Episode 470: Animals Discovered in 2025

It’s the annual discoveries episode! Thanks to Stephen and Aryeh for their corrections and suggestions this week!

Further reading:

Salinella Salve: The Vanishing Creature That Defied Science for Over a Century

Three new species of the genus Scutiger

Baeticoniscus carmonaensis sp. nov. a new Isopod found in an underground aqueduct from the Roman period located in Southwest Spain (Crustacea, Isopoda, Trichoniscidae)

A new species of supergiant Bathynomus

Giant ‘Darth Vader’ sea bug discovered off the coast of Vietnam

A New Species of easter egg weevil

Bizarre ‘bone collector’ caterpillar discovered by UH scientists

Researchers Discover ‘Death Ball’ Sponge and Dozens of Other Bizarre Deep-Sea Creatures in the Southern Ocean

1,500th Bat Species Discovered in Africa’s Equatorial Guinea

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some animals discovered in 2025! We’ll also make this our corrections episode. This is the last new episode we’ll have until the end of August when we reach our 500th episode, but don’t worry, until then there will be rescheduled Patreon episodes every single week as usual.

We’ll start with some corrections. Shortly after episode 452 was published in September, where we talked about the swamp wallaby and some other animals, Stephen emailed to point out that I’d made a major mistake! In that episode I said that not all animals called wallabies were actually members of the family Macropodidae, but that’s actually not the case. All wallabies are macropodids, but they aren’t all members of the same genus in that family. I corrected the episode but I wanted to mention it here too so no one is confused.

Stephen also caught another mistake in episode 458, which is embarrassing. I mentioned that marsupials didn’t just live in Australia, they were found all over the world. That’s not actually the case! Marsupials are found in North and South America, Australia, New Guinea and nearby areas, and that’s it. They were once also found in what is now Asia, but that was millions of years ago. So I apologize to everyone in Africa, Asia, and Europe who were excited about finding out what their local marsupials are. You don’t have any, sorry.

One update that Aryeh asked about specifically is an animal we talked about in episode 445, salinella. Aryeh emailed asking for more information if I could find any, because it’s such a fascinating mystery! I looked for some more recent findings, unfortunately without luck. I do have an article linked in the show notes that goes into detail about everything we covered in that episode, though, dated to mid-January 2026, and it’s a nice clear account.

Now, let’s get into the 2025 discoveries! There are lots more animals that were discovered last year, but I just chose some that I thought were especially interesting. Mostly I chose ones that I thought had funny names.

Let’s start with three new species of frog in the genus Scutiger. Species in this genus are called lazy toads and I couldn’t find out why. Maybe they don’t like to move around too much. Lazy toads live in mountains in some parts of Asia, and we don’t know very much about most of the 31 species described so far. Probably the most common lazy toad is the Sikkim lazy toad that lives along high altitude streams in the Himalaya Mountains. It’s mottled greenish-brown and yellowish in color with lots of warts, and while its feet have webbed toes, it doesn’t have webbed fingers on its little froggy hands. This is your reminder that every toad is a frog but not every frog is a toad. The Sikkim lazy toad grows about two and a half inches long, or about 65 mm, from nose to butt. It seems to be pretty average for a lazy toad.

The three new species of lazy toad are found in Yunnan Province in China, in a mountainous region where several species of lazy toad were already known. Between 2021 and 2024, a team of scientists collected 27 lazy toads from various places, then carefully examined them to see if they were species already known to science. This included genetic analysis. The team compared their findings with other lazy toad species and discovered that not all of the specimens matched any known species. Further comparison with each other revealed that the team had discovered three new species, which they described in December of 2025.

Next, isopods are common crustaceans that live throughout the world. You have undoubtedly seen at least one species of isopod, because an animal with lots of common names, including woodlouse, pill bug, roly-poly, and sowbug, is a terrestrial isopod. That’s right, the roly-poly is not a bug or a centipede but a crustacean. The order Isopoda contains more than 10,000 species, and there are undoubtedly thousands more that haven’t been discovered by scientists yet. About half the species discovered so far live on land and the other half live in water, most in the ocean but some in fresh water. They don’t all look like roly-polies, of course. Many look like their distant crustacean cousins, shrimps and crayfish, while others look more like weird centipedes or fleas or worms. There’s a lot of variation in an animal that’s extremely common throughout the world, so it’s no surprise that more species are discovered almost every year.

In 2021 and 2022, a team of Spanish scientists took a biological survey of an ancient Roman tunnel system beneath Carmona, Spain. The tunnels were built around 2,000 years ago as a water source, since they capture groundwater, but it hasn’t been used in so long that it’s more or less a natural environment these days.

The scientists quickly discovered plenty of life in the tunnels, including an isopod living in cracks in some ancient timbers. It grows about two and a half millimeters long and actually does look a lot like a tiny roly-poly. It has long antennae and its body mostly lacks pigment, but it does have dark eyes. Most animals that live in total darkness eventually evolve to no longer have functioning eyes, since they don’t need them, but that isn’t the case for this new isopod. Scientists think it might take advantage of small amounts of light available near the tunnel entrances.

As far as the scientists can tell, the Carmona isopod only lives in this one tunnel system, so it’s vulnerable to pollutants and human activity that might disrupt its underground home.

Another new isopod species that’s vulnerable to human activity, in this case overfishing, lives off the coast of Vietnam. It’s another isopod that looks a lot like a roly-poly, which I swear is not what every isopod looks like. It’s a deep-sea animal that hunts for food on the ocean floor, and it’s a popular delicacy in Vietnam. Remember, it’s a crustacean, and people say it tastes like another crustacean, lobster. In fact, scientists discovered their specimens in a fish market.

Deep-sea animals sometimes feature what’s called deep-sea gigantism. Most isopods are quite small, no more than a few cm at most, but the new species grows almost 13 inches long, or over 32 cm. It’s almost the largest isopod known. Its head covering made the scientists think of Darth Vader’s helmet, so it’s been named Bathynomus vaderi.

Next we have a new species of Easter egg weevil, a flightless beetle found on many islands in Southeast Asia. Easter egg weevils are beautiful, with every species having a different pattern of spots and stripes. Many are brightly colored and iridescent. The new species shows a lot of variability, but it’s basically a black beetle with a diamond-shaped pattern that can be yellow, gold, or blue. Some individuals have pink spots in the middle of some of the diamonds. It’s really pretty and that is just about all I could find out about it.

Another new insect is a type of Hawaiian fancy case caterpillar, which metamorphose into moths. They’re only found on the Hawaiian islands, and there are over 350 species known. The new species has been named the bone collector, because of what the caterpillar does.

Fancy case caterpillars spin a sort of shell out of silk, which is called a case, and the caterpillar carries its case around with it as protection. Some of the cases are unadorned but resemble tree bark, while many species will decorate the case with lichens, sand, or other items that help it blend in with its background. Some fancy case caterpillars can live in water as well as on land, and while most caterpillars eat plant material, some fancy case caterpillars eat insects.

That’s the situation with the bone collector caterpillar. It lives in spider webs, which right there is astonishing, and decorates its case with bits and pieces of dead insect it finds in the web. This can include wings, heads, legs, and other body parts.

The bone collector caterpillar eats insects, and it will chew through strands of the spider’s web to get to a trapped insect before the spider does. Sometimes it will eat what’s left of a spider’s meal once the spider is finished.

The bone collector caterpillar has only been found in one tiny part of O’ahu, a 15-square-km area of forest, although researchers think it was probably much more widespread before invasive plants and animals were introduced to the island.

Next, the Antarctic Ocean is one of the least explored parts of the world, and a whole batch of new species was announced in 2025 after two recent expeditions. One of the expeditions explored ocean that was newly revealed after a huge iceberg split off the ice shelf off West Antarctica in early 2025. That’s not where the expedition had planned to go, but it happened to be nearby when the iceberg broke off, and of course the team immediately went to take a look.

Back in episode 199 we talked about some carnivorous sponges. Sponges have been around for more than half a billion years, and early on they evolved a simple but effective body plan that they mostly still retain. Most sponges have a skeleton made of calcium carbonate that forms a sort of dense net that’s covered with soft body tissues. The sponge has lots of open pores in the outside of its body, which generally just resembles a sack or sometimes a tube, with one end attached to something hard like a rock, or just the bottom of the ocean. Water flows into the sponge’s tissues through the pores, and special cells filter out particles of food from the water, much of it microscopic, and release any waste material. The sponge doesn’t have a stomach or any kind of digestive tract. The cells process the food individually and pass on any extra nutrients to adjoining cells.

In 1995, scientists discovered a tiny sponge that wasn’t a regular filter feeder. It had little hooks all over it, and it turns out that when a small animal gets caught on the hooks, the sponge grows a membrane that envelops the animal within a few hours. The cells of the membrane contain bacteria that help digest the animal so the cells can absorb the nutrients.

Since then, other carnivorous sponges have been discovered, or scientists have found that some sponges already known to science are actually carnivorous. That’s the case with the ping-pong tree sponge. It looks kind of like a bunch of grapes on a central stem that grows up from the bottom of the ocean, and it can be more than 20 inches tall, or 50 cm. The little balls are actually balloon-like structures that inflate with water and are covered with little hooks. It was discovered off the coast of South America near Easter Island, in deep water where the sea floor is mostly made of hardened lava. It was classified in the genus Chondrocladia, and so far there are more than 30 other species known.

The reason we’re talking about the ping-pong tree sponge is that a new species of Chondrocladia has been discovered in the Antarctic Ocean, and it looks a lot like the ping-pong tree sponge. It’s been dubbed the death-ball sponge, which is hilarious. It was found two and a quarter miles deep on the ocean floor, or 3.6 km, and while scientists have determined it’s a new species of sponge, it hasn’t been described yet. It’s one of 30 new species found so far, and the team says that there are many other specimens collected that haven’t been studied yet.

We haven’t talked about any new mammal discoveries yet, so let’s finish with one of my favorites, a new bat! It was discovered on Bioko Island in Equatorial Guinea, which is part of Africa. During a 2024 biodiversity assessment on the island, a PhD student named Laura Torrent captured a bat that turned out to be not only a brand new species, it is the 1,500th species of bat known to science!

Pipistrellus etula gets its name from the local language, Bantu, since “etula” means both “island” and “god of the island” in that language. The bat was found in forests at elevations over 1,000 meters, on the slopes of a volcano. Back in 1989, a different researcher captured a few of the bats on another volcano, but never got a chance to examine them to determine if they were a new species. When Torrent’s team were studying their bats, one of the things they did was compare them to the preserved specimens from 1989, and they discovered the bats were indeed a match.

P. etula is a type of vesper bat, which is mostly active at dusk and eats insects. It’s brown with black wings and ears. Just like all the other species we’ve talked about today, now that we know it exists, it can be protected and studied in the wild.

That’s what science is really for, after all. It’s not just to satisfy our human curiosity and desire for knowledge, although that’s important too. It’s so we can make this world a better place for everyone to live—humans, animals, plants, isopods, weird caterpillars, and everything else on Earth and beyond.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. Thanks for listening! I’ll see you in August.

Episode 468: Tamarins and Other Mammals

Thanks to Conner, Tim, Stella, Cillian, Eilee, PJ, and Morris for their suggestions this week!

Further reading:

Extinct Hippo-Like Creature Discovered Hidden in Museum: ‘Sheer Chance’

The golden lion tamarin has very thin fingers and sometimes it’s rude:

The golden lion tamarin also has a very long tail:

The cotton-top tamarin [picture by Chensiyuan – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=153317160]:

The pangolin is scaly:

The pangolin can also be round:

The East Siberia lemming [photo by Ansgar Walk – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=52651170]:

An early painting of a mammoth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at some mammals suggested by Conner, Tim, Stella, Cillian, Eilee, PJ, and Morris. Let’s jump right in, because we have a lot of fascinating animals to learn about!

We’ll start with suggestions by Cillian and Eilee, who both suggested a monkey called the tamarin. Tamarins live in Central and South America and there are around 20 species, all of them quite small.

Cillian specifically suggested the golden lion tamarin, an endangered species that lives in a single small part of Brazil. It has beautiful golden or orange fur that’s longer around the face, like a lion’s mane but extremely stylish. Its face is bare of fur and is gray or grayish-pink in color, with dark eyes and a serious expression like it’s not sure where it left its wallet. It grows about 10 inches long, or 26 cm, not counting its extremely long tail.

The golden lion tamarin spends most of its time in trees, where it eats fruit, flowers, and other plant material, along with eggs, tree frogs, insects, and other small animals. It has narrow hands and long fingers to help it reach into little tree hollows and crevices where insects are hiding, but if it can’t reach an insect that way, it will use a twig or other tool to help.

The golden lion tamarin lives in small family groups, usually a mated pair and their young children. A mother golden lion tamarin often has twins, sometimes triplets, and the other members of her family help take care of the babies.

Because the golden lion tamarin is endangered, mainly due to habitat loss, zoos throughout the world have helped increase the number of babies born in captivity. When it’s safe to release them into the wild, instead of only releasing the young tamarins, the entire family group is released together.

Eilee suggested the cotton-top tamarin, which lives in one small part of Colombia. It’s about the same size as the golden lion tamarin, but is more lightly built and has a somewhat shorter tail. It’s mostly various shades of brown and tan with a dark gray face, but it also has long white hair on its head. Its hair sticks up and makes it look a little bit like those pictures of Einstein, if Einstein was a tiny little monkey.

Like the golden lion tamarin, the cotton-top tamarin lives in small groups and eats both plant material and insects. It’s also critically endangered due to habitat loss, and it’s strictly protected these days.

Next, both Tim and Stella suggested we learn about the pangolin. There are eight species known, which live in parts of Africa and Asia.

The pangolin is a mammal, but it’s covered in scales except for its belly and face. The scales are made of keratin, the same protein that makes up fingernails, hair, hooves, and other hard parts in mammals. When it’s threatened, it rolls up into a ball with its tail over its face, and the sharp-edged, overlapping scales protect it from being bitten or clawed. It has a long, thick tail, short, strong legs with claws, a small head, and very small ears. Its muzzle is long with a nose pad at the end, it has a long sticky tongue, and it has no teeth. It’s nocturnal and uses its big front claws to dig into termite mounds and ant colonies. It has poor vision but a good sense of smell.

Some species of pangolin live in trees and spend the daytime sleeping in a hollow tree. Other species live on the ground and dig deep burrows to sleep in during the day. It’s a solitary animal and just about the only time adult pangolins spend time together is when a pair comes together to mate. Sometimes two males fight over a female, and they do so by slapping each other with their big tails.

Unfortunately for the pangolin, its scales make it sought after by humans for decoration. People also eat pangolins. Habitat loss is also making it tough for the pangolin. All species of pangolin in Asia are endangered or critically endangered, while all species of pangolins in Africa are vulnerable. Pangolins also don’t do well in captivity so it’s hard for zoos to help them.

Next, Conner wants to learn about the lemming, a rodent that’s related to muskrats and voles. Lots of people think they know one thing about the lemming, but that thing isn’t true. We’ll talk about it in a minute.

The lemming grows up to 7 inches long, or 18 cm, and is a little round rodent with small ears, a short tail, short legs, and long fur that’s brown and black in color. It eats plant material, and while it lives in really cold parts of the northern hemisphere, including Siberia, Alaska, northern Canada, and Greenland, it doesn’t hibernate. It just digs tunnels with cozy nesting burrows to warm up in, and finds food by digging tunnels in the snow.

Lemmings reproduce quickly, which is a trait common among rodents, and if the population of lemmings gets too large in one area, some of the lemmings may migrate to find a new place to live. In the olden days people didn’t understand lemming migration. Some people believed that lemmings traveled through the air in stormy weather and that’s why a bunch of lemmings would suddenly appear out of nowhere sometimes. They’d just drop out of the sky. Other people were convinced that if there were too many lemmings, they’d all jump off a cliff and die on purpose, and that’s why sometimes there’d be a lot of lemmings, and then suddenly one day not nearly as many lemmings.

Many people still think that lemmings jump off cliffs, but this isn’t actually true. They’re cute little animals, but they’re not dumb.

Next, let’s learn about two extinct animals, starting with PJ’s suggestion, the woolly mammoth. We actually know a lot about the various species of mammoth because we have so many remains. Our own distant ancestors left cave paintings and carvings of mammoths, we have lots of fossilized remains, and we have lots of subfossil remains too. Because the mammoth lived so recently and sometimes in places where the climate hasn’t changed all that much in the last 10,000 years, namely very cold parts of the world with deep layers of permafrost beneath the surface, sometimes mammoth remains are found that look extremely fresh.

The woolly mammoth was closely related to the modern Asian elephant, but it was much bigger and covered with long fur. A big male woolly mammoth could stand well over 11 feet tall at the shoulder, or 3.5 meters, while females were a little smaller on average. It was well adapted to cold weather and had small ears, a short tail, a thick layer of fat under the skin, and an undercoat of soft, warm hair that was protected by longer guard hairs. It lived in the steppes of northern Europe, Asia, and North America, and like modern elephants it ate plants. It had long, curved tusks that could be over 13 feet long, or 4 meters, in a big male, and one of the things it used it tusks for was to sweep snow away from plants.

The woolly mammoth went extinct at the end of the last ice age, around 11,000 years ago, although a small population remained on a remote island until only 4,000 years ago.

Our last animal this week is Morris’s suggestion, and it’s actually not a single type of animal but a whole order. Desmostylians were big aquatic mammals, and the only known order of aquatic mammals that are completely extinct.

When you think of aquatic mammals, you might think of whales, seals, and sea cows, or even hippos. Desmostylians didn’t look like any of those animals, and they had features not found in any other animal.

Desmostylians lived in shallow water off the Pacific coast, and fossils have been found in North America, southern Japan, parts of Russia, and other places. They first appear in the fossil record around 30 million years ago and disappear from the fossil record about 7 million years ago. They were fully aquatic animals that probably mostly ate kelp or sea grass, similar to modern sirenians, which include dugongs and manatees.

Let’s talk about Paleoparadoxia to find out roughly what Desmostylians looked and acted like. Paleoparadoxia grew about 7 feet long, or 2.15 meters, and had a robust skeleton. It had short legs, although the front legs were longer and its four toes were probably webbed to help it swim. It probably acted a lot like a sirenian, walking along the sea floor to find plants to eat. Its nostrils were on the top of its nose so it could take breaths at the surface more easily, and it had short tusks in its mouth, something like modern hippos. It may have looked a little like a hippo, but also a little like a dugong, and possibly a little like a walrus.

One really strange thing about Desmostylians in general are their teeth. No other animals known have teeth like theirs. Their molars and premolars are incredibly tough and are made up of little enamel cylinders. The order’s name actually means “bundle of columns,” referring to the teeth, and the bundles point upward so that the tops of the columns make up the tooth’s chewing surface. Actually, chewing surface isn’t the right term because Desmostylians probably didn’t chew their food. Scientists think they pulled plants up by the roots using their teeth and tusks, then used suction to slurp up the plants and swallow them whole.

We still don’t know very much about Desmostylians. Scientists think they were outcompeted by sirenians, but we don’t really know why they went extinct. We don’t even know what they were most closely related to. They share some similarities with manatees and elephants, but those similarities may be due to convergent evolution. Then again, they might be related. Until we find more fossils, the mysteries will remain.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, corrections, or suggestions, email us at strangeanimalspodcast@gmail.com.

Thanks for listening!

Episode 466: Lots of Invertebrates!

Here’s the big invertebrate episode I’ve been promising people! Thanks to Sam, warbrlwatchr, Jayson, Richard from NC, Holly, Kabir, Stewie, Thaddeus, and Trech for their suggestions this week!

Further reading:

Does the Spiral Siphonophore Reign as the Longest Animal in the World?

The common nawab butterfly:

The common nawab caterpillar:

A velvet worm:

A giant siphonophore [photo by Catriona Munro, Stefan Siebert, Felipe Zapata, Mark Howison, Alejandro Damian-Serrano, Samuel H. Church, Freya E.Goetz, Philip R. Pugh, Steven H.D.Haddock, Casey W.Dunn – https://www.sciencedirect.com/science/article/pii/S1055790318300460#f0030]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Hello to 2026! This is usually where I announce that I’m going to do a series of themed episodes throughout the coming year, and usually I forget all about it after a few months. This year I have a different announcement. After our nine-year anniversary next month, which is episode 470, instead of new episodes I’m going to be switching to old Patreon episodes. I closed the Patreon permanently at the end of December but all the best episodes will now run in the main feed until our ten-year anniversary in February 2027. That’s episode 523, when we’ll have a big new episode that will also be the very last one ever.

I thought this was the best way to close out the podcast instead of just stopping one day. The only problem is the big list of suggestions. During January I’m going to cover as many suggestions as I possibly can. This week’s episode is about invertebrates, and in the next few weeks we’ll have an episode about mammals, one about reptiles and birds, and one about amphibians and fish, although I don’t know what order they’ll be in yet. Episode 470 will be about animals discovered in 2025, along with some corrections and updates.

I hope no one is sad about the podcast ending! You have a whole year to get used to it, and the old episodes will remain forever on the website so you can listen whenever you like.

All that out of the way, let’s start 2026 right with a whole lot of invertebrates! Thanks to Sam, warbrlwatchr, Jayson, Richard from NC, Holly, Kabir, Stewie, Thaddeus, and Trech for their suggestions this week!

Let’s start with Trech’s suggestion, a humble ant called the weaver ant. It’s also called the green ant even though not all species are green, because a species found in Australia is partially green. Most species are red, brown, or yellowish, and they’re found in parts of northern and western Australia, southern Asia, and on most islands in between the two areas, and in parts of central Africa. The weaver ant lives in trees in tropical areas, and gets the name weaver ant because of the way it makes its nest.

The nests are made out of leaves, but the leaves are still growing on the tree. Worker ants grab the edge of a leaf in their mandibles, then pull the leaf toward another leaf or sometimes double the leaf over. Sometimes ants have to make a chain to reach another leaf, with each ant grabbing the next ant around the middle until the ant at the end of the chain can grab the edge of a leaf. While the leaf is being pulled into place alongside the edge of another leaf, or the opposite edge of the same leaf, other workers bring larvae from an established part of the nest. The larvae secrete silk to make cocoons, but a worker ant holds a larva at the edge of the leaf, taps its little head, and the larva secretes silk that the workers use to bind the leaf edges together. A single colony has multiple nests, often in more than one tree, and are constantly constructing new ones as the old leaves are damaged by weather or just die off naturally.

The weaver ant mainly eats insects, which is good for the trees because many of the insects the ants kill and eat are ones that can damage trees. This is one reason why farmers in some places like seeing weaver ants, especially fruit farmers, and sometimes farmers will even buy a weaver ant colony starter pack to place in their trees deliberately. The farmer doesn’t have to use pesticides, and the weaver ants even cause some fruit- and leaf-eating animals to stay away, because the ants can give a painful bite. People in many areas also eat the weaver ant larvae, which is considered a delicacy.

Our next suggestion is by Holly, the zombie snail. I actually covered this in a Patreon episode, but I didn’t schedule it for next year because I thought I’d used the information already in a regular episode, but now I can’t find it. So let’s talk about it now!

In August of 2019, hikers in Taiwan came across a snail that looked like it was on its way to a rave. It had what looked like flashing neon decorations in its head, pulsing in green and orange. Strobing colors are just not something you’d expect to find on an animal, or if you did it would be a deep-sea animal. The situation is not good for the snail, let me tell you. It’s due to a parasitic flatworm called the green-banded broodsac.

The flatworm infects birds, but to get into the bird, first it has to get into a snail. To get into a snail, it has to be in a bird, though, because it lives in the cloaca of a bird and attaches its eggs to the bird’s droppings. When a snail eats a yummy bird dropping, it also eats the eggs. The eggs hatch in the snail’s body instead of being digested, where eventually they develop into sporocysts. That’s a branched structure that spreads throughout the snail’s body, including into its head and eyestalks.

The sporocyst branches that are in the snail’s eyestalks further develop into broodsacs, which look like little worms or caterpillars banded with green and orange or green and yellow, sometimes with black or brown bands too—it depends on the species. About the time the broodsacs are ready for the next stage of life, the parasite takes control of the snail’s brain. The snail goes out in daylight and sits somewhere conspicuous, and its body, or sometimes just its head or eyestalks, becomes semi-translucent so that the broodsacs show through it. Then the broodsacs swell up and start to pulse.

The colors and movement resemble a caterpillar enough that it attracts birds that eat caterpillars. A bird will fly up, grab what it thinks is a caterpillar, and eat it up. The broodsac develops into a mature flatworm in the bird’s digestive system, and sticks itself to the walls of the cloaca with two suckers, and the whole process starts again.

The snail gets the worst part of this bargain, naturally, but it doesn’t necessarily die. It can survive for a year or more even with the parasite living in it, and it can still use its eyes. When it’s bird time, the bird isn’t interested in the snail itself. It just wants what it thinks is a caterpillar, and a lot of times it just snips the broodsac out of the snail’s eyestalk without doing a lot of damage to the snail.

If a bird doesn’t show up right away, sometimes the broodsac will burst out of the eyestalk anyway. It can survive for up to an hour outside the snail and continues to pulsate, so it will sometimes still get eaten by a bird.

Okay, that was disgusting. Let’s move on quickly to the tiger beetle, suggested by both Sam and warblrwatchr.

There are thousands of tiger beetle species known and they live all over the world, except for Antarctica. Because there are so many different species in so many different habitats, they don’t all look the same, but many common species are reddish-orange with black stripes, which is where the name tiger beetle comes from. Others are plain black or gray, shiny blue, dark or pale brown, spotted, mottled, iridescent, bumpy, plain, bulky, or lightly built. They vary a lot, but one thing they all share are long legs.

That’s because the tiger beetle is famous for its running speed. Not all species can fly, but even in the ones that can, its wings are small and it can’t fly far. But it can run so fast that scientists have discovered that its simple eyes can’t gather enough photons for the brain to process an image of its surroundings while it runs. That’s why the beetle will run extremely fast, then stop for a moment before running again. Its brain needs a moment to catch up.

The tiger beetle eats insects and other small animals, which it runs after to catch. The fastest species known lives around the shores of Lake Eyre in South Australia, Rivacindela hudsoni. It grows around 20 mm long, and can run as much as 5.6 mph, or 9 km/hour, not that it’s going to be running for an entire hour at a time. Still, that’s incredibly fast for something with little teeny legs.

Another insect that is really fast is called the common nawab, suggested by Jayson. It’s a butterfly that lives in tropical forests and rainforests in South Asia and many islands. Its wings are mainly brown or black with a big yellow or greenish spot in the middle and some little white spots along the edges, and the hind wings have two little tails that look like spikes. It’s really pretty and has a wingspan more than three inches across, or about 8.5 cm.

The common nawab spends most of its time in the forest canopy, flying quickly from flower to flower. Females will travel long distances, but when a female is ready to lay her eggs, she returns to where she hatched. The male stays in his territory, and will chase away other common nawab males if they approach.

The common nawab caterpillar is green with pale yellow stripes, and it has four horn-like projections on its head, which is why it’s called the dragon-headed caterpillar. It’s really awesome-looking and I put it on the list to cover years ago, then forgot it until Jayson recommended it. But it turns out there’s not a lot known about the common nawab, so there’s not a lot to say about it.

Next, Richard from NC suggested the velvet worm. It’s not a worm and it’s not made of velvet, although its body is soft and velvety to the touch. It’s long and fairly thin, sort of like a caterpillar in shape but with lots of stubby little legs. There are hundreds of species known in two families. Most species of velvet worm are found in South America and Australia.

Some species of velvet worm can grow up to 8 and a half inches long, or 22 cm, but most are much smaller. The smallest lives in New Zealand on the South Island, and only grows up to 10 mm long, with 13 pairs of legs. The largest lives in Costa Rica in Central America and was only discovered in 2010. It has up to 41 pairs of legs, although males only have 34 pairs.

Various species of velvet worm are different colors, although a lot of them are reddish, brown, or orangey-brown. Most species have simple eyes, although some have no eyes at all. Its legs are stubby, hollow, and very simple, with a pair of tiny chitin claws at the ends. The claws are retractable and help it climb around. It likes humid, dark places like mossy rocks, leaf litter, fallen logs, caves, and similar habitats. Some species are solitary but others live in social groups of closely related individuals.

The velvet worm is an ambush predator, and it hunts in a really weird way. It’s nocturnal and its eyes are not only very simple, but the velvet worm can’t even see ahead of it because its eyes are behind a pair of fleshy antennae that it uses to feel its way delicately forward. It walks so softly on its little legs that the small insects and other invertebrates that it preys on often don’t even notice it. When it comes across an animal, it uses its antennae to very carefully touch it and decide whether it’s worth attacking.

When it decides to attack, it squirts slime that acts like glue. It has a gland on either side of its head that squirts slime quite accurately. Once the prey is immobilized, the velvet worm may give smaller squirts of slime at dangerous parts, like the fangs of spiders. Then it punctures the body of its prey with its jaws and injects saliva, which kills the animal and starts to liquefy its insides. While the velvet worm is waiting for this to happen, it eats up its slime to reuse it, then sucks the liquid out of the prey. This can take a long time depending on the size of the animal—more than an hour.

A huge number of invertebrates, including all insects and crustaceans, are arthropods, and velvet worms look like they should belong to the phylum Arthropoda. But arthropods always have jointed legs. Velvet worm legs don’t have joints.

Velvet worms aren’t arthropods, although they’re closely related. A modern-day velvet worm looks surprisingly like an animal that lived half a billion years ago, Antennacanthopodia, although it lived in the ocean and all velvet worms live on land. Scientists think that the velvet worm’s closest living relative is a very small invertebrate called the tardigrade, or water bear, which is Stewie’s suggestion.

The water bear isn’t a bear but a tiny eight-legged animal that barely ever grows larger than 1.5 millimeters. Some species are microscopic. There are about 1,300 known species of water bear and they all look pretty similar, like a plump eight-legged stuffed animal with a tubular mouth that looks a little like a pig’s snout. It uses six of its fat little legs for walking and the hind two to cling to the moss and other plant material where it lives. Each leg has four to eight long hooked claws. Like the velvet worm, the tardigrade’s legs don’t have joints. They can bend wherever they want.

Tardigrades have the reputation of being extremophiles, able to withstand incredible heat, cold, radiation, space, and anything else scientists can think of. In reality, it’s just a little guy that mostly lives in moss and eats tiny animals or plant material. It is tough, and some species can indeed withstand extreme heat, cold, and so forth, but only for short amounts of time.

The tardigrade’s success is mainly due to its ability to suspend its metabolism, during which time the water in its body is replaced with a type of protein that protects its cells from damage. It retracts its legs and rearranges its internal organs so it can curl up into a teeny barrel shape, at which point it’s called a tun. It needs a moist environment, and if its environment dries out too much, the water bear will automatically go into this suspended state, called cryptobiosis. When conditions improve, the tardigrade returns to normal.

Another animal has a similar ability, and it’s a suggestion by Thaddeus, the immortal jellyfish. It’s barely more than 4 mm across as an adult, and lives throughout much of the world’s oceans, especially where it’s warm. It eats tiny food, including plankton and fish eggs, which it grabs with its tiny tentacles. Small as it is, the immortal jellyfish has stinging cells in its tentacles. It’s mostly transparent, although its stomach is red and an adult jelly has up to 90 white tentacles.

The immortal jellyfish starts life as a larva called a planula, which can swim, but when it finds a place it likes, it sticks itself to a rock or shell, or just onto the sea floor. There it develops into a polyp colony, and this colony buds new polyps that are clones of the original. These polyps swim away and grow into jellyfish, which spawn and develop eggs, and those eggs hatch into new planulae.

Polyps can live for years, while adult jellies, called medusae, usually only live a few months. But if an adult immortal jellyfish is injured, starving, sick, or otherwise under stress, it can transform back into a polyp. It forms a new polyp colony and buds clones of itself that then grow into adult jellies.

It’s the only organism known that can revert to an earlier stage of life after reaching sexual maturity–but only an individual at the adult stage, called the medusa stage, can revert to an earlier stage of development, and an individual can only achieve the medusa stage once after it buds from the polyp colony. If it reverts to the polyp stage, it will remain a polyp until it eventually dies, so it’s not really immortal but it’s still very cool.

All the animals we’ve talked about today have been quite small. Let’s finish with a suggestion from Kabir, a deep-sea animal that’s really big! It’s the giant siphonophore, Praya dubia, which lives in cold ocean water around many parts of the world. It’s one of the longest creatures known to exist, but it’s not a single animal. Each siphonophore is a colony of tiny animals called zooids, all clones although they perform different functions so the whole colony can thrive. Some zooids help the colony swim, while others have tiny tentacles that grab prey, and others digest the food and disperse the nutrients to the zooids around it.

Some siphonophores are small but some can grow quite large. The Portuguese man o’ war, which looks like a floating jellyfish, is actually a type of siphonophore. Its stinging tentacles can be 100 feet long, or 30 m. Other siphonophores are long, transparent, gelatinous strings that float through the depths of the sea, and that’s the kind the giant siphonophore is.

The giant siphonophore can definitely grow longer than 160 feet, or 50 meters, and may grow considerably longer. Siphonophores are delicate, and if they get washed too close to shore or the surface, waves and currents can tear them into pieces. Other than that, and maybe the occasional whale or big fish swimming right through them and breaking them up, there’s really no reason why a siphonophore can’t just keep on growing and growing and growing…

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, corrections, or suggestions, email us at strangeanimalspodcast@gmail.com.

Thanks for listening!

Episode 464: Farmyard Animals

Thanks to Emily, Jo, and Alexandra for their suggestions this week!

Further reading:

Highland Cattle Society

Mongolian Sheep

The Donkey Sanctuary

The Highland cow is so cute (picture taken from the first site linked above):

Some fat-tailed sheep (picture taken from the sheep article linked above):

Donkeys:

A happy donkey and a happy person (photo taken from the Donkey Sanctuary’s site, linked above):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

After last week’s giant fish episode, this week we’re going to have a shorter episode of animals you’ve probably seen, especially if you live in the countryside. But first, I forgot to credit two people from last week’s episode, Dylan and Emily, who both wanted to hear about mudskippers along with Arthur! I had so many names I missed some.

This week we’ll talk about some domestic mammals, suggested by Alexandra, Jo, and Emily. Let’s start with Emily’s suggestion, the Highland cow.

Cows are classified in the family Bovidae, which includes not just the domestic cow and its relations but goats, sheep, antelopes, and many other animals with cloven hooves who chew the cud as part of the digestive process–but not deer or giraffes, and not the pronghorn even though people call it an antelope. It is confusing. Many bovids have horns, usually only two but sometimes four or even six, and those horns are never branched. Sometimes only the male has horns, sometimes both the male and female. Bovids don’t have incisors in the front of the upper jaw, only in the lower jaw. Instead, a bovid has a tough dental pad that helps it grab plants.

The Highland cow is a breed of domestic cow that originated in Scotland, although it’s now popular in many other places too. It’s a tough animal with a long outer coat of fur and a short, fuzzy undercoat that helps it survive harsh winters. Most are reddish-brown, but some are black, silvery-white, dun, or other shades. It has long, wide horns and its long fur usually falls over its face, which protects its eyes and also looks incredibly cute.

Not only can the Highland cow thrive on pasture that’s considered poor, meaning the plants aren’t as nutritious, it’s also disease resistant, even-tempered, and intelligent. It’s a compact, relatively small cow, but it’s not a miniature cow. Like, you can’t pick it up like a dog, although you could probably hug one if the farmer says it’s okay. A bull can stand about 5 feet tall at the shoulder, or 1.5 meters, while cows are smaller overall.

The Highland cow is raised for its meat, which is naturally lean and delicious. But because they also happen to be small for cows, and so even-tempered, and so cute, many small farms and petting zoos keep a few just as pets. Since the Highland cow likes eating plants that other cow breeds won’t touch, it’s also helpful for clearing overgrown land.

Next, Alexandra wanted to learn more about the fat-tailed sheep, another bovid. The sheep is one of the oldest domesticated animals in the world, with some experts estimating that it was first domesticated at least 11,000 years ago and possibly over 13,000 years ago, around Asia and the Middle East. Sheep are especially useful to humans because not only can you eat them, they produce wool.

Wool has incredible insulating properties, as you’ll know if you’ve ever worn a wool sweater in the snow. Even if it gets wet, you stay nice and warm. Even better, you don’t have to kill the sheep to get the wool. The sheep just gets a haircut every year to cut its wool short. Wild sheep don’t grow a lot of wool, though. They mostly have hair like goats. Humans didn’t start selecting for domestic sheep that produced wool until around 8,000 years ago.

The fat-tailed sheep isn’t a single breed but a type of sheep, most common in central Asia, northern Africa, and the Middle East. It’s adapted for life in arid conditions, where there isn’t a lot of water. The fat deposits on both sides of the tail act like a camel’s hump, allowing the animal to absorb the stored fat if it can’t find enough food and water.

The fat-tailed sheep can have a really huge tail, so big it can make up almost a third of its body weight. Because the fat mostly collects on either side of the tail bones, the tail’s shape has two lobes, which makes the sheep look like it has an extra butt on its butt. In some breeds, the tail gets wider as the fat deposits grow, while in other breeds, the tail just gets longer, sometimes so long it actually brushes the ground.

The tail fat helps the sheep, but it’s also considered a delicacy to people. Wherever the fat-tailed sheep is raised, there are special recipes to cook the tail. Many breeds of fat-tailed sheep also produce long, coarse wool that’s used to make carpets and felt.

We’ll finish with Jo’s suggestion, the domestic donkey. Donkeys are equids, and instead of cloven hooves like bovids, they have solid hooves. They’re closely related to horses and zebras, and more distantly related to rhinoceroses and tapirs.

The domestic donkey is descended from the African wild ass. Researchers estimate it was domesticated around five to seven thousand years ago by the ancient nomadic peoples of Nubia in Africa, and quickly spread throughout the Middle East and into southern Asia and Europe.

The domestic donkey is a strong, sturdy animal that’s usually fairly small. One of the biggest breeds is the American Mammoth Jackstock, and another is the French Baudet du Poitou, which has long fur. Both breeds can be as big as a horse. Big donkey breeds like these were mostly developed to cross with horses, to produce even larger, stronger mules. Mules are hybrid animals and are infertile, but they’re very strong.

The donkey is usually gray or brown and has long ears. Most have a darker stripe down the spine, called an eel stripe, and another stripe across the shoulders. Many have a lighter-colored nose, belly, and legs. The donkey’s mane is short and stands upright.

The donkey’s small size and big strength has made it a popular working animal throughout the world. It can carry loads, can be ridden, and can pull carts and plows. It’s famously tough and can be stubborn if it doesn’t feel like it’s being treated well, and it can even be dangerous when it kicks and bites. Sometimes farmers keep donkeys with their sheep or other animals, because the donkey will look out for danger and warn the herd by braying if it sees a predator. If the predator gets too close, the donkey will attack it instead of running away.

In many places in the world, the donkey is an important work animal even today. Not everyone is lucky enough to afford a tractor or truck, so donkeys do the same work for people that they’ve done for thousands of years. The problem is that when a donkey gets old or is injured, and can’t work anymore, sometimes they’re killed for meat or just abandoned. Luckily there are donkey rescues who do their best to help as many donkeys as they can, especially the Donkey Sanctuary.

The Donkey Sanctuary started in England in 1969, but it now has sanctuaries throughout Europe, and it runs programs that offer free veterinary care and education about donkeys for people in many parts of the world. One important thing the Donkey Sanctuary does, and other donkey rescues do too, is give a home to elderly donkeys who can’t work anymore. It’s only fair that a hard-working donkey gets to retire and have a peaceful old age.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, corrections, or suggestions, email us at strangeanimalspodcast@gmail.com.

Thanks for listening!

Episode 459: Strange Little Dolphins

Thanks to Alexandra, Jayson, and Eilee for their suggestions this week!

Further reading:

Scientists have discovered an ancient whale species. It may have looked like a mash-up of ‘a seal and a Pokémon’

The nomenclatural status of the Alula whale

Field Guide of Whales and Dolphins [1971]

The little Benguela dolphin [photo taken from this site]:

The spinner dolphin almost looks like it has racing stripes [photo by Alexander Vasenin – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25108509]:

The Alula whale, which may or may not exist:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn about some whales and dolphins, including an ancient whale and a mystery whale, all of them really small. Thanks to Alexandra, Eilee, and Jayson for their suggestions!

Let’s start with an ancient whale, suggested by Jayson. The genus Janjucetus has been known since its first species was described in 2006, after a teenage surfer in Australia discovered the fossils in the late 1990s. It grew to about 11 feet long, or 3.5 meters, and lived about 25 million years ago. So far it’s only been found around Australia. But much more recently, just a few months ago as this episode goes live, a new species was described. That’s Janjucetus dullardi, also found in Australia along the same beach where the first Janjucetus species was found, and dating to around the same time period.

We don’t know a lot about the newly described whale, since it’s only known from some teeth and partial skull. Scientists think the individual was a juvenile and estimate it was only around 6 feet long when it died, or 2.8 meters. Small as it was, it would have been a formidable hunter when it was alive. Its broad snout was shaped sort of like a shark’s and it had strong, sharp teeth and large eyes.

Because it was an early whale, it wouldn’t have looked much like the whales alive today. It might even have had tiny vestigial back legs. Its eyes were huge in proportion to its head, about the size of tennis balls, and it probably relied on its eyesight to hunt prey because it couldn’t echolocate.

Its serrated teeth and strong jaws indicate that it might have hunted large animals, but some scientists suggest it could also filter feed the same way a crabeater seal does. Modern crabeater seals have similar teeth as Janjucetus, as do a few other seals. The projections on its teeth interlock when the seal closes its mouth, so to filter feed the seal takes a big mouthful of water, closes its teeth, and uses its tongue to force water out through its teeth. Amphipods and other tiny animals get caught against the teeth and the seal swallows them.

If Janjucetus did filter feed, it probably also hunted larger animals. Otherwise its jaws wouldn’t have been so strong or its teeth so deeply rooted. But Janjucetus wasn’t related to modern toothed whales. While it wasn’t a direct ancestor of modern baleen whales, it was part of the baleen whale’s family tree. Baleen whales, also called mysticetes, have baleen plates made of keratin instead of teeth. After the whale fills its mouth with water, it closes its jaws, pushes its enormous tongue up, and forces all that water out through the baleen. Any tiny animals like krill, copepods, small squid, small fish, and so on, get trapped in the baleen. It’s just like the crabeater seal, but really specialized and way bigger.

Whether or not Janjucetus could and did filter feed doesn’t really matter, because the fact that it’s an ancestral relation of modern baleen whales but it had teeth helps us understand more about modern whales.

Next, Eilee wanted to learn about the Benguela [BEN-gull-uh] dolphin, also called Heaviside’s dolphin. It lives only off the southwestern coast of Africa, and it’s really small, only a little over 5 and a half feet long at the most, or 1.7 meters. It’s dark gray with white markings, with a blunt head that’s almost cone-shaped and a triangular dorsal fin.

The Benguela dolphin is named for its ecosystem. The Benguela current flows northward along the coast, bringing cold, nutrient-rich water up from the depths, which attracts lots of animals. The dolphin lives in relatively shallow water and mainly eats fish and octopuses that it finds on or near the sea floor.

The Benguela dolphin lives in social groups and sometimes hangs out with other species of dolphin. It doesn’t travel very far throughout the year, barely more than 50 miles, or 80 km. When it hunts for food, it uses very high-pitched navigation clicks that orcas can’t hear, but when it’s in safe areas, socializing without any predators around, it communicates and navigates with lower-pitched sounds. Sharks also sometimes attack it and sometimes humans will catch and eat one, but for the most part, it lives a pretty stress-free life just hanging out with its friends and eating little fish. And that’s basically all we know about this little dolphin.

Alexandra wanted to hear about the spinner dolphin, which is common in warmer waters throughout the world. It’s called the spinner dolphin because it likes to leap into the air, spinning around as it does like an American football, which is pretty spectacular. No one except the spinner dolphin is completely sure why it spins, but scientists speculate it serves more than one purpose. The activity takes a lot of energy, so it might be a way to signal to other dolphins that it’s really strong and fit. The big splash when it lands on its side may be a way to communicate with other dolphins. The action might also help dislodge parasites like remora fish that really do attach themselves to bigger, faster animals to hitch rides and incidentally steal food.

Whatever the reason, the spinner dolphin is one of the most acrobatic dolphins in the world. It not only spins, but it jumps around, flips, slaps its tail on the water, and basically acts like a kid on the first swimming pool visit of the summer. Like most dolphins and whales, it’s a social animal, hanging out with friends, family, and sometimes other dolphin species. It eats small animals like fish, squid, and crustaceans, and at least some populations are nocturnal so they can hunt animals that migrate to shallower water at night.

The spinner dolphin is actually pretty small, growing to not quite 7 feet long at most, or 2.4 meters. It’s mainly dark gray on top, lighter gray on the sides, and pale gray or white on its belly.

Let’s finish with our mystery whale or dolphin, called the Alula whale because it was sighted near the town of Alula, Somalia at some time prior to the early 1970s. In 1971 a Dutch sea captain reported that he had seen these whales on multiple occasions, in the Gulf of Aden and the Indian Ocean. But although it’s a distinctive-sounding whale or dolphin, its existence hasn’t been verified.

Captain Willem Mörzer Bruyns, whose name I have mispronounced, described the Alula whale as being similar in size and shape to the orca or pilot whale, with a tall dorsal fin and rounded forehead. It was sepia brown all over, though, except for white scars all over its body that were shaped sort of like stars. He reported seeing small groups of these whales, anywhere from 4 to 8 of them, traveling together on at least four occasions. He estimated the whales were up to 24 feet long, or 7.2 meters.

There’s quite a bit of confusion about this mystery whale spread across the internet. Some sites I looked at mentioned a book written by Mörzer Bruyns called Field Guide of Whales and Dolphins, published in 1971, but quoted a different book, A World Guide to Whales, Dolphins, and Porpoises published in 1981 by Donald S. Heintzelman.

Let me quote the relevant paragraphs from the 1971 book, the original:

“At first encounter a school of 4 approached the ship head on and seeing the dorsal fins the author thought they were [orcas]. When they passed the ship at a distance of less than 50 yards just under the surface in the flat calm, clear sea, it was obvious that this was a different species. … These dolphins were seen in the area during crossings in April, May, June and September, usually swimming just under the surface with the dorsal fin above the water. One duty officer reported he observed them chasing a school of smaller dolphins, who tried to escape. There is, however, a possibility that both species were chasing the same prey.”

If you go to Wikipedia to read about the Alula whale, as of mid-November 2025, it states that the dorsal fin was about 6 and a half feet tall, or 2 meters. But Mörzer Bruyns reported that the dorsal fin was 2 feet tall, or about 60 cm. That’s an important difference. Orcas, AKA killer whales even though they’re actually big dolphins, are distinctively patterned with black and white, and a male orca can have a dorsal fin up to 6 feet tall, or 1.8 meters, while a female’s is typically less than half that height. The pilot whale is also a dolphin, despite its name, but it has a relatively small dorsal fin and is black, dark gray, or sometimes brown. Some researchers suggest that Mörzer Bruyns misidentified pilot whales as something mysterious, but the details he provided don’t really match up.

There are a lot of little-known whales alive today, some only discovered in the last few decades. It’s possible that the Alula whale really is a very rare small whale or dolphin. It’s not clear from his report, but it sounds like Mörzer Bruyns saw the whales on several occasions in the same year. If so, maybe the Alula whale doesn’t actually live in that part of the ocean most of the time, and Mörzer Bruyns saw the same small group several times that just happened to have traveled to the Indian Ocean that year. Maybe no one else has seen them because they’re all living in some remote part of the ocean where humans seldom travel. Hopefully someone will spot one soon.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 454: Bats!

This week we’re going to learn about a bunch of bats! Thanks to John, Murilo, and Alexandra for their suggestions!

Further reading:

Why Bats Can’t Walk: The Evolutionary Lock That Keeps Them Flying

On a Wing and a Song—Bats Belt out High-Pitched Tunes to Woo Mates

Why some bats hunt during the day

Puzzling Proto-Bats

A pekapeka just walking around catching bugs on the ground [photo by Rod Morris, from link above]:

BLOOOOOOD! but a really cute smile too:

The western red bat looks ready for Halloween!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week as monster month continues, we’re going to learn about bats! We’ve talked about bats in lots of previous episodes, but we have a lot of really neat information in this one that we’ve never covered before. Thanks to John, Alexandra, and Murilo for their suggestions!

John suggested we learn about diurnal bats and also asked if there are any flightless bats, maybe ones that live on islands. There are lots of island-living bats, and many birds that live on islands evolve to be flightless. It makes sense that bats might do the same thing–but I couldn’t find any information about any known bat that has lost the ability to fly.

The reason seems to be how highly derived bats are. That means they’re specialized, the only mammal known that has ever evolved true flight. Unlike birds, which don’t need to use their legs when flying, bats’ legs are actually part of the wings. The wing membranes, called patagia, stretch not just between the elongated finger bones of the bat’s hands, they also stretch between the arms and legs, and connect the legs too.

A January 2025 study comparing bat skeletons to the skeletons of birds determined that unlike in birds, where the size of the legs doesn’t have anything to do with the size of the wings, in bats the leg size and the wing size are closely related. If a bat evolves smaller wings, its legs also evolve to become smaller. That’s why there are no bats that resemble ostriches, with tiny wings but really long legs.

Another possible reason is that bat legs have evolved to point backwards compared to other animals. It’s not just the feet, the knees are also rotated backwards. That’s why bats hang upside-down when they’re not flying. Many species of bat never land on the ground, because they literally can’t walk at all.

But there are a few species of bats that can walk quite well. One is the increasingly threatened New Zealand lesser short-tailed bat. It lives in a few places in both the North and South Islands, as well as some small islands off the coast, although it used to be much more widespread. It’s also called by its Maori name, the pekapeka.

The pekapeka mainly lives in forested areas and is quite small. It’s brown with a lighter belly, and it has big ears, as do most bats. Its eyes are small and its vision isn’t very good, but it has a good sense of smell. Its wings are small so its legs are correspondingly small too, but its legs are also strong despite their size. It has a clawed thumb toe on its feet and on its wings that helps it climb around in trees when it needs to, and it also spends about half of its time on the ground. It walks just fine, crawling with its wings folded so that the ends point up and back, out of the way. And yes, its legs are rotated backwards as you’d expect in a bat, and it roosts by hanging from its feet in trees.

The pekapeka flies normally and catches insects using echolocation, just like other microbats throughout the world. It especially likes moths. Unlike almost all other bats, it finds a lot of its food on the ground too, using its sense of smell to track down spiders, insects and larvae, and other small invertebrates. It will actually dig into the dirt and leaf litter to find food. It also eats nectar and flowers, and is an important pollinator of some plants.

One great thing about the pekapeka is that the males sing to attract a mate. The sound is so high-pitched that it’s not practical to share it here, because you probably wouldn’t be able to hear it, but I’ll link to an article that has a sample bat song so you can listen.

Another bat that can walk just fine is one suggested by Murilo, the vampire bat. In movies, vampire bats are usually depicted as being humongous, as big as a person! In reality, those big bats are actually megabats, and megabats mostly eat fruit. Megabats are the ones that are sometimes called sky puppies, because they don’t rely very much on echolocation so they don’t have the complicated ears and noses that microbats do. Until recently scientists thought megabats couldn’t echolocate at all, but now we know they can, they’re just not all that good at it. The vampire bat is tiny in comparison.

There are three species of vampire bat alive today. They share the same subfamily, Desmodontinae, but have been classified in different genera because they differ considerably from each other. Their other relations are ordinary bats that eat insects, fruit, and other things that you’d expect from bats. Vampire bats really do eat blood exclusively.

The hairy-legged vampire bat is the most basal of the three species, meaning it retains traits that haven’t changed as much from its ancestors. It feeds exclusively on bird blood. The white-winged vampire bat also mostly feeds on bird blood, but it will sometimes eat the blood of mammals. It’s the common vampire bat that eats the blood of mammals.

Vampire bats probably evolved from ancestors that ate insects. Scientists hypothesize that they might have originally specialized in eating ectoparasites of other animals, or possibly insects that were attracted to animal wounds. If that’s the case, the bat would have already been eating a lot of blood along with the insects, and at some point it started taking a shortcut to getting that yummy blood. We know this has happened at least one other time, in a bird.

I thought we had talked about the red-billed oxpecker in an old episode, but if we did, I couldn’t find it. It lives throughout the savannas of sub-Saharan Africa and is brown with a bright orange bill and eyes, with a yellow eye ring. It eats ticks that it picks off rhinoceroses, cattle, and other large mammals, but it actually mainly eats blood. It’s happy to eat the ticks, because they’re full of blood, and the animals it perches on are happy that it eats ticks, but the bird will also peck at wounds so it can drink blood directly from the animal.

So it’s likely that the vampire bat started out eating ticks or other ectoparasites, then began eating the blood that oozed from the wound after it removed a tick. From there it was a short step to biting the animal to cause blood to flow, and within four million years, it was fully adapted to drinking blood.

The vampire bat has extremely sharp front teeth that stick out so that it can use them to make little cuts in an animal’s skin, after first using its teeth to shave the fur down so it can reach the skin more easily. Its fangs lack enamel, so they stay razor sharp. The vampire bat’s saliva contains anticoagulants, so the blood won’t clot right away and the bat can lick it up until it’s full, which takes about 20 minutes. It digests blood extremely quickly, so that it absorbs the nutrients from the blood and starts urinating the extra liquid within a few minutes of starting to feed. That way it can eat more and it can also stay light enough to take flight if it’s disturbed. If you were wondering, its poop is the same as other bat poop. It does echolocate, although not as expertly as bats that eat insects, but the common vampire bat also has specialized thermoreceptors on its nose that sense heat. It’s the only mammal known that can detect infrared radiation, and the only other vertebrates known that can do the same thing are some snakes.

Because vampire bats have to be able to walk around on animals to find a good spot to bite them, the bats have evolved to be able to walk, run, and even jump just fine. Like the pekapeka, it folds the ends of its wings back out of the way and basically walks on the wrists of its wings and its backwards-pointing feet.

Even though the pekapeka and the vampire bat are comfortable running around on the ground, neither has lost the ability to fly. Being able to fly seems to be baked into being a bat. So while it’s not impossible that a bat might eventually become truly flightless, it’s unlikely.

As for bats that are diurnal, or daytime bats, there are a few. A study published in 2018 determined that of the four known species of bat that routinely go out hunting during the daytime, all four live on islands where there are no predatory birds. That doesn’t mean that all bats that live in places where there aren’t any hawks or eagles or crows are active during the day, because most species are still nocturnal, but that seems to be the one requirement for a daytime bat.

John was also interested in learning about the biggest fossil bat ever found. Bats are delicate creatures and don’t fossilize very well, so the bat fossil record is really fragmentary. For example, until 2015 the oldest pekapeka fossil discovered was only 17,500 years old. In 2015, a new fossilized pekapeka ancestor was discovered on the South Island that’s been dated to 16 to 19 million years ago. The fossil shows that the bat was adapted to walk just as the modern pekapeka is, and its teeth are similar so it probably had a similar diet—but it’s estimated to be three times the size of the pekapeka! That sounds like it must have been a huge bat, but the pekapeka only weighs 15 grams at most. That’s barely more than half an ounce, or about the same weight as a CD or DVD, not counting the case. Its ancestor is estimated to have weighed as much as 40 grams, which is almost as heavy as a golf ball. It’s also what a typical vampire bat weighs, if you were wondering.

An even bigger fossil bat has been discovered in a fossil site in France, a country in Europe, and another in Tunisia, a country in North Africa. It’s called Necromantis and is estimated to have weighed as much as 47 grams, which is the same weight as two mice. Two nervous mice, because Mecromantis had strong jaws and big teeth, which suggests it ate small vertebrates–like mice. It lived between 44 and 36 million years ago in areas that were most likely tropical.

An ancestor of the vampire bat was even bigger, possibly as much as 60 grams. That’s just over 2 ounces! That’s a bit heavier than a tennis ball. It lived in South America during the Pleistocene, so recently that in addition to fossils, we also have subfossil remains. That means they’re mineralized but not yet fully fossilized. It’s called Desmodus draculae, and it was most likely still around when humans migrated to South America around 25,000 years ago. Big as it was, it still wasn’t as big as a typical megabat.

Because bat fossils are so rare, it’s led to a scientific mystery. We don’t have any fossils of bat ancestors that weren’t yet bats, but were evolving into bats. In other words, we don’t know what bats looked like before they evolved to be flying animals. The best guess is that the earliest bat ancestors were shrew-like animals that lived in trees and ate insects.

So far we haven’t mentioned any bats that live in Arizona, suggested by Alexandra, so let’s learn about the western red bat. Most bats are black, gray, or brown in color, but the western red bat is a cheerful orange with white shoulder patches and black wing membranes. It’s ready for Halloween all the time! Males are usually more brightly colored than females.

The western red bat lives throughout western North America in summer. It migrates to the southern parts of its range in winter, as far south as Central America. It’s also called the desert red bat but it actually spends most of its life in forests, where its red coat blends in with dead leaves. It eats insects and while it doesn’t spend much time on the ground, every so often it will drop to the ground to catch an insect before hopping back into the air. Not only that, but when the western red bat migrates, it will sometimes fly along with flocks of migrating birds in the daytime.

Unlike many bats, the western red bat is solitary most of the year. Also unlike most bats, instead of having just one baby at a time, it can have up to four babies in a litter. The mother has four nipples instead of just two as in most bats, and for the first three or four weeks of the babies’ lives, the mother has to carry them around while she hunts, until they learn to fly.

As a last note about bats, Murilo specifically mentioned that vampire bats carry diseases that humans can catch. (If diseases bother you, you can stop listening now because we’re almost done.) The common vampire bat does occasionally bite humans, usually the bare big toe of someone sleeping outside, or sometimes the earlobe or even the nose. Vampire bats do show a lot of resistance to blood-borne diseases, but they still spread diseases. The best way to avoid catching a disease from a vampire bat is to not sleep outside without shelter if you can avoid it, if you’re in an area of South America where vampire bats live. That means that if you’re out camping, bring a tent even if it’s hot. Also, avoid eating the meat of wild boar from South America. Not only can boars catch diseases from vampire bats that they pass on to humans, but wild boars also eat fruit partially eaten by fruit bats that also carry diseases. The fruit bats drop partially eaten fruit, the wild boar eats the fruit along with the saliva left on it by the bat, and then the boar can get sick from the saliva.

Most mammals can catch rabies. If you see a bat out in the daytime crawling on the ground, don’t assume that you’re seeing a very rare daytime bat that can also walk around like a pekapeka. Leave the bat alone and contact animal control, because most likely the poor bat has contracted rabies. If you touch the bat, even if it doesn’t bite you, you will have to get a series of rabies vaccines to make sure you don’t come down with rabies, which is an incurable disease and always fatal. That is way scarier than anything else we’ve ever talked about on monster month episodes!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 453: The Skeleton Coast

It’s October, AKA Monster Month! Let’s learn about some animals of the Skeleton Coast–which sounds spooky, but actually isn’t.

Lots of brown fur seals [photo by Robur.q – Own work, CC BY-SA 4.0]:

The desert plated lizard [photo by redrovertracy, some rights reserved (CC BY) – https://www.inaturalist.org/photos/45483586, CC BY 4.0]:

Rüppell’s korhaan [photo by By Charles J. Sharp – Own work, from Sharp Photography, sharpphotography.co.uk, CC BY-SA 4.0]:

The pearl spotted owlet is cute rather than spooky, but it has a haunting call [photo by Charles J. Sharp – Own work, from Sharp Photography, sharpphotography.co.uk, CC BY-SA 4.0]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s October at last, and that means monster month! To start us off this year, we’re going to learn about animals of the Skeleton Coast, which sounds a lot more spooky than it actually is.

The Skeleton Coast is a stretch of coastline 310 miles long, or 500 km, on the Atlantic coast of Africa. It’s part of Namibia, a huge country in southern Africa that’s mostly quite dry, with two deserts within its borders. Because the country gets so little rainfall, it has to conserve water for its people, animals, and crops, so the government is serious about conservation and natural resources. It’s home to one of the most cutting-edge water treatment plants in the world, and since the government’s establishment in 1993, it’s been working to help farmers and citizens in general to practice sustainable natural resource management. It’s also a beautiful part of the world, with amazing geography, and animals and plants found nowhere else in the world, so eco-tourism has been increasing, which helps the economy.

Namibia is also home to the San people, who call the Skeleton Coast “the land god made in anger.” The northern part of the coast is blocked off from land by huge sand dunes, while the southern part is rocky. To get there, you have to cross a desert, and then cross a treacherous marsh that’s hundreds of miles across. Then to get home, you have to go back the way you came across the marsh and the desert, because launching a boat from the Skeleton Coast is impossible if you don’t have a powerful engine.

The sea along the Skeleton Coast is treacherous, with lots of rocks offshore, extremely heavy surf, and frequent thick fogs. There are around a thousand shipwrecks visible along the coast, with the oldest dating to the 1530s, and thousands more documented that aren’t visible or haven’t been found yet. Ships still wreck there sometimes.

Animals do live along the Skeleton Coast, especially seals. The brown fur seal, also called the Cape fur seal, has a huge colony in the northern part of the coast, which is a national park. The brown fur seal lives in various parts of southern Africa, with a subspecies that also lives on some islands off southeastern Australia and Tasmania. A big male can grow 7 ½ feet long, or 2.3 meters, and as you can probably guess from its name, it’s mostly brown in color. Males have a short mane on the neck that’s usually darker than the rest of its fur. It has magnificent long whiskers, especially males.

The brown fur seal mainly eats fish, but it also likes squid and will eat other animals like crustaceans and even birds. It can dive deeply and stay underwater for over seven minutes. It spends most of its life in the water, mainly only coming out on land to breed, give birth, and take care of the babies.

The seals used to be killed for their fur, but this was outlawed in Namibia in 1990 except by special permit, which has allowed the seals’ numbers to increase. The Skeleton Coast is named that mainly because of the massive amounts of seal bones that fur hunters left behind after killing and skinning seals.

Unfortunately, something the rocks around the Skeleton Coast collect are plastic debris, especially fishing debris like nets. So many brown fur seals get caught in the debris and drown that a group of volunteers called Ocean Conservation Namibia go out almost every day to help untangle seals.

The Skeleton Coast doesn’t get any rain to speak of, or only trace amounts in any given year, but it does get thick sea fogs. Most of the plants along the coast are succulents and lichens that don’t need a lot of moisture. A lot of larger animals that hunt seals along the coast actually live farther inland, like hyenas and lions. The animals that live year-round on the coast are much smaller.

That includes the desert plated lizard, which is only found in parts of Namibia and Angola. It’s a slender but strong lizard that can grow over 6 inches long, or 16 cm, not counting its long tail. It’s mainly the color of sand, tan or orange and gray, or gray-white, or some other similar variation, with a white belly, and this is because it lives on sand dunes.

The sand dunes are covered with scrubby vegetation, so in the daytime the lizards come out and eat anything they can find among the plants or in the sand, from seeds and other plant materials to insects and other arthropods. If a potential predator approaches, the lizard will dive into the sand to hide. Its scales are smooth and its legs are short, which allows it to “swim” through sand efficiently and fast. The desert plated lizard lives in small colonies, and although it only lives in this one small part of Africa, it’s extremely common throughout its territory.

A lot of birds visit the skeleton coast—306 of them, in fact, including Rüppell’s korhaan, a species of bustard that only lives in Namibia. It’s a gray and brown bird with black and white markings, with a long neck and fairly long legs. Its body is chunky but its neck is very thin, which makes it look slightly weird but very cute. It mainly eats insects, especially termites, but it will also eat small animals like lizards when it can find them, and it also eats seeds and other plant material. It’s small for a bustard, because bustards are pretty big birds, with the largest species, the great bustard that lives in parts of Europe and Asia, standing over three feet tall, or about a meter. Rüppell’s korhaan is about a third of that size.

Let’s finish with another bird that’s a little more spooky, considering that it’s October. It’s the pearl-spotted owlet, a little owl that’s found throughout much of sub-Saharan Africa, including along the Skeleton Coast. It’s a very small owl, barely more than 8 inches long, or 21 cm. It’s brown with lots of white speckles and streaks, yellow eyes, and two black spots on the back of its head that look like MORE EYES. It shares this trait with some other species of owl, including the northern pygmy owl of western North America, and in fact the two owls belong to the same genus, so they’re closely related.

The pearl spotted owlet is active during the day, but it mostly hunts at night. Since it’s such a small owl, barely larger than a typical songbird, it eats lots of insects, but it will also eat other small birds, bats, lizards, and any other small animal it can catch.

It’s not a very spooky-looking owl, despite having eye spots on the back of its head, but it has a spooky call. Listen to this and be glad you’re not a little bat hearing this sound and wondering if you’re in danger:

[owl call]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 447: So Many Legs!

Thanks to Mila for suggesting one of our topics today!

Further reading:

The mystery of the ‘missing’ giant millipede

Never-before-seen head of prehistoric, car-size ‘millipede’ solves evolutionary mystery

A centipede compared to a millipede:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Let’s finish invertebrate August this year with two arthropods. One is a suggestion from Mila and the other is a scientific mystery that was solved by a recent discovery, at least partially.

Mila suggested we learn about centipedes, and the last time we talked about those animals was in episode 100. That’s because centipedes are supposed to have 100 legs.

But do centipedes actually have 100 legs? They don’t. Different species of centipede have different numbers of legs, from only 30 to something like 300. Like other arthropods, the centipede has to molt its exoskeleton to grow larger. When it does, some species grow more segments and legs. Others hatch with all the segments and legs they’ll ever have.

A centipede’s body is flattened and made up of segments, a different number of segments depending on the centipede’s species, but at least 15. Each segment has a pair of legs except for the last two, which have no legs. The first segment’s legs project forward and end in sharp claws with venom glands. These legs are called forcipules, and they actually look like pincers. No other animal has forcipules, only centipedes. The centipede uses its forcipules to capture and hold prey, and to defend itself from potential predators. A centipede pinch can be painful but not dangerous unless you’re also allergic to bees, in which case you might have an allergic reaction to a big centipede’s venom. Small centipedes can’t pinch hard enough to break a human’s skin.

A centipede’s last pair of legs points backwards and sometimes look like tail stingers, but they’re just modified legs that act as sensory antennae. Each pair of a centipede’s legs is a little longer than the pair in front of it, which helps keep the legs from bumping into each other when the centipede walks.

The centipede lives throughout the world, even in the Arctic and in deserts, but it needs a moist environment so it won’t dry out. It likes rotten wood, leaf litter, soil, especially soil under stones, and basements. Some centipedes have no eyes at all, many have eyes that can only sense light and dark, and some have relatively sophisticated compound eyes. Most centipedes are nocturnal.

The largest centipedes alive today belong to the genus Scolopendra. This genus includes the Amazonian giant centipede, which can grow over a foot long, or 30 cm. It’s reddish or black with yellow bands on the legs, and lives in parts of South America and the Caribbean. It eats insects, spiders–including tarantulas, frogs and other amphibians, small snakes and lizards, birds, and small mammals like mice. It’s even been known to catch bats in midair by hanging down from cave ceilings and grabbing the bat as it flies by.

Some people think that the Amazonian giant centipede is the longest in the world, but this isn’t actually the case. Its close relation, the Galapagos centipede, can grow 17 inches long, or 43 cm, and is black with red legs.

But if you think that’s big, wait until you hear about the other animal we’re discussing today. It’s called Arthropleura and it lived in what is now Europe and North America between about 344 and 292 million years ago.

Before we talk about it, though, we need to learn a little about the millipede. Millipedes are related to centipedes and share a lot of physical characteristics, like a segmented body and a lot of legs. The word millipede means one thousand feet, but millipedes can have anywhere from 36 to 1,306 legs. That is a lot of legs. It’s probably too many legs. The millipede with 1,306 legs is Eumillipes persephone, found in western Australia and only described in 2021. It lives deep underground in forested areas, where it probably eats fungus that grows on tree roots. It’s long and thin with short legs and no eyes. It’s only about 1 mm in diameter, but can grow nearly 4 inches long, or almost 10 cm.

Millipedes mostly eat decaying plant material and are generally chunkier-looking than centipedes. They have two pairs of legs per segment instead of just one, with the legs attached on the underside of the segment instead of on the sides. A millipede usually has short, strong antennae that it uses to poke around in soil and decaying leaves. It can’t pinch, sting, or bite, although some species can secrete a toxic liquid that also smells terrible. Mostly if it feels threatened, a millipede will curl up and hope the potential predator will leave it alone.

The biggest millipede alive today is probably the giant African millipede, which can grow over 13 inches long, or almost 34 cm, but because millipedes are common throughout the world and are often hard for scientists to find, there may very well be much larger millipedes out there that we just don’t know about.

As an example, in 1897 scientists discovered a new species of giant millipede in Madagascar and named it Spirostreptus sculptus. One specimen found was almost 11 inches long, or over 27 cm. But after that, no scientist saw the millipede again—until 2023, when a scientific expedition looking for lost species rediscovered it, along with 20 other species of animal. It turns out that the millipede isn’t even uncommon in the area, so the local people probably knew all about it.

But Arthropleura was way bigger than any millipede or centipede alive today. It could grow at least 8 ½ feet long, or 2.6 meters, and possibly longer. It probably weighed over 100 lbs, or 45 kg. We have plenty of fossilized specimens, but not one of them has an intact head. Then scientists discovered two beautifully preserved juvenile specimens in France, and CT scans in 2024 revealed that both specimens had nearly complete heads.

The big question about Arthropleura was whether it was more closely related to millipedes or centipedes, or if it was something very different. Without a head to study, no one could answer that question with any confidence, although a lot of scientists had definite opinions one way or another. Studies of the head scans determined that Arthropleura was indeed more closely related to modern millipedes—but naturally, since it lived so long ago, it also had a lot of traits more common in centipedes today. It also had something not found in either animal, eyes on little stalks.

There are still lots of mysteries surrounding Arthropleura. For instance, what did it eat? Because of its size, scientists initially thought it might be a predator. Now that we know it was more closely related to the millipede than the centipede, scientists think it might have eaten like a millipede too. That would mean it mostly ate decaying vegetation, but we don’t know for sure. We also don’t know if it could swim or not. We have a lot of Arthropleura tracks that seem to be made along the water’s edge, so some scientists hypothesize that it could swim or at least spent part of its time in the water. Other scientists point out that Arthropleura didn’t have gills or any other way to absorb oxygen while in the water, so it was more likely to be fully terrestrial. The first set of scientists sometimes comes back and argues that we don’t actually know how Arthropleura breathed or even why it was able to grow so large, and maybe it really did have gills. A third group of scientists then has to come in and say, hey, everyone calm down, maybe the next specimen we find will show evidence of both lungs and gills, and it spent part of its time on land and part in shallow water, so there’s no need to argue. And then they all go for pizza and remember that they really love arthropods, and isn’t Arthropleura the coolest arthropod of all?

At least, I think that’s how it works among scientists. And Arthropleura is really cool.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 446: Termites

Thanks to Yonatan and Eilee for this week’s suggestion!

Further reading:

Replanted rainforests may benefit from termite transplants

A vast 4,000-year-old spatial pattern of termite mounds

A family of termites has been traversing the world’s oceans for millions of years

Worker termites [photo from this site]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a topic I’ve been wanting to cover for a while, suggested by both Yonatan and Eilee. It’s the termite episode!

We talk a lot about animals that eat termites, and in many cases termite-eating animals also eat ants. I’ve always assumed that termites and ants are closely related, but they’re not. Termites are actually closely related to cockroaches, which are both in the order Blattodea, but it’s been 150 million years since they shared a common ancestor. They share another trait too, in that no one wants either insect infesting their house.

Like most cockroach species, though, most termite species don’t want anything to do with humans. They live in the wild, not in your house, and they’re incredibly common throughout most of the world. That’s why so many animals eat termites almost exclusively. There are just so many termites to eat!

There are around 3,000 species of termite and about a third of them live in Africa, with another 400 or so in South America, 400 or so in Asia, and 400 or so in Australia. The rest live in other parts of the world, but they need warm weather to survive so they’re not very common in cold areas like northern Europe.

A termite colony consists of a queen, soldiers, and workers, which sounds very similar to ants, but there are some major differences. Worker termites take care of the nest and babies, find and process food so the other termites can eat it, and store the processed food. They also take care of the queen. Unlike ants and bees, worker termites aren’t only female and aren’t always sterile. Soldiers are bigger and stronger than workers, with much bigger heads and jaws so they can fight off potential predators. In some species, the soldiers have such big jaws that they can’t actually eat without help. Worker termites feed them. Finally, the queen is the largest individual in the colony, usually considerably larger than workers, but unlike queen bees and ants, she has a mate who stays with her throughout her life, called a king. Some termite queens can live to be as much as 50 years old, and she and the king spend almost their entire lives underground in a nesting chamber.

The larger the colony, the more likely it is that the colony has more than one queen. The main queen is usually the one that started the colony along with her king, and when it was new they did all the work—taking care of the eggs and babies, foraging for food, and building the nest itself. As the first workers grew up, they took on more of those tasks, including expanding the nest.

Workers are small and their bodies have little to no pigment, so that they appear white. Some people call them white ants, but of course they’re not ants. Workers have to stay in a humid environment like the nest or their bodies dry out. Workers and soldiers don’t have eyes, although they can probably sense light and dark, and instead they navigate using their antennae, which can sense humidity and vibrations, and chemoreceptors that sense pheromones released by other termites.

Termites have another caste that’s not as common, usually referred to as reproductives. These are future kings and queens, and they’re larger and stronger than workers. They also have eyes and wings. When outside conditions are right, usually when the weather is warm and humid, the reproductive termites leave the nest and fly away. Males and females pair off and search for a new nesting site to start their own colony.

Termites mainly eat dead plant material, including plant material that most other animals can’t digest. A termite’s gut contains microbes that are found nowhere else in the world, which allow the termite to digest cellulose found in plants, especially wood. Baby termites aren’t born with these microbes, but they gain them from worker termites when the babies are fed or groomed.

In some areas termites will eat the wood used to build houses, which is why people don’t like them, but termites are actually important to the ecosystems where they live, recycling nutrients and helping break down fallen trees so other plants can grow. They also host nitrogen-fixing bacteria, which are important to plant life.

A recent study in Australia determined that termites are really important for rainforest health. In some parts of Australia, conservation groups have started planting rainforest trees to restore deforested areas. Decomposers like termites are slower to populate these areas, with one site that was studied 12 years after planting showing limited termite activity. That means it takes longer for fallen branches, logs, and stumps to decay, which means it takes longer for the nutrients in those items and others to be available for other plants to use.

The problem seems to be that the new forests don’t have very many dead trees yet, so the termites don’t have a lot to eat. The team is considering bringing in fallen logs from more established forests so the termites have food and can establish colonies more easily.

Some species of termite in Africa, Australia, and South America build mounds, and those mounds can be huge. A mound is built above ground out of soil and termite dung, held together with termite saliva. It’s full of tunnels and shafts that allow the termites to move around inside and which bring air into the main part of the nest, which is mostly below ground. Different species build differently-shaped mounds, including some that are completely round.

Some termite mounds can be twice the height of a tall person, and extremely big around. The biggest measured had a diameter of almost 100 feet around, or 30 meters. But in at least one place on earth, in northeastern Brazil, there’s a network of interconnected termite mounds that is as big as Great Britain.

The complex consists of about 200 million mounds, each of them about 8 feet tall, or 2.5 meters, and about 30 feet across, or 9 meters. They’re just huge piles of soil excavated from underground, and tests have determined that the mounds range in age from 690 years old to at least 3,820 years old and are connected by tunnels–but the nests under the mounds are still in use!

Not all termite species build mounds or even live underground. A group called drywood termites live in wood and usually have much smaller colonies than other termites. They probably split off from other termites about 100 million years ago, and a 2022 genetic study determined that they probably originated in South America. But drywood termites have spread to many other parts of the world, and scientists think it’s because their homes float. They estimate that over the last 50 million years, drywood termites have actually floated across entire oceans at least 40 times. When their floating log homes washed ashore, the termites colonized the new land and adapted to local conditions.

A lot of people worry that termites will damage their homes, but in many parts of the world, people eat termites. The termites are fried or roasted until they’re nicely crunchy, and they’re supposed to have a nut-like flavor. They’re also high in protein and important fats. So the next time you worry about your house, you can shout at any potential termites that if they’re around, you might just eat them as a snack.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

The Books Have Been Claimed! and a bonus mouse

I just wanted everyone to know that a listener has claimed the books and magazines I offered for giveaway in episode 443. You can also learn about 60 seconds’ worth of information about the African pygmy mouse.

The tiniest mouse [photo by Alouise Lynch – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=59068329]: