Episode 269: Gila Monsters, Basilisks, and Sand Boas, oh my!

Thanks to Zachary, Enzo, and Oran for their suggestions this week! Let’s learn about some interesting reptiles!

Happy birthday to Vale! Have a fantastic birthday!!

The magnificent Gila monster:

The Gila monster’s tongue is forked, but not like a snake’s:

The remarkable green basilisk (photo by Ryan Chermel, found at this site):

A striped basilisk has a racing stripe:

I took this photo of a basilisk myself! That’s why it’s a terrible photo! The basilisk is sitting on a branch just above the water, its long tail hanging down:

The desert sand boa:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about three weird and interesting reptiles, with suggestions from Zachary, Enzo, and Oran, including a possible solution to a mystery animal we’ve talked about before!

But first, we have a birthday shoutout! A very happy birthday to Vale! You should probably get anything you want on your birthday, you know? Want a puppy? Sure, it’s your birthday! Want 12 puppies? Okay, birthday! Want to take your 12 puppies on a roadtrip in a fancy racecar? Birthday!

Our first suggestion is from Enzo and Zachary, who both wrote me at different times suggesting an episode about the Gila monster. How I haven’t already covered an animal that has monster right there in its name, I just don’t know.

The Gila monster is a lizard that lives in parts of southwestern North America, in both the United States and Mexico. It can grow up to two feet long, or 60 cm, including its tail. It’s a chonky, slow-moving lizard with osteoderms embedded in its skin that look like little pearls. Only its belly doesn’t have osteoderms. This gives it a beaded appearance, and in fact the four other species in its genus are called beaded lizards. Its tongue is dark blue-black and forks at the tip, but not like a snake’s tongue. It’s more like a long lizard tongue that’s divided at the very end.

The Gila monster varies in color with an attractive pattern of light-colored blotches on a darker background. The background color is dark brown or black, while the lighter color varies from individual to individual, from pink to yellow to orange to red. You may remember what it means when an animal has bright markings that make it stand out. It warns other animals away. That’s right: the Gila monster is venomous!

The Gila monster has modified salivary glands in its lower jaw that contain toxins. Its lower teeth have grooves, and when the lizard needs to inject venom, the venom flows upward through the grooves by capillary force. Since it mostly eats eggs and small animals, scientists think it only uses its venom as a defense. Its venom is surprisingly toxic, although its bite isn’t deadly to healthy adult humans. It is incredibly painful, though. Some people think the Gila monster can spit venom like some species of cobra can, but while this isn’t the case, one thing the Gila monster does do is bite and hold on. It can be really hard to get it to let go.

The fossilized remains of a Gila monster relative were discovered in 2007 in Germany, dating to 47 million years ago. The fossils are well preserved and the lizard’s teeth already show evidence of venom canals. The Gila monster is related to monitor lizards, although not closely, and for a long time people thought it was almost the only venomous reptile in the world. These days we know that a whole lot of lizards produce venom, including the Komodo dragon, which is a type of huge monitor lizard.

In 2005, a drug based on a protein found in Gila monster venom was approved for use in humans. It helps manage type 2 diabetes, and while the drug itself is synthetic and not an exact match for the toxin protein, if researchers hadn’t started by studying the toxin, they wouldn’t have come up with the drug.

The Gila monster lives in dry areas with lots of brush and rocks where it can hide. It spends most of its time in a burrow or rock shelter where it’s cooler and the air is relatively moist, and only comes out when it’s hungry or after rain. It eats small animals of various kinds, including insects, frogs, small snakes, mice, and birds, and it will also eat carrion. It especially likes eggs and isn’t picky if the eggs are from birds, snakes, tortoises, or other reptiles. It has a keen sense of smell that helps it find food. During spring and early summer, males wrestle each other to compete for the attention of females. The female lays her eggs in a shallow hole and covers them over with dirt, and the warmth of the sun incubates them.

The Gila monster is increasingly threatened by habitat loss. Moving a Gila monster from a yard or pasture and taking it somewhere else actually doesn’t do any good, because the lizard will just make its way back to its original territory. This is hard on the lizard, because it requires a lot of energy and exposes it to predators and other dangers like cars. It’s better to let it stay where it is. It eats animals like mice and snakes that you probably would rather not have in your yard anyway, and as long as you don’t bother it, it won’t bother you. Also, it’s really pretty.

Next, Oran wants to learn more about the basilisk lizard. We talked about it very briefly in episode 252 and I actually saw two of them in Belize, so they definitely deserve more attention.

The basilisk lives in rainforests from southern Mexico to northern South America. There are four species, and a big male can grow up to three feet long, or 92 cm, including his long tail. The basilisk’s tail is extremely long, in fact—up to 70% of its total length.

Both male and female basilisks have a crest on the back of the head. The male also has a serrated crest on his back and another on his tail that make him look a little bit like a tiny Dimetrodon.

The basilisk is famous for its ability to run across water on its hind legs. The toes on its large hind feet have fringes of skin that give the foot more surface area and trap air bubbles, which is important since its feet plunge down into the water almost as deep as the leg is long. Without the air trapped under its toe fringes, it wouldn’t be running, it would be swimming. It can run about 5 feet per second, or 1.5 meters per second, for about three seconds, depending on its weight. It uses its long tail for balance while it runs.

When a predator chases a basilisk, it rears up on its hind legs and runs toward the nearest water, and when it comes to the water it just keeps on running. The larger and heavier the basilisk is, the sooner it will sink, but it’s also a very good swimmer. If it’s still being pursued in the water, it will swim to the nearest tree and climb it, because it also happens to be a really good climber.

The basilisk can also close its nostrils to keep water and sand out, which is useful because it sometimes burrows into sand to hide. It can also stay underwater for as long as 20 minutes, according to some reports. It will eat pretty much anything it can find, including insects, eggs, small animals like fish and snakes, and plant material, including flowers. It mostly eats insects, though.

Fossil remains of a lizard discovered in Wyoming in 2015 may be an ancestor to modern basilisks. It lived 48 million years ago and probably spent most of its time in trees. It had a bony ridge over its eyes that shaded its eyes from the sun and also made it look angry all the time. It grew about two feet long, or 61 cm., and may have already developed the ability to run on its hind legs. We don’t know if it could run on water, though.

Finally, Zachary also suggested the sand boa. Sand boas are non-venomous snakes that are mostly nocturnal. During the day the sand boa burrows deep enough into sand and dirt that it reaches a cool, relatively moist place to rest. At night it comes out and hunts small animals like rodents. If it feels threatened, it will dig its way into loose soil to hide. It’s a constrictor snake like its giant cousin Boa constrictor, but it’s much smaller and isn’t aggressive toward humans.

Zachary thinks that the sand boa might actually be the animal behind sightings of the Mongolian death worm. We’ve talked about the Mongolian death worm in a few episodes, most recently in episode 156.

The Mongolian death worm was first mentioned in English in a 1926 book about paleontology, but it’s been a legend in Mongolia for a long time. It’s supposed to look like a giant sausage or a cow’s intestine, reddish in color and said to be up to 5 feet long, or 1.5 meters. It mostly lives underground in the western or southern Gobi Desert, but in June and July it surfaces after rain. Anyone who touches the worm is supposed to die painfully, although no one’s sure how exactly it kills people. Some suggestions are that it emits an electric shock or that it spits venom.

Mongolia is in central Asia and is a huge but sparsely populated country. At least one species of sand boa lives in Mongolia, although it’s rare. This is Eryx miliaris, the desert sand boa. Females can grow up to 4 feet long, or 1.2 meters, while males are usually less than half that length. Until recently it was thought to be two separate species, and sometimes you’ll see it called E. tataricus, but that’s now an invalid name.

The desert sand boa is a strong, thick snake with a blunt tail and a head that’s similarly blunt. In other words, like the Mongolian death worm it can be hard to tell at a glance which end is which. Its eyes are small and not very noticeable, just like the death worm. It’s mostly brown in color with some darker and lighter markings, although its pattern can be quite variable. Some individuals have rusty red markings on the neck.

It prefers dry grasslands and will hide in rodent burrows. When it feels threatened, it will coil its tail up and may pretend to bite, but like other sand boas it’s not venomous and is harmless to humans.

At first glance, the desert sand boa doesn’t seem like a very good match with the Mongolian death worm. But in 1983, a group of scientists went searching for the death worm in the Gobi. They were led by a Bulgarian zoologist named Yuri Konstantinovich Gorelov, who had been the primary caretaker of a nature preserve in Mongolia for decades and was familiar with the local animals. The group visited an old herder who had once killed a death worm, and in one of those weird coincidences, while they were talking to the herder, two boys rushed in to say they’d seen a death worm on a nearby hill.

Naturally, Gorelov hurried to the top of the hill, where he found a rodent burrow. Remember that this guy knew every animal that lived in the area, so he had a good idea of what he’d find in the burrow. He stuck his hand into it, which made the boys run off in terror, and pulled out a good-sized sand boa. He draped it around his neck and sauntered back to show it to the old herder, who said that yes, this was exactly the same kind of animal he’d killed years before.

That doesn’t mean every sighting of a death worm is necessarily a sand boa. I know I’ve said this a million times, but people see what they expect to see. The death worm is a creature of folklore, whether or not it’s based on a real animal. If you hear the story of a dangerous animal that looks like a big reddish worm with no eyes and a head and tail that are hard to distinguish, and you then see a big snake with reddish markings, tiny eyes, and a head and tail that are hard to distinguish, naturally you’ll assume it’s a death worm.

At least some sightings of the death worm are actually sightings of a sand boa. But some death worm sightings might be due to a different type of snake or lizard, or some other animal—maybe even something completely new to science. That’s why it’s important to keep an open mind, even if you’re pretty sure the animal in question is a sand boa. Also, maybe don’t put your bare hand in a rodent burrow.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 268: Rediscovered Animals!

My little cat Gracie got lost but she’s home! Let’s learn about some other rediscovered animals this week!

A very happy birthday to Seamus! I hope you have the best birthday ever!

Further listening:

The Casual Birder Podcast (where you can hear me talk about birding in Belize!)

Further reading:

Bornean Rajah Scops Owl Rediscovered After 125 Years

Shock find brings extinct mouse back from the dead

Rediscovery of the ‘extinct’ Pinatubo volcano mouse

Gracie, home at last! She’s so SKINNY after a whole week being lost but she’s eating lots now:

The Bornean Rajah scops owl (photo from article linked above):

The djoongari is the same as the supposedly extinct Gould’s mouse (photo from article linked above):

The Pinatubo volcano mouse:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

While I was researching animals discovered in 2021, I came across some rediscoveries. I thought that would make a fun episode, so here are three animals that were thought to be extinct but were found again!

A couple of quick things before we get started, though.

First, happy birthday to Seamus! I hope you have a brilliant birthday and that it involves family, friends, or at least your favorite kind of cake, but hopefully all three.

Next, a few weeks ago I appeared on the Casual Birder Podcast talking in depth about my trip to Belize and some of the birds I saw there. I’ll put a link in the show notes. It’s a great podcast that I really recommend if you’re interested in birding at all, and the host has such a lovely calming voice I also recommend it if you just like to have a pleasant voice in the background while you do other stuff.

Finally, thanks for the well wishes from last week, when I let our emergency episode run. I’m actually fine, but my little cat Gracie got frightened while I was bringing her into the house from a vet visit, and she ran away. That was on Friday, March 11 and I spent all night looking for her, but then we had a late-season snowstorm come through and dump six inches of snow on my town, which made me even more frantic. At dawn on Saturday I put on my boots and heavy coat and spent all day searching for Gracie, and on Sunday I was still searching for her. I didn’t have time to work on a new episode. In fact, I searched every day as much as possible all week long, until I was certain she was gone forever. I couldn’t bring myself to work on this episode because rediscovered animals just seemed like a cruel joke when my little cat was gone. I was almost done with a different episode when on Saturday night, March 19, 2022, eight full days after Gracie had disappeared, I got a phone call. Someone had seen a little gray cat under their shed, over half a mile from my house! I rushed over and THERE WAS GRACIE! I found her! She is home!

So I’ve been researching rediscovered animals with Gracie purring in my lap, in between her going to her bowl to eat. She’s lost a lot of weight but other than that she seems healthy, and she’s very happy to be home.

The person who found Gracie first noticed her around their birdfeeder, so we’ll start with a rediscovered bird.

There are two subspecies of Rajah scops owl that are only found on two islands in southeast Asia, Borneo and Sumatra. The subspecies that lives in Sumatra is fairly common throughout the mountains on that island, where it lives in the lower branches of trees in higher elevations. It’s a tiny owl that only weighs about 4 ounces, or 100 grams. As the article I link to in the show notes points out, that’s about the weight of four AA batteries.

The subspecies that lives on Borneo, though, was always much rarer and had a much smaller range. In fact, no one had seen one since 1892 and researchers thought it was probably extinct. There’s another owl that lives in the mountains of Borneo, the mountain scops owl, that’s fairly common.

In May of 2016, a team of scientists started a 10-year study of birds that lived on Mount Kinabalu in the country of Malaysia in northern Borneo. One team member, Keegan Tranquillo, was checking bird nests that very same month and noticed an owl that didn’t look like the mountain scops owl. It was larger and its plumage was different.

Tranquillo contacted ecologist and bird expert Andy Boyce, who came out to take a look. When he saw the owl, Boyce was excited at first but then filled with anxiety. He knew the owl must be incredibly rare and would be in great danger of going extinct if conservation efforts weren’t put into place. Many areas of Borneo are under pressure from logging, mining, and palm oil plantations, which is leading to habitat loss all over the island.

Not only that, the more Boyce looked at the owl, the more he noticed differences from the Sumatran subspecies of Rajah scops owl. He suspected it might not be a subspecies but a completely separate species. That made it even more important to protect the owl and study it.

The owl’s rediscovery was announced in May 2021. Studies of the owl are ongoing but hopefully will soon result in more information about it and its habitat.

Next, let’s talk about a rodent, since Gracie likes to play with toy mice. This rediscovery came from Australia, where a study of extinct Australian rodents and their living relations found something surprising. It’s the opposite of the owl we just talked about, that might end up being a separate species of its own.

The mouse in question was once called Gould’s mouse. It used to be common throughout Australia, where it’s a native mammal, but it was declared extinct in 1990 after no one had seen it since the 1840s. Researchers suspected it had gone extinct after colonizers brought cats to Australia, although diseases and competition from introduced species of mice and rats also had a big impact.

Meanwhile, another native mouse, called the djoongari or Shark Bay mouse, was driven nearly to extinction. Fortunately, the djoongari survived on a few islands off western Australia. Conservation efforts in 2003 introduced it to more islands, where it spread and did well. It’s a social mouse that lives in family groups in a burrow it digs under bushes. It lines the burrow with dry grass to make it warmer and more comfortable.

The djoongari is a large mouse, up to 4.5 inches long not counting the tail, or 11.5 centimeters. The tail is a little longer than the head and body combined. It has long, shaggy fur that’s a mixture of dark and light brown with a paler belly and feet, and it has a tuft of dark fur at the end of its tail like a tiny lion.

In early 2021, the researchers studying native rodent DNA realized that the living djoongari and the extinct Gould’s mouse had the exact same genetic profile! They were the same animal! That means Gould’s mouse didn’t go extinct, although technically it didn’t exist in the first place.

That doesn’t mean the djoongari is perfectly safe, of course. Its range is still extremely restricted and it’s vulnerable to the same factors that nearly drove it to extinction in the first place. But at least it’s still around and can be protected.

We’ll finish with another mouse. In 1991, a volcano in the Philippines erupted. The volcano was called Mount Pinatubo on the island of Luzon, and the eruption was enormous. It was ten times stronger than the eruption of Mount St. Helens in 1980. Lava and ash filled valleys up to 600 feet deep, or 183 meters. More than 800 people died from the eruption itself and the devastation afterwards, during landslides caused by all the ash every time it rained.

In addition to the awful situation for people, animals were affected too. Most of the forests near the volcano were completely destroyed. Scientists thought the Pinatubo volcano mouse had probably gone extinct since it only lived on that one volcanic mountain, which had just blown up. Surveys of the area a few years after the eruption didn’t turn up signs of any of the mice.

The Pinatubo volcano mouse was only described in 1962 from a single specimen collected in 1956. It was a large mouse, almost the size of a rat, with long hind legs for jumping and climbing and a tail much longer than the length of its head and body together. It mostly ate earthworms and other small animals, but not a lot was known about it.

More than 20 years after the eruption, a team of scientists surveyed the animals living on the mountain. The conditions were difficult for the team to navigate, since there was still a lot of ash and erosion in the area that made the steep slopes unstable. The lush forests were gone, replaced by grass and bamboo, shrubs, a few trees, and other plants. They didn’t expect to find a lot of animals, although they thought they’d find introduced species of rats and mice that had moved into the disturbed areas from other parts of the island.

But to their surprise, they found 17 species of mammal on the mountain. Eight were bats, there were wild pigs and deer, and the rest were rodents. And the rodents were mostly native species, not introduced ones—including the Pinatubo volcano mouse!

Researchers theorize that a mouse that lives on an active volcano as its only habitat must have evolved to weather occasional eruptions. The mice were actually most numerous in the places that had been the most destroyed. The term for a species that thrives in environments that have seen widespread natural destruction is “disturbance specialist,” and that’s just what these mice are.

It just goes to show that no matter how bad things may be, there is life. And where there’s life, there’s hope. And probably mice.

Now, if you will excuse me, I have to go make a chocolate cake to take to the person who found Gracie.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 267: The Mystery Sauropod

Show transcript:

Hi. If you’re hearing this, it means I’m sick or something else has happened that has kept me from making a new episode this week. This was a Patreon bonus episode from mid-August 2019. I think it’s a good one. If you’re a Patreon subscriber, I’m sorry you don’t have a new episode to listen to this time. Hopefully I’ll be feeling better soon and we can get back to learning about lots of strange animals.

Welcome to the Patreon bonus episode of Strange Animals Podcast for mid-August, 2019!

While I was doing research for the paleontology mistakes and frauds episodes, I came across the discovery of what might have been the biggest land animal that ever lived. But while I wanted to include it in one episode or the other, it wasn’t clear that it was either a mistake or a fraud. It might in fact have been a real discovery, now lost.

In late 1877 or early 1878, a man named Oramel Lucas was digging up dinosaur bones for the famous paleontologist Edward Cope. Cope was one of the men we talked about in the paleontological mistakes episode, the bitter enemy of Othniel Marsh. Lucas directed a team of workers digging for fossils in a number of sites near Garden Park in Colorado, and around the summer of 1878 he shipped the fossils he’d found to Marsh. Among them was a partial neural arch of a sauropod.

The neural arch is the top part of a vertebra, in this case probably one near the hip. Sauropods, of course, are the biggest land animals known. Brontosaurus, Apatosaurus, and Diplodocus are all sauropods. Sauropods had long necks that were probably mostly held horizontally as the animal cropped low-growing plants and shrubs, and extremely long tails held off the ground. Their legs were column-like, something like enormous elephant legs, to support the massively heavy body.

We know what Diplodocus looked like because we have lots of Diplodocus fossils and can reconstruct the entire skeleton, but for most other sauropods we still only have partial skeletons. The body size and shape of other sauropods are conjecture based on what we know about Diplodocus. In some cases we only have a few bones, or in the case of Cope’s 1878 sauropod, a single partial bone.

Cope examined the neural arch, sketched it and made notes, and published a formal description of it later in 1878. He named it Amphicoelias [Am-fi-sil-i-as] fragillimus.

The largest species of Diplodocus, D. hallorum, was about 108 feet long, or 33 meters, measuring from its stretched-out head to the tip of its tail. Estimates of fragillimus from Cope’s measurement of the single neural arch suggest that its tail alone might be longer than Diplodocus’s whole body.

Cope measured fragillimus’s partial neural arch as 1.5 meters tall, or almost five feet. That’s only the part that remained. It was broken and weathered, but the entire vertebra may have been as large as 2.7 meters high, or 8.85 feet. From that measurement, and considering that fragillimus was seemingly related to Diplodocus, even the most conservative estimate of fragillimus’s overall size is 40 meters long, or 131 feet, and could be as long as 60 meters, or 197 feet. This is far larger than even Seismosaurus, which is estimated to have grown 33.5 meters long, or 110 feet, and which is considered the largest land animal known.

So why isn’t fragillimus considered the largest land animal known? Mainly because we no longer have the fossil to study. It’s completely gone with no indication of where it might be or what happened to it. And that has led to some people thinking that it either never existed in the first place, or that Cope measured it wrong.

One argument is that Cope wrote down the measurements wrong and that the neural arch wasn’t nearly as large as Cope’s notes indicate. But Lucas, who collected the fossil, always made his own measurements and these match up with what Cope reported. Lucas and Cope both remarked on the size of the fossil, which was far larger than any they had ever found.

Oddly, Cope’s nemesis Marsh inadvertently vouches for him by the things Marsh didn’t do. We know that Marsh kept tabs on Cope, including even paying people to spy on his fossil excavations. Marsh was also always ready to pounce on any of Cope’s mistakes and make them a big deal. But Marsh never said anything about the neural arch not being a real find, and never questioned Cope’s measurements of it.

Cope never mentioned what happened to the fossil. It wasn’t until 1921 that two researchers pointed out that it was missing from the Cope Collection. So what happened to it?

Most researchers suspect it just crumbled away. The fossil formed in a type of rock called mudstone, which fractures easily into little irregular cubes. In fact, Cope gave the sauropod the name fragillimus because the fossil appeared so fragile—not because of the mudstone per se, but because so much of the fossil had already weathered away and as a result it looked too delicate to be part of such a large animal.

These days paleontologists treat fossils with various preservatives to harden them, but that practice didn’t start until 1880, several years after the neural arch was found. Cope only made one drawing of it, which wasn’t his usual practice. It’s possible the fossil was so delicate at that point that just turning it over to draw the other side caused it to fall apart. Many researchers suspect that Cope or one of his assistants eventually discarded it after it crumbled into a pile of mudstone blocks.

Obviously, if we don’t have the fossil Cope examined, maybe we should go looking for more fossils that Cope’s workers might have missed. Cope did mention a femur located near the neural arch that may have been another fragillimus bone, but it’s not clear if the femur was actually collected. We have Cope’s journal entry where he sketched the dig sites Lucas was working, a rough map that shows at least seven sites. But it’s been a century and a half since then and most of the sites have been lost. In 1994 a team tried to relocate the site where Lucas found the neural arch, but without luck. It’s also possible that any remaining fossils have weathered away completely. In the dig sites that have been found, the mudstone has mostly weathered away down to the underlying sandstone.

Researchers have been able to estimate a probable age for fragillimus from Cope’s notes about the stratigraphy where the neural arch was found. Fragillimus probably lived in the late Jurassic, roughly 150 million years ago. This matches up with the age of other enormously large sauropods. But if fragillimus really was so much larger than the others, how did it live? Would an animal that size actually be able to support its weight, feed itself, and function overall? Wouldn’t it overheat in the sun or starve due to not finding enough food to power its colossal body?

Researchers think that sauropods grew to such enormous sizes because their food was nutritionally lacking. That doesn’t make sense until you realize that when a herbivore’s food is poor, the longer it can keep the plant material in its digestive system, the more nutrients it can extract from it. Sauropods were probably hindgut fermenters like all modern herbivorous reptiles and a lot of birds. The best way to keep lots of plant material in the digestive system is to be really big and have a really big digestive tract. This is the case with many herbivores today, like elephants, rhinos, and horses. Other benefits come from being extremely large, too, such as being larger than potential predators.

Sauropods generally lived in semiarid savannas. Grass hadn’t evolved yet, so researchers think the main groundcover plant was ferns, which sauropods probably ate in bulk. There would also have been shrubs, small trees, and some areas with much taller trees. It’s possible that sauropods spent most of the day among the trees, sleeping in the shade, and came out at night to do most of their grazing.

Cope also found fossils from another sauropod that he named Amphicoelias altus. In fact, he described both Amphicoelias species in the same paper. Some researchers have therefore suspected that the two species were actually the same. A. altus is estimated to grow about the same size as Diplodocus, about 82 feet long, or 25 meters.

But in 2018, a paleontologist named Kenneth Carpenter examined Cope’s information on fragillimus and came to some interesting conclusions. He reclassified it from the family Diplodocidae to the family Rebbachisauridae and renamed it Maraapunisaurus fragillimus. As a result, the estimates of its size have changed. Carpenter suggests that it was much smaller, about 99 feet long, or 30 meters, but that Cope’s measurements were correct. Sauropods of this family just have larger vertebrae than Diplodocidae.

The only difficulty with fragillimus being a member of the Rebbachisauridae is that this group of sauropods isn’t known to have lived in North America, just Europe and South America. But the fossil record is incomplete and every find requires researchers to adjust what we know about where dinosaurs lived and how widespread a particular species or family was.

Hopefully, eventually more and better remains of fragillimus will turn up soon. Then we can work out exactly how big it really was.

Thanks for your support, and thanks for listening! The next episode in the main feed will be about an unusual small fish and an extinct pig relative called the unicorn pig. Basically both those animals should have gone in other episodes but I messed up and forgot to add them to strangest small fish and the weird pigs episodes, but they’re both really neat and I wanted to share them.

https://www.patreon.com/rss/strangeanimalspodcast?auth=eb94e995bdf4bc11930eeda8bc5b4a3e

Episode 266: Mystery Macaws

Thanks to Pranav for this week’s suggestion!

Happy birthday to MaxOrangutan! Have a great birthday!

Further reading:

Scarlet macaw DNA points to ancient breeding operation in Southwest

The glorious hyacinth macaw:

Roelant Savery’s dodo painting with not one but TWO separate mystery macaws featured:

The blue-and-gold macaw:

Eleazar Albin’s mystery macaw:

Detail from Jan Steen’s painting of a mystery macaw:

The scarlet macaw:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Recently, Pranav suggested the topic of mystery macaws. As it happens, that’s a topic I researched for the book, which by the way is now FORMATTED! And hopefully by the time you hear this I’ll have been able to order a test copy to make sure it looks good before I order enough copies for everyone who backed the Kickstarter at that level. Whew!

I’ve used the mystery macaw chapter from the book as a basis for this episode, but it’s not identical by any means—I’ve added some stuff.

Before we learn about some mystery macaws, though, we have a birthday shout-out! Happy birthday to MaxOrangutan! Max! I bet you like bananas and climb around a lot! I hope you have a fantastic birthday, maybe with a banana cake or a cake banana, which I think is a thing I just made up but it sounds good, doesn’t it?

Macaws are a type of parrot native to the Americas. They have longer tails and larger bills than true parrots and have face patches that are mostly white or yellow. There are six genera [original incorrectly stated six species] of macaw with lots of living species, but many other species that are extinct or probably extinct. The largest living species is the hyacinth macaw, which is a beautiful blue all over except for yellow face markings. It can grow over 3 feet long, or about 92 centimeters, including its long tail. It mostly eats nuts, even coconuts and macadamia nuts that are too tough for most other animals to crack open, but it also likes fruit, seeds, and some other plant material. Like other parrots, macaws are intelligent birds that have been observed using tools. For instance, the hyacinth macaw will use pieces of sticks and other items to keep a nut from rolling away while it works on biting it open.

The story of a mystery bird sometimes called the Martinique macaw starts almost 400 years ago, when Jacques Bouton, a French priest, visited the Caribbean in 1639 and specifically Martinique in 1642. Bouton wrote an account of the people and animals he saw, including several macaws that don’t quite match any birds known today. One of these is the so-called Martinique macaw, which he said was blue and saffron in color. Saffron is a rich orangey yellow.

We have some paintings that might be depictions of the mystery macaws. An artist named Eleazar Albin painted a blue and yellow parrot with a white face patch in 1740 that’s supposedly the Martinique macaw, although Albin would have seen the bird in Jamaica when he visited in 1701, not Martinique. The two islands are about 1,100 miles apart, or almost 1,800 kilometers.

A similar blue and yellow macaw appears in Roelant Savery’s 1626 painting of a dodo. The dodo lived on the island of Mauritius in the Indian Ocean, nowhere near the Americas. Savery just liked to paint dodos and included them in a lot of his art. In another 1626 painting, called “Landscape with Birds,” he included a dodo, an ostrich, a chicken, a turkey, a peacock, ducks, swans, cranes of various kinds, and lots of other birds that don’t live anywhere near each other. On the far left edge of the painting there’s a blue macaw with yellow underparts.

In the early 20th century, a zoologist named Walter Rothschild read Bouton’s account and decided those birds needed to be described as new species, even though there were no type specimens and no way of knowing if the birds were actually new to science.

He described the Martinique macaw in 1905 but reclassified it when he published a book named Extinct Birds in 1907. He got an artist to paint a depiction of it based on Bouton’s account and it actually doesn’t look all that similar to Albin’s and Savery’s birds. It’s dark blue above, bright orange underneath, and only has a small white patch next to its lower mandible instead of a big white patch over the eye.

In other words, Albin’s macaw might be a totally different bird from the Martinique macaw.

There is a known bird that might have inspired Albin’s painting. The blue-and-gold macaw lives in many parts of northern South America. It has rich yellowy-gold underparts and is a brilliant aqua blue above. It matches the colors of Albin’s painting pretty well, but not the facial markings. The blue-and-gold macaw has a white face but a large stripe of black, outlining the white patch, that extends under its chin. Albin’s macaw doesn’t have any black markings and its white patch is much smaller than the blue-and-gold macaw’s.

Of course, Albin may have gotten details wrong in his painting. Even though he was probably painting from sketches and notes he took during his visit to Jamaica, about forty years had passed since he actually saw it. As for Savery’s paintings of a similar macaw, he never traveled to the Americas and probably based his paintings on pet birds brought to Europe by sailors and missionaries. He was known for his meticulous detail when painting animals, though, and his birds clearly show the white face and black stripe under the chin of a blue-and-gold macaw, even though the blue plumage appears much darker than in living birds. This is probably due to the paint pigments fading over the centuries.

Savery’s birds lack one detail that blue-and-gold macaws have: a small patch of blue under the tail. This would be an easy detail for an artist to miss, though, especially if he finished the painting’s details without a real bird to look at. Albin’s painting also lacks the blue patch.

That still leaves us with two bird mysteries. Was Albin’s macaw a real species or just a blue-and-gold macaw with incorrect details? And what bird did Bouton see in Martinique?

These aren’t the only mystery macaws, though. Roelant Savery painted another one in the same dodo picture where the mystery blue and yellow macaw appears. This macaw is bright red all over except for some yellow markings on the wing and a white face patch. He painted that one in 1626, and in 1665 a Dutch artist named Jan Steen painted a very similar bird in the background of a painting. It’s also red except for yellowish markings on its wings and a yellowish or white face patch.

There are many reports of a big red macaw seen on the Guadaloupe islands in the Caribbean that date all the way back to 1493 when Christopher Columbus visited. Back then the bird was common but by the end of the 17th century it was rare. It was supposed to look a lot like the scarlet macaw, which is common in parts of Central America and northern South America, but it was smaller with a shorter tail. It was mostly red with blue and yellow markings on the wings and a white patch on its face. Its tail was all red, whereas the scarlet macaw has a red and blue tail.

Savery’s and Steen’s paintings don’t show any blue markings, so either the artists got that detail incorrect or they were painting birds that didn’t have blue wing markings—meaning that there’s potentially yet another mystery red macaw.

There are, in fact, a whole lot of mystery macaws, maybe as many as 15. Some of these may be species or subspecies of macaw that went extinct before any scientist could examine them, while some may have just been known macaw species outside of their natural range.

People have been trading macaws and parrots as a type of currency for thousands of years, since their large, brightly colored feathers were in high demand for ceremonial items. They’re relatively easy to tame and can be kept as pets. A genetic study of scarlet macaw remains found at archaeological sites in New Mexico revealed that the birds were all relatively closely related even though the remains came from birds who lived at different times over a 300-year period. Researchers think there must have been a captive breeding program in place somewhere in the area about a thousand years ago. It wasn’t at the sites where the bird remains were found because there were no macaw eggshells in the whole area.

Similarly, remains of scarlet macaws and Amazon parrots have been found in archaeological sites in the Atacama desert. The remains date back to almost a thousand years ago also. But the Atacama is in northern Chile on the western coast of South America, not the southwestern United States. To reach it from the scarlet macaw’s natural range in northern South America you have to travel more than 300 miles, or 500 kilometers, at minimum and cross the Andes Mountains. But that’s exactly what people did, bringing macaws and parrots to oasis communities in the Atacama by llama caravan.

If any of these mystery macaws ever existed, they seem to be extinct now—but they might not be. Many macaws live in South America in sometimes hard to explore terrain. While many known species of macaw are threatened with habitat loss and hunting for feathers or for the pet trade, there’s always a possibility that an undiscovered species still thrives in remote parts of the Amazon rainforest.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!