Episode 400: Four no wait Five Mysteries!

To donate to help victims of Hurricane Helena:

Day One Reliefdirect donation link

World Central Kitchendirect donation link

It’s the big 400th episode! Let’s have a good old-fashioned mystery episode! Thanks to Richard from NC for suggesting two of our animal mysteries today.

Further reading:

A 150-Year-Old Weird Ancient Animal Mystery, Solved

The Enigmatic Cinnamon Bird: A Mythical Tale of Spice and Splendor

First ever photograph of rare bird species New Britain Goshawk

Scientists stumbled onto toothy deep-sea “top predator,” and named it after elite sumo wrestlers

Bryde’s whales produce Biotwang calls, which occur seasonally in long-term acoustic recordings from the central and western Pacific

A stylophoran [drawing by Haplochromis – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10946202]:

A cinnamon flycatcher, looking adorable [photo by By https://www.flickr.com/photos/neilorlandodiazmartinez/ – https://www.flickr.com/photos/neilorlandodiazmartinez/9728856384, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=30338634]:

The rediscovered New Britain goshawk, and the first photo ever taken of it, by Tom Vieras:

The mystery fish photo:

The yokozuna slickhead fish:

The Biotwang maker, Bryde’s whale:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’ve made it to the big episode 400, and also to the end of September. That means monster month is coming up fast! To celebrate our 400th episode and the start of monster month, let’s have a good old-fashioned mysteries episode.

We’ll start with an ancient animal called a stylophoran, which first appears in the fossil record around 500 million years ago. It disappears from the fossil record around 300 million years ago, so it persisted for a long time before going extinct. But until recently, no one knew what the stylophoran looked like when it was alive, and what it could possibly be related to. It was just too weird.

That’s an issue with ancient fossils, especially ones from the Cambrian period. We talked about the Cambrian explosion in episode 69, which was when tiny marine life forms began to evolve into much larger, more elaborate animals as new ecological niches became available. In the fossil record it looks like it happened practically overnight, which is why it’s called the Cambrian explosion, but it took millions of years. Many of the animals that evolved 500 million years ago look very different from all animals alive today, as organisms evolved body plans and appendages that weren’t passed down to descendants.

As for stylophorans, the first fossils were discovered about 150 years ago. They’re tiny animals, only millimeters long, and over 100 species have been identified so far. The body is flattened and shaped sort of like a rectangle, but two of the rectangle’s corners actually extend up into little points, and growing from those two points are what look like two appendages. From the other side of the rectangle, the long flat side, is another appendage that looks like a tail. The tail has plates on it and blunt spikes that stick up, while the other two appendages look like they might be flexible like starfish arms.

Naturally, the first scientists to examine a stylophoran decided the tail was a tail and the flexible appendages were arm-like structures that helped it move around and find food. But half a billion years ago, there were no animals with tails. Tails developed much later, and are mainly a trait of vertebrates.

That led to some scientists questioning whether the stylophoran was an early precursor of vertebrates, or animals with some form of spinal cord. The spikes growing from the top of the tail actually look a little bit like primitive vertebrae, made of calcite plates. That led to the calcichordate hypothesis that suggested stylophorans gave rise to vertebrates.

Then, in 2014, scientists found some exceptionally well preserved stylophoran fossils in the Sahara Desert in Africa. The fossils dated to 478 million years ago and two of them actually had soft tissue preserved as the mineral pyrite. Pyrite is also called fool’s gold because it looks like gold but isn’t, so these were shiny fossils.

When the soft tissue was observed through electron microscopes in the lab, it became clear that the tails weren’t actually tails. Instead, they were more like a starfish arm, with what may be a mouth at the base. The arm was probably the front of the animal, not the back like a tail, and the stylophoran probably used it to grab food and maybe even to crawl around.

Most scientists today agree that stylophorans are related to modern echinoderms like starfish and urchins, but there is one big difference. Echinoderms show radial symmetry, but no stylophoran found so far does. It doesn’t really even show bilateral symmetry, since the two points aren’t really symmetrical to each other. We’re also not sure what the points were for and how such an unusual body plan really worked, so there are still a lot of mysteries left regarding the stylophoran.

Next let’s talk about a mythical bird, called some variation of the word cynomolgus, or just the cinnamon bird. Naturalists from the ancient world wrote about it, including Pliny the Elder and Aristotle, and it appeared in medieval bestiaries. It was said to be from Arabia and to build its nest of cinnamon sticks in the tops of very tall trees or on the sides of cliffs.

Cinnamon comes from the inner bark of cinnamon trees, various species of which are native to southern Asia and Oceania. It’s an evergreen tree that needs a tropical or subtropical climate to thrive, and it smells and tastes really good to humans. You might have seen cinnamon sticks, which are curled-up pieces of dried cinnamon bark, and that’s the same type of cinnamon people used in the olden days. Ground cinnamon is just the powdered bark. Like many other spices, it was highly prized in the olden days and cost a fortune for just a little bit of it. Ancient Egyptians used it as part of the embalming process for mummies, ancient Greeks left it as offerings to the sun god Apollo, ancient Romans burnt it during the funerals of nobility, and it was sought after by kings throughout the world.

One interesting thing is that if you live in the United States, the cinnamon in your kitchen cupboard is probably actually cassia, also called Chinese cinnamon because it’s native to southern China. Cassia is often mentioned alongside cinnamon in old writings, because they’re so similar, but true cinnamon comes from a tree native to Sri Lanka. It’s usually marketed as Ceylon cinnamon and is more expensive, but cassia is actually better for baking. True cinnamon has a more subtle flavor that’s especially good with savory dishes, but it loses a lot of its flavor if you bake with it.

Anyway, back in the olden days, no one outside of subtropical Asia and Oceania knew where cinnamon came from. The traders who bought it from locals to resell definitely weren’t going to tell anyone where it was from. They made up stories that highlighted just how hard cinnamon was to find and harvest, to discourage anyone from trying to find cinnamon on their own and to keep prices really high. As Pliny the Elder pointed out 2,000 years ago, the cinnamon bird was one of those stories.

The cinnamon bird was supposedly the only animal that knew where cinnamon trees grew, and it would peel pieces of the bark off with its beak, then carry them to the Arabian desert or somewhere just as remote, where it would build a nest of the bark. The birds were supposed to be enormous, sometimes so big that their open wings stretched from horizon to horizon. Their nests were equally large, but so hard to reach that no human could hope to climb up and collect the cinnamon. Instead, cinnamon hunters left dead oxen and other big animals near the area where the birds had nests. The birds would swoop down and carry the oxen back to their nests to eat, and the extra weight would cause the nests to fall. In other stories, cinnamon hunters would shoot at the nests with arrows with ropes attached. Once several arrows were lodged into a nest, the hunters would pull the ropes to dislodge the nest and cause it to fall, so they could collect the cinnamon.

Of course none of that is true. Some scholars think the cinnamon bird is probably the same mythical bird as the phoenix, but without any magical abilities. Others agree with Pliny the Elder that it was just a way for traders to raise their prices for cinnamon even more. Either way, the cinnamon bird is probably not a real animal.

There are birds with cinnamon in their name, but that’s just a reference to their coloration. Cinnamon is generally a reddish-brown in color, and in animals that color is often referred to as rufous, chestnut, or cinnamon. For example, the cinnamon flycatcher, which lives in tropical and cloud forests along the Andes Mountains in South America. It’s a tiny round bird, only about 5 inches long including its tail, or 13 cm. It’s dark brown and red-brown in color with black legs and beak, and a bright cinnamon spot on its wings. It eats insects, which you could probably guess from the name.

This is what a cinnamon flycatcher sounds like:

[tiny bird sound]

Next, we need to talk about the New Britain goshawk, which Richard from NC told me about recently. It lives in tropical forests of Papua New Guinea, and is increasingly threatened by habitat loss. In fact, it’s so rare that it was only known from four specimens, and it hadn’t been officially spotted since 1969 and never photographed—until March of 2024.

During a World Wide Fund for Nature expedition, a wildlife photographer named Tom Vierus took lots of pictures of birds. One bird he photographed was a hawk sitting in a tree. He didn’t realize it was a bird that hadn’t been seen by scientists in 55 years, until later when he and his team were going through his photographs.

The goshawk is large, and is gray and white with an orange face and legs. We know very little about the bird, naturally, but now that scientists know it’s alive and well, they can work with the local people to help keep it safe. It’s called the keango or kulingapa in the local languages.

Next, we have a bona fide mystery animal, and a deep-sea mystery animal at that—the best combination!

In 1965, the U.S. Navy teamed up with Westinghouse to build a submersible designed by the famous diver and naturalist Jacques Cousteau. The craft was called Deepstar 4000 and between 1965 and 1972 when it was retired, it conducted hundreds of dives in different parts of the world, allowing scientists to learn a lot about the ocean. It could safely dive to 4000 feet, or 1200 meters, which isn’t nearly as deep as many modern submersibles, but which is still impressive.

This was long before remotely operated vehicles, so the submersible had to have a crew inside, both scientists and pilots. One of the pilots of Deepstar 4000 was a man named Joe Thompson. In 1966 Thompson maneuvered the craft to the ocean floor off the coast of California to deploy water sensors, in an area called the San Diego Trough. They touched down on the ocean floor and Thompson looked out of the tiny porthole, only to see something looking in at him.

Thompson reported seeing a fish with mottled gray-black skin and an eye the size of a dinner plate. He estimated it was 25 feet long, or over 7 ½ meters, which was longer than the Deepstar 4000 itself. Within seconds, the fish swam away into the darkness.

But that’s not the end of the story, because the water sensors the craft had already placed sensed the animal’s movement. There was definitely something really big near the craft. Even more interesting, an oceanographer had placed some underwater cameras in the area, and soon after Thompson’s sighting, the cameras took pictures of a huge gray fish.

While Thompson was positive the fish had scales, which he described as being as big around as coffee cups, the photo shows a more shark-like skin criss-crossed with scars. The oceanographer consulted with an ichthyologist, who identified the fish as a Pacific sleeper shark. We’ve talked about other sleeper sharks in episode 74. We don’t know a lot about these sharks, but they are gray, live in deep water, and can grow over 23 feet long, or 7 meters.

But Thompson was never satisfied with the identification of his mystery fish as a big Pacific sleeper shark. He was adamant that his fish had scales, a much larger eye than sharks have, and a tail that was more reminiscent of a coelacanth’s lobed tail than a shark’s tail.

One suggestion is that Thompson saw a new species of slickhead fish. Slickheads are deep-sea fish that can grow quite large, but we don’t know much about them since they live in such deep waters. The largest known species grows at least 8 feet long, or 2.5 meters, and possibly much longer. That’s the yokozuna slickhead, which was only discovered in 2021 by a scientific team studying cusk eels off the coast of Japan.

Most slickheads are small and eat plankton. This one was purplish in color, had lots of small sharp teeth, and was a strong, fast swimmer. When it was examined later, its stomach contents consisted of other fish, so it’s definitely a predator. Its eyes are also proportionately larger than a shark’s eyes. The slickhead gets its name because it doesn’t have scales on its head, but it does have scales on the rest of its body.

The yokozuna slickhead was discovered in a bay that’s well-known to both scientists and fishers, so the team didn’t believe at first that they could possibly have found a new species of fish there, especially one that was so big. But it definitely turned out to be new to science. More individuals have since been spotted, but they live very deep in the ocean, which explains why no one had seen one before. Interestingly, when the scientists first pulled the slickhead out of the water, they thought it looked a little like a coelacanth.

This episode was going to end there, but Richard from NC sent me another article about a whale mystery I’ve been talking about for years! It’s the so-called biotwang that we covered way back in episode 27.

In 2016 and early 2017, NOAA, the U.S. Coast Guard, and Oregon State University dropped a titanium-encased ceramic hydrophone into Challenger Deep. To their surprise, it was noisy as heck down there in the deepest water on earth. The hydrophone picked up the sounds of earthquakes, a typhoon passing over, ships, and whalesong—including the call of a whale researchers couldn’t identify. This is what it sounds like:

[biotwang whale call]

Well, as of September 2024, we now know what animal produces the biotwang call. It’s a whale, and one already known to science, although we don’t know much about it. It’s Bryde’s whale, a baleen whale that can grow up to 55 feet long, or almost 17 meters. The calls have all been associated with groups of Bryde’s whales, or a mother with a calf, so the scientists think the whales might use the unusual call to communicate location with its podmates. Bryde’s whales make lots of other sounds, and the scientists also think they might be responsible for some other mystery whale calls.

If you remember episode 193, about William Beebe’s mystery fish, he reported spotting a massive dark fish from his bathysphere a few decades before the Deepstar 4000 was built. He didn’t see it well enough to identify it and never saw it again. It just goes to show that there are definitely mystery animals just waiting to be discovered, whether it’s in the deep sea or perched in a treetop.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 399: Bears

Thanks to Anbo, Murilo, Clay, and Ezra for their suggestions this week! Let’s learn about some bears!

Further reading:

Snack attack: Bears munch on ants and help plants grow

Extinct vegetarian cave bear diet mystery unravelled

Ancient brown bear genomes sheds light on Ice Age losses and survival

The sloth bear has shaggy ears and floppy lips [photo from this site]:

An absolute unit of a Kodiak bear in captivity [photo by S. Taheri – zoo, own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1118252]:

A polar bear:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re revisiting a popular topic, bears! We’ll talk about some bears we’ve never covered before, with suggestions from Anbo, Clay, Ezra, and Murilo. We’ll even discuss a small bear mystery which has mostly been solved by science.

To start us off, Anbo wanted to learn about bears in general. We’ve had bear episodes before, but our last episode all about bears was way back in 2017, in episode 42. Some of our listeners weren’t even born back then, which makes me feel super old.

Bears live throughout much of the world today, but they evolved in North America around 38 million years ago. These ancestral bears were small, about the size of a raccoon, but they were successful. They spread into Asia via the land bridge Beringia, where they were even more successful than in North America, so successful that by around 30 million years ago, descendants of those earliest bear ancestors migrated from Asia back into North America. But it wasn’t until the Pleistocene around 2 ½ million years ago that bears really came into their own.

That’s because bears are megafauna, and megafauna evolved mainly as an adaptation to increasingly cold climates. As the ice ages advanced, a lot of animals grew larger so they could stay warm more easily. Predators also had to grow larger as their prey became larger, since if you want to hunt an animal the size of a bison or woolly rhinoceros, you’d better be pretty big and strong yourself.

Bears mostly weren’t hunting animals that big, though. Modern studies suggest that overall, bears are omnivores, not fully carnivorous. Bears eat a lot of plant material even if you don’t count the panda, which isn’t very closely related to other bears. Even when a bear does eat other animals, they’re not usually very big ones.

Let’s take Murilo’s suggestion as an example, the sloth bear. The sloth bear lives in India and is increasingly vulnerable due to habitat loss and poaching. It’s probably most closely related to the sun bear that we talked about in episode 234, which also lives in parts of South Asia. Both the sun bear and the sloth bear have long black hair and a white or yellowish V-shaped marking on the chest. The sloth bear’s hair is especially long on its neck and shoulders, like a mane, and its ears even have long hair.

The sloth bear stands around 3 feet high at the shoulder at most, or 91 cm, and a big male can be over 6 feet tall, or almost 2 meters, when he stands on his hind legs. This isn’t gigantic for bears in general, but it’s not small either. Scientists think the V-shaped marking on its chest warns tigers to leave the sloth bear alone, and tigers mostly do. If tigers think twice about attacking an animal, you know that animal has to be pretty tough.

The sloth bear has massive claws on big paws. The claws can measure 4 inches long, or 10 cm, although they’re not very sharp. The bear has an especially long muzzle but its teeth aren’t very large. Like most bears, it’s good at climbing trees and can run quite fast, and it swims well too. It even has webbed toes.

With all this in mind, what do you think the sloth bear eats? I’ll give you some more hints. It has loose, kind of flappy lips, especially the lower lip. It doesn’t have any teeth in the front of its upper jaw. It mainly uses its huge claws to dig.

If you guessed that the sloth bear eats ants, termites, and other insects, you are right! It digs into termite and ant nests and uses its long, flexible lips to slurp up as many insects as it can, giving them a quick crunch with its back teeth before swallowing them down.

Insects are actually quite nutritious, and the sloth bear isn’t the only bear that eats them. All bears snack on ants and other insects sometimes. You may have heard that bears love honey and will tear open beehives to get it, and while that’s true, the bear is mainly after the larval bees because they’re so nutritious. The honey is just, you know, dessert.

Next, Clay wanted to learn about the Kodiak bear, which may be the largest bear in the world. It’s a subspecies of brown bear and is sometimes called the Alaskan brown bear since it lives on some Alaskan islands called the Kodiak Archipelago. It’s light brown or rusty-red in color.

The Kodiak bear has been restricted to these islands for at least 10,000 years, since the end of the Pleistocene when the sea levels rose as glaciers melted. It demonstrates island gigantism, which is actually quite unusual. Because islands have limited resources, but are relatively protected from large numbers of predators, small animals are the ones that generally adapt to island life by growing larger. Animals that start off large generally adapt by growing smaller, called island dwarfism. That’s why some islands have been home to dwarf elephants but giant rodents.

In the case of the Kodiak bear, it has a source of protein that helps it grow so incredibly large, salmon. Five species of salmon spawn in the freshwater on the islands, and the bears are able to put on lots of weight to survive the harsh winter by eating as much salmon as they can catch. They also have lots of nutritious plants to eat. They actually prefer some plants to eating salmon, which makes sense when you think about it. A wild animal needs to conserve energy, and it can take a lot of energy to catch fish. It’s a lot easier to eat berries, which can’t swim away.

So how big can a Kodiak bear get? A big male can stand up to 10 feet tall on his hind legs, or 3 meters, and be 5 feet tall, or 1.5 meters, when standing on all fours. Bears kept in captivity can grow even larger. That’s much bigger than a grizzly and about the same size as the closely related polar bear, which brings us to Ezra’s suggestion.

Ezra wanted to learn about the polar bear, which lives in the Arctic and areas near the Arctic. It doesn’t live near the Antarctic, or south pole, which means polar bears don’t eat penguins, because penguins live around the Antarctic. The polar bear does eat a whole lot of other animals, though, and is the most carnivorous of all bears. It especially likes eating seals, and will also catch and kill walruses, caribou, and beluga whales. That’s right, the polar bear can actually kill an entire whale. The beluga is fairly small for a whale and relies on breathing holes in the ice, and sometimes when it comes up to breathe, there’s a polar bear waiting for it. Most of the time, though, the polar bear eats much smaller animals.

The polar bear spends a lot of its time on sea ice, and a lot of the time in the sea. It swims incredibly well and spends so much time in the water that some people consider it a marine animal. It’s certainly semi-aquatic. Its kidneys are adapted to filter excess salt out of its blood from seawater, and its small eyes are closer to the top of its head than in other bears. This helps it see above water while swimming.

The polar bear is closely related to the brown bear and will sometimes interbreed with the brown bear where their ranges overlap. The resulting hybrid bear is usually light brown in color. The polar bear is famously white, although its fur becomes yellowish as the year goes on. It sheds its winter coat in the spring and the new hair that grows in is white.

Actually, the polar bear’s fur is transparent, but it looks white because of the way it scatters light. The guard hairs are long and coarse, protecting a shorter, softer undercoat that helps keep the bear warm even on bitterly cold nights. Unlike other bears, the polar bear doesn’t hibernate, except for pregnant females.

There used to be a bear of similar size that lived in Europe and Asia during the Pleistocene and only went extinct about 24,000 years ago. The cave bear gets its name because so many of its remains have been found in caves. It may have hibernated in caves like some bears do today, or it might have used caves as shelters year-round.

Scientists think the cave bear was most closely related to brown bears and polar bears. The males were much larger than females, and a big male was as big as a Kodiak or polar bear. But this giant bear probably wasn’t too much of a problem for our ancient ancestors and Neandertal relations, because it was almost entirely vegetarian.

Scientists have studied the wear pattern on cave bear teeth and determined that it was eating a whole lot of fruit, especially berries. It probably did eat at least some meat, but it’s likely that most of it came from scavenged carcasses. The cave bear didn’t even have all the teeth that other bears have.

All this talk about huge bears brings us to a mystery. It may even be a mystery you were wondering about yourself. How did bears survive the end of the Pleistocene when so many other megafauna went extinct, from the mammoth and giant ground sloth to the dire wolf and sabertooth cat?

A team of scientists from Denmark and Japan decided to examine the genetics of ancient brown bears, to learn how individuals were related and therefore how bears migrated across the world over time. They extracted genetic material from the remains of bears that lived as much as 60,000 years ago and as recently as 3,800 years ago and compared them to each other and to bears alive today.

Scientists already knew that brown bears used to live in more parts of the world than they do today. The prevailing view was that as the climate warmed after the ice ages, the bears retreated into colder parts of the world where they were more comfortable. But the team learned something surprising from the study, which was published in January of 2024.

Brown bears that lived before the end of the Pleistocene, approximately 11,000 years ago, had much broader genetic diversity than the bears that lived more recently. That means that bears that lived as far south as Japan and Ireland during the Pleistocene didn’t move to colder parts of the world, they died out. Each population that went regionally extinct made the brown bear gene pool that much smaller.

Most likely it was a combination of luck and adaptability that allowed bears to survive the end-Pleistocene extinctions. Just think how sad it would be if I ended this episode by saying that bears went extinct 11,000 years ago. Instead, we can still go to the zoo and see all kinds of bears whenever we want to.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 398: Repeating Scientific Names

Thanks to Alexandra, Pranav, Eilee, Conner, and Joel for their suggestions this week!

Velella velella, or by-the-wind-sailor [photo from this page]:

Porpita porpita, or the blue button [photo from this page]:

Cricetus cricetus, or the European hamster, next to a golden hamster:

Nasua nasua, or the South American coati [photo from this page]:

Mola mola, or the ocean sunfish:

Quelea quelea, or the red-billed quelea [photo from this page]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn a little bit about scientific names, and along the way we’re going to learn about several animals. Thanks to Alexandra, Eilee, Conner, Joel, and Pranav for their suggestions!

Alexandra inspired this episode by suggesting two animals, the by-the-wind-sailor and the blue button. Both are marine invertebrates that look superficially like jellyfish, but they’re actually colonial organisms. That means that although they look like a single animal, they’re actually made up of lots of tiny animals that live together and function as one organism.

The blue button is closely related to the by-the-wind-sailor and both are related to siphonophores. Both the blue button and the by-the-wind-sailor spend most of the time near or on the ocean’s surface and have a gas-filled chamber that helps keep them afloat, with stinging tentacles that hang down into the water, but both are made up of a colony of tiny animals called hydroids. Different hydroids have different functions, and all work together to find tiny food that will benefit the entire colony.

The blue button gets its name because its float is round and flat like a button, and often blue or teal in color. It’s quite small, only a little over an inch across, or about 3 cm, and its tentacles are not much longer. The by-the-wind-sailor is a little larger than the blue button, with a blue sail-shaped float that’s only a few inches across, or maybe 7 cm, with stinging tentacles of about the same size. The stings of both organisms aren’t very strong and aren’t dangerous to humans, but they do hurt, so it’s a good idea not to touch one. Since both can be very common in warm ocean waters and they sometimes get blown ashore by the wind in large numbers, it can be hard to avoid them if you’re visiting the beach at the wrong time. They can still sting you if they’re dead, too.

The by-the-wind sailor has the scientific name of Velella velella while the blue button’s scientific name is Porpita porpita. The term for a scientific name that contains the same words is a repeating scientific name, also called a tautonym or tautonymous name, and that’s the subject of this episode.

A scientific name is something we mention a lot but if you’re not sure what it means, it can sound confusing. Every organism with a scientific name has been described by a scientist, meaning it’s been studied and placed somewhere in the great interconnected web of life. The system of giving organisms scientific names is called binomial nomenclature. The first word of the name indicates which genus the organism belongs to, while the second word indicates what species it is. These are called generic and specific names. Some organisms also have a third word in their scientific name which indicates its subspecies.

The reason scientists use a complicated naming system is to make it easier for other scientists to know exactly what organism is being discussed. For example, let’s say a scientist has been studying hamsters in the wild to learn more about them, and publishes a paper about her observations. If she just calls the animal a hamster, someone reading it might assume she was talking about the hamster found in their part of the world, when the paper is actually about a totally different, although closely related, hamster that lives somewhere else. And that brings us to Pranav’s suggestion, the European hamster, whose scientific name is Cricetus cricetus [cry-SEE-tus].

The hamster most of us are familiar with is actually the golden hamster, also called the Syrian hamster, more properly called Mesocricetus auratus. That’s the most common species kept as a pet. We can learn from the different scientific names that the European hamster is in a different genus from the golden hamster, which usually means it’s pretty different in some significant ways.

The European hamster lives throughout parts of Eurasia, especially eastern Europe through central Asia, and used to be extremely common. It’s also called the black-bellied hamster because the fur on its underside is black, while the fur on its upper side is tan or brown with white markings. These days it’s critically endangered due to habitat loss and being killed by farmers who think it hurts their crops. It does eat seeds, vegetables, and some roots, but it also eats grass and many other plants that are considered weeds, as well as insects, including insects that farmers also don’t want in their gardens.

In many respects, the European hamster is a lot like the golden hamster. It carries food home to its burrow in its cheek pouches and stores food in a larder. It hibernates in cold weather but wakes up around once a week to have a snack from its larder, which honestly sounds like the best way to spend the winter. But the European hamster is larger than the golden hamster. Like, a lot larger. The golden hamster is maybe 5 inches long, or 13 cm, which is small enough that you can easily hold it in your hand. The European hamster grows up to 14 inches long, or 35 cm. That’s the size of a small domestic cat, but with a short little hamster tail and short little hamster legs.

Even though an organism’s scientific name only designates genus and species, and subspecies when applicable, it allows scientists to look up a more detailed family tree. Every genus is classified in a family and every family is classified in an order, and every order in a class, and every class in a phylum, and every phylum in a kingdom, and every kingdom in a domain. Almost all of the organisms we talk about in this podcast belong to the kingdom Animalia. The more of these categories an organism shares with another organism, the more closely related they are.

Conner suggested we learn more about the coati, which we talked about in episode 302. The South American coati’s scientific name is Nasua nasua [NAH-sue-uh]. It grows almost four feet long, or 113 cm, which makes it sound enormous, but half of its length is its long ringed tail. It lives in much of South America, especially the northern part of the continent.

The coati is related to the raccoon of North America, and the two animals’ scientific names can help us determine how closely they’re related. The common raccoon’s scientific name is Procyon [PROSE-eon] lotor, so we already know it belongs to a different genus than the coati. But both the genus Procyon and the genus Nasua are classified in the family Procyonidae. So we know they’re closely related, because they belong to the same family, but not as closely related as they’d be if they belonged to the same genus, so we can expect to see some fairly significant differences between the two animals.

The South American coati is diurnal, unlike the nocturnal raccoon. While female raccoons often live in small groups of a few animals that share the same territory, female coatis live in groups of up to 30 animals who forage for food together and are very social. The coati also doesn’t have a set territory. The male coati is completely solitary, while the male raccoon will also live in small groups of three or four animals. Both are omnivorous but the coati eats more fruit and insects than the raccoon does, and the coati doesn’t dunk its food in water the way the raccoon famously does.

The system of binomial nomenclature that we use today was developed by the Swedish botanist Carolus Linnaeus in 1735. We talked about some of his mistakes in episode 123. Linnaeus built on a system developed by a zoologist almost a century before him, but streamlined it and made it easier to use. In the 300 years since Linnaeus came up with his system, many other scientists have made changes to reflect increased knowledge about the natural world and how best to denote it.

I keep saying “organism” instead of “animal,” and that’s because all living organisms may be given a scientific name as they are described. This includes everything from humans to maple trees, from earthworms to harpy eagles, from bumblebees to mushrooms. Linnaeus originally included minerals in his classification system, but minerals don’t evolve the way living organisms do. One group that wasn’t given scientific names until 2021 are viruses. There’s still a lot of controversy as to whether viruses are technically alive or not, but giving them scientific names helps organize what we know about them.

Eilee suggested the ocean sunfish, which has the scientific name Mola mola. Because its scientific name is easy to say, and because there’s also a freshwater sunfish that isn’t related to the ocean sunfish, a lot of people just call it the mola-mola, or just the mola. We talked about it way back in episode 96, so we’re definitely due to revisit it.

The ocean sunfish doesn’t look like a regular fish. It looks like the head of a fish that had something humongous bite off its tail end. It has one tall dorsal fin and one long anal fin, and a little short rounded tail fin that’s not much more than a fringe along its back end. This isn’t even a real tail but part of the dorsal and anal fins. The sunfish uses the tail fin as a rudder and progresses through the water by waving its dorsal and anal fins the same way manta rays swim with their pectoral fins. Pectoral fins are the ones on the sides, while the dorsal fin is the fin on a fish’s back and an anal fin is a fin right in front of a fish’s tail. Usually dorsal and anal fins are only used for stability in the water, not propulsion. The ocean sunfish does have pectoral fins, but they’re tiny.

The ocean sunfish lives mostly in warm oceans around the world, and it eats jellies, small fish, squid, crustaceans, plankton, and even some plants. It has a small round mouth that it can’t close and four teeth that are fused to form a sort of beak. It also has teeth in its throat, called pharyngeal teeth. Its skin is thick and rough like sandpaper with a covering of mucus, and its bones are mostly cartilaginous. It likes to sun itself at the water’s surface, and it will float on its side like a massive fish pancake and let sea birds stand on it and pick parasites from its skin. This also helps it absorb heat from sunlight after it’s been hunting in deeper water.

The female ocean sunfish can lay up to 300 million eggs at a time. That is the most eggs known to be laid by any vertebrate. When the eggs hatch, the larval sunfish are only 2 ½ mm long. Once they develop into their juvenile form, they have little spines all around their thin end, which kind of make them look like tiny stars. If that seems weird, consider that the ocean sunfish is actually related to the pufferfish, although not very closely. The largest adult ocean sunfish ever reliably measured was 14 feet tall, or 4.3 meters, including the long fins, which is a whole lot bigger than 2 ½ mm.

Sometimes after an organism is initially described and named, later scientists learn more about it and determine that it doesn’t actually belong in the genus or family where it was initially placed. If it gets moved to a different genus, its scientific name also needs to change. Some organisms get moved a lot and their scientific names change a lot. But typically, the species name doesn’t change. That’s the case for a little bird from Africa.

Joel suggested a bird called the red-billed quelea [QUEE-lee-ya], whose scientific name is Quelea quelea. When Linnaeus described it in 1758, he thought it was a type of bunting, so he named it Emberiza quelea. Another scientist moved it into a new genus, Quelea, in 1850.

I’d never heard of the red-billed quelea, which is native to sub-Sarahan Africa, but it may actually be the world’s most numerous non-domesticated bird, with an estimated 1.5 billion birds alive at any given moment.

The red-billed quelea mainly eats grass seeds, and unlike the European hamster, it is actually a problem to farmers. The bird doesn’t know the difference between yummy grass seeds and yummy wheat, barley, milt, oats, sunflowers, and other food that humans eat. In fact, some researchers suggest that the bird has become incredibly numerous because it has all this great food to eat that was planted by people.

A flock of red-billed quelea birds can number in the millions. The flock flies until they find grassland or fields with food they like. The first birds land, the birds behind them land a little bit farther along, and so on until all the birds have landed and are eating. But by the time the last birds of the flock land, the first ones have eaten everything they can find, so they fly up and over the rest of the birds until they find fresh grass to land in again. This is happening constantly with the entire flock of millions of birds, so that from a distance the flock’s movement looks like a cloud of smoke rolling across a field.

The red-billed quelea also eats insects, mostly during nesting season. Insects and other small invertebrates like spiders are especially nutritious for nestlings.

The quelea is about the size of a sparrow, which it resembles in many ways, although it’s actually a member of the weaver bird family, Ploceidae. It grows less than five inches long, or about 12 cm, including its tail, and it’s mostly brown and gray. Its beak and legs are orangey-red, and during breeding season the male has a rusty-red head with a black mask on his face.

One subspecies of red-billed quelea is native to western and central Africa. Since it’s a subspecies, it has three words in its scientific name: Quelea quelea quelea.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 397: Some Colorful Fishies

Thanks to Cosmo, William, and Silas for their fishy suggestions this week!

You have until Sept. 13, 2024 to back the enamel pin Kickstarter!

Further reading:

The Handfish Conservation Project

Researchers Look in Tank and See Promising Cluster of Near-Extinct Babies

The unique visual systems of deep sea fish

A red handfish:

Another red handfish. This one is named Hector:

The black dragon fish:

The white-edged freshwater whipray [photo by Doni Susanto]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we return to the vertebrate world, specifically some strange and colorful fishies. Thanks to William, Cosmo, and Silas for their suggestions!

We’ll start with Silas’s suggestion, the red handfish. We talked about it before back in episode 189, but it’s definitely time to revisit it. When we last discussed it, scientists estimated there were fewer than 100 red handfish left in the wild, meaning it was in imminent danger of extinction. Let’s find out how it’s doing now, four years later.

The handfish gets its name because its pectoral fins look like big flat hands. It spends most of its time on the sea floor, and it uses its hands to walk instead of swimming. It can swim, although it’s not a very strong swimmer, and anyway if you had great big hands you might choose to walk on them too. It doesn’t have a swim bladder, which helps most fish stay buoyant.

All species of handfish are small, only growing to about 6 inches long at most, or 15 cm. This is surprising considering the handfish is closely related to anglerfish, and some anglerfish can grow over 3 feet long, or about a meter.

As for the red handfish specifically, it generally only grows about 4 inches long at most, or 10 cm, and it once lived in shallow water around much of Australia. These days, it’s only found on two reefs southeast of Tasmania. Some populations are bright red while some are pink with red spots. It has a wide downturned mouth that makes it look like a grumpy red toad with big hands.

So how is the red handfish doing? Four years ago it was almost extinct in wild, with fewer than 100 individuals alive. These days the Handfish Conservation Project estimates that the wild population is probably about the same, although because the red handfish is so small and hides so well among sea grass, algae, and rocks that make up its home, it’s hard to get a good count of how many are really alive. It’s also under even more pressure than before as an overpopulation of urchins is overgrazing the plants where it lives, which may sound familiar to you if you listened to episode 395 a few weeks ago. But there is one fantastic change that gives conservationists hope that the red handfish won’t go extinct after all.

The red handfish is so endangered, and its remaining habitat is so small, that a few years ago scientists decided they needed to start a captive breeding program. But even though the fish did just fine in captivity, they didn’t breed at first. Then, in November 2023, one of the fish laid 21 eggs and all 21 hatched safely. Hopefully it won’t be long until the babies are old enough to release into the wild.

The red handfish is one of very few fish that hatch into tiny baby fish instead of into a larval form. Newly hatched babies are only about 5 mm long. Most fish colonize new habitats after they float around aimlessly as larvae, until they grow enough to metamorphose into adults. Since the red handfish doesn’t have this larval stage, and babies just walk around on the sea floor finding tiny worms and other food, it’s hard for the fish to expand its range. Hopefully, as the captive breeding program continues and more young fish are released into the wild, scientists can start releasing red handfish into areas where they used to live.

Next, William asked about the dragon fish. We’ve talked about a few dragonfish before, in episodes 193 and 231, but there are lots of species in many genera in the family Stomiidae. Many have barbels with photophores at the end that lure prey, and most have long needle-like teeth and jaws that can open incredibly wide. They also have stretchy stomachs so they can hold whatever they manage to catch. As you may have guessed from these traits, the dragon fish lives in the deep sea where there’s little or no light from the surface.

You may wonder why deep-sea fish even have eyes if there’s no light. Fish that live in cave systems eventually evolve to be eyeless, since they don’t need their eyes to see and growing eyes is just a waste of their energy. It’s because even though there’s no sunlight in the deep sea, there is light from lots of different organisms. Many, many deep-sea animals produce bioluminescent light to attract mates or trick smaller animals into coming closer.

Any sunlight that does find its way to the depths of the ocean is blue, because blue has the shortest wavelength and can travel farther. Red wavelengths are longest so that red is the first color lost when you start descending into the water. One article that I’ve linked to in the show notes mentions that if a diver gets a cut, the blood looks brown or even black if the water is deep enough. That’s creepy.

As a result, deep-sea fish are most sensitive to the color blue. Most of them can’t perceive red at all because there just isn’t any red in their environment. And that’s where the dragon fish comes in, because some species of dragon fish can not only see red, they produce red light that illuminates everything around them. A fish or other animal swimming along has no idea that it’s lit up like it’s under a red spotlight because it can’t even see that color.

At least one species, the black dragon fish, perceives red light very differently from the way other animals do. As far as we know it’s unique among all animals. Its eyes contain a photosensitizer derived from chlorophyll, which allows it to see shorter lightwaves. Chlorophyll is found in plants and some bacteria, and it’s actually a specialized pigment that absorbs energy from light. It’s the reason why plants are green. But the black dragonfish uses the chlorophyll it digests to perceive red light.

But remember how dragon fish have giant sharp fangs and will eat pretty much anything they can swallow? Where does the black dragon fish get the chlorophyll it needs? There aren’t any plants in the deep sea anyway.

The answer seems to be that the black dragon fish eats a whole lot of copepods, tiny crustaceans that live throughout the world. The particular species of copepods that the black dragon fish prefers contain a type of chlorophyll.

Finally, Cosmo wanted to learn about the freshwater stingray. We talked about it in episode 296, but mostly we concentrated on the South American fish in that episode. There are freshwater stingrays that live in other parts of the world, such as Asia. This includes the white-edge freshwater whipray, which is extremely rare and only found in four rivers in Southeast Asia.

The white-edge freshwater whipray grows up to two feet across, or 60 cm, with a thin tail about two and a half times longer than the body itself so that technically it can grow around 6 and a half feet long, or 2 meters. Most of that length is tail, though. It’s mostly brown so it can hide in the sandy mud at the bottom of the river, with black dermal denticles down the middle of its back. The tail is mostly white, though, and has two long stinging spines that can be over 3 inches long, or 8 cm.

While the white-edged whipray lives in rivers, it can also tolerate brackish water where the ocean and the river waters mix. It eats small animals it finds on the bottom of the river, including crustaceans and mollusks. It’s endangered due to habitat loss, overfishing, and pollution.

The white-edged whipray is so rare these days that it’s unlikely that anyone would accidentally step on one in the water. But if they did, the ray would whip its long tail up and jab the spines into the person’s leg or foot. The spines can do a lot of damage on their own, but the venom they inject makes the wound incredibly painful and can even potentially kill the person.

If you plan to do some wading in a South Asian river anytime soon, make sure to shuffle your feet as you walk to scare away any potential whiprays before you step right on it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

 

Episode 396: Moths!

Thanks to Joel and an anonymous listener for their suggestions this week!

Further reading:

Dieback and recovery in poplar and attack by hornet clearwing moth

The enormous and beautiful Atlas moth:

A male hairy tentacle moth without and with coremata extended [photos from this site]:

The hornet moth looks like a hornet but can’t sting:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Welcome to September, where we’re mere weeks away from Monster Month! Invertebrate August is over for another year, but what’s this? An episode about moths?! Hurrah for one extra invertebrate episode, because they don’t get enough attention on this podcast! Thanks to Joel and an anonymous listener for their suggestions.

First, a listener who wants to remain anonymous suggested that we talk about moths in general, and the Atlas moth in particular. I like the Atlas moth because you can catch it in Animal Crossing. It’s also beautiful and one of the largest moths in the entire world. Its wingspan can be well over 10 inches across, or about 27 cm, which is bigger than a lot of bird wingspans.

The Atlas moth’s wings are mostly cinnamon brown with darker and lighter spots. The upper wings have a curved sort of hook at the top that’s lighter in color and has an eyespot. It looks remarkably like a snake head, and in fact if a predator approaches, the moth will move its wings so that it looks like a snake is rearing its head back to strike.

Despite having such huge wings, atlas moths don’t fly very well. That’s okay because they only need to be able to fly for a few days, which they mostly do at night. They’re only looking for a mate, not food, because they don’t even have fully formed mouthparts. They don’t eat as adults. Like many moths, they mate, lay eggs, and die.

A few weeks later, the eggs hatch and the baby caterpillars emerge. The caterpillar is pale green with little spikes all over, and it eats plants until it grows to around 4 and a half inches long, or about 11 and a half cm. At that point it spins a cocoon attached to a twig, hidden from potential predators by dead leaves that the caterpillar incorporates into the cocoon’s outside.

The Atlas moth lives in forests in southern Asia, including China, India, Indonesia, and Malaysia, with a subspecies native to Japan. Its cocoons are sometimes collected to use for silk. The silk isn’t as high a quality as the domesticated silk moth’s, but it’s very strong and since the cocoons are so big, they produce lots of silk. Sometimes people will collect a cocoon after the moth has emerged and use it as a little purse.

Next, Joel suggested two interesting moths. The first is often called the hairy tentacle moth, which sounds absolutely horrifying. Its scientific name is Creatonotos gangis, and it lives in parts of Australia and southeast Asia.

The hairy tentacle moth is also called the Australian horror moth and other names that inspire fear and disgust. But why? The moth is really pretty. Its wings are pale brown and white with dark gray stripes in the middle, and it has a black spot on its head. The abdomen is usually red with black spots in a row. The wingspan is about 40 mm.

The issue comes with the way the male attracts a female. Inside his abdomen the male has four coremata, which are glands that emit pheromones. Pheromones are chemicals that other moths can detect, much like smells. When a male is ready to advertise for a mate, he perches on the edge of a leaf or somewhere similar and inflates the coremata so that they unfurl from inside the abdomen, like blowing up a balloon. Sometimes he only extends two of the coremata, sometimes all of them. Either way, the coremata are surprisingly large, sometimes longer than the entire abdomen. They’re dark gray with feathery hairs and they do actually look like hairy tentacles. They’re sometimes called hair pencils, but the term coremata is actually Greek for feather dusters.

If you don’t know what they are, the coremata really do look weird and unpleasant. But the moth is just doing his best to get his pheromones picked up on the breeze so a female will find him. The pheromone also repels other males.

The hairy tentacle moth can only develop his coremata and the pheromones he needs if he eats enough of plants that contain pyrrolizidine alkaloids. These are intensely bitter compounds that are also toxic to many animals. When he’s a caterpillar, the male eats plants that contain these alkaloids and retains them in his body, chemically modifying them later into pheromones, but if he doesn’t eat enough of them, he’s not able to grow coremata either.

Finally, Joel also suggested the hornet moth, which lives in Europe and the Middle East. It’s a moth, but it genuinely looks exactly like a yellow and black striped hornet. It even has clear wings like a hornet or wasp and flies like one too, and it’s about the size of a hornet. Even though it’s harmless, it looks like it would give you a bad sting, which protects it from potential predators who know better than to mess with a hornet. It’s a great example of what’s called Batesian mimicry, but it has one big drawback. The moth lives in some areas where there aren’t any hornets, and in those areas birds and other animals soon learn that those brightly striped insects are yummy and easy to catch.

The female hornet moth lays her eggs in the plants around the base of a tree or on its bark, especially the poplar tree. When the eggs hatch, the larvae spend the next two or three years in and around the tree, mostly around its roots. It eats the wood of the roots, and when it’s ready to pupate it burrows into the tree trunk and spins its cocoon in the burrow. The problem is that it needs the cocoon to be protected inside the tree, not near the entrance of the burrow, but when it emerges from the cocoon it needs to be near the entrance or its newly metamorphosed body will be too large for it to crawl out. To solve the problem, when it’s getting close to emerging, the moth will wriggle around in its cocoon so energetically that it manages to push the pupa up the burrow to the entrance. You can imitate this action by zipping yourself into a sleeping bag and trying to crawl across a room.

For a long time people thought the hornet moth was damaging poplar trees by this behavior, causing them to die. It turns out that the moths aren’t hurting the trees, they’re just more noticeable when poplars are already injured by drought.

There’s also an American hornet moth that lives in some parts of the Midwest and western areas of North America. It’s closely related to the hornet moth of Europe and adults look an awful lot like hornets, but they don’t sting. So the next time you’re about to run from a hornet, take a moment to determine if the hornet is actually a harmless moth. Or at least don’t run, just walk away quickly and safely. Just in case.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!