Episode 431: The New Dire Wolf

Thanks to Jayson for suggesting this week’s topic, the new “dire wolf”! Also, possibly the same but maybe a different Jayson is the youngest member of the Cedar Springs Homeschool Science Olympiad Team, who are on their way to the Science Olympiad Nationals! They’re almost to their funding goal if you can help out.

Further reading:

Dire wolves and woolly mammoths: Why scientists are worried about de-extinction

The story of dire wolves goes beyond de-extinction

These fluffy white wolves explain everything wrong with bringing back extinct animals

Dire Wolves Split from Living Canids 5.7 Million Years Ago: Study

This prehistoric monster is the largest dog that ever lived and was able to crush bone with its deadly teeth – but was wiped out by cats

“Dire wolf” puppies:

An artist’s interpretation of the dire wolf (red coats) and grey wolves (grey coats) [taken from fourth link above]:

The “mammoth fur” mice:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Jayson, who wants to learn about the so-called “new” dire wolf.

Before we get started, a big shout-out to another Jayson, or maybe the same one I’m honestly not sure, who is the youngest member of the Cedar Springs Homeschool Science Olympiad Team. They’ve advanced to the nationals! There’s a link in the show notes if you want to donate a little to help them with their travel expenses. This is a local team to me so I’m especially proud of them, and not to brag, but I’ve actually met Jayson and his sister and they’re both smart, awesome kids.

Now, let’s find out about this new dire wolf that was announced last month. In early April 2025, a biotech company called Colossal Biosciences made the extraordinary claim that they had produced three dire wolf puppies. Since dire wolves went extinct around 13,000 years ago, this is a really big deal.

Before we get into the details of Colossal’s claim, let’s refresh our memory about the dire wolf. We talked about it in episode 207, so I’ve taken a lot of my information from that episode.

According to a 2021 study published in Nature, 5.7 million years ago, the shared ancestor of dire wolves and many other canids lived in Eurasia. Sea levels were low enough that the Bering land bridge, also called Beringia, connected the very eastern part of Asia to the very western part of North America. One population of this canid migrated into North America while the rest of the population stayed in Asia. The two populations evolved separately until the North American population developed into what we now call dire wolves. Meanwhile, the Eurasian population developed into many of the modern species we know today, and some of those eventually migrated into North America too.

By the time the gray wolf and coyote populated North America, a little over one million years ago, the dire wolf was so distantly related to it that even when their territories overlapped, the species avoided each other and didn’t interbreed. We’ve talked about canids in many previous episodes, including how readily they interbreed with each other, so for the dire wolf to remain genetically isolated, it was obviously not closely related at all to other canids at that point.

The dire wolf looked a lot like a grey wolf, but researchers now think that was due more to convergent evolution than to its relationship with wolves. Both lived in the same habitats: plains, grasslands, and forests. The dire wolf was slightly taller on average than the modern grey wolf, which can grow a little over three feet tall at the shoulder, or 97 cm, but it was much heavier and more solidly built. It wouldn’t have been able to run nearly as fast, but it could attack and kill larger animals.

The dire wolf went extinct around 13,000 years ago, but Colossal now claims that they’re no longer extinct. There are now exactly three dire wolves in the world, two males and a female, born to two different dogs who acted as surrogate mothers. But are these really dire wolves, or are they something else?

Colossal’s scientists claim that the 2021 Nature study that determined gray wolves and dire wolves weren’t closely related and couldn’t interbreed was based on poor-quality DNA studies. They redid the genetic scans and determined that dire wolves were more wolf-like than the 2021 study thought. But the 2021 study was published in the foremost peer-reviewed journal in the scientific world. Colossal’s study hasn’t been published at all.

Extraordinary claims require extraordinary evidence. In other words, until a study is published in a respected peer-reviewed journal that contradicts the 2021 Nature study, all the genetic evidence we have now points to dire wolves and gray wolves being extremely genetically different.

Colossal’s scientists made 20 edits to 14 gray wolf genes to make the puppies more similar to dire wolves in size, with white coats even though there’s no evidence that real dire wolves were white. Colossal claims that the genomes of grey wolves and dire wolves are 99.5% identical, but those 20 changes are out of 12,235,000 genetic differences. Genetically these puppies are just modern grey wolves.

The biggest problem with the claim that the puppies are actually dire wolves is that it implies that bringing back an extinct species is really easy. Not only can this make people think that extinction isn’t a big deal after all, it also ignores the issues that make animals go extinct in the first place, especially recently, like pollution, habitat loss, climate change, invasive species, and over-hunting or capture of wild animals to sell as exotic pets.

In the very first, very terrible Strange Animals Podcast episode, I talked about the quagga, a species of zebra from South Africa that went extinct very recently due to human causes. I was excited about the de-extinction attempts for that species, which mostly involved breeding zebras with the most quagga genetic material to select for quagga-like traits. I still think this is a good project, since the quagga’s ecosystem is still in place and still has a quagga-shaped hole in it. Colossal has also done good work with red wolves in North America, helping to keep that critically endangered species genetically healthy.

Also in an early episode, I talked about Colossal’s de-extinction plans for the mammoth. I was all for that too, tongue-in-cheek, because I said I wanted a pet mammoth. Now I’ve changed my mind. Awesome as it would be to see real live mammoths, there’s not any real habitat left for them. Between climate change, habitat loss due to human activity, and more than ten thousand years of evolution of other animals to move into the mammoth’s empty ecological niche, where does Colossal plan to put its mammoths? We don’t even have safe habitats for elephants anymore, which are still around.

Earlier this year, Colossal announced another genetically modified animal, mice with long golden-brown fur inspired by woolly mammoth fur. Mammoths were highly adapted for cold far beyond long fur, while modern elephants are highly adapted for hot climates. If Colossal’s mammoths are anything like its so-called dire wolves, they’ll be editing genes to change appearance, not anything else. That’s unethical, basically taking an endangered heat-adapted animal, giving it a heavy coat, and sticking it into a cold climate. It will have no herd mates and no knowledge of how to survive in the wild in a climate it was never intended to live in, meaning it will be dependent on human help. Once the novelty of “oh look, a furry elephant” wears off, and Colossal either goes out of business or moves on to the next big thing, what will happen to the mammoth?

That’s one of the concerns about the new dire wolves. They don’t have a wolf family. They’re completely dependent on humans and will never be able to survive in the wild, even if they were allowed to try.

Let’s return to extinct canids to finish on a brighter note, something that Richard from NC brought to my attention recently. It’s an animal called epicyon, a canid that may have lived as recently as 5 million years ago in North America. It’s the largest canid ever discovered, around 3 feet tall, or 90 cm, at the shoulder and as much as 8 feet long, or 2.5 meters. It probably weighed as much as a small bear, and it was strong and powerful so that it was probably more bear-like or lion-like in body shape than wolf-like.

It had a short, powerful muzzle and strong jaws with huge teeth meant for crushing bone, similar to modern hyenas. It wasn’t anywhere near as fast a runner as modern wolves, but it could probably move pretty fast when it needed to. Some scientists think it was a pack animal, but it may have been an ambush predator instead of hunting in packs like wolves and other modern canids do.

Epicyon probably preyed on megaherbivores like camels, horses, pronghorn, rhinoceroses, and peccaries, all of which were common in North America several million years ago. It probably also scavenged a lot of its food, since it could break bones other animals couldn’t. We’re not sure why epicyon went extinct, but some scientists suggest it was out-competed by saber-tooth cats and more modern canids–including the dire wolf.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 430: The Fake and the Real Coelacanth

This week we examine two recent articles about coelacanth discoveries. Which one is real and which one is fake?!

Further reading:

Fake California Coelacanth

First record of a living coelacanth from North Maluku, Indonesia

A real coelacanth photo:

A fake coelacanth photo (or at least the article is a fake) [photo taken from the first article linked above]:

A real coelacanth photo [photo from the second article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I had another episode planned for this week, but then I read an article by geologist Sharon Hill and decided the topic she researched was so important we need to cover it here. No, it’s not the dire wolf—that’s next week. It’s the coelacanth.

We talked about the coelocanth way back in episode two, with updates in a few later episodes. Because episode two is so old that it’s dropped off the podcast feed, and to listen to it you have to actually go to the podcast’s website, I’m going to quote from it extensively here.

In December of 1938, a museum curator in South Africa named Marjorie Courtenay Lattimer got a message from a friend of hers, a fisherman named Hendrick Goosen, who had just arrived with a new catch. Lattimer was on the lookout for specimens for her tiny museum, and Goosen was happy to let her have anything interesting. Lattimer went down to the dock. Then she noticed THE FISH.

It was five feet long, or 1.5 meters, blueish with shimmery silvery markings, with strange lobed fins and scales like armored plates. She described it as the most beautiful fish she had ever seen. She didn’t know what it was, but she wanted it. She took the fish back to the museum in a taxi and went through her reference books to identify it.

Imagine it. She’s flipped through a couple of books but nothing looks even remotely like her fish. Then she turns a page and there’s a picture of the fish–but it’s extinct. It’s been extinct for some 66 million years. But it’s also a very recently alive fish resting on ice in the back of her museum.

Lattimer sketched the fish and sent the drawing and a description to a professor at Rhodes University, J.L.B. Smith. But Smith was on Christmas break and didn’t get her message until January 3rd. In the meantime, Lattimer’s museum director told her the fish was a grouper and not worth the ice it was lying on.

December is the middle of summer in South Africa, so to keep the fish from rotting away, she had it mounted. Then Smith sent her a near-hysterical cable that read, “MOST IMPORTANT PRESERVE SKELETON AND GILLS.” Oops.

Smith got a little obsessed about finding another coelacanth. He offered huge rewards for a specimen. But it wasn’t until December of 1952 that a pair of local fishermen on the island of Anjuan, about halfway between Tanzania and Madagascar, turned up with a fish they called the gombessa. It was a second coelacanth.

Everyone was happy. The fishermen got a huge reward—a hundred British pounds—and Smith had an intact coelacanth. He actually cried when he saw it.

Most people have heard of the coelacanth because its discovery is such a great story. But why is the fish such a big deal?

The coelacanth isn’t just a fish that was supposed to be extinct and was discovered alive and well, although that’s pretty awesome. It’s a strange fish, more closely related to mammals and reptiles than it is to ordinary ray-finned fish. The only living fish even slightly like it is the lungfish, which we talked about in episode 55.

While the coelacanth is unique in a lot of ways, it’s those lobed fins that are really exciting. It’s not a stretch to say its paired fins look like nubby legs with frills instead of digits. Until DNA sequencing in 2013, many researchers thought the coelacanth was a sort of missing link between water-dwelling animals and those that first developed the ability to walk on land. As it happens, the lungfish turns out to be closer to that stage than the coelacanth, and both the lungfish and the coelacanth had already split off from the shared ancestor of marine and terrestrial organisms when they evolved around 400 million years ago. But for scientists in the mid-20th century, studying a fish that looked like it had little legs must have been electrifying.

But this fish story isn’t over yet. In 1997, a marine biologist on honeymoon in Indonesia found a coelacanth in a local market. And it was a different species of coelacanth. Can you imagine a better wedding gift?

Coelacanths are placid fish who do a lot of drifting, although their eight marvelous fins make them very maneuverable. They stay close to the coast and prefer rocky areas. They especially love underwater caves. They hunt for smaller fish and cephalopods like squid at night and rest in caves or hidden among rocks during the day. Sometimes sharks eat them, but for the most part coelacanths lead comfortable lives, floating around eating stuff. Sometimes they float around tail up or even upside down because they just don’t care.

Coelacanths have since been discovered in the western Indian Ocean, off the coast of Madagascar, and a few other places. I finished episode two by saying, “So far, living coelacanths have mostly been found off the coast of Africa, but they’re much more widely spread in the fossil record. Rumors of coelacanths in other places, like the Gulf of Mexico or around Easter Island, keep popping up. Maybe one day another population of these awesome fish will be discovered.”

And in late April 2025, it seemed that my hope had come true. An article was released by a website called Animals Around the Globe, detailing a new discovery of a coelacanth off the coast of San Diego, California!

Now, I missed that article but Sharon Hill didn’t. She’s a geologist whose work I follow and mention here occasionally. She likes to post about cryptids and other mysteries and dig into the real science behind reports, and she suspected right away that there was something fake about the San Diego coelacanth. There’s a link in the show notes to her article, which is worth reading. For one thing, she explains how she did the research to determine whether the article was real.

Her first step was to look for other articles about the finding. Animals Around the Globe isn’t a scientific site, just a blog that posts about animals. A new species of coelacanth, especially one found in North America, would be a HUGE big deal in the scientific community, so there should be lots of articles about it. But Sharon didn’t find anything.

Her next step was to contact the two institutions referenced in the article, the Scripps Institution of Oceanography and the Monterey Bay Aquarium Research Institute. Scripps wrote back first and said the article was a fake. Sharon suspects the article was AI generated. The blog that posted it gets money from advertising, and the more people click through to read the article, the more money they make. That’s why I’m not linking to that article from the show notes.

As it happens, on the same day that that article was published, another article about the coelacanth was published, this one in Nature Scientific Reports. It’s titled “First record of a living coelacanth from North Maluku, Indonesia,” and I do link to it in the show notes because it’s a real sighting and an article written by real scientists, not AI.

In October 2024 a team of scientists were doing deep diving off the coast of North Maluku, Indonesia, on a submerged volcanic slope where they suspected coelacanths were living. It was a dangerous dive because they had to descend so deep, so it required them to use a decompression stage on the way back to the surface. A pair of divers were on their way to the decompression site when they saw a big fish hovering over a boulder. It was a coelacanth that they estimated as being about 5 feet long, or 1.5 meters!

It swam away slowly, but the next morning the divers returned and saw it again. Because coelacanths are gray with a pattern of white dots, and each dot pattern is unique, they knew it was the same fish. They were able to get more photos and video. The most important thing, though, is that while coelacanths have been found in other parts of Indonesia, they hadn’t been found in this particular area. Live individuals also hadn’t ever been seen by actual divers, just ROVs.

The more we know about these amazing fish, the better they can be protected. Fake articles only bring confusion and doubt.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 429: Foxes!

Thanks to Katie, Torin, and Eilee for suggesting this week’s topic, foxes!

Further reading:

Meet the Endangered Sierra Nevada Red Fox

Long snouts protect foxes when diving headfirst in snow

Black bears may play important role in protecting gray fox

The red fox:

A black and gold Sierra Nevada red fox [photo taken from the first link above]:

The extremely fluffy Arctic fox:

The gray fox [photo by VJAnderson – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=115382784]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have an episode about foxes, a suggestion by Katie, and we’ll talk about fox species suggested by Torin and Eilee.

Foxes are omnivorous canids related to dogs and wolves, and just to be confusing, male foxes are sometimes called dogs. Female foxes are vixens and baby foxes are cubs or kits. But even though foxes are related to dogs and wolves, they’re not so closely related that they can interbreed with those other canids. Plus, of course, not every animal that’s called a fox is actually considered a fox scientifically.

The largest species of fox is the red fox, which also happens to be the one most people are familiar with. It’s common throughout much of North America, Eurasia, and the Middle East, and even parts of northern Africa. It’s also been introduced in Australia, where it’s an invasive species. It’s a rusty-red in color with black legs and white markings, including a white tip to the tail. It has large pointed ears and a long narrow muzzle.

There are lots of subspecies of red fox throughout its natural range, including one suggested by Eilee, the Sierra Nevada red fox. It lives in the Sierra Nevada and Oregon Cascades mountain ranges in the western United States, in parts of California, Nevada, and Oregon. It’s smaller than the red fox and some individuals are red, some are black and gold, and some are a mix of red and gray-brown. Its paws are covered with long hair that protects the paw pads from snow, and its coat is thick.

The Sierra Nevada red fox was first identified as a subspecies in 1937, but it took more than half a century until any scientists started studying it. It used to be common throughout the mountain ranges where it lives, but after more than a century of trapping for fur and shooting it for bounty, it’s one of the rarest foxes in the world. Fewer than 100 adults are known to survive in the wild, maybe even fewer than 50.

For a long time, scientists thought the Sierra Nevada red fox had been extirpated from California, and that it might even be completely extinct. Then a camera trap got pictures of one in 2010. It’s fully protected now, so hopefully its numbers will grow.

Torin suggested we learn about the Arctic fox, which lives in far northern areas like Greenland, Siberia, Alaska, and parts of northern Canada. The Arctic fox’s muzzle is relatively short and its ears are rounded, and it also has a rounder body and shorter legs than other foxes. This helps keep it warm, since it has less surface area to lose body heat.

During the summer, the Arctic fox is brown and gray, while in winter it’s white to blend in with the snowy background. There are some individuals who are gray or brown-gray year-round, although it’s rare. The Arctic fox’s fur is thick and layered to keep it warm even in bitterly cold weather, and like the Sierra Nevada red fox, it has a lot of fur on its feet.

The Arctic fox is omnivorous like other foxes, although in the winter it mostly eats meat. In summer it eats bird eggs, berries, and even seaweed along with fish and small animals like lemmings and mice. It also eats carrion from dead animals and what’s left from a polar bear’s meal. It has such a good sense of smell that it can smell a carcass from 25 miles away, or 40 km. Its hearing is good too, which allows it to find mice and other animals that are traveling under the snow. Like other foxes, it will poke its nose into the snow quickly to grab the little animal, an activity called mousing. A study from 2024 revealed that the fox’s snout shape helps keep it from getting injured in deep and compacted snow.

The grey fox lives throughout North and Central America, although it’s less common than it used to be due to habitat loss and hunting by humans. It’s a grizzled gray in color with reddish or tan legs, and a black stripe down its tail ending in a black tail tip.

It’s actually not that closely related to what are called true foxes. Its pupils are rounded like a dog’s instead of slit like other foxes, which have eyes that resemble cats’ eyes. The grey fox also has hooked claws that allow it to climb trees like a cat, and when it’s in a tree it can climb around in it just fine. A vixen may make her den in the hollow part of a tree to have her babies, sometimes as much as 30 feet, or 9 meters, above the ground, although most of the time gray foxes den on the ground, in a burrow, hollow log, or even in an abandoned human building.

The gray fox is small, not much bigger than a domestic cat, and it eats a lot of the same things that coyotes eat. If a coyote feels like a grey fox is encroaching on its territory, the coyote will kill the fox. Naturally, foxes are cautious around coyotes as a result. A study published in 2021 discovered that in areas where black bears live alongside coyotes and gray foxes, the foxes spend a lot of time hanging out near bears. In winter when the bears are hibernating, the foxes leave because coyotes will move into the area until the bears re-emerge in spring. Coyotes are afraid of bears, so the presence of bears protects the foxes as long as the fox doesn’t annoy the bear. I feel like this would make a great basis for a cartoon.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 415: Animals with Names

This week we’re going to learn about some animals that seem to have individual names!

Further reading:

Bottlenose dolphins can use learned vocal labels to address each other

How Do Dolphins Choose Their Name?

Vertical transmission of learned signatures in a wild parrot

Baby Parrots Learn Their Names from Their Parents

Study: African Elephants Address Each Other With Name-Like Calls

Marmoset Monkeys Use Names to Communicate with Each Other

The green-rumped parrotlet (photo by Rick Robinson, taken from this site):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some animals that seem to be using names to refer to other individuals or themselves.

Let’s start with bottlenose dolphins, because they’re well-studied and scientists have known about this particular aspect of their society for over a decade. Every bottlenose dolphin has a signature whistle that identifies it to other dolphins. The signature whistles can be complex and the dolphin may add or change details to indicate its mood or other information. It’s not precisely a name in the way humans would think of it, but it is an identifier.

The dolphin creates its own signature whistle when it’s young. Some dolphins pattern their whistles on their mother’s signature whistle, while others mimic their siblings or friends. Some seem to pattern theirs on a distant acquaintance, which sounds to me like they just like something about an unusual whistle and decide to incorporate it into their own whistle. As dolphins grow up, females typically don’t change their whistles, but males often do. Male dolphins often pair up together and remain bonded, and a pair may change their signature whistles to be similar.

When a dolphin is trying to find a friend it can’t see, it will mimic that friend’s signature whistle. If a mother can’t see her calf and is worried, she’ll do the same, and her calf will answer by repeating its signature whistle. A lost calf will imitate its mother’s whistle. But it’s even more complicated than it sounds, because a group of dolphins who get together to forage may choose a shared whistle that the whole group uses. This helps them coordinate their behaviors to work together. Each member of the group uses a slightly different version of the group whistle, which means that each member can identify who’s speaking.

Other cetaceans seem to use a similar kind of name. Sperm whales, for instance, have a unique click sequence that they use to announce themselves when approaching other whales. The signature clicks always appear at the beginning of a sequence and don’t vary.

Bottlenose dolphins and many other cetaceans are extremely social animals. So are parrots. Studies of parrot calls indicate that parrots appear to have signature calls that they use the same way as dolphins do, to identify themselves to other parrots and as a way for other parrots to call for them. A study of wild green-rumped parrotlets in Venezuela discovered that the birds give a unique signature call to each baby while it’s still in the nest, and the baby continues to use its call its whole life, often with small changes.

The study set up video cameras to monitor 16 nests of a large wild population of the parrots. The population has been well studied and is used to using nesting tubes that scientists have set up for them. This makes it easier for the scientists to monitor nesting behaviors. In this case, to test whether the names had something to do with genetics or not, the scientists sneakily moved half of the eggs from one nest to another, so that half the parents unknowingly raised some chicks that weren’t actually related to them.

Despite the egg switcharoo, all the chicks were given names that were similar to the parents’ signature calls. The parents started using a specific signature call soon after the eggs hatched, and the babies started imitating it. Gradually each baby added its own specific flourish to the call that made it their own, so while you can say that the parents named their babies, it’s just as true to say that the babies named themselves. The parrots use the signature calls to announce themselves, but also to call for friends, siblings, and parents.

Elephants are also extremely social animals. Recent studies of African savanna elephant calls indicate that elephants also have an identifying rumble sound that acts as a name. In fact, it acts more like a name as humans use names than the signature sounds made by dolphins and parrots. An elephant will use a specific rumble when addressing another elephant, but the rumble isn’t the speaker’s name, it’s the recipient’s name. It’s the difference between me saying, “Hi, I’m Kate. How are you?” and me saying, “Hi, Kelly, how are you?” when I’m talking to my friend Kelly. Dolphins and parrots seem to be saying something like, “Kate here, I’m swimming this way.”

Marmosets seem to use names the same way that elephants do. Marmosets are a type of small monkey native to Central and South America, which live in treetops and eat fruit and other plant material, and the occasional insect. A 2024 study found that marmosets that know each other address individuals with specific sounds, whether or not they’re related.

All the animals we’ve talked about today are incredibly social, just like humans are. In the case of dolphins, parrots, and marmosets in particular, it’s easy for individuals to travel and forage together but be out of sight of one other. Having a way to track friends and family members when you can’t see them is important to keep a group together.

Studies about animals using names are becoming more common, with both the marmoset study and the elephant study published in 2024. It may not seem like a big deal, but using a specific vocal label for a specific individual is a huge indicator of linguistic intelligence. We haven’t known a lot about it before recently because the recordings of animals communicating was time-consuming and difficult to categorize. Now we have sophisticated computer programs that can compile the information for us, so that scientists can study it more easily. I wouldn’t be a bit surprised if more and more studies start finding animals that use names.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 410: Electric Catfish

Thanks to Cosmo for suggesting this week’s animal, the electric catfish!

Further reading:

The shocking truth about electric fish

Efficient high-voltage protection in the electric catfish

Gimme kiss [electric catfish photo from this site]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re finally going to talk about a fish Cosmo wanted us to learn about, the electric catfish!

Catfish are really common fish that live throughout the world, except for Antarctica. We’ve talked about various types of catfish in lots of different episodes, since there are well over 3,000 known species and they’re incredibly diverse. The electric catfish lives in freshwater in tropical areas in western and central Africa, as far north as the Nile River.

All animals generate electric fields in their nerves and the contracting of muscles. Animals that can sense these fields are called electroreceptive. An electroreceptive animal can find hidden prey without using its other senses.

Many electroreceptive animals can also generate weak electrical fields, usually less than a single volt—small electrical pulses or a sort of wave, depending on the species, that can give them information about their environment. Like a dolphin using echolocation, a fish using electro-location can sense where potential prey is, where predators, plants, and rocks are, and can even communicate with other fish of its same species. Of course, those same electric pulses can also attract electroreceptive predators.

Some fish can generate an electric shock so strong it can stun or kill other animals. The most famous is the electric eel, which we talked about way back in episode 10, but the electric catfish falls in this category too.

The electric catfish isn’t a single species but several in the family Malapteruridae. Some are very small, but one grows as much as four feet long, or 1.2 meters, and can weigh over 50 lbs, or 23 kg. That’s Malapterurus electricus, THE electric catfish.

The electric catfish is grayish-brown mottled with black spots. Like a lot of catfish, it’s a cylinder-shaped chonk, and has three pairs of barbels around its broad mouth. Barbels are the feelers that give the catfish its name, because they look sort of like a cat’s whiskers. Sort of. Not actually very much like a cat’s whiskers. The electric catfish also has what look like surprisingly kissy lips, which are often pale in color so they stand out, especially when the mouth is open, which is frankly hilarious. It doesn’t have a dorsal fin and it’s not a fast swimmer. It spends most of its time lurking in rocky areas in muddy, slow-moving water. It’s also nocturnal.

The electric catfish eats other fish, although it will also eat pretty much anything it can swallow. It likes muddy water because it doesn’t want potential prey to see it, and of course it doesn’t want any potential predators to see it either. That includes humans, who consider it a delicacy. Humans also sometimes keep electric catfish as aquarium fish, which is sort of the opposite of being killed and eaten.

Contracting a muscle causes a tiny, tiny electrical impulse, as I mentioned earlier, but in electric fish certain muscles have developed the ability to generate much stronger electrical impulses. Instead of muscles, they’re called electric organs. The interesting thing is that this is only found in fish, but that the ability evolved separately at least six times in different lineages of fish.

The electric catfish uses its ability to generate electric shocks as a defense when it needs to, but mainly it uses it to stun or outright kill other fish, which it then gulps down. It can discharge up to 300 volts of electricity in pulses that last only a few milliseconds, but since it can generate up to 500 pulses in waves, that’s a lot of electricity. That’s not enough to kill a person, but you’d definitely feel it and try to get away.

But, you may ask, how does the electric catfish not shock itself? Water is a really good conductor of electricity, which is one reason why this ability is only found in fish. A study published in 2022 asked that question too. The scientists used a high speed digital camera to observe captive electric catfish, and got them to discharge electricity by tickling them with a paintbrush. This allowed the scientists to see if the catfish was actually affected by its electricity at all, because the main outward sign of electrocution is involuntary muscle contractions. They determined that no, the catfish didn’t show any sign of being shocked. They also weren’t shocked when the scientists were the ones generating electricity in the tank. The conclusion is that the electric catfish is shielded by a layer of fat and other tissues that resist electric shocks, which are especially dense around the animal’s heart and nervous system.

Arthritis in humans is sometimes alleviated by the application of mild electric shocks, carefully administered by doctors, but in ancient times before electricity, people figured out that handling some fish helped arthritis. Since electric fish are pretty common in different parts of the world, different cultures figured this out at different times. The ancient Greeks would put an electric ray on the arthritic body part, for instance, while the ancient Egyptians used the electric catfish. The ancient Egyptians depicted the electric catfish in carvings and paintings that are over 5,000 years old. I have arthritis in my thumbs but I don’t think I want to touch an electric catfish with my thumbs.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 408: Dog-Like African Doggos

Thanks to Lydia and “warblrwatchr” for this week’s suggestions!

Further reading:

Sweet tooth: Ethiopian wolves seen feeding on nectar

The African wild dog is not actually a dog and eats lots of things:

The aardwolf is not a dog at all and eats insects:

The Ethiopian wolf is not a dog (or a wolf or a fox) and eats rodents and nectar [photo by Adrien Lesaffre and taken from this page]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about three dog-like animals from Africa, suggested by Lydia and “warblrwatchr,” even though none of the three animals are dogs.

We’ll start with one of Lydia’s suggestions, the African wild dog, also called the painted dog or painted wolf. Despite those names, it’s not very closely related to dogs and wolves. It’s the only species in its own genus, although it is a member of the family Canidae. Colonizers from Europe thought the animal was just a feral dog, not anything special that should be protected, and they also brought domestic dogs with them to Africa. Domestic dogs mean diseases that other canids can catch. Between introduced diseases, farmers killing the animals to keep them away from livestock, and habitat loss, the African wild dog is endangered. Luckily, these days conservation groups have been working to protect the animal, and its numbers are increasing slowly in Kenya’s national parks in particular.

The African wild dog is a tall, strong canid with great big ears and no dewclaws. It has a yellowish coat with black blotches and some white spots, including a white tail tip, although some subspecies have darker coats. Unlike most canids, its fur is bristly and doesn’t have a soft undercoat, and as the dog ages, it loses its fur until old dogs are nearly bald. It’s very social, as canids almost always are, and its varied coat pattern helps individuals recognize friends and pack-mates at a distance.

The African wild dog prefers savannas and other open areas. It hunts in packs and mostly preys on antelopes, although it will also kill zebras and other large animals, and individual dogs will sometimes catch small animals like hares and rodents.

The African wild dog pack isn’t especially hierarchical. The males of the pack are mainly led by the dominant male, while the females are mainly led by the oldest female, who is usually the most dominant. The dominant pair is usually the only pair that has babies. A mother dog has up to 16 pups at a time but only one litter a year.

In a lot of animals, as the babies grow up, the males are usually the ones who are driven out of the pack or leave on their own to find a new pack. In the African wild dog, females are the ones who leave as they grow up. Sometimes the females join a different pack and sometimes they start their own. Either way, it stops a pack from becoming inbred.

The African wild dog is extremely vocal, making lots of different sounds to communicate with its pack-mates. It sounds a lot more like a bird than a dog. This is what African wild dogs sound like:

[doggo sounds]

Next, Lydia and warblrwatchr wanted to learn about the aardwolf, which lives in eastern and southern Africa. Unlike the African wild dog, which is mostly active during the day, the aardwolf is nocturnal. It spends most of the day in a burrow, sometimes one it digs itself, but more often one that another animal dug and abandoned at some point.

The aardwolf has black stripes on a yellowish or reddish coat, a mane of long hair down its neck and back, large ears, and a bushy tail. It’s about the size of a big dog, about 20 inches tall at the shoulders, or 50 cm, but it looks like a small, slender hyena. That’s because it is actually a type of hyena, although it’s not closely related to other hyenas. Hyenas look dog-like but they aren’t canids at all. In fact, they’re more closely related to cats than to dogs, although that’s a very distant relationship.

The aardwolf has evolved to eat insects, mainly termites. It has a broad, sticky tongue, and while it does have teeth, unlike the anteaters we talked about a few weeks ago, they’re not very strong and are mostly used to fight other aardwolves. It’s mostly solitary except during mating season, when a pair will stay together until the female’s cubs are a few months old. The male will watch the cubs while the female goes out to find food.

The aardwolf mainly defends its territory by marking it with secretions from its anal glands, although males will fight during mating season and a mated pair will chase other aardwolves away when they have babies.

Not only does the aardwolf mainly eat termites, it mainly eats termites in one particular genus. It doesn’t dig into the termite mound but smells and hears the termites that are outside of the nest, which it licks up. Then it moves on to another termite mound and licks up all the termites it finds there. This makes it easier for the aardwolf to find food without expending a lot of energy, and it also doesn’t risk destroying the termite colonies in its territory. It can easily eat a quarter million termites every single night. It licks up a lot of sand along with the termites, naturally, but the sand actually helps grind up the insects in its stomach.

The aardwolf will also eat other insects when it can’t find enough of its preferred termites. Sometimes it will eat bird eggs, beetle larvae, and other small food. It doesn’t typically eat meat at all, even dead animals it comes across. It just eats any insects and larvae it finds on the carcass.

Finally, let’s finish with the Ethiopian wolf. It’s also called the red jackal or the Simien fox. It looks a lot like a long-legged fox, with a reddish coat with white markings, big pointed ears, and a long, sharp muzzle. Its long fluffy tail has a black tip. But it’s not a type of fox at all. It’s also not a jackal. Even though it lives in Africa, a genetic study has revealed that it’s actually more closely related to the gray wolf and coyote of North America than it is to any of the canids that live in Africa. Scientists think that the ancestor of the gray wolf migrated into northern Africa from Eurasia and its descendant is the Ethiopian wolf.

The Ethiopian wolf lives only in the mountains of Ethiopia and is critically endangered due to habitat loss, diseases spread by domestic dogs, and poaching. Less than 500 individuals are left in the wild. It lives in large family groups, with only the dominant female breeding. The rest of the pack helps care for the pups when they’re born. But the Ethiopian wolf doesn’t usually hunt in packs. Instead, it’s specialized to hunt rodents, and almost never eats anything except rodents.

Or that’s what we thought, until an article was published just a few days ago as this episode goes live in November 2024. But to learn about an unusual addition to the Ethiopian wolf’s diet, first we have to learn about a flower.

The flower is called the poker plant, torch lily, or red hot poker, because its flowers are orange and yellow and grow in a spike at the end of an upright stalk. The orange spike looks like a fireplace poker that’s been left in the fire long enough that the metal has begun to glow. Its genus is Kniphofia, and all species are native to Africa although people in other parts of the world grow them in gardens. The flowers produce lots of nectar and attract lots of bees and sunbirds.

But it’s not sunbirds or bees that the wolves have been observed eating. It’s the nectar itself, which the wolves lick off the flowers. This isn’t all that unusual, since lots of animals like the sweet taste of nectar. One of the scientists had seen the children of local shepherds lick the flowers for nectar, and she tried it too and said the nectar was delicious. She then saw the wolves lick the flowers, and after some study, it turns out that it’s very common behavior among the wolves. Older wolves teach pups how to do it, and the team observed some wolves visiting up to 30 different plants to lick nectar from the flowers.

The surprising thing, though, is what happens when a wolf licks the nectar. Pollen from the flowers gets all over the wolf’s muzzle, including on its whiskers. If you have a dog, you know that dogs have lots of little thin whiskers around their muzzle, and it’s the same for the Ethiopian wolf. As the scientists observed wolves visiting flower after flower, they realized that it’s probable that the wolves are helping pollinate the red hot poker flowers.

If this is the case, it’s the very first known large predator to act as a pollinator. Not only that, this is the first large predator found feeding regularly on nectar. Just like a giant meat-eating bee.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 398: Repeating Scientific Names

Thanks to Alexandra, Pranav, Eilee, Conner, and Joel for their suggestions this week!

Velella velella, or by-the-wind-sailor [photo from this page]:

Porpita porpita, or the blue button [photo from this page]:

Cricetus cricetus, or the European hamster, next to a golden hamster:

Nasua nasua, or the South American coati [photo from this page]:

Mola mola, or the ocean sunfish:

Quelea quelea, or the red-billed quelea [photo from this page]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn a little bit about scientific names, and along the way we’re going to learn about several animals. Thanks to Alexandra, Eilee, Conner, Joel, and Pranav for their suggestions!

Alexandra inspired this episode by suggesting two animals, the by-the-wind-sailor and the blue button. Both are marine invertebrates that look superficially like jellyfish, but they’re actually colonial organisms. That means that although they look like a single animal, they’re actually made up of lots of tiny animals that live together and function as one organism.

The blue button is closely related to the by-the-wind-sailor and both are related to siphonophores. Both the blue button and the by-the-wind-sailor spend most of the time near or on the ocean’s surface and have a gas-filled chamber that helps keep them afloat, with stinging tentacles that hang down into the water, but both are made up of a colony of tiny animals called hydroids. Different hydroids have different functions, and all work together to find tiny food that will benefit the entire colony.

The blue button gets its name because its float is round and flat like a button, and often blue or teal in color. It’s quite small, only a little over an inch across, or about 3 cm, and its tentacles are not much longer. The by-the-wind-sailor is a little larger than the blue button, with a blue sail-shaped float that’s only a few inches across, or maybe 7 cm, with stinging tentacles of about the same size. The stings of both organisms aren’t very strong and aren’t dangerous to humans, but they do hurt, so it’s a good idea not to touch one. Since both can be very common in warm ocean waters and they sometimes get blown ashore by the wind in large numbers, it can be hard to avoid them if you’re visiting the beach at the wrong time. They can still sting you if they’re dead, too.

The by-the-wind sailor has the scientific name of Velella velella while the blue button’s scientific name is Porpita porpita. The term for a scientific name that contains the same words is a repeating scientific name, also called a tautonym or tautonymous name, and that’s the subject of this episode.

A scientific name is something we mention a lot but if you’re not sure what it means, it can sound confusing. Every organism with a scientific name has been described by a scientist, meaning it’s been studied and placed somewhere in the great interconnected web of life. The system of giving organisms scientific names is called binomial nomenclature. The first word of the name indicates which genus the organism belongs to, while the second word indicates what species it is. These are called generic and specific names. Some organisms also have a third word in their scientific name which indicates its subspecies.

The reason scientists use a complicated naming system is to make it easier for other scientists to know exactly what organism is being discussed. For example, let’s say a scientist has been studying hamsters in the wild to learn more about them, and publishes a paper about her observations. If she just calls the animal a hamster, someone reading it might assume she was talking about the hamster found in their part of the world, when the paper is actually about a totally different, although closely related, hamster that lives somewhere else. And that brings us to Pranav’s suggestion, the European hamster, whose scientific name is Cricetus cricetus [cry-SEE-tus].

The hamster most of us are familiar with is actually the golden hamster, also called the Syrian hamster, more properly called Mesocricetus auratus. That’s the most common species kept as a pet. We can learn from the different scientific names that the European hamster is in a different genus from the golden hamster, which usually means it’s pretty different in some significant ways.

The European hamster lives throughout parts of Eurasia, especially eastern Europe through central Asia, and used to be extremely common. It’s also called the black-bellied hamster because the fur on its underside is black, while the fur on its upper side is tan or brown with white markings. These days it’s critically endangered due to habitat loss and being killed by farmers who think it hurts their crops. It does eat seeds, vegetables, and some roots, but it also eats grass and many other plants that are considered weeds, as well as insects, including insects that farmers also don’t want in their gardens.

In many respects, the European hamster is a lot like the golden hamster. It carries food home to its burrow in its cheek pouches and stores food in a larder. It hibernates in cold weather but wakes up around once a week to have a snack from its larder, which honestly sounds like the best way to spend the winter. But the European hamster is larger than the golden hamster. Like, a lot larger. The golden hamster is maybe 5 inches long, or 13 cm, which is small enough that you can easily hold it in your hand. The European hamster grows up to 14 inches long, or 35 cm. That’s the size of a small domestic cat, but with a short little hamster tail and short little hamster legs.

Even though an organism’s scientific name only designates genus and species, and subspecies when applicable, it allows scientists to look up a more detailed family tree. Every genus is classified in a family and every family is classified in an order, and every order in a class, and every class in a phylum, and every phylum in a kingdom, and every kingdom in a domain. Almost all of the organisms we talk about in this podcast belong to the kingdom Animalia. The more of these categories an organism shares with another organism, the more closely related they are.

Conner suggested we learn more about the coati, which we talked about in episode 302. The South American coati’s scientific name is Nasua nasua [NAH-sue-uh]. It grows almost four feet long, or 113 cm, which makes it sound enormous, but half of its length is its long ringed tail. It lives in much of South America, especially the northern part of the continent.

The coati is related to the raccoon of North America, and the two animals’ scientific names can help us determine how closely they’re related. The common raccoon’s scientific name is Procyon [PROSE-eon] lotor, so we already know it belongs to a different genus than the coati. But both the genus Procyon and the genus Nasua are classified in the family Procyonidae. So we know they’re closely related, because they belong to the same family, but not as closely related as they’d be if they belonged to the same genus, so we can expect to see some fairly significant differences between the two animals.

The South American coati is diurnal, unlike the nocturnal raccoon. While female raccoons often live in small groups of a few animals that share the same territory, female coatis live in groups of up to 30 animals who forage for food together and are very social. The coati also doesn’t have a set territory. The male coati is completely solitary, while the male raccoon will also live in small groups of three or four animals. Both are omnivorous but the coati eats more fruit and insects than the raccoon does, and the coati doesn’t dunk its food in water the way the raccoon famously does.

The system of binomial nomenclature that we use today was developed by the Swedish botanist Carolus Linnaeus in 1735. We talked about some of his mistakes in episode 123. Linnaeus built on a system developed by a zoologist almost a century before him, but streamlined it and made it easier to use. In the 300 years since Linnaeus came up with his system, many other scientists have made changes to reflect increased knowledge about the natural world and how best to denote it.

I keep saying “organism” instead of “animal,” and that’s because all living organisms may be given a scientific name as they are described. This includes everything from humans to maple trees, from earthworms to harpy eagles, from bumblebees to mushrooms. Linnaeus originally included minerals in his classification system, but minerals don’t evolve the way living organisms do. One group that wasn’t given scientific names until 2021 are viruses. There’s still a lot of controversy as to whether viruses are technically alive or not, but giving them scientific names helps organize what we know about them.

Eilee suggested the ocean sunfish, which has the scientific name Mola mola. Because its scientific name is easy to say, and because there’s also a freshwater sunfish that isn’t related to the ocean sunfish, a lot of people just call it the mola-mola, or just the mola. We talked about it way back in episode 96, so we’re definitely due to revisit it.

The ocean sunfish doesn’t look like a regular fish. It looks like the head of a fish that had something humongous bite off its tail end. It has one tall dorsal fin and one long anal fin, and a little short rounded tail fin that’s not much more than a fringe along its back end. This isn’t even a real tail but part of the dorsal and anal fins. The sunfish uses the tail fin as a rudder and progresses through the water by waving its dorsal and anal fins the same way manta rays swim with their pectoral fins. Pectoral fins are the ones on the sides, while the dorsal fin is the fin on a fish’s back and an anal fin is a fin right in front of a fish’s tail. Usually dorsal and anal fins are only used for stability in the water, not propulsion. The ocean sunfish does have pectoral fins, but they’re tiny.

The ocean sunfish lives mostly in warm oceans around the world, and it eats jellies, small fish, squid, crustaceans, plankton, and even some plants. It has a small round mouth that it can’t close and four teeth that are fused to form a sort of beak. It also has teeth in its throat, called pharyngeal teeth. Its skin is thick and rough like sandpaper with a covering of mucus, and its bones are mostly cartilaginous. It likes to sun itself at the water’s surface, and it will float on its side like a massive fish pancake and let sea birds stand on it and pick parasites from its skin. This also helps it absorb heat from sunlight after it’s been hunting in deeper water.

The female ocean sunfish can lay up to 300 million eggs at a time. That is the most eggs known to be laid by any vertebrate. When the eggs hatch, the larval sunfish are only 2 ½ mm long. Once they develop into their juvenile form, they have little spines all around their thin end, which kind of make them look like tiny stars. If that seems weird, consider that the ocean sunfish is actually related to the pufferfish, although not very closely. The largest adult ocean sunfish ever reliably measured was 14 feet tall, or 4.3 meters, including the long fins, which is a whole lot bigger than 2 ½ mm.

Sometimes after an organism is initially described and named, later scientists learn more about it and determine that it doesn’t actually belong in the genus or family where it was initially placed. If it gets moved to a different genus, its scientific name also needs to change. Some organisms get moved a lot and their scientific names change a lot. But typically, the species name doesn’t change. That’s the case for a little bird from Africa.

Joel suggested a bird called the red-billed quelea [QUEE-lee-ya], whose scientific name is Quelea quelea. When Linnaeus described it in 1758, he thought it was a type of bunting, so he named it Emberiza quelea. Another scientist moved it into a new genus, Quelea, in 1850.

I’d never heard of the red-billed quelea, which is native to sub-Sarahan Africa, but it may actually be the world’s most numerous non-domesticated bird, with an estimated 1.5 billion birds alive at any given moment.

The red-billed quelea mainly eats grass seeds, and unlike the European hamster, it is actually a problem to farmers. The bird doesn’t know the difference between yummy grass seeds and yummy wheat, barley, milt, oats, sunflowers, and other food that humans eat. In fact, some researchers suggest that the bird has become incredibly numerous because it has all this great food to eat that was planted by people.

A flock of red-billed quelea birds can number in the millions. The flock flies until they find grassland or fields with food they like. The first birds land, the birds behind them land a little bit farther along, and so on until all the birds have landed and are eating. But by the time the last birds of the flock land, the first ones have eaten everything they can find, so they fly up and over the rest of the birds until they find fresh grass to land in again. This is happening constantly with the entire flock of millions of birds, so that from a distance the flock’s movement looks like a cloud of smoke rolling across a field.

The red-billed quelea also eats insects, mostly during nesting season. Insects and other small invertebrates like spiders are especially nutritious for nestlings.

The quelea is about the size of a sparrow, which it resembles in many ways, although it’s actually a member of the weaver bird family, Ploceidae. It grows less than five inches long, or about 12 cm, including its tail, and it’s mostly brown and gray. Its beak and legs are orangey-red, and during breeding season the male has a rusty-red head with a black mask on his face.

One subspecies of red-billed quelea is native to western and central Africa. Since it’s a subspecies, it has three words in its scientific name: Quelea quelea quelea.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 393: Little Spiders

Thanks to Siya, Zachary, Khalil, and Eilee for their suggestions this week!

The enamel pin Kickstarter goes live on Wednesday, August 14, 2024!!

Further reading:

How spiders breathe under water: Spider’s diving bell performs like gill extracting oxygen from water

Aggressive spiders are quick at making accurate decisions, better at hunting unpredictable preys

Into the Spider-Verse: A young biologist shares her love for eight-legged creatures

A New Genus of Prodidominae Cave Spider from a Paleoburrow and Ferruginous Caves in Brazil

The diving bell spider [photo from this paper]:

Jumping spiders are incredibly cute, even the ones that eat other spiders [photo taken from this excellent site]:

The spoor spider’s web looks like a cloven hoofprint in the sand [photo by JMK – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=39988887]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’m excited this week, because on Wednesday my little Kickstarter to fund getting more enamel pins made goes live, and also we’re talking about some weird and fascinating spiders! Thanks to Siya, Zachary, Khalil, and Eilee for their spider suggestions!

A lot of people are afraid of spiders, but don’t worry. All the spiders in this episode are small and completely harmless unless you are a bug. Also, they probably live very far away from you. Personally, I think most spiders are cute.

Let’s start with a spider suggested by Siya, who pointed out that we don’t actually have very many episodes about spiders. Siya suggested we learn about the diving bell spider, a tiny, remarkable animal that lives in parts of Europe and Asia.

The diving bell spider gets its name because it mostly lives underwater but still needs to breathe air, so it brings air with it into the water. A diving bell made by humans is a structure shaped sort of like a big bell that can be lowered straight down into the water on a cable. If the diving bell doesn’t tip to one side or another, the air inside it stays inside and allows a human diver to take breaths without coming to the surface. A diving bell made by spiders is made of silk but is shaped sort of the same, with an entrance at the bottom. The spider builds its bell among water plants to anchor it and keep it hidden. The spider brings air from the surface to replenish the supply of air inside the bell.

The spider does this by surfacing briefly. Its belly and legs are covered with tiny water-repellent hairs, and after surfacing the hairs trap air, so that when it dives back into the water it’s covered with little silvery bubbles. It swims down to its diving bell and rubs the bubbles off its body, which rise into the bell and are trapped there by the closely woven silk. Then it goes back to the surface for more air.

Once the bell is full of air, the spider only needs to replenish the air supply about once a day under normal circumstances. That’s because the bell itself acts as a sort of external gill. It’s able to absorb oxygen from the water quite efficiently, but it still loses volume slowly because nitrogen from the air diffuses into the water. If not for that, the spider probably wouldn’t need to come to the surface at all.

The diving bell is the spider’s home, especially for the female. Unlike most spiders, the female diving bell spider is much smaller than the male and she hunts differently. The male is an active hunter, swimming quickly to catch tiny animals like mosquito larvae, so he’s large and strong but only has a small diving bell. The female spends most of her time in her diving bell and only swims out to catch animals that come too close, or occasionally to replenish the air in her bell.

When the spider leaves its diving bell to hunt, air bubbles remain trapped on its abdomen, which allows it to breathe while it’s hunting too. Then it can dart back to its bell to get more air or hide if it needs to.

When a male finds a female, he will build his diving bell near hers. If she doesn’t object, he’ll build a little tunnel between the two bells so he can visit her more easily. The pair will mate in the female’s bell and she either attaches her egg sac to the inside wall of her bell or will build a little addition onto her bell that acts as a nursery.

The diving bell spider is gray or black in color and even a big male only grows about 15 mm long, head and body size together. His legs are longer. In the water the spiders appear silver because of the bubbles attached to their bodies.

The spider used to be common throughout much of Asia and Europe, but its numbers are in decline due to pollution and habitat loss, since it needs slow-moving streams, ponds, marshes, and other clean freshwater with aquatic plants to survive. It will bite if it feels threatened and some people claim that its bite is painful and leads to symptoms like fever, but there’s not a lot of evidence for the bite being dangerous or even all that painful to humans.

Next, Zachary suggested the Portia spider, and pointed out that it demonstrates “uniquely intelligent hunting.” If it weren’t such a tiny spider, it might be scary because it’s so smart. Fortunately for humans, not only is it even smaller than the diving bell spider, with even a big female no more than 10 mm long counting her head and body together, it’s a spider that eats other spiders.

There are 17 species of portia spider currently known, living in parts of Africa, Asia, Australia, and a lot of islands in southeast Asia. It’s a type of jumping spider and can jump as much as 6 inches, or 15 cm, from a complete standstill. It’s mostly brown with mottled darker and lighter markings that make it look like a bit of dead leaf when it’s standing still. It also has flaps on its legs that help it look less like a spider too.

Looking like a bit of dead leaf helps the Portia spider keep from being eaten by birds and frogs, but it also helps it when hunting prey spiders. Unlike almost all other spiders, the portia spider can travel on the webs of pretty much any species of spider without getting stuck. It will creep into another spider’s web and sneak up on it very slowly, or pretend to be a stuck insect to lure it closer. Most spiders don’t see very well, so they don’t identify the portia as a predatory spider. They either think it’s just a leaf stuck in its web or an insect, until it’s too late.

The portia spider will try many different ways to catch a spider. If one doesn’t work it will use another method, and will continue to try new methods and combinations of methods until it outsmarts the prey spider and can jump on it. The methods it uses can be incredibly complex and often require the portia spider to move away from the prey spider or even out of view of it, but it can remember exactly where the prey spider is and what it wants to do to approach it. Remember, this is an animal about the size of one of your fingernails. It has a teeny brain!

In captive studies, portia spiders are observed to be more or less aggressive depending on the individual. The more aggressive spiders tend to do a better job hunting prey with unpredictable behaviors, while the less aggressive spiders are more patient.

When the portia spider walks, it does so arrhythmically, which helps it imitate a dead leaf being moved by the wind. Some spiders are so nervous of portia spiders that if they sense an arrhythmic movement on their web, even if it’s not a portia spider, they’ll run and hide. For that matter, the portia spider will take advantage of wind and other natural occurrences to get closer to their prey.

In addition to active hunting, female portia spiders will also build funnel webs to catch insects. You know, kind of a side hustle. Any portia spider will spin a simple web to hide behind to rest. Portia spiders are also social, sharing food and even living together.

When the male portia spider wants to find a mate, he spins a little web near a female’s web and shakes his legs to attract the female. If she likes him, she’ll drum on his web to let him know. However, in most species, mating is a death sentence for the male. Remember how last week we talked about the praying mantis and how sometimes the female will actually eat the male after or even during mating? Well, that’s true for most species of portia spider too. In some species the female almost always eats the male. He gets to pass his genes along to the next generation, and she gets a good meal to help her grow healthy eggs.

Next, Leo’s friend Khalil suggested the wandering spider. This is the name given to a big family of spiders that live throughout much of the world. Most of them are quite large and look like tarantulas, especially the Brazilian wandering spider, also called the banana spider. It can have a head and body length of two inches, or about 5 cm, but a legspan of up to 7 inches, or 18 cm. That’s a lot of spider, and this week we’re talking about small spiders, but let’s take a quick detour and find out if the banana spider really is sometimes found in bunches of bananas sold in stores.

The banana spider lives in Brazil and other parts of northern South America and Central America, and that’s where a lot of the world’s bananas are grown. I couldn’t find any good estimates of how many bananas are exported every year, but the United States is the biggest importer of bananas. I’m going to switch completely to imperial measurements for a moment because the amounts I’m about to talk about make no logical sense anyway. About four bananas add up to one pound of weight, and 2000 pounds make up one ton. That means one ton of bananas is approximately 8,000 bananas. In 2023, over 5 million tons of bananas were imported to the United States. That is at least 40 billion bananas!

In comparison, no one seems to be tracking how many spiders are found hiding in banana bunches, but one paper from 2014 documented that of 135 spiders submitted to the scientists for study as having been found in all international shipments, of bananas and everything else, only seven were actually banana spiders. The rest were other kinds of spider, most of them completely harmless. When one is found it gets into the news because it’s so rare.

Spiders don’t live inside the banana peel anyway, and they don’t eat bananas. It’s just that bunches of bananas make good hiding places, and the spiders don’t know that people are going to chop the whole bunch down without even noticing a hidden spider. By the time the bananas get to the store, the big bunches have been cut up into little bunches of a few bananas each, which isn’t a great hiding space for a big spider. So your bananas are safe.

Anyway, the smallest wandering spider is probably in the genus Acanthonoctenus, which are native to Central and South America. A big female only grows about 15 mm long, head and body measured together, although her legspan is much larger. There are other wandering spiders with about the same body size in various genera. The problem is, there are hundreds of known species of wandering spider and probably a lot more that haven’t been discovered yet, but not a lot of people are studying them. We don’t know a whole lot about the smallest species because they’re harder to find and therefore harder to study. Many species have only ever had a single specimen collected. So if you want to become an arachnologist, you might look into wandering spiders for your specialization. Many of them are absolutely gorgeous, with striped legs and bright colors.

Like some other spiders, many Acanthonoctenus spiders will hide on a leaf or tree trunk by lying flat and stretching four of its legs out in front of it and the other four legs behind it. This makes it less spider shaped when a bird or lizard is looking around trying to find a snack.

Next, Eilee suggested the spoor spider, the name for Seothyra, a genus of spiders that live in sandy areas in southern Africa. Females grow up to 15 mm long, head and body together, while males grow up to 12 mm long and are usually considerably smaller than the females. The female can be brown, gray, or tan and may have stripes on her abdomen, while the male is more brightly colored. He can be yellow and black with a rusty-red head, sometimes with white spots on his abdomen.

The male spends most of his time running around finding food, and since he looks a lot like a type of wasp called the velvet ant, he’s in less danger than you’d think considering he’s active during the day. The female spends almost all of her life in an elaborate web that she builds into the sand.

The female excavates a burrow in the sand that can be as much as 6 inches deep, or 15 cm, lined with silk to keep it from collapsing. She gets sand out of the burrow as she constructs it by spinning little silk bags around the sand to carry it out. She leaves the bags of sand around the entrance, and once the burrow is finished, she incorporates the sandbags into the web itself. She spins web sheets and mixes them with sand to make mats around the burrow’s opening, which is hidden, and the spider can lift the web sheets to go in and out. Ideally she stays in the same burrow her whole life, repairing it as needed, because while it’s not an especially big web, it takes her a lot of energy to make.

The female puts sticky strands of silk around the edges of the web, then retreats to the underside of the web sheet or into the burrow if it’s too hot. When an insect gets stuck on the silk, she darts out and kills it, then takes it into her burrow to eat. Mostly she eats ants.

The name spoor spider, also called buck spoor spider, comes from the shape of the female’s web. In most species, the web sheet has two sides in a shallow depression in the sand. Since the web is also covered with and incorporates sand to hide it, the little depression with a rounded double shape at the bottom looks an awful lot like the footprint of an animal with a cloven hoof. The word “spoor” is a term indicating an animal’s track.

The spoor spider female only produces one egg sac in her life, and takes care of it in her burrow until the babies hatch. Then she takes care of the babies by gradually liquefying her own internal organs and regurgitating the liquid so the babies can eat it. When all her organs are gone she dies, naturally, and the babies eat the remainder of her body before venturing out into the world on their own.

Fossilized web sheets very similar to the modern spoor spider’s web have been found dating back 16 million years. Most spiderwebs can’t fossilize, but most spiderwebs aren’t built partly out of sand.

Finally, let’s finish up with a newly discovered spider from South America. I learned about it from Zeke Darwin, a science teacher who makes really interesting videos on TikTok. The spider has been described as a new species, named Paleotoca, and was discovered in Brazil. We know very little about it so far so I don’t have much information to share, but it’s so interesting that I just had to include it.

Paleotoca is pale yellow, although its abdomen has very little pigmentation, and its head and body together measure barely 2 mm. It doesn’t have eyes. You might be able to guess where it lives from its lack of eyes and lack of pigment in its body, but I bet I’m going to surprise you anyway. Paleotoca does live in caves, but technically these caves are burrows. It’s just that the burrows where it lives are extremely large, dug into the sides of hills thousands of years ago by giant ground sloths before they went extinct.

Luckily for the spider, there are also some natural caves in the area and at least one of the spiders has been found living in one. So little Paleotoca isn’t in danger of going extinct just because the burrow-builders are gone.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

 

Episode 389: Updates 7 and the Lava Bear

It’s our annual updates episode! Thanks to Kelsey and Torin for the extra information about ultraviolet light, and thanks to Caleb for suggesting we learn more about the dingo!

Further reading:

At Least 125 Species of Mammals Glow under Ultraviolet Light, New Study Reveals

DNA has revealed the origin of this giant ‘mystery’ gecko

Bootlace Worm: Earth’s Longest Animal Produces Powerful Toxin

Non-stop flight: 4,200 km transatlantic flight of the Painted Lady butterfly mapped

Gigantopithecus Went Extinct between 295,000 and 215,000 Years Ago, New Study Says

First-Ever Terror Bird Footprints Discovered

Last surviving woolly mammoths were inbred but not doomed to extinction

Australian Dingoes Are Early Offshoot of Modern Breed Dogs, Study Shows

A (badly) stuffed lava bear:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have our annual updates episode, and we’ll also learn about a mystery animal called the lava bear! As usual, a reminder that I don’t try to update everything we’ve ever talked about. That would be impossible. I just pick new information that is especially interesting.

After our episode about animals and ultraviolet light, I got a great email from Kelsey and Torin with some information I didn’t know. I got permission to quote the email, which I think you’ll find really interesting too:

You said humans can’t see UV light, which is true, however humans can detect UV light via neuropsin (a non-visual photoreceptor in the retina). These detectors allow the body to be signaled that it’s time to do things like make sex-steroid hormones, neurotransmitters, etc. (Spending too much time indoors results in non-optimal hormone levels, lowered neurotransmitter production, etc.)

Humans also have melanopsin detectors in the retina and skin. Melanopsin detectors respond to blue light. Artificial light (LEDs, flourescents, etc) after dark entering the eye or shining on the skin is sensed by these proteins as mid-day daylight. This results in an immediate drop in melatonin production when it should be increasing getting closer to bedtime.”

And that’s why you shouldn’t look at your phone at night, which I am super bad about doing.

Our first update is related to ultraviolet light. A study published in October of 2023 examined hundreds of mammals to see if any part of their bodies glowed in ultraviolet light, called fluorescence. More than 125 of them did! It was more common in nocturnal animals that lived on land or in trees, and light-colored fur and skin was more likely to fluoresce than darker fur or skin. The white stripes of a mountain zebra, for example, fluoresce while the black stripes don’t.

The study was only carried out on animals that were already dead, many of them taxidermied. To rule out that the fluorescence had something to do with chemicals used in taxidermy, they also tested specimens that had been flash-frozen after dying, and the results were the same. The study concluded that ultraviolet fluorescence is actually really common in mammals, we just didn’t know because we can’t see it. The glow is typically faint and may appear pink, green, or blue. Some other animals that fluoresce include bats, cats, flying squirrels, wombats, koalas, Tasmanian devils, polar bears, armadillos, red foxes, and even the dwarf spinner dolphin.

In episode 20 we talked about Delcourt’s giant gecko, which is only known from a single museum specimen donated in the 19th century. In 1979 a herpetologist named Alain Delcourt, working in the Marseilles Natural History Museum in France, noticed a big taxidermied lizard in storage and wondered what it was. It wasn’t labeled and he didn’t recognize it, surprising since it was the biggest gecko he’d ever seen—two feet long, or about 60 cm. He sent photos to several reptile experts and they didn’t know what it was either. Finally the specimen was examined and in 1986 it was described as a new species.

No one knew anything about the stuffed specimen, including where it was caught. At first researchers thought it might be from New Caledonia since a lot of the museum’s other specimens were collected from the Pacific Islands. None of the specimens donated between 1833 and 1869 had any documentation, so it seemed probable the giant gecko was donated during that time and probably collected not long before. More recently there was speculation that it was actually from New Zealand, since it matched Maori lore about a big lizard called the kawekaweau.

In June of 2023, Delcourt’s gecko was finally genetically tested and determined to belong to a group of geckos from New Caledonia, an archipelago of islands east of Australia. Many of its close relations are large, although not as large as it is. It’s now been placed into its own genus.

Of course, this means that Delcourt’s gecko isn’t the identity of the kawekaweau, since it isn’t very closely related to the geckos of New Zealand, but it might mean the gecko still survives in remote parts of New Caledonia. It was probably nocturnal and lived in trees, hunting birds, lizards, and other small animals.

We talked about some really big worms in episode 289, but somehow I missed the longest worm of all. It’s called the bootlace worm and is a type of ribbon worm that lives off the coast of Norway, Denmark, Sweden, and Britain, and it’s one of the longest animals alive. The longest worm we talked about in episode 289 was an African giant earthworm, and one was measured in 1967 as 21 feet long, or 6.7 meters. The bootlace worm is only 5 to 10 mm wide, but it routinely grows between 15 and 50 feet long, or 5 to 15 meters, with one dead specimen that washed ashore in Scotland in 1864 measured as over 180 feet long, or 55 meters.

When it feels threatened, the bootlace worm releases thick mucus. The mucus smells bad to humans but it’s not toxic to us or other mammals, but a recent study revealed that it contains toxins that can kill crustaceans and even some insects.

We talked about the painted lady butterfly in episode 203, which was about insect migrations. The painted lady is a small, pretty butterfly that lives throughout much of the world, even the Arctic, but not South America for some reason. Some populations stay put year-round, but some migrate long distances. One population winters in tropical Africa and travels as far as the Arctic Circle during summer, a distance of 4,500 miles, or 7,200 km, which takes six generations. The butterflies who travel back to Africa fly at high altitude, unlike monarch butterflies that fly quite low to the ground most of the time. Unlike the monarch, painted ladies don’t always migrate every year.

In October of 2013, a researcher in a small country in South America called French Guiana found some painted lady butterflies on the beach. Gerard Talavera was visiting from Spain when he noticed the butterflies, and while he recognized them immediately, he knew they weren’t found in South America. But here they were! There were maybe a few dozen of them and he noticed that they all looked pretty raggedy, as though they’d flown a long way. He captured several to examine more closely.

A genetic study determined that the butterflies weren’t from North America but belonged to the groups found in Africa and Europe. The question was how did they get to South America? Talavera teamed up with scientists from lots of different disciplines to figure out the mystery. Their findings were only published last month, in June 2024.

The butterflies most likely rode a well-known wind current called the Saharan air layer, which blows enough dust from the Sahara to South America that it has an impact on the Amazon River basin. The trip from Africa to South America would have taken the butterflies 5 to 8 days, and they would have been able to glide most of the time, thus conserving energy. Until this study, no one realized the Saharan air layer could transport insects.

We talked about the giant great ape relation Gigantopithecus in episode 348, and only a few months later a new study found that it went extinct 100,000 years earlier than scientists had thought. The study tested the age of the cave soils where Gigantopithecus teeth have been discovered, to see how old it was, and tested the teeth again too. As we talked about in episode 348, Gigantopithecus ate fruit and other plant material, and because it was so big it would have needed a lot of it. It lived in thick forests, but as the overall climate changed around 700,000 years ago, the forest environment changed too. Other great apes living in Asia at the time were able to adapt to these changes, but Gigantopithecus couldn’t find enough food to sustain its population. It went extinct between 295,000 and 215,000 years ago according to the new study, which is actually later than I had in episode 348, where I wrote that it went extinct 350,000 years ago. Where did I get my information? I do not know.

The first footprints of a terror bird were discovered recently in Argentina, dating to 8 million years ago. We talked about terror birds in episode 202. The footprints were made by a medium-sized bird that was walking across a mudflat, and the track is beautifully preserved, which allows scientists to determine lots of new information, such as how fast the bird could run, how its toes would have helped it run or catch prey, and how heavy the bird was. We don’t know what species of terror bird made the tracks, but we know it was a terror bird.

We talked about the extinction of the mammoth in episode 256, especially the last population of mammoths to survive. They lived on Wrangel Island, a mountainous island in the Arctic Ocean off the coast of western Siberia, which was cut off from the mainland about 10,000 years ago when ocean levels rose. Mammoths survived on the island until about 4,000 years ago, which is several hundred years after the Great Pyramid of Giza was built. It’s kind of weird to imagine ancient Egyptians building pyramids, and at the same time, mammoths were quietly living on Wrangel Island, and the Egyptians had no idea what mammoths were. And vice versa.

A 2017 genetic study stated that the last surviving mammoths were highly inbred and prone to multiple genetic issues as a result. But a study released in June of 2024 reevaluated the population’s genetic diversity and made a much different determination. The population did show inbreeding and low genetic diversity, but not to an extent that it would have affected the individuals’ health. The population was stable and healthy right to the end.

In that case, why did the last mammoths go extinct? Humans arrived on the island for the first time around 1700 BCE, but we don’t know if they encountered mammoths or, if they did, if they killed any. There’s no evidence either way. All we know is that whatever happened, it must have been widespread and cataclysmic to kill all several hundred of the mammoths on Wrangel Island.

We talked about the dingo in episode 232, about animals that are only semi-domesticated. That episode came out in 2021, and last year Caleb suggested we learn more about the dingo. I found a really interesting 2022 study that re-evaluated the dingo’s genome and made some interesting discoveries.

The dingo was probably brought to Australia by humans somewhere between 3,500 and 8,500 years ago, and after the thylacine was driven to extinction in the early 20th century, it became the continent’s apex predator. Genetic studies in the past have shown that it’s most closely related to the New Guinea singing dog, but the 2022 study compared the dingo’s genome to that of five modern dog breeds, the oldest known dog breed, the basenji, and the Greenland wolf.

The results show that the dingo is genetically in between wolves and dogs, an intermediary that shows us what the dog’s journey to domestication may have looked like. The study also discovered something else interesting. Domestic dogs have multiple copies of a gene that controls digestion, which allows them to eat a wide variety of foods. The dingo only has one copy of that gene, which means it can’t digest a lot of foods that other dogs can. Remember, the dingo has spent thousands of years adapting to eat the native animals of Australia. When white settlers arrived, they would kill dingoes because they thought their livestock was in danger from them. The study shows that the dingo has little to no interest in livestock because it would have trouble digesting, for instance, a lamb or calf. The animals most likely to be hurting livestock are domestic dogs that are allowed to run wild.

We’ll finish with a mystery animal called the lava bear. In the early 20th century, starting in 1917, a strange type of bear kept being seen in Oregon in the United States. Its fur was light brown like a grizzly bear’s, but otherwise it looked like a black bear—except for its size, which was very small. The largest was only about 18 inches tall at the back, or 46 cm, and it only weighed about 35 pounds, or 16 kg. That’s the size of an ordinary dog, not even a big dog. Ordinarily, a black bear can stand 3 feet tall at the back, or about 91 cm, and weighs around 175 pounds, or 79 kg, and a big male can be twice that weight and much taller.

The small bear was seen in desert, especially around old lava beds, which is where it gets its name. A shepherd shot one in 1917, thinking it was a bear cub, and when he retrieved the body he was surprised to find it was an adult. He had it taxidermied and photographs of it were published in the newspapers and a hunting magazine, which brought more hunters to the area.

People speculated that the animal might be an unknown species of bear, possibly related to the grizzly or black bear, and maybe even a new species of sun bear, a small bear native to Asia.

Over the next 17 years, many lava bears were killed by hunters and several were captured for exhibition. When scientists finally got a chance to examine one, they discovered that it was just a black bear. Its small size was due to malnutrition, since it lived in a harsh environment without a lot of food, and its light-colored fur was well within the range of fur color for an American black bear. Lava bears are still occasionally sited in the area around Fossil Lake.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 383: The Marsupial Mole

Thanks to Catherine and arilloyd for suggesting the marsupial mole!

Further reading:

Northern marsupial mole: Rare blind creature photographed in Australian outback

The marsupial mole, adorable little not-mole from Australia [photo from article above]:

Grant’s golden mole, adorable little not-mole from Africa:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a little short episode about a very small Australian animal suggested by two listeners: Catherine, who has the best name ever, and someone called arilloyd who left us a nice review and suggested this animal in the review. I’m not sure I’m pronouncing their name right, so apologies if not. The animal is the unusual but very cute marsupial mole.

There are two closely related species of marsupial mole, one that lives farther north than the other. They look very similar, with silky golden fur, strong, short legs with strong claws for digging, a very short tail, no external ears, and no eyes. The marsupial mole doesn’t have eyes at all. It doesn’t need eyes because it spends almost its entire life underground.

All this sounds similar to other moles, but the marsupial mole isn’t related to other moles. Other moles are placental mammals while the marsupial mole is a (guess, you have to guess), right, it’s a marsupial! That means its babies are born very early and crawl into the mother’s pouch to finish developing. The marsupial mole has two teats, so it can raise two babies at a time.

The marsupial mole grows around 6 inches long, or about 16 cm, and is a little chonky animal with a pouch that faces backwards so sand won’t get in it. It has a leathery nose and small teeth, and its front feet are large with two big claws.

We actually don’t know very much about the marsupial mole because it’s so seldom seen. Not only does it live underground, it lives in the dry interior of Australia, the Great Sandy Desert. It probably also lives in other desert areas of Australia.

Scientists think the marsupial mole originally evolved to dig not in desert sand but in the soft, wet ground in rainforests. Over millions of years Australia became more and more dry, until the rainforests eventually gave way to the current desert conditions. The marsupial mole had time to adapt as its environment changed, and now it’s extremely well adapted to living in sand. It sort of swims through the sand using its big paddle-shaped front feet, kicking the sand behind it with its back legs. Unlike other moles, the marsupial mole doesn’t dig permanent tunnels and the sand just collapses behind it.

While the marsupial mole can’t see, and probably doesn’t have great hearing by our standards, it does have a good sense of smell in order to sniff out insect eggs and larvae, worms, and other small, soft food. It probably searches mainly for insect nests where it can find lots of food at one time, like ant nests. There are also reports of it eating adult insects, seeds, and even small lizards.

The reason the marsupial mole looks and acts so much like placental moles is due to convergent evolution. The mole’s body shape and habits just work really well for an animal that wants to dig around and eat grubs. Like other moles, it has trouble regulating its body temperature since most of the time it doesn’t need to do so. If it gets too hot, it can dig deeper into the sand where it’s cooler.

The marsupial mole is most similar to a completely unrelated placental mammal, Grant’s golden mole, which lives in a few parts of coastal South Africa and Namibia in Africa. Grant’s golden mole lives in sandy areas and swims through the sand like the marsupial mole does. It mainly eats termites and other insects, but it will also eat small reptiles. Its fur is a sandy golden color and it has no external ears, no eyes, and three big claws on its front feet. It only grows about 3 and a half inches long, or 9 cm, which makes it the smallest golden mole. It’s nocturnal and emerges from the sand at night, often hunting aboveground to conserve energy. It mostly hunts by hearing, but since its ears are most effective when it’s underground, it will often stop and stick its head into the sand to listen for potential prey.

Other golden moles are a little bit larger and live in different parts of Africa in different environments, from forests to swamps. But while golden moles are placental mammals, they’re not actually moles despite the name. They look and act like moles, but they’re actually more closely related to the tenrec, which we talked about in episode 324. The golden mole just shares the same traits as true moles due to convergent evolution again.

Just like water animals that all eventually develop a fish-like body shape, it seems that all digging mammals eventually develop a mole-like body shape. That shape also happens to be really cute, which is just a little extra bonus for the animal.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!