’ve found velvet worms in Baltic amber from what is now northern Europe. It has a soft, segmented body that’s covered with a very thin layer of chitin with tiny overlapping scales. This makes the velvet worm look velvety and acts as a water repellent so the body won’t dry out, but it also needs plenty of humidity in its environment to survive.

At first glance, the velvet worm looks like a caterpillar. It has a caterpillar’s stumpy bumps of legs and a long soft-looking body like a caterpillar. Various species grow to various sizes, but the largest is only about eight inches long, or 20 cm, and most are much shorter. Different species are different colors, from brown or reddish to blue, white, or even bright green like a caterpillar. But it’s not related to any animal that goes through a caterpillar-like stage of life. Scientists aren’t even completely sure what the velvet worm is actually most closely related to. It shares features with some of the strange animals that evolved during the Cambrian, and currently many researchers think it’s a descendant of a group of Cambrian animals called lobopodians, a group which includes Hallucigenia. You may remember Hallucigenia from episode 69.

Some beautifully preserved fossil ancestors of velvet worms have been found in a Canadian fossil bed dated to 425 million years ago. While modern velvet worms live exclusively on land, its 425 million years old ancestors lived in shallow coastal water.

These days, velvet worms are uncommon animals that mostly live in leaf litter or under rotting logs or similar places. Two species even live in caves. It’s mostly nocturnal, although it will come out during the day in rainy weather. During the day, or when it’s too dry or cold for its liking, it will rest in tiny crevices in its habitat. That may be just a deep crack in the earth or a rock, a tunnel originally dug by termites, or a little hidden spot inside a rotting log. It’s eaten by a lot of animals, including birds, insects, spiders, rodents, and snakes, so it’s good at hiding.

But when the velvet worm is out hunting, it is fearsome to its prey. It mostly eats small invertebrates like insects, worms, spiders, and snails, but it can kill animals its own size or even a little larger. And it doesn’t need to eat very often, maybe once a week or even just once a month.

The velvet worm has a pair of retractable antennae that act as feelers that the velvet worm uses to very lightly touch potential prey to see whether it wants to attack. It will sneak up on an animal and use these feelers to touch it so lightly that the animal has no idea the velvet worm is there or is touching it. If that doesn’t creep you out completely, you haven’t read the spooky horror stories I’ve read, that’s all I can say. At the base of the antennae the velvet worm has a pair of eyes, although some species don’t have eyes at all.

The velvet worm’s mouth contains a sharp pair of mandibles, but these are actually inside the mouth, sort of like teeth although they’re nothing like teeth, rather than external mandibles like those of insects. But it’s behind the mouth where things get really interesting, because that’s where the slime is secreted. The velvet worm has a pair of slime glands in its body that generate and hold extremely sticky slime. The velvet worm squirts it from two tiny openings on the sides of its head to form a sort of net that ensnares its prey. If the prey is large or strong, the velvet worm may squirt more slime at its legs to keep it immobilized.

The slime immediately starts to dry and harden, and as it dries it contracts. Then the velvet worm bites the animal and injects digestive saliva into the wound that liquefies the tissues it comes in contact with. Sort of like a chigger. While it’s waiting for the saliva to do its work, the velvet worm eats up the slime it discharged, because it’s made of proteins and takes several weeks to regenerate. Then the velvet worm clamps its mouth over the wound and slurps up the liquefied insides of its prey, which by the way is very dead by this point.

But the really amazing thing is that some species of velvet worm are social. It lives in family groups that hunt together, led by a dominant female. She eats first, then the other females, then the males, then any young. Females are usually larger than males.

Velvet worms have been well studied and I could go on and on about them. I might return to them eventually and give them their own episode. But let’s go on now to our last velvet animal, the velvet asity.

Simon suggested the velvet asity of Madagascar when we were talking on twitter about an insect called the eyed elater, or eyed click beetle, which lives in forests in North and Central America. It’s a slender beetle that grows about 2.5 inches long, or 4.5 cm. The larvae are sometimes called wireworms because they’re so long and skinny. They eat the grubs of other beetles that live in rotting wood, but it’s not known what the adults eat, if anything.

Like other click beetles, if it feels threatened, the eyed click beetle can suddenly launch itself away with its click mechanism. This is a spine underneath its thorax that fits into a groove between its legs. If the insect is threatened, it flexes its body to release the spine, which snaps against whatever surface the beetle is touching and catapults it sometimes several inches away.

The eyed click beetle is black and mottled gray to blend in with tree bark, but it has two large eye spots that are probably meant to frighten predators away. The eye spots are black outlined with white, and the black part contains cone-shaped microtubules made of modified setae that contain the pigment melanin. Between the pigment and the shape of the hairs and the way they’re aligned, the eyespots absorb 96.1% of light that hits them. This makes them look much larger and more conspicuous to potential predators.

Quite a few insects and some other animals have developed similar coloring that will absorb light, often called super-black. And that brings us to the velvet asity, the male of which is almost all super-black as an adult except for bright lime green wattles above the eyes.

Uh, and this is where I have to admit I made a mistake. I often take quick notes about animals people recommend, especially if the recommendation comes from a Twitter conversation that’s easily lost. Later on I transfer my notes to the big ideas spreadsheet. Well, this time I made a note that said “Velvet asity of Madagascar, Simon replied with this to a twitter post about the eyed elater, with specialized hairs in the eyespots that deaden reflection.” That’s literally what’s in my notes, and I listed it under the invertebrates tab because I forgot what the velvet asity is and just assumed it was another insect like the eyed click beetle.

But the velvet asity isn’t an invertebrate, which I only discovered after I’d started researching the other velvet animals in this episode. It’s a bird. But what a bird it is! It’s a little round bird with a very short tail, short wings, and amazing coloration! While the female is a streaky olive color, the male’s breeding plumage is striking.

The super-black coloring of the male velvet asity deadens reflections and makes its green eyebrows look even brighter, which attracts females. The velvet asity lives in the rainforests of Madagascar and mostly eats fruit, but it will also eat nectar and some insects. During breeding season, males gather in small groups called leks to show off for females with a mating dance that involves him flipping all the way around the branch he’s standing on. The female weaves a pear-shaped nest that hangs from a branch and is camouflaged because she uses materials like strips of bark, leaves, and moss to make it. She also takes care of the eggs and chicks by herself. All the male does is show off, but you can hardly blame him. If you’ve got it, flaunt it, velvet asity.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 141: Zombie Animals

We’re inching closer to Halloween and it’s getting spookier out there! This week let’s learn about some animals that get zombified for various reasons. This is an icky episode, so you might not want to snack while you’re listening. Thanks to Sylvan for the suggestion about the loxo and mud crabs!

Further reading:

Zombie Crabs!

Ladybird made into ‘zombie’ bodyguard by parasitic wasp

A mud crab held by a dangerous wizard:

A paralyzed ladybug sitting on a parasitic wasp cocoon:

A cat and a rodent:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s another week closer to Halloween, so watch out for ghosts and goblins and zombie animals! Zombie animals?! Yes, that’s this week’s topic! Thanks to Sylvan for suggesting the loxo parasite, which we’ll talk about first. Brace yourself, everyone, because it’s about to get icky!

Before we learn about loxo, let’s learn about the mud crab, for reasons that will shortly become clear. Mud crab is the term for a whole lot of small crabs that live in shallow water, mostly in the Atlantic or eastern Pacific Oceans but sometimes in lakes and other fresh water near the ocean, depending on the species. Most are less than an inch long, or under about 30 mm. The largest is called the black-fingered mud crab, which grows to as much as an inch and a half long, or 4 cm. Most mud crabs are scavengers, eating anything they come across, but the black-fingered mud crab will hunt hermit crabs, grabbing their little legs and yanking them right out of their shells. It also uses its strong claws to crack the shells of oysters.

Loxothylacus panopaei is actually a type of barnacle. You know, the little arthropods that fasten themselves to ships and whales and things. But loxo, as it’s called, doesn’t look a bit like those barnacles except in its larval stages. After it hatches, it passes through two larval stages; during the first stage, it molts four times in only two days as it grows rapidly.

Then, during the cyprid larval stage, the microscopic loxo searches for a place to live. The male remains free-swimming but the female cyprid larva is looking for a mud crab. She enters the crab’s body through its gills and waits for it to molt its exoskeleton, during which time she metamorphoses into what’s called a kentrogon, basically a larva with a pointy end. As soon as the crab molts its exoskeleton, the female loxo uses her pointy end, called a stylet, to stab a hole in the crab’s unprotected body. Then she injects parasitic material that actually seems to be the important part of herself, which enters the crab’s blood—called hemolymph in arthropods like crabs. Like most invertebrates, crabs don’t have blood vessels. The hemolymph circulates throughout the inside of the body, coming into direct contact with tissues and organs. This means that once the loxo has infiltrated the hemolymph, she has access to all parts of the crab’s body.

At this stage, the loxo matures into something that isn’t anything like a barnacle, but is an awful lot like something from a horror movie. She grows throughout the crab, forming rootlets that merge with the crab’s body and changes them. Basically, the female loxo becomes part of her crab host. Eventually she controls its nervous system and molds it to her own needs. She even molds the body to her own needs, since if she’s parasitized a male crab she has to widen its body cavity so it can hold her eggs.

The crab stops being able to reproduce and doesn’t want to. It only wants to care for the eggs that the female loxo produces. She extrudes an egg sac so that it hangs beneath the crab’s abdomen, where a male loxo can fertilize it when he swims by. The crab then treats the egg sac as if it contains its own eggs, protecting them and making sure they get plenty of oxygenated water. This is true even for male crabs, which ordinarily don’t take part in protecting their own eggs. The loxo eggs hatch in about a week, and as soon as they do, the female loxo inhabiting the crab starts the process over again. While a mud crab in the wild can live for a few years, once it’s taken over by the loxo parasite it only lives around 45 days.

Most mud crab populations are reasonably resistant to the parasite, but where the loxo has been introduced to areas where it didn’t live before, it can decimate the local mud crab population. This happened in Chesapeake Bay in the 1960s in North America. The local oysters had been so over-fished that they were nearly completely gone, also nearly destroying the local oyster industry. They imported oysters from the Gulf of Mexico to replenish local stocks, but no one realized they were bringing the loxo with those oysters. These days, up to 90% of the Chesapeake Bay mud crabs are infected with the loxo parasite, while only up to 5% of the Gulf of Mexico mud crabs are infected. Researchers at the Chesapeake Bay Parasite Project are working to figure out more about how the loxo infiltrates its host and changes it genetically, and are monitoring infection rates in the wild.

If you think that’s gross, it’s not going to get any better the rest of this episode.

Next let’s learn about another zombie animal, this one a spider. A number of spiders are parasitized by a tiny wasp called Zatypota percontatoria. It lives throughout much of the northern hemisphere and prefers forested areas with plenty of web-building spiders in the family Theridiidae, also known as cobweb spiders.

Cobweb spiders are really common with around 3,000 species that live throughout the world, including the black widow, which by the way is not nearly as dangerous as people think. Some cobweb spiders are kleptoparasites, which means they steal food and other resources from another animal, in this case larger spiders. A kleptoparasite cobweb spider actually lives in the web of a larger spider, and when a small bug gets caught in the web, it steals it. Sometimes the cobweb spider will kill and eat the spider that built the web in the first place too.

But most cobweb spiders are ordinary spiders, and most are quite small, usually only a few millimeters long. Many are marked with pretty patterns in brown, white, black, and other colors. Different species build different kinds of webs, but they all eat small insects.

As for the wasp, it’s about the same size as the spider it’s trying to parasitize, and sometimes smaller. It has long wings, long antennae, and a long abdomen that in the female ends in a sharp ovipositor. The female finds a spider, usually a young spider that’s less able to defend itself, and stabs it in the abdomen with her ovipositor. Then she lays a single egg inside the spider and flies away.

The egg doesn’t bother the spider, although once the egg hatches into a larva it starts to feed on the spider’s hemolymph. Remember, that’s the equivalent of blood in the invertebrate world. At the same time, it’s releasing hormones into the spider that change its habits. Basically the wasp larva controls the spider so that it acts to the benefit of the larva, not itself.

All this takes about a month. When the larva is ready to pupate and metamorphose into an adult wasp, it secretes a final hormone that influences the spider’s behavior. This one causes the spider to spin a strong, cocoon-like web. When the web is finished, the larva bursts out of the spider’s body, killing it, and eats the spider. Then it enters the cocoon and develops into an adult wasp.

Because spiders are good at defending themselves, only about 1% of spiders end up parasitized. I’m sure the spiders think that’s 1% too many. There are other parasitic wasp species in other places, but they all act about the same as Zatypota.

Another wasp, Dinocampus coccinellae, parasitizes ladybugs. Like Zatypota, the female wasp lays one egg in the ladybug’s body. When it hatches, the larva eats the ladybug’s insides while the ladybug continues to go about its ordinary activities. But after several weeks, the larva is ready to pupate. It paralyzes the ladybug, bursts out of its body, and spins a cocoon that the ladybug sits on.

But the ladybug isn’t dead. It protects the cocoon from other insects by twitching and making grasping motions with its legs.

After about a week, the adult wasp emerges from its cocoon and flies away. The ladybug usually dies, but not always. About a quarter of infected ladybugs recover and are fine. Researchers aren’t sure how the wasp larva causes the paralysis. It may release a virus that infects the ladybug or it may have something to do with venom released by the larva.

This wouldn’t be a proper zombie episode if I didn’t talk about that disgusting parasitic fungus that affects certain carpenter ants in the rainforests in Brazil and Thailand. It completely squicks me out so I’m going to explain it very, very quickly.

Fungal spores float through the air and land on an ant, where they stick. They release enzymes that eventually break down the ant’s exoskeleton, allowing the fungus to spread inside the ant’s body. Finally it’s able to control the ant and makes it crawl up the stem of a plant and bite into a leaf vein. The ant is unable to move at this point and eventually dies. The fungus sprouts from inside the ant and grows into stalks, especially from the ant’s head. About a week later it releases spores that go on to infect other ants. Ugh. So glad I’m not an ant.

Ants can sense when one of the colony has contracted the fungus, and will carry the infected ant far away from the colony so it’s less likely to infect others. The ants also groom each other to remove any spores that may have attached. The fungus can completely destroy ant colonies, but it has a parasite of its own, another fungus that stops the first fungus from releasing spores. A related parasitic fungus also infects certain caterpillars.

Look, I’m totally over talking about fungus, so let’s move on.

So is there any chance that a parasite will turn you into a zombie? There’s not, but a behavior-changing parasite does sometimes infect humans. It’s called Toxoplasma gondii, and while its effects on human behavior has been studied extensively, the effects are so minor as to be nearly nonexistent in most cases.

Toxoplasmosis is a disease caused by a single-celled parasite, and it’s one that not only infects humans, it’s really common. I probably have it but I’m not going to think too hard about that. For most people, it never bothers them and never causes any symptoms, or only mild short-term symptoms like a lowgrade cold that takes a few weeks to clear up. But it can be more serious in people with a suppressed or weak immune system, and can cause problems for the baby if its mother gets infected while she’s pregnant.

There are estimates that up to half the people in the world are infected with toxoplasmosis but never know. The reason it’s so common is that the parasite targets cats, and can be spread in cat feces. And, you know, if you scoop out the cat’s litter box you might be exposed. That’s why pregnant women shouldn’t clean up after a cat. Infection can also result from eating undercooked meat from an infected animal, eating unwashed fruit or vegetables, drinking unpasteurized milk, and drinking untreated water.

Any mammal or bird can contract the parasite, but it can only reproduce in a cat’s digestive system. It doesn’t hurt the cat, it just wants to get inside the cat so it can reproduce. And the best way to get inside a cat is to be part of a rodent that a cat eats.

When a rat or other rodent is infected with Toxoplasma gondii, its behavior changes. Suddenly, it starts to like cats. You can probably see where this is going. Not only does it stop avoiding cats, it actually seeks them out. The cat, naturally, can’t believe its luck, kills and eats the rodent, and may become infected.

If you have a pet cat, the best way to reduce the risk of contracting toxoplasmosis is to scoop the litter box daily, then wash your hands. It takes about a day for the parasite to become active after being shed in cat poop, so if you scoop the litter box right away the risk is lower. Researchers are working on vaccines, and they’ve actually already developed a vaccine that’s now used in sheep. If you keep your cat inside, where it’s safer anyway, it’s much less likely to be exposed to the parasite in the first place.

So, take ordinary precautions but don’t worry too much about toxoplasmosis. Unless, of course, you are a rodent.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!