Episode 462: Cryptic Coloration

Thanks to Måns, Sam, Owen and Askel for this week’s suggestions!

Further reading:

Shingleback Lizard

What controls the colour of the common mānuka stick insect?

The mossy leaf-tailed gecko has skin flaps that hide its shadow. There’s a lizard in this photo, I swear! [photo by Charles J. Sharp – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=92125100]:

A shingleback lizard, pretending it has two heads:

The beautiful wood nymph is a beautiful moth but also it looks like a bird poop:

The Indian stick insect (photo by Ryan K Perry, found on this page):

The buff tip moth mimics a broken-off stick. This person has a whole handful of them:

A cuttlefish can change colors quickly [photo by Σ64 – Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=77733806]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about a few types of camouflage, a suggestion by Måns, and we’ll also talk about some camouflaged animals suggested by Sam, Owen and Aksel, Dylan, and Nina.

There are lots of types of camouflage, not all of it visual in nature. Back in episode 191 we talked about some toxic moths that generate high-pitched clicks that bats hear, recognize, and avoid. Naturally, some non-toxic moths also generate the same sounds to mimic the toxic moths.

Måns specifically suggested cryptic coloration, also called crypsis. It’s a type of camouflage that allows an animal to blend into their surroundings, which can involve multiple methods.

Some animals have cryptic coloration mainly along the edges of the body, to defeat a skill many predators use called edge detection. A lot of amphibians and reptiles have patches surrounded by an outline, with dark patches having a darker outline and light patches having a lighter outline. This acts as disruptive camouflage, hiding the outline of an animal’s body as it moves around. Some animals take this camouflage even further, with a way to hide their own shadow.

This is the case with the mossy leaf-tailed gecko, which is native to the forests of eastern Madagascar. It can grow up to 8 inches long, or 20 cm, not counting its tail, and it’s nocturnal. Its tail is flat and broad, sort of shaped like a leaf, but it doesn’t disguise itself as a leaf.

The mossy leaf-tailed gecko has a complicated gray and brown pattern that looks like tree bark, and it can change its coloration a little bit to help it blend in even more. At night it’s well hidden in tree branches as it climbs around looking for insects, but in the day it needs to hide really well to avoid becoming some other animal’s snack while it’s sleeping.

It does this by finding a comfortable branch and flattening its body and tail against it so that it just looks like another part of the branch. But to make it even more hidden, it has a flap of skin along its sides that wraps even farther around the branch. Not only do these skin flaps hide its edges, it hides its shadow, since the flaps are really flat and there’s no curved edge of a lizard belly pressed against a branch that a predator might notice.

The most common kind of cryptic coloration is called countershading, and it’s so common that you might not even have noticed it although you see it almost every time you see a fish, amphibian, reptile, and many birds and mammals. Countershading is an animal that’s darker on top and lighter underneath, like a brown mouse with a white belly. It’s even found in some insects and other invertebrates.

Countershading is another way to hide a shadow. If a dolphin, for instance, was gray all over, its underside would look darker because of shadows, since sunlight shines down from the sky and makes shadows underneath the body. That would make its body shape look rounder, meaning it stands out more and a predator would notice it more easily. But most dolphins are pale gray or even white underneath. There’s still a shadow, but it’s no longer darker than the rest of the body. The lighter colored underside makes the shadow paler, and as a result, from a distance the dolphin looks almost the same shade all over, which makes it appear flat and the edges of its body harder to see. We even know that some dinosaurs were countershaded, with lighter colored bellies.

Countershading is so common in animals that it’s almost impossible to pick one example. Dylan suggested we learn about the shingleback lizard, an amazing animal found in many parts of Australia. It’s also called the stumpy-tailed lizard, the bobtail lizard, or the two-headed lizard. All three of those names refer to the animal’s tail, which is short and fat and actually looks like a second head. This is an example of automimicry, similar to animals that have markings that look like eyes. The lizard is brown with darker and lighter speckles and it sometimes has yellow spots too. Its belly is pale with dark spots. Its scales are large and overlap each other, and its eyes are tiny, like little black beads. It grows about a foot long, or 30 cm.

The shingleback lives in arid and desert areas, and its tough skin and overlapping scales help reduce water loss. It eats snails, insects, flowers, and other small animals and plants. When threatened, it will open its mouth wide and stick out its large, dark blue tongue. It is an impressively blue, impressively big tongue, and the inside of the shingleback’s mouth is bright pink, so the lizard has a chance to escape while its predator is startled and wondering if the lizard is dangerous. The shingleback can give a painful bite, although it’s not venomous.

The shingleback mates for life, and the female gives birth to two or three live young every year instead of laying eggs. In many reptiles that give birth to live young, the eggs basically remain in the mother’s body until they hatch, and then she gives birth. But in the shingleback’s case, her babies develop in placentas in a process very similar in many ways to placental mammals. The babies eat the placenta after they’re born, giving them a quick first meal, and they’re born ready to take care of themselves.

Sam suggested we talk about animals that can be confused with inanimate objects, which is a type of camouflage referred to as mimicry. Mimicry of all kinds is a really common type of camouflage, like all those harmless insects that have yellow and black stripes to mimic bees and wasps that can sting.

My favorite inanimate object mimic is a moth we talked about in episode 191, the beautiful wood nymph of eastern North America. It has a wingspan of 1.8 inches, or 4.6 cm, and it is indeed a beautiful little moth. Its front wings are mostly white with brown along the edges and a few brown and yellow spots, while the rear wings are a soft yellow-brown with a narrow brown edge. It has furry legs that are white with black tips. But when the moth folds its wings to rest, suddenly those pretty markings make it look exactly like a bird dropping. It even stretches out its front legs so they resemble a little splatter on the edge of the poop.

If you think about it, it makes sense that a tiny animal like an insect would want to resemble something common in its environment that’s also not eaten by very many other animals. For instance, a stick.

Owen and Aksel wanted to learn more about the walking stick, since it’s been a long time since we talked about it, episode 93. Walking stick insects are also called stick insects or phasmids. When I was a kid I was terrified of the whole idea of a stick insect, although I don’t know why. I think I thought one day I’d climb a tree and discover that some of those sticks were not actually part of the tree. I guess I spent a lot of time climbing trees, but I never actually saw a walking stick insect. Maybe that’s because they were so well camouflaged that I thought they were sticks!

Walking sticks live in trees and bushes, naturally, especially in warm areas, but they’re found on every continent except Antarctica. They’re long, thin insects with long, thin legs and they really do look like sticks. Some are green, some are brown or gray, and many have little patterns, projections, and ridges that make them look even more like real sticks. They’re closely related to another type of phasmid called a leaf insect, which as you may have already guessed, mimics a leaf. All phasmids eat leaves and other plant material and most are nocturnal.

Some phasmids can even change colors to help blend in with their background. The Indian stick insect, which is indeed found in southern India although it’s been introduced in many other parts of the world and is considered invasive in some places, grows up to about 4 inches long, or 10 cm. It’s usually brown, but it can change its color in response to light levels by moving pigment granules in its cuticle that absorb and scatter light. The Indian stick insect has many other ways to hide in plain sight. If it feels threatened, it will stretch out with its rear legs folded flat against its body and its front pair of legs stretched forward to make it look even longer. It will stay perfectly stiff even if someone picks it up, but if it thinks it’s in danger, it will spread its front legs to show a patch of red at the base of the legs. This can startle or frighten a potential predator long enough to let the stick insect get away.

One interesting thing about the Indian stick insect is that almost all individuals are females. Females don’t need to mate with a male to reproduce. The female’s babies are little clones of herself, and she drops an egg every so often onto the ground. It looks like a tiny seed, and ants think it’s a seed and will collect it and take it back to the nest to be stored for later. The egg is then protected until it hatches, when the larval insect leaves the ant nest and finds a tree or bush to hide in.

The buff tip moth also looks like a twig or branch when its wings are folded, but not in the same way the walking stick insect does. It looks like a broken-off branch instead. It’s a fairly large moth with a wingspan more than 2 and a half inches across, or 7 cm, and its wings are mostly gray with a rounded buff patch at the end. The end of its abdomen is buff too, so that it looks like the inside part of a tree branch, that’s paler than the bark. It lives throughout much of Europe and Asia, and different populations look slightly different because they’ve evolved to resemble the branches of different species of tree.

Let’s finish with Nina’s suggestion, about an animal that can change colors really fast to blend in with its background. That’s the cuttlefish, and Nina wanted to know how it changes colors so fast, and while we’re at it, why octopuses are so flexible.

The cuttlefish is a cephalopod, closely related to octopuses and squid, but is quite small in comparison. It has eight arms and two feeding tentacles, just like the squid, but its arms are really small in comparison to its mantle. There are over 100 species known so far, most of which are small enough to fit in the palm of your hand. But unlike the squid or the octopus, the cuttlefish has an internal structure called the cuttlebone. It’s not a bone at all but a modified shell, which is your reminder that cephalopods are mollusks and are distantly related to clams, snails, and many other animals that have shells. The cuttlebone helps the cuttlefish stay buoyant without effort, and it also incidentally makes the body a little more structured than its squid and octopus cousins.

Octopuses are flexible because they have no bones. Basically the only hard structure in an octopus is its beak. A cephalopod’s mouth is in the middle of its arms, so it’s usually hidden from view. Way back in episode 142 we talked about how octopus muscles work, so let’s revisit that briefly. In animals with bones, muscles are attached to the bones. But octopuses don’t have bones.

The octopus’s muscles are structured differently than muscles in animals with bones. Our muscles are made up of fibers that contract in one direction. Let’s say you pick up something heavy. To do so, you contract the fibers in some muscles to shorten them, which makes the bone they’re attached to move. Then, when you push a heavy door closed, you contract other muscles and at the same time you relax the muscles you used to pick up something heavy. This pulls the arm bone in the other direction.

But in the octopus, the fibers in its muscles run in three directions. When one set of fibers contracts, the other two tighten against each other and form a hard surface for the contracted fibers to move. So they’re muscles that also sort of act like bones. It’s called a muscular hydrostat, and it actually can result in muscle movements much more precise than muscle movements where a bone is involved.

So, if you combine the octopus’s strong, precise muscle movements with its general lack of hard structures, you get a very flexible animal. Basically an octopus can squish itself through extremely small openings, as long as its beak will fit through. This can make it really hard to keep an octopus in captivity, because in addition to being flexible and squishy, the octopus is also really intelligent. It can survive for short periods of time out of the water, and it can figure out how to open its enclosure and get out to explore, or just escape.

But, back to the cuttlefish, which is small and needs to hide from predators. Like other cephalopods, the cuttlefish can change color and pattern in less than a second, and can even change the texture of its skin if it wants to look bumpy like the rocks around it.

Cephalopods have specialized cells called chromatophores in their skin. A chromatophore consists of a sac filled with pigment and a nerve, and each chromatophore is surrounded by tiny muscles. When a cuttlefish wants to change colors, its nervous system activates the tiny muscles around the correct chromatophores. That is, some chromatophores contain yellow pigment, some contain red or brown. Because the color change is controlled by the nervous system and muscles, it happens incredibly quickly, in just milliseconds.

But that’s not all, because the cuttlefish also has other cells called iridophores and leucophores. Iridophores are layers of extremely thin cells that can reflect light of certain wavelengths, which results in iridescent patches of color on the skin. While the cuttlefish can control these reflections, it takes a little longer, several seconds or sometimes several minutes.

Like other cephalopods, the cuttlefish uses its ability to change color and pattern in order to hide from predators. It also uses these abilities to communicate with other cuttlefish, because it’s a social animal. It will also sometimes frighten potential predators away with a bright, sudden display of color changing.

The most amazing thing of all is that cuttlefish can’t see colors. They have no color receptors in their eyes. But they accurately change color to match their background, even though they can’t see the color, and they can even do so if it’s almost completely dark. While scientists have some theories as to how the cuttlefish manages this, we don’t yet know how they do it for sure. So it is still a mystery!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, corrections, or suggestions, email us at strangeanimalspodcast@gmail.com.

Thanks for listening!

Episode 097: Unusual Reptiles

Thanks to listeners Finn and Leo, who suggested this week’s topics of strange lizards, and the thorny devil and mata mata turtle, respectively! Join us this week to learn about those reptiles and a bunch more!

Thorny devil. Definitely do not eat.

The mata mata turtle. Big leafhead boi

A frilled lizard BWAAAAAMP

A Pinocchio lizard. Wonder where that name comes from.

Poke poke poke does this bother you? poke poke

om nom nom

A shingleback, or as I like to call it, an ambulatory poop:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We have more listener suggestions this week! Ages ago, listener Finn suggested strange lizards, and more recently, listener Leo suggested a particular type of strange lizard and a strange turtle.

We’ll start with Leo’s suggestion, the thorny devil. He describes it as “a cool animal with spikes all around it,” which is definitely a good way to put it. The thorny devil is a lizard from Australia, and it does indeed have spikes all over its head, back, and tail, and smaller spikes on its legs. The spikes are modified scales and are sharp.

The thorny devil grows to around 8 inches long, or 20 cm, with females being larger than males on average. In warm weather its blotchy brown and yellow coloring is paler than in colder weather, when it turns darker. It can also turn orangey, reddish, or gray to blend in to the background soil. Its color changes slowly over the course of the day as the temperature changes. It also tends to turn darker if something threatens it.

It has a thick spiny tail that it usually holds curved upward, which makes it look kind of like a stick. It moves slowly and jerkily, rocking back and forth on its legs, then surging forward a couple of steps. Researchers think this may confuse predators. It certainly looks confusing.

As if that wasn’t enough, the thorny devil has a false head on the back of its neck. It’s basically a big bump with two spikes sticking out of the sides. When something threatens the lizard, it ducks its head between its forelegs, which makes the bump on its neck look like a little head. But all its spines make it a painful mouthful for a predator. If something does try to swallow it, the thorny devil can puff itself up to make itself even harder to swallow, like many toads do. It does this by inflating its chest with air.

The thorny devil eats ants and only ants, specifically various species of tiny black ants found only in Australia. It has a sticky tongue to lick them up. Because it has such a specific diet, it’s hard to keep in captivity. Only a few zoos in Australia have thorny devils on display. If you listened to episode 93, where we talked about invasive ant species having an effect on entire ecosystems, the thorny devil is an example of this. Fortunately the ants it eats are doing just fine, but if an invasive ant species were introduced to the areas where it lives, the thorny devil would probably be in trouble. So no moving ants around, everyone, I mean it.

The thorny devil lives in desert and scrubland regions, and in hot weather it digs a burrow to shelter in. Females lay their eggs in burrows. To get enough water in its desert environment, the thorny devil has microscopic grooves between its scales that suck up water by capillary action. At night dew condenses on the lizard’s body, and it also collects dew by brushing against dewy vegetation or just by standing or lying on damp sand. If it does happen across water in a puddle, it will put a leg in the water and the tiny grooves in its skin suck up water and funnel it to the mouth. It’s like a living straw.

While I was researching this, I found some information on how rattlesnakes drink. When it starts to rain, a rattlesnake will coil up tightly so that rainwater collects in its coils. Then it drinks the water. This sounds like something someone just made up, but it’s real.

Let’s skip right from a snake fact to a weird turtle, because Leo also suggested the mata mata turtle as a topic. This is where I got distracted while researching, and ended up with an entire episode about giant tortoises. If you were wondering, the main difference between a turtle and a tortoise is that turtles spend most or all of their time in water, while tortoises live only on land.

The mata mata turtle lives in shallow, slow-moving water in South America, especially swamps around the Amazon and Orinoco river basins. It isn’t closely related to the snapping turtle of North America, but it does resemble a snapping turtle in some ways. Its shell is brown or black, its skin is grayish, and its plastron, or the belly section of its shell, is yellow or brown. It grows to around two feet long, or 60 cm, with a long, broad neck and wide, triangular head. Its nose comes to a point like the stem of a leaf. In fact, if you look down on a mata mata in the water, the shape of its head looks exactly like a dead leaf. It has notches and ridges on its shell, and its knobbly skin has flaps that helps camouflage the turtle among dead leaves and sticks in the water. It also has claws and webbed toes.

Unlike the snapping turtle, the mata mata is harmless to humans and most animals. It doesn’t have a sharp bill and it won’t bite. It can’t even chew its food, just swallows it whole. It eats fish, water insects, and other small animals that it captures by opening its large mouth suddenly under the water. This creates suction, sucking a lot of water and the prey right into the turtle’s mouth.

The only time the mata mata leaves the water is to lay eggs. Unlike many other turtle eggs, the mata mata eggs have hard shells, more like bird eggs. It takes the eggs about 200 days to hatch.

The mata mata spends almost all of its time motionless in the water, waiting for prey to come near, and occasionally extending its ridiculously long neck so it can take a breath from the surface. Its pointy nose is a proboscis that it breathes through. It can swim, but it usually prefers to walk along the bottom of the pond or marsh. I bet its feet squish in the mud. Squish squish squish.

Speaking of pointy-nosed reptiles, the male Pinocchio lizard has a nose that points forward and slightly upward like a rhinoceros horn. But it’s not a horn, because it’s flexible, made of cartilage. It lives in the Mindo cloud forest in Ecuador, and was only discovered by scientists in 1953, when researchers collected six specimens. And that was the last time anyone saw the Pinocchio lizard—until 2005, when some birdwatchers saw a weird lizard, took pictures and posted them online, and herpetologists started freaking out.

The Pinocchio lizard blends in so well with its environment that it’s hard to spot. It turns white when it’s asleep, which helps it look like part of a tree branch. It always perches on the end of a branch to sleep, too. During the day, it climbs verrry slowly into the treetops. It’s not a big lizard, only about three inches long, or 7.5 cm, not counting its tail, which is as long as its body. We still don’t know much about it because it’s so hard to study.

It’s not the only lizard with a horn on its nose. For instance, the rough-nosed horned lizard lives in Sri Lanka and is an ordinary-looking lizard for the most part, although it’s covered with short bristly scales that make it look like it would work well for scrubbing out dirty pots and pans. But it has a really long nose, also covered in bristly scales. Oh, and yellow or orange markings on its face that make it look like it has a big orange clown mouth. Males have longer horns than females. Male mountain horned agamas, which also live in Sri Lanka, have a single white or cream-colored horn that sticks directly forward from their nose like a tiny unicorn horn, except it’s not spiraled. In fact, it’s not a horn at all, it’s a single big pointy scale. But those lizards aren’t related to the Pinnocchio lizard.

The La Gomera giant lizard doesn’t have any horns and it’s not all that giant, less than two feet long, or around 49 cm long, including the tail. It’s black or brown on its back with a white belly. Males also have a white throat, and during mating season males inflate their throat and bob their head to attract females. It mostly eats plants, although it will eat insects too, and it lives in the Canary Islands. It’s not the most exciting lizard to look at, but it has an interesting history.

The Canary Islands are a group of islands off the coast of Morocco. It was once called the Fortunate Isles, so if you ever see that in an old book you know what islands it’s talking about. Pliny the Elder, a historian from ancient Rome, said the name Canaria came from the number of dogs on the islands. The word for dog in Latin is canis. The people of the islands were supposed to worship dogs, and some modern historians believe the old accounts of dog-headed people may be a garbled account of the Canary Islanders. Oh, and the little yellow songbirds that live on the Canary Islands took their name from the islands, not vice versa.

The islands were probably visited in ancient times by Phoenician and Greek sailors, but reportedly no one lived there when the Romans explored it in the 1st century. But when Europeans returned in the late middle ages, there were inhabitants that may have been settlers from North Africa. The islands were invaded by Europeans, who then spent centuries fighting with each other over who ruled them. It’s Spain, currently. Scientific expeditions started in the late 18th century. One of the animals the expeditions reported seeing was the La Gomera giant lizard, but it disappeared sometime after about 1900. Researchers assumed it had gone extinct.

Then a 1999 expedition from the University of La Laguna on Tenerife, one of the Canary Islands, heard stories from local residents on the island of La Gomera. They said there was a big lizard living in a few places on the island. The biologists in the expedition checked it out…and sure enough, there were giant lizards. Specifically, six of them. Just six lizards. Later they found another small group of the lizards in another area, but the total population was still no more than fifty.

Fortunately, a captive breeding program has been successful and today there are around 250 of the lizards in the wild, living only on two hard to reach cliffs. They’re vulnerable to introduced predators, especially cats, which eat the eggs and young lizards. Another 300 or so live in a recovery center where they’re protected from predators before being released into the wild. So basically, the La Gomera giant lizard isn’t so much strange as just very, very lucky.

Another lizard that is definitely strange is the frilled lizard from northern Australia and southern New Guinea. It’s bigger than the La Gomera giant lizard, almost three feet long, or 85 cm, and eats insects, spiders, and small animals. It lives in trees and is well camouflaged with blotches and spots on a gray or brown background to help camouflage it among branches and against bark.

The frilled lizard gets its name from the frill on eitherside of its head. Most of the time it keeps the frill folded back against itsneck. When it’s threatened, though, it spreads the frill out and opens itsmouth wide. The inside of its mouth is bright yellow or pink, and the frill hasbright red or yellow scales that don’t show when it’s folded. It’s the lizardequivalent of a jump scare in scary movies. Regular lizard, regular lizard…BWAMP BIG SCARY BRIGHT LIZARD

The frill is made up of spines of cartilage that grow from the lizard’s jaw bones, with skin connecting the spines. It’s not small, either. When expanded, it can be almost a foot across, or 25 cm.

The frilled lizard isn’t dangerous, though, and if its threat display doesn’t scare off a predator, it runs away until it finds a tree to climb. It runs so fast, in fact, that it lifts its body up and just runs on its hind legs, which helps it navigate uneven ground and gives it a better view of what’s around it. It also holds its long tail out as a counterweight to keep its body upright.

That’s supposed to be all the strange details about the frilled lizard…but there are sightings of it doing something unexpected on rare occasions. People occasionally report seeing a frilled lizard fall or jump from a tree, and glide down using its frill as a parachute. There’s no proof that this actually happens, but it sounds plausible.

Another Australian lizard called the shingleback, or bobtail, looks kind of like a pinecone with legs. Or a poop with legs, just going to set that down and walk away. It’s brown with darker and lighter speckles or yellow splotches, large overlapping scales, a stubby thick tail, and a broad head. In fact, its head and tail look a lot alike, which confuses predators. It also stores fat in its tail for winter. It grows about a foot long, or 30 cm, and eats snails, insects, flowers, and other small animals and plants. It lives in arid and desert areas, and their tough skin and overlapping scales help reduce water loss. Its eyes are tiny, like little black beads.

The shingleback looks nothing like the frilled lizard, but it has one thing in common with it. When threatened, the shingleback will open its mouth wide and stick out its large, dark blue tongue. It is an impressively blue, impressively big tongue, and the inside of the shingleback’s mouth is otherwise pale, so it’s startling, to say the least.

The shingleback mates for life. Most of the year the shingleback is solitary, but in spring mated pairs find each other again and go around together while they hunt for food. The female gives birth to two live babies instead of laying eggs.

I could go on and on and on about all the weird reptiles in the world. There are just so many! We’ll definitely come back to this topic in the future, but for now, let’s finish up with a snake called Iwasaki’s snail-eater.

The snail-eater lives on a few small islands southwest of Japan’s main islands. It’s small, only about 7 inches long, or 22 cm, and is orangey in color with darker markings and bright orange eyes. And it only eats one thing: snails.

It’s so perfectly adapted to its diet of snails that its jaw is asymmetrical so it can more easily wedge it into the typical snail’s shell, which coils clockwise. If you remember from the little yard animals episode, some snails very rarely coil the opposite way, and the snail-eater snake is so specialized to eat ordinary snails that it has trouble with counter-clockwise coiled snail shells. It has more teeth on its right mandible. There are other snail-eater snakes closely related to Iwasaki’s snail-eater that have this same adaptation, and in some areas where the snakes are numerous, counter-clockwise snails are much more common than in areas without a lot of snail-eater snakes.

So that’s a reminder that whether you’re a little snail-eating snake or a regular human being, the things you do have an effect on the world around you, even if it’s in ways too small for you to notice without looking very closely.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!