Episode 303: Weird and Mysterious Animal Sounds

Thanks to Emory for suggesting this week’s topic, mysterious animal sounds!

Further reading/watching:

The Story of Elk in the Great Smoky Mountains

Terrifying Sounds in the Forests of the Great Smoky Mountains

Evidence found of stingrays making noise

This New AI Can Detect the Calls of Animals Swimming in an Ocean of Noise

The wapiti [pic from article linked above]:

The stingray filmed making noise [stills from video linked to above]:

The tawny owl makes some weird sounds:

The fox says all kinds of things:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Emory suggested we do a new episode about strange and mysterious animal sounds a while back, which is one of my favorite topics. The problem is, it’s hard to find good audio clips to share. It’s taken me a while, but I think I’ve found some good ones.

In late September 2018, in the Great Smoky Mountains in North Carolina, some hikers recorded a terrifying animal sound. The sound wasn’t a mystery for long, though, because they soon saw the animal making it. Here’s what it sounded like:

[elk bugle]

It’s the bugle of a male elk, which I’m going to call wapiti to avoid confusion. It’s a sound that wasn’t heard in the Smoky Mountains for at least a century. The eastern wapiti was once common throughout eastern North America but was driven to extinction in the late 19th century, although the last wapiti in North Carolina was killed almost a century earlier than that. All North American wapiti almost went extinct by about 1900, and hunters and conservationists worked to get nature preserves set aside to save it and its habitat. Starting in the 1990s, wapiti from western North American subspecies were reintroduced in the southeast, with reintroductions in the Smokies starting in 2001. There are now at least 200 wapiti living in the mountains, probably more. I’ve seen them myself and they’re beautiful animals!

The wapiti is a type of deer. We talked about it way back in episode 30 along with the moose. Various species of wapiti live throughout Europe and Asia as well as North America, although it’s been hunted to extinction in many areas. As we mentioned in episode 30, the name elk is used for the moose in parts of Europe, which causes a lot of confusion, which is why I’ve chosen to call it by its Algonquin name of wapiti.

The wapiti is a really big animal, one of the biggest deer alive today. Only the moose is bigger. It’s closely related to the red deer of Eurasia but is bigger. A male, called a bull, can stand about 5 feet tall at the shoulder, or 1.5 meters, with an antler spread some four feet wide, or 1.2 meters. Females, called cows, are smaller and don’t grow antlers. Males grow a new set of antlers every year, which they use to wrestle other males in fall during mating season. At the end of mating season the wapiti sheds its antlers.

The bugling sound males make during mating season is extremely loud. The sound tells females that the bull is strong and healthy, and it tells other bulls not to mess with it.

[elk bugle]

Our next sound is from an animal that scientists didn’t realize could even make sounds. There’ve been reports for a long time of stingrays making clicking noises when they were alarmed or distressed, but it hadn’t been documented by experts. A team of scientists recently decided to investigate, with their report released in July of 2022. They filmed stingrays of two different species off the coasts of Indonesia and Australia making clicking sounds as divers approached. They think it may be a sound warning the diver not to get too close. This is what it sounds like:

[Stingray making clicking sounds]

One exciting new technological development is being used to detect underwater sounds and hopefully help identify them. It’s called DeepSqueak, because it was originally developed to record ultrasonic calls made by mice and rats. This is an example of a mouse sound slowed down enough that humans can hear it, specifically a male mouse singing to attract a mate, which we talked about in episode 8:

[mouse song]

But DeepSqueak also works really well to detect sounds made by whales and their relatives, and researchers are currently using it to determine whether offshore wind farms cause problems for whales.

With DeepSqueak and other listening software, it turns out that a lot of animals we thought were silent actually make noise. For instance, this sound:

[Pelochelys bibron]

That’s a grunting sound made by the southern New Guinea giant softshell turtle.

And here’s a caecilian, a type of burrowing reptile that we talked about in episode 82:

[Typhlonectes compressicauda]

Let’s finish with a strange and mysterious sound heard on land. In January and February of 2021, some residents of London, England started hearing a weird sound at night.

[mystery sound]

Because the animal making the sound moved around so much, some people thought it must be a bird. One suggestion is that it was a tawny owl, especially the female tawny owl who makes a chirping sort of sound to answer the male’s hoot. This is what the male and female tawny owl sound like:

[owl sounds]

The tawny owl also sometimes makes an alarm call that sounds like this:

[tawny owl alarm call]

But the sound didn’t really match up with what residents were hearing. Here it is again:

[mystery sound]

Finally someone pointed out that red foxes make a lot of weird sounds, mostly screams and sharp barks, but occasionally this sound:

[fox sound]

That seems to be a pretty good match for what people were hearing in early 2021, although since no one got a look at the animal they heard, we can’t know for sure. So it’s still a mystery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 030: Reindeer and Moose don’t confuse them

In Episode 30, I admit a M I S T A K E, in that I did not realize Finland has a sizable moose population and so therefore assumed that although this thing looks like a moose, it must be a reindeer head. So because I made a M I S T A K E, the whole class is being punished by learning about reindeer and moose of Finland.

Oh yeah, I’m back from my trip to Finland. I had a great time!

Finnish forest reindeer:

Barren-ground caribou:

Finnish moose:

Alaskan moose:

Whee!

Oh, here’s a link to information about my new book! More details coming next week.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This is the first episode I’ve put together since returning from Finland last week. I had a great time on my trip! WorldCon was amazing, I got to hang out with some good friends, and I had lots of positive feedback after the panel I was on. One day I went to a fun Viking-themed restaurant with my friends Emma and Dave (hi guys!), where I ordered reindeer. It was really good, and when I got my food I tweeted a picture of the plate along with a picture of a stuffed animal head across from me. I captioned it something like, “A reindeer is watching me eat reindeer.”

Unfortunately, that wasn’t a reindeer head. It was a moose head. When I first saw it I knew it was a moose head, but I didn’t believe myself that it was a moose head because there’s no moose in Finland, right? Just reindeer.

Five thousand replies correcting me later, I sheepishly admitted that I was wrong and swore I would in the future trust myself to ID moose heads versus reindeer heads without convincing myself I was wrong. And just to clear things up, here’s an entire episode on certain hoofed Ice Age megafauna that live in Finland.

The reindeer living today are all one species, Rangifer tarandus, although there are a number of subspecies. Reindeer evolved about 3 million years ago and are closely related to moose.

During the late Pleistocene, better known as the ice ages, reindeer were much more widely spread than they are today. You could have found herds of reindeer in Tennessee and Spain during the last glaciation around 12,000 years ago. These days, wild reindeer are found in Norway, Finland, Iceland, and Siberia, and in Alaska, Canada, and Greenland. In North America, reindeer are called caribou. Wild reindeer and caribou numbers are in decline worldwide due to climate change and habitat loss.

Most reindeer are migratory to at least some extent. Some populations of caribou in North America migrate 3,000 miles a year. The only mammals that migrate farther than that are whales. Mating occurs during autumn migration, and calves are born after spring migration in May or June.

Reindeer have larger hearts than other ruminants of about their same size, which helps them run and swim for extended periods of time in cold environments. Reindeer knees click when they walk, and researchers believe this helps individuals keep track of each other in white-out conditions.

Reindeer eat leaves, twigs, some types of grass, and mushrooms, but their primary food in winter is the reindeer lichen. Mammals don’t typically eat lichens, but reindeer have developed a special enzyme called lichenase that helps them digest it. In spring they may also eat bird eggs, fish, and rodents when they can catch them. Instead of secreting urea in their urine as almost all mammals do, reindeer retain it within the digestive system for the nitrogen it contains.

Now, in my defense, the reindeer I’m familiar with are North American caribou, and many caribou have somewhat palmate antlers and heavy muzzles that kind of resemble moose. At least at first glance, especially if you’re convinced you’re looking at a reindeer head and not a moose head. Most reindeer in Europe have slenderer muzzles and more typically deer-like antlers. Reindeer have the largest antlers to body size of all living deer species, even counting the moose. Moose antlers are larger, but moose bodies are also bigger. Some mature male forest reindeer can have antlers almost seven feet wide with up to 44 points. Both females and males grow antlers, although females have smaller antlers and individuals in some populations don’t grow them at all. While males shed their antlers soon after the rut season, females keep theirs all winter and use them to defend their feeding areas from other reindeer.

In winter reindeer hooves are sharp and hard like ordinary deer hooves, which helps them keep a good purchase on ice and allows them to dig through snow to the lichen beneath. In summer, though, when the ground is muddy and soft, the hooves become more like spongey footpads to help spread their weight across a larger surface.

The first mention of reindeer herding comes from the ninth century, but the Sámi people, once called Lapps, of what is now northern Finland, Sweden, and Norway had probably domesticated reindeer long before that—at least 2,000 years ago and possibly as long as 7,000 years ago. The Sámi were traditionally nomadic, moving with their herds. They used reindeer for meat, milk, fur, and transport. These days reindeer herding is pretty hands-off, with herds moving around as they like while the herders check them periodically using ATVs or snowmobiles. But reindeer herding is an important aspect of Sámi culture, and extensive knowledge of reindeer and weather is still passed down mostly orally.

While reindeer have been at least semi-domesticated for thousands of years, the caribou of North America have never been domesticated, although many native cultures in North America depend on caribou hunting. As a result, domesticated reindeer tend to be heavier than caribou, migrate much shorter distances, and calve earlier in the year.

Next, let’s talk about moose. In North America, moose are called moose. But in Europe, moose are called elk.

The word elk is old and comes from the same Germanic root language that Old English evolved from. The word moose was borrowed from the Algonkian languages at the end of the 16th century. So I guess it’s inaccurate to say that it’s wrong to call your moose elk. I mean, before the 16th century people in Europe had to call moose something and the word elk was just sitting there. What we call elk in North America is a totally different large deer, native to North America and parts of Asia. But since the word moose is just fun to say, I don’t know why people in Europe haven’t adopted it. Then again, I also don’t know why we call elk elk and not WAH-pah-tee [wapiti] in North America, since wapiti is another Algonkian word.

But yes, moose do live in Europe, specifically northern Europe and parts of Russia. Moose did once have a much larger range. Moose remains only 3900 years old have been found in Scotland, but once the moose died out, the word elk was just floating around with nothing to fasten itself to, so for a long time people in Britain used the word elk to refer to any large deer, especially red deer—which resemble North American elk aka wapiti.

Anyway, I’m calling them moose and we’re not going to discuss the wapiti in this episode because I’m already confused enough as it is.

Like the reindeer, there is only one species of moose but several subspecies. The biggest are the Alaskan moose and the East Siberian moose. Big males of both can stand over seven feet tall at the shoulder and weigh over 1500 pounds. The moose subspecies of North America generally have larger antlers with two lobes each, whereas Eurasian moose subspecies typically have one lobe each. The largest spread of antlers ever measured was just under seven feet across. Only male moose grow antlers.

The moose likes marshy or wet areas and eats a lot of aquatic plants, although it will also rear up on its hind legs to reach tree leaves. It eats leaves, twigs, and roots, and prefers low-fiber plants. It can’t digest hay. Moose have even been known to dive to reach plants. Its nostrils seal when underwater, which allows it to eat without lifting its head out of the water.

Moose evolved around 2 million years ago in Europe, with the earliest known species called the French moose. It was actually bigger than the Alaskan moose but looked more like a deer. It didn’t have the modern moose’s heavy snout and its antlers were over eight feet across, mostly just one unbranched beam with a small palmation at the ends. By around a million years ago the French moose had given rise to the broad-fronted stag moose, which migrated from Eurasia to North America. It looked more like its modern descendant.

Like all deer, moose and reindeer have no upper incisors, just a hard palate. Both are also ruminants, which means their food goes through a complex system of bacterial fermentation, including needing to be regurgitated and rechewed as cud, so that the animal can extract as much nutrition from low-protein plant food as possible.

Around 100,000 moose live in Finland and hunting permits are limited each year to roughly the same number as calves born that year. Moose sound exactly like you’d expect them to sound, like this:

[angry moose sound–HOOOOOOONK HOOOOOONK HOOOOOOOOOONK]

While I was in Finland, I didn’t find as much time to bird as I’d planned. But my first night in Helsinki let me see an animal that I didn’t expect to see at all—I didn’t, in fact, know it was an animal that ever lives in cities. I won’t go into the reason why I was wandering around Helsinki at 3am on a Monday because it’s a long story without much of a payoff. But while I was out and about, I kept seeing an animal that at first I couldn’t identify. At first glance I thought it was a huge rat, but its legs were too long. Then I thought it might be a dog, but it wasn’t shaped right. It took me several sightings to realize I was looking at a hare, probably the European hare.

I’d never seen a hare before. I’m used to our cottontail rabbits, which are adorable and have tails like powder puffs, but which aren’t very big. This hare was easily over a foot tall with long legs, and it was hopping busily around the quiet streets of Finland’s largest city under the light of a full moon.

That’s it for this episode—apologies for how short it is, but I am unbelievably jetlagged. If you’re listening to this one the week it comes out, I’ll be at DragonCon this weekend. If you’re going to be there too and want to say hi, feel free to email or tweet at me! After DragonCon my schedule should go back to normal.

Oh, and one last thing—I have a book out! I’ll talk about it more in next week’s episode, but if you’re interested, the book is called Skytown and it’s a fun steampunk fantasy adventure about a couple of ladies who are airship pirates. It’s available in paperback right now but should soon be released as an ebook too. It’s published by Fox Spirit Books. I’ll put a link in the show notes.

Anyway, you can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!

Episode 004: The Irish Elk

(re-recorded audio)

In which your host calls her own podcast by the wrong name! And doesn’t catch it until it’s too late to change (i.e. five minutes ago). This week’s episode of Strange Animals Podcast is about the Irish Elk specifically and the Pleistocene era in general, especially as regards to humans spreading out across the world from Africa. Did the Irish elk’s enormous antlers really have anything to do with its extinction? And is it really for-sure extinct? (Spoiler alerts: no and yes.)

The Irish elk (more accurately called the giant deer) could stand as tall as seven feet high at the shoulder.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This is a re-record of the original episode to improve audio quality and bring some of the information up to date.

This week’s episode is about the Irish elk, the first of many episodes about Ice Age megafauna. But before we learn about the Irish elk, let’s start with the span of time popularly known as the ice age, along with information about how humans spread across the world.

The last two million years or so of history is known as the Pleistocene, which ended about 12,000 years ago. The end of the Pleistocene coincides roughly with the extinction of a lot of the Pleistocene megafauna and the beginning of modern historical times.

During the Pleistocene, the earth’s axis tilt and plane of orbit resulted in reduced solar radiation reaching the earth. The process is due to what is called Milankovitch cycles, which I won’t go into since I don’t actually understand it. To grossly oversimplify, the earth got colder for a while because there wasn’t as much sunshine as usual, and all of these glaciers formed, and then it would warm up again and the glaciers would melt. This happened repeatedly throughout the Pleistocene, which was actually a series of ice ages with interglacial times in between.

Our current era is called the Holocene, and it’s considered an interglacial period. But if you’re hoping that the next ice age is a neat solution to global warming associated with climate change, the next glacial period isn’t expected for another 3,000 years.

The word megafauna means “giant animals.” You might hear dinosaurs referred to as megafauna, and that’s accurate. It’s a general term applied to populations of animals that grow larger than a human. Humans are also considered a type of Ice Age megafauna. high five, all my ice age peeps yes I kept that dumb line in this re-record

During the Pleistocene, humans migrated from Africa and spread across the world, rubbing shoulders with Neandertals, making awesome stone tools, and killing megafauna whenever they could. Humans are good at killing animals. In elementary school, I remember reading about ancient tribes of people stampeding mastodons over cliffs, eventually killing them all off. I didn’t believe it, but that’s actually true. We have lots of evidence that many types of animals were killed in this way, and it may have led to the extinction of some of the megafauna. It certainly didn’t help them. Wherever humans showed up, extinctions followed. The only exception is Africa, probably because the animals in Africa evolved alongside humans and knew how to deal with us. But when the first bands of humans showed up in Eurasia and the Americas, the native animals didn’t even know we were predators. They certainly didn’t know how to avoid being stampeded over cliffs. That’s a skill you don’t get many chances to practice.

Many people, especially Europeans, think that native peoples of whatever part of the world are natural conservationists. They live in harmony with nature, taking only what they need and using, for instance, every part of the buffalo. But human nature is human nature. Sure, when you live in a comfortably established village with a set territory, and your hunters and fishers start noticing that there’s not much game left, you learn conservation or you starve. But when you’ve got an entire world ahead of you—vast continents that have never seen a tool-using great ape with wicked intelligence and an insatiable appetite, you don’t need to live in harmony with nature. Our ancestors would find a nice area, settle there for a while, and when all the easily obtainable food was gone, they’d move on.

Humans still act this way. That’s why we leave trash all over the place. But the good news is that we are also good at recognizing when we’re causing a problem and deciding to fix it. So even though our first impulse might be to throw trash everywhere, we can also stop doing that and clean up trash already on the ground.

By the beginning of the Pleistocene, the continents were in their current spots. The world looked about the way it did now. But during the glacial periods, so much water froze that sea levels dropped around 300 feet. This exposed huge areas of continental shelf, making the continents bigger and joining some of them together. For instance, during glaciation, Alaska was connected to Asia. In some books you’ll see this talked about as a land bridge, which I always imagined as narrow and muddy. But it wasn’t just a bridge, it was a huge chunk of continent, and it stayed that way for thousands of years.

Then the temperature would warm up, sometimes dramatically. Within a few decades, the glaciers had mostly melted, the sea levels rose and flooded the low-lying land, and animals scrambled to find a comfortable habitat. It’s easier for an animal to move than to adapt to a changing habitat.

Even though a lot of land was flooded, other land opened up as glacial barriers disappeared. Animals that had traveled to Alaska on a land bridge from Asia could now move deeper into North America. Animals from deeper in North America could enter Alaska.

This colder-warmer-colder pattern happened a few dozen times during the Pleistocene, shaking the climate up repeatedly and leading to extinctions, with or without human help, and animals that look strange to us now because we don’t fully understand the environments they adapted to. But one thing is for sure. The megafauna were all awesome.

Fast forward to a few hundred years ago. European humans are in the middle of a territorial war with North American humans, and as they pushed their way farther into North America, they started to find interesting things: giant bones in the southerly areas, actual frozen carcasses in the permafrost of the northerly areas. Some of those carcasses looked so fresh, and the interior of North America was so little explored by Europeans that a lot of people assumed they’d find living mammoths if they looked in the right spot. When Thomas Jefferson sent Lewis and Clark on their turn of the 19th century expedition, one of their goals was to find mastodons and other megafauna.

They didn’t, of course. Instead they almost died repeatedly and had to be rescued by Sacajawea, who I like to imagine kept sighing with exasperation but who at least got to hang out with the expedition’s Newfoundland dog. Newfies are the best. (I miss you, Jasper.)

So, now we have a little bit of background about Ice Age megafauna. If you’re interested in learning more about how humans evolved and spread across the world, and our extinct close cousins, you can listen to episodes 25 and 26.

The Irish elk was the reason I started this podcast. I happened across the so-called fact I learned in elementary school, that the Irish elk died out because its antlers became so big that it couldn’t escape from predators.

I hadn’t thought of the Irish elk in literally decades. But that antler thing didn’t sound right. I caught myself thinking about it on and off, even getting angry. It didn’t make sense. It’s not like evolution is a power-up in a video game, and as soon as one elk got extra super gigantic antlers, suddenly all elk had them. If overlarge antlers were an issue, only stags with the biggest antlers would die. Does would mate with the remaining stags with smaller antlers and their offspring would be more likely to have small antlers. Besides, deer of all kinds shed their antlers every year and regrow them, which means the stags with biggest antlers wouldn’t have to deal with them for more than a few months of the year.

I did some research, which I found so much fun I decided to turn it into a podcast. Then I realized I couldn’t really make an ongoing podcast exclusively about Irish elk, which is pretty obvious now that I think about it.

So, it turns out that the Irish elk is neither exclusively Irish nor an elk. It did live in the area now called Ireland, but it also lived all across Eurasia and even in northern Africa. Like many deer it liked open woodland and was a browsing animal, meaning it didn’t eat grass but did eat lots of other plants, including green twigs and bark, and if it lived nowadays it would undoubtedly come to my yard and eat my garden.

Recent genetic analysis suggests it’s more closely related to the fallow deer than to elk. For these reasons, many publications these days refer to it as the Giant Deer. Officially it’s Megaloceros giganteus.

Megaloceros did have huge antlers, that’s for sure, sometimes as much as a twelve-foot span, or 3.7 meters. If you’re sitting in an ordinary house, the ceiling is probably eight feet high, maybe nine, or 2.4 to 2.7 meters. The biggest male giant deer could stand about seven feet at the shoulder, or 2.1 meters, and weigh as much as 1500 pounds, or 680 kg. That’s the size of a bull Alaskan moose, although moose antlers are maybe six feet across, or 1.8 m.

So, giant deer had giant antlers, the biggest of any known deer species. But were they really that big relative to the animal’s size? Stephen Jay Gould published a study in 1974 that concluded that compared to the deer’s body size, Megaloceros’s antlers weren’t actually out of proportion at all. They’re just big animals. Sexual selection did encourage antler size—the ladies liked stags with big racks, and stags with bigger antlers could intimidate rival males more easily. But since Megaloceros shed and regrew their antlers every year, in years where the foraging wasn’t as good, everybody’s antlers tended to be smaller.

So why did Megaloceros die out? When did it happen? And are there pockets of giant deer still living in Siberia?

Those questions are all interrelated and surprisingly hard to answer—although I’m not going to lie, if you’re packing your bags for Siberia to look for giant deer, you’re probably going to be disappointed. But there is evidence that Megaloceros survived much later than formerly thought.

Until recently, the last known remains of Megaloceros were dated to the end of the Pleistocene, about 11,000 years ago. Then a partial giant deer skeleton was found on the Isle of Man, and an antler was found in southwest Scotland. Both were dated to about 9,000 years ago, as published in a year 2000 paper in Nature. In 2004, another paper in Nature revealed that giant deer remains found in western Siberia had been dated to about 7,700 years ago.

So, giant deer were around several thousand years later than previously thought, at least in Siberia. Back in the mid-19th century, some naturalists thought Megaloceros might even have survived well into modern days and been hunted to extinction by modern humans. Well preserved skulls were sometimes found in Irish peat bogs, and it wasn’t uncommon for the antlers to be mounted and displayed. I would.

In 1846, a huge cache of bones was found on a small island in a lake near Limerick in Ireland. Among the bones were Megaloceros skeletons. What interested researchers at the time were the Megaloceros skulls. The stags’ skulls were normal. The smaller skulls, thought to be from females, had holes in the front. They looked for all the world like the skulls of cows that had been slaughtered by being poleaxed in the head—a common butchering practice in the area up until recent times. Researchers thought they might have found evidence of limited domestication of giant deer, where the less dangerous females were raised in captivity while stags were hunted in the wild.

Unfortunately, excavation methods in those days left a lot to be desired. There’s no way now to determine whether the Megaloceros bones were actually mixed in with more recent domestic animal bones or whether they were in older deposits. There’s also doubt that the doe skulls were actually Megaloceros. It’s more likely they were elk or moose skulls. Both animals lived in the area well into the Holocene before going extinct, and the skulls are very similar to those of Megaloceros. As far as I can find out, the bones are gone so they can’t even be DNA tested or radiocarbon dated to see how old they are.

As to why the giant deer went extinct, I’m not saying it was humans…but it was humans. Actually we don’t really know. In some places extinction may have been caused by environmental pressures, including a shortened growing season that would have made food scarce. In other places humans may have been at least a partial cause. But isolated pockets of Megaloceros remained for thousands of years afterwards. Why aren’t they still around?

Hopefully, as more remains are found we’ll learn more. It’s likely that the Siberian deer, which survived longest, migrated onto the plains as the foothills of the Urals became more heavily forested about 8,000 years ago. But that coincided with a dry period and with settlers moving into the area. A combination of reduced fodder, loss of habitat, and hunting may have finally driven the giant deer to extinction.

But don’t be sad! Even if we don’t have Megaloceros in zoos these days, we do have a lot of fascinating deer and relatives of deer—moose, reindeer, elk, and so forth. You can still appreciate them.

I do sometimes think that being extinct makes an animal seem more interesting, just because we know we can never see a living specimen. If moose were extinct, this episode would probably be about the moose, and how awesome it was, and how little we know about it, and how it’s a shame they’re all dead. But hey, moose are still around. Take a little time out of your day today to appreciate the moose. (Also, you can check out episode 30 for lots more information about moose and reindeer.)

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!