Episode 398: Repeating Scientific Names

Thanks to Alexandra, Pranav, Eilee, Conner, and Joel for their suggestions this week!

Velella velella, or by-the-wind-sailor [photo from this page]:

Porpita porpita, or the blue button [photo from this page]:

Cricetus cricetus, or the European hamster, next to a golden hamster:

Nasua nasua, or the South American coati [photo from this page]:

Mola mola, or the ocean sunfish:

Quelea quelea, or the red-billed quelea [photo from this page]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn a little bit about scientific names, and along the way we’re going to learn about several animals. Thanks to Alexandra, Eilee, Conner, Joel, and Pranav for their suggestions!

Alexandra inspired this episode by suggesting two animals, the by-the-wind-sailor and the blue button. Both are marine invertebrates that look superficially like jellyfish, but they’re actually colonial organisms. That means that although they look like a single animal, they’re actually made up of lots of tiny animals that live together and function as one organism.

The blue button is closely related to the by-the-wind-sailor and both are related to siphonophores. Both the blue button and the by-the-wind-sailor spend most of the time near or on the ocean’s surface and have a gas-filled chamber that helps keep them afloat, with stinging tentacles that hang down into the water, but both are made up of a colony of tiny animals called hydroids. Different hydroids have different functions, and all work together to find tiny food that will benefit the entire colony.

The blue button gets its name because its float is round and flat like a button, and often blue or teal in color. It’s quite small, only a little over an inch across, or about 3 cm, and its tentacles are not much longer. The by-the-wind-sailor is a little larger than the blue button, with a blue sail-shaped float that’s only a few inches across, or maybe 7 cm, with stinging tentacles of about the same size. The stings of both organisms aren’t very strong and aren’t dangerous to humans, but they do hurt, so it’s a good idea not to touch one. Since both can be very common in warm ocean waters and they sometimes get blown ashore by the wind in large numbers, it can be hard to avoid them if you’re visiting the beach at the wrong time. They can still sting you if they’re dead, too.

The by-the-wind sailor has the scientific name of Velella velella while the blue button’s scientific name is Porpita porpita. The term for a scientific name that contains the same words is a repeating scientific name, also called a tautonym or tautonymous name, and that’s the subject of this episode.

A scientific name is something we mention a lot but if you’re not sure what it means, it can sound confusing. Every organism with a scientific name has been described by a scientist, meaning it’s been studied and placed somewhere in the great interconnected web of life. The system of giving organisms scientific names is called binomial nomenclature. The first word of the name indicates which genus the organism belongs to, while the second word indicates what species it is. These are called generic and specific names. Some organisms also have a third word in their scientific name which indicates its subspecies.

The reason scientists use a complicated naming system is to make it easier for other scientists to know exactly what organism is being discussed. For example, let’s say a scientist has been studying hamsters in the wild to learn more about them, and publishes a paper about her observations. If she just calls the animal a hamster, someone reading it might assume she was talking about the hamster found in their part of the world, when the paper is actually about a totally different, although closely related, hamster that lives somewhere else. And that brings us to Pranav’s suggestion, the European hamster, whose scientific name is Cricetus cricetus [cry-SEE-tus].

The hamster most of us are familiar with is actually the golden hamster, also called the Syrian hamster, more properly called Mesocricetus auratus. That’s the most common species kept as a pet. We can learn from the different scientific names that the European hamster is in a different genus from the golden hamster, which usually means it’s pretty different in some significant ways.

The European hamster lives throughout parts of Eurasia, especially eastern Europe through central Asia, and used to be extremely common. It’s also called the black-bellied hamster because the fur on its underside is black, while the fur on its upper side is tan or brown with white markings. These days it’s critically endangered due to habitat loss and being killed by farmers who think it hurts their crops. It does eat seeds, vegetables, and some roots, but it also eats grass and many other plants that are considered weeds, as well as insects, including insects that farmers also don’t want in their gardens.

In many respects, the European hamster is a lot like the golden hamster. It carries food home to its burrow in its cheek pouches and stores food in a larder. It hibernates in cold weather but wakes up around once a week to have a snack from its larder, which honestly sounds like the best way to spend the winter. But the European hamster is larger than the golden hamster. Like, a lot larger. The golden hamster is maybe 5 inches long, or 13 cm, which is small enough that you can easily hold it in your hand. The European hamster grows up to 14 inches long, or 35 cm. That’s the size of a small domestic cat, but with a short little hamster tail and short little hamster legs.

Even though an organism’s scientific name only designates genus and species, and subspecies when applicable, it allows scientists to look up a more detailed family tree. Every genus is classified in a family and every family is classified in an order, and every order in a class, and every class in a phylum, and every phylum in a kingdom, and every kingdom in a domain. Almost all of the organisms we talk about in this podcast belong to the kingdom Animalia. The more of these categories an organism shares with another organism, the more closely related they are.

Conner suggested we learn more about the coati, which we talked about in episode 302. The South American coati’s scientific name is Nasua nasua [NAH-sue-uh]. It grows almost four feet long, or 113 cm, which makes it sound enormous, but half of its length is its long ringed tail. It lives in much of South America, especially the northern part of the continent.

The coati is related to the raccoon of North America, and the two animals’ scientific names can help us determine how closely they’re related. The common raccoon’s scientific name is Procyon [PROSE-eon] lotor, so we already know it belongs to a different genus than the coati. But both the genus Procyon and the genus Nasua are classified in the family Procyonidae. So we know they’re closely related, because they belong to the same family, but not as closely related as they’d be if they belonged to the same genus, so we can expect to see some fairly significant differences between the two animals.

The South American coati is diurnal, unlike the nocturnal raccoon. While female raccoons often live in small groups of a few animals that share the same territory, female coatis live in groups of up to 30 animals who forage for food together and are very social. The coati also doesn’t have a set territory. The male coati is completely solitary, while the male raccoon will also live in small groups of three or four animals. Both are omnivorous but the coati eats more fruit and insects than the raccoon does, and the coati doesn’t dunk its food in water the way the raccoon famously does.

The system of binomial nomenclature that we use today was developed by the Swedish botanist Carolus Linnaeus in 1735. We talked about some of his mistakes in episode 123. Linnaeus built on a system developed by a zoologist almost a century before him, but streamlined it and made it easier to use. In the 300 years since Linnaeus came up with his system, many other scientists have made changes to reflect increased knowledge about the natural world and how best to denote it.

I keep saying “organism” instead of “animal,” and that’s because all living organisms may be given a scientific name as they are described. This includes everything from humans to maple trees, from earthworms to harpy eagles, from bumblebees to mushrooms. Linnaeus originally included minerals in his classification system, but minerals don’t evolve the way living organisms do. One group that wasn’t given scientific names until 2021 are viruses. There’s still a lot of controversy as to whether viruses are technically alive or not, but giving them scientific names helps organize what we know about them.

Eilee suggested the ocean sunfish, which has the scientific name Mola mola. Because its scientific name is easy to say, and because there’s also a freshwater sunfish that isn’t related to the ocean sunfish, a lot of people just call it the mola-mola, or just the mola. We talked about it way back in episode 96, so we’re definitely due to revisit it.

The ocean sunfish doesn’t look like a regular fish. It looks like the head of a fish that had something humongous bite off its tail end. It has one tall dorsal fin and one long anal fin, and a little short rounded tail fin that’s not much more than a fringe along its back end. This isn’t even a real tail but part of the dorsal and anal fins. The sunfish uses the tail fin as a rudder and progresses through the water by waving its dorsal and anal fins the same way manta rays swim with their pectoral fins. Pectoral fins are the ones on the sides, while the dorsal fin is the fin on a fish’s back and an anal fin is a fin right in front of a fish’s tail. Usually dorsal and anal fins are only used for stability in the water, not propulsion. The ocean sunfish does have pectoral fins, but they’re tiny.

The ocean sunfish lives mostly in warm oceans around the world, and it eats jellies, small fish, squid, crustaceans, plankton, and even some plants. It has a small round mouth that it can’t close and four teeth that are fused to form a sort of beak. It also has teeth in its throat, called pharyngeal teeth. Its skin is thick and rough like sandpaper with a covering of mucus, and its bones are mostly cartilaginous. It likes to sun itself at the water’s surface, and it will float on its side like a massive fish pancake and let sea birds stand on it and pick parasites from its skin. This also helps it absorb heat from sunlight after it’s been hunting in deeper water.

The female ocean sunfish can lay up to 300 million eggs at a time. That is the most eggs known to be laid by any vertebrate. When the eggs hatch, the larval sunfish are only 2 ½ mm long. Once they develop into their juvenile form, they have little spines all around their thin end, which kind of make them look like tiny stars. If that seems weird, consider that the ocean sunfish is actually related to the pufferfish, although not very closely. The largest adult ocean sunfish ever reliably measured was 14 feet tall, or 4.3 meters, including the long fins, which is a whole lot bigger than 2 ½ mm.

Sometimes after an organism is initially described and named, later scientists learn more about it and determine that it doesn’t actually belong in the genus or family where it was initially placed. If it gets moved to a different genus, its scientific name also needs to change. Some organisms get moved a lot and their scientific names change a lot. But typically, the species name doesn’t change. That’s the case for a little bird from Africa.

Joel suggested a bird called the red-billed quelea [QUEE-lee-ya], whose scientific name is Quelea quelea. When Linnaeus described it in 1758, he thought it was a type of bunting, so he named it Emberiza quelea. Another scientist moved it into a new genus, Quelea, in 1850.

I’d never heard of the red-billed quelea, which is native to sub-Sarahan Africa, but it may actually be the world’s most numerous non-domesticated bird, with an estimated 1.5 billion birds alive at any given moment.

The red-billed quelea mainly eats grass seeds, and unlike the European hamster, it is actually a problem to farmers. The bird doesn’t know the difference between yummy grass seeds and yummy wheat, barley, milt, oats, sunflowers, and other food that humans eat. In fact, some researchers suggest that the bird has become incredibly numerous because it has all this great food to eat that was planted by people.

A flock of red-billed quelea birds can number in the millions. The flock flies until they find grassland or fields with food they like. The first birds land, the birds behind them land a little bit farther along, and so on until all the birds have landed and are eating. But by the time the last birds of the flock land, the first ones have eaten everything they can find, so they fly up and over the rest of the birds until they find fresh grass to land in again. This is happening constantly with the entire flock of millions of birds, so that from a distance the flock’s movement looks like a cloud of smoke rolling across a field.

The red-billed quelea also eats insects, mostly during nesting season. Insects and other small invertebrates like spiders are especially nutritious for nestlings.

The quelea is about the size of a sparrow, which it resembles in many ways, although it’s actually a member of the weaver bird family, Ploceidae. It grows less than five inches long, or about 12 cm, including its tail, and it’s mostly brown and gray. Its beak and legs are orangey-red, and during breeding season the male has a rusty-red head with a black mask on his face.

One subspecies of red-billed quelea is native to western and central Africa. Since it’s a subspecies, it has three words in its scientific name: Quelea quelea quelea.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 096: Strangest Big Fish

Because there are so many weird fish out there, I’ve narrowed this week’s episode down to weird BIG fish! We’ll cover the smaller ones another time. Thanks to Damian and Sam for suggestions this week!

A manta ray being interviewed by a diver:

A manta ray with white markings:

A mola mola, pancake of the sea, with a diver:

The flathead catfish head. So many teeth:

A Wels catfish with Jeremy Wade:

A couple of red cornetfish:

Howick Falls in South Africa. Put that on my endless list of places I want to visit:

Further reading:

Karl Shuker’s blog post about the black and white manta rays

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s another listener suggestion week! Recently, Damian sent a list of excellent topic suggestions, one of which was weirdest fish, and I am ALL OVER that! But because there are so many weird fish, I’m going to only look at weird humongous fish this time, including a mystery fish.

We’ll start with a fish that doesn’t actually look very fishlike. Rays are closely related to sharks but if you didn’t know what they were and saw one, you’d probably start to freak out and think you were seeing some kind of water alien or a sea monster. The ray has a broad, flattened body that extends on both sides into wings that it uses to fly through the water, so to speak. The wings are actually fins, although they don’t look like most fish fins. Like sharks, rays have no bones, only cartilage. Rays are so weird that I’m probably going to give them their own episode one day, but for now let’s just look at one, the manta ray.

There are two species of manta ray alive today. The reef manta can grow 18 feet from wingtip to wingtip, or 5.5 meters. Manta birostris is even bigger, up to 29 feet across, or 8.8 meters, which is why it’s called the giant manta ray. This is just colossally huge. I didn’t realize how big manta rays were until just now. Both species live in warm oceans throughout the world and both eat plankton, krill, and tiny fish. Sometimes the manta ray is called the devil fish because of its horns, which aren’t horns at all, of course. The two protuberances that stick forward at the manta ray’s front are actually fins that grow on either side of the rectangular mouth. These fins help direct plankton into the mouth. When the manta ray isn’t feeding, it can roll up these fins into points and close its mouth. Its eyes are on the sides of its head.

Manta rays are white underneath and black or dark brown on top. But there is a mystery associated with the giant manta ray, with reports of black and white striped rays dating back to at least 1923. In April of that year, naturalist William Beebe spotted a manta ray near the Galapagos Islands that had white wingtips and a pair of broad white stripes extending from the sides of the head halfway down the back. Beebe thought it might be a new species of manta ray. There are other reports of manta rays with white or grayish V-shaped markings on the back.

Better than that, in the last few decades divers and boaters started to get photographs and even video of these manta rays with white markings. These days, manta rays with white markings are known to be common, although for decades scientists thought all manta rays were unmarked dorsally, or on the back. Since the markings are unique to individuals, it makes it easy for researchers to track individuals they recognize. The manta ray also sometimes has black speckles or blotches on its belly.

But wait, there’s more! According to zoologist Karl Shuker, in 2014, researchers in Florida published a paper discussing the ability of manta rays to actually CHANGE COLOR in minutes when they want to. The color in question that it changes? Its white markings. The markings can be barely visible against its background color, and then will brighten considerably when other manta rays are around or when it’s feeding. I’ll put a link to Shuker’s blog post in the show notes, which contains an excerpt from the article, if you want to read it.

The reef manta mostly lives along coasts, especially around coral reefs, while the giant manta ray sometimes crosses open ocean. Researchers used to think it migrated, but new studies suggest most don’t travel all that far. It does dive deeply, though, sometimes as deep as 3,300 feet, or 1,000 meters.

Another fish with a mostly cartilaginous skeleton instead of bone are the various species of ocean sunfish. The largest is the mola mola, although the southern sunfish is about the same size. Both grow to about 15 feet long, or 4.6 meters, and they are really, really weird.

The ocean sunfish doesn’t look like a regular fish. It looks like the head of a fish that had something humongous bite off its tail end. It has one tall dorsal fin and one long anal fin, and a little short rounded tail fin that’s not much more than a fringe along its back end. The sunfish uses the tail fin as a rudder and progresses through the water by waving its dorsal and anal fins the same way manta rays swim with their pectoral fins. Pectoral fins are the ones on the sides, while the dorsal fin is the fin on a fish’s back and an anal fin is a fin right in front of a fish’s tail. Usually dorsal and anal fins are only used for stability in the water, not propulsion.

Because it’s almost round in shape and its body is flattened, it actually kind of looks like a pancake with fins. I would not want to eat it but a lot of people do, with the fish considered a delicacy in some cuisines. These days it’s a protected species in many areas, but it often gets caught in nets set for other fish. It also ends up eating plastic bags and other trash that float like jellyfish.

The mola mola lives mostly in warm oceans around the world, and it eats jellies, small fish, squid, crustaceans, plankton, and even some plants. It has a small round mouth that it can’t close and four teeth that are fused to form a sort of beak. It also has teeth in its throat, called pharyngeal teeth. Its skin is thick and rough like sandpaper. It likes to sun itself at the water’s surface, and it will float on its side like a massive fish pancake and let sea birds stand on it and pick parasites from its skin. Occasionally it will jump completely out of the water, called breaching, as far as ten feet high, or 3 meters. Since the mola mola is one of the world’s heaviest fish that isn’t actually a shark or ray, sometimes weighing over two tons, or 2,000 kg, you really don’t want to be in a boat near a breaching mola mola. If it lands in your boat, it could sink you, or just squash you as flat as a finch under a giant tortoise.

Some researchers think the mola mola’s internal organs contain a neurotoxin—not a surprise since it’s related to the pufferfish—but we don’t know a whole lot about it yet and other researchers say it’s not toxic at all. Until recently researchers thought it only ate jellyfish, but more recent studies show that jellies only make up a small part of its diet. It feeds near the surface at night, but during the day it dives deeply, warming up between dives by sunning itself at the surface. Instead of a swim bladder, it has a layer of a jelly-like substance under its skin that helps make it neutrally buoyant.

The mola mola looks like it has no tail because it actually has no tail. Its little tail fin is called a pseudotail, or false tail. At some point during its evolution it lost its real tail. As a result, it has fewer vertebrae than any other fish, only 16. It’s a slow and clumsy swimmer but its size means it doesn’t have many natural predators beyond orcas and large sharks. It can grind its teeth together to make a croaking sound when it’s in distress. It can also blink, unlike most fish, and can retract its eyes deeper into their sockets to protect them.

In 2017, a new species of sunfish was named, the hoodwinker sunfish, Mola tecta. It grows up to ten feet long, or 3 meters, and is smooth and silvery with speckles. It’s really pretty. It lives in the southern hemisphere and that is pretty much all we know about it so far.

From the gentle giants of the sea, the manta ray and the mola mola, let’s move on to a weird freshwater fish that’s a lot scarier-looking. A few years ago, the Tennessee Aquarium in Chattanooga, which is an awesome place that is well worth a visit if you’re in the area, was contacted by a man whose dog had found and was chewing on a hideous fish head. It had a wide grinning mouth full of rows and rows of short sharp teeth. He wanted to know what it was, naturally, because while it looked like a catfish, he’d never seen one with teeth.

It turns out that the flathead catfish does have teeth, and that’s what his dog had found. It’s native to parts of the southeastern United States into northern Mexico, but has been introduced in other places as game fish and can become an invasive species. It can grow really big, with the longest specimen ever caught measuring almost six feet long, or 1.75 meters, and weighing just shy of 140 lbs, or 63.45 kg. It eats fish, insects, crustaceans, and pretty much anything else it can catch. It’s yellowish or even purplish in color. The weird thing is that all the descriptions I read of the flathead catfish mentioned how big it is and how people like to fish for it, and how it is supposed to be the best-tasting catfish, but they don’t mention its horrifying teeth! I was going by the picture posted by the Tennessee Aquarium, sent in by the guy whose dog found the ultimate chew toy. That picture made the teeth look vicious. But I found a description of the teeth finally that said they’re more like sandpaper to human hands if you hold the fish correctly, possibly because the teeth are packed so tightly. I don’t want to put my fingers in a fish’s mouth for any reason, teeth or no teeth.

Big as it is, the flathead isn’t the biggest catfish in the world. That would be the Wels catfish, a topic suggestion by Sam. Thank you, Sam! The first time I heard about the Wels catfish was from the show River Monsters, where the fisherman Jeremy Wade caught several. I hope everyone listening finds a special someone one day who looks at them the way Jeremy Wade looks at gigantic fish. I love that show. The Wels catfish is native to parts of Europe but like the flathead catfish, it’s been introduced as a game fish in other areas and has become an invasive species.

Like other catfish, the Wels has a skin with no scales, but instead is protected by a layer of slime that has antibacterial properties. This is true for the manta ray and the sunfish too, in fact. It also has barbels that give catfish the name catfish, since the barbels look a little like whiskers. The barbels act as feelers and contain chemical receptors that help the fish taste potential prey in the water.

The Wels catfish likes warm, slow-moving water and can grow up to 16 feet long, or 5 meters, although most are much smaller. It has lots and lots of small teeth but it generally swallows its prey whole, sucking it into its big mouth. It eats fish, crustaceans, insects, worms, and anything else it can catch, but bigger ones will eat frogs, rats, even ducks and other birds. On occasion a Wels will come out of the water to catch a bird on land, but this behavior seems to be from fish that have been introduced to rivers and lakes that aren’t in its native range. The wels is also rumored to drown people and even eat them. There are reports of Wels catfish grabbing anglers by the leg or arm and dragging them into the water.

The red cornetfish lives throughout the world in tropical oceans, although young fish may live in the mouths of rivers that connect with the sea. It’s a long, skinny fish that can grow up to six and a half feet long, or 2 meters, but barely weighs more than ten pounds, or 4.7 kilograms. It can be red, orange, brownish, or even yellowish, sometimes with white or dark stripes or blotches. There’s some evidence that it can actually change its color to match its background. It also has a row of bony plates along its back.

The red cornetfish eats small squid, shrimp, and fish, which it’s able to sneak up on because it’s so incredibly thin. Basically, if it’s swimming straight toward you, all you see is a dot with two bulges for eyes. It also sneaks up on prey by hiding behind harmless fish that are fatter than it is, which is every fish.

The red cornetfish is related to pipefish and seahorses, and like those fish it has a long, pipe-like snout with a tiny mouth at the end that gives it its other common name, flutemouth. Its teeth are also tiny. At the end of its tail, a whip-like filament grows past the tail fin that extends the lateral line, which is a row of sensory cells that helps a fish detect the movements of other fish in the water.

Finally, let’s finish up with a mystery fish from South Africa. It’s called the inkanyamba and is supposed to be some twenty feet long, or six meters. It lives in lakes and near waterfalls and is generally supposed to look like a snake or eel with a horselike head.

The inkanyamba seems to be associated with storms and other severe weather, an association that goes back untold centuries to cave paintings of what are known as rain animals. So it could be that the inkanyamba is like the thunderbird, a creature of spiritual belief rather than a physical one. Groups such as the Xhosa and the Zulu believe that Inkanyamba is a giant winged snake that appears as a tornado as he flies around looking for his mate, who lives in a lake. Houses with metal roofs that aren’t painted are in danger from Inkanyamba since he might mistake the roof for water.

Then again, there are sightings. In 1962 a park ranger saw an eel-like or snake-like creature on a sand bank along the Umgeni River, which slithered into the water as he approached. Another witness sighted the monster twice near Howick Falls in 1971 and 1981. He said it was thirty feet long with a crest along its neck. The waterfall known in English as Howick Falls in South Africa is sacred to the Zulu, who believe it’s the home of Inkanyamba. It’s 310 feet high, or 95 meters, and is situated on the Umgeni River. The only people who are traditionally allowed to approach the pool at the base of the falls, or who can safely approach it, are sangomas, or traditional healers.

One suggestion is that the inkanyamba is a giant mottled eel, which has fins that run all around the tail like a crest. But it only grows to about six and a half feet long at most, or 2 meters. This is pretty big, but not anywhere near twenty or thirty feet. It eats fish, frogs, crustaceans, and other small animals, and isn’t dangerous to humans. It’s nocturnal, spends most of its time at the bottom of the lakebed or riverbed, and migrates from fresh water into the ocean to spawn and lay eggs. You may remember this from episode 49, which goes into the complicated details about eel migration.

I’m not convinced that Inkanyamba is an eel, even a big one. I think it’s more a creature of legend. If you’re lucky enough to visit Howick Falls, don’t get too close to the water, out of respect for a sacred place and just in case there’s something there that could eat you up.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!