Episode 289: Weird Worms

This week we learn about some weird worms!

Further reading:

Otherworldly Worms with Three Sexes Discovered in Mono Lake

Bizarre sea worm with regenerative butts named after Godzilla’s monstrous nemesis

Underground giant glows in the dark but is rarely seen

Giant Gippsland earthworm (you can listen to one gurgling through its burrow here too)

Further watching:

A giant Gippsland earthworm

Glowing earthworms (photo by Milton Cormier):

This sea worm’s head is on the left, its many “butts” on the right [photo from article linked to above]:

A North Auckland worm [photo from article linked to above]:

A giant beach worm:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we continue Invertebrate August with a topic I almost saved for monster month in October. Let’s learn about some weird worms!

We’ll start with a newly discovered worm that’s very tiny, and we’ll work our way up to larger worms.

Mono Lake in California is a salty inland lake that probably started forming after a massive volcanic eruption about 760,000 years ago. The eruption left behind a crater called a caldera that slowly filled with water from rain and several creeks. But there’s no outlet from the lake—no river or even stream that carries water from the lake down to the ocean. As a result, the water stays where it is and over the centuries a lot of salts and other minerals have dissolved into the lake from the surrounding rocks. The water is three times as salty as the ocean and very alkaline.

No fish live in the lake, but some extremophiles do. There’s a type of algae that often turns the water bright green, brine shrimp that eat the algae, some unusual flies that dive into the water encased in bubbles, birds that visit the lake and eat the brine shrimp and flies, and eight species of worms that have only been discovered recently. All the worms are weird, but one of them is really weird. It hasn’t been described yet so at the moment is just going by the name Auanema, since the research team thinks it probably belongs in that genus.

Auanema is microscopic and lives throughout the lake, which is unusual because the lake contains high levels of arsenic. You know, a DEADLY POISON. But the arsenic and the salt and the other factors that make the lake inhospitable to most life don’t bother the worms.

Auanema produces offspring that can have one of three sexes: hermaphrodites that can self-fertilize, and males and females that need each other to fertilize eggs. Researchers think that the males and females of the species help maintain genetic diversity while the hermaphrodites are able to colonize new environments, since they don’t need a mate to reproduce.

When some of the worms were brought to the laboratory for further study, they did just fine in normal lab conditions, without extreme levels of arsenic and so forth. That’s unusual, because generally extremophiles are so well adapted for their extreme environments that they can’t live anywhere else. But Auanema is just fine in a non-harsh environment. Not only that, but the team tested other species in the Auanema genus that aren’t extremophiles and discovered that even though they don’t live in water high in arsenic, they tolerate arsenic just as well as the newly discovered species.

The team’s plan is to sequence Auanema’s genome to see if they can determine the genetic factors that confer such high resistance to arsenic.

Next, we go up in size from a teensy worm to another newly discovered worm, this one only about 4 inches long at most, or 10 cm. It’s a marine polychaete worm that lives inside sea sponges, although we don’t know yet if it’s parasitizing the sponge or if it confers some benefit to the sponge that makes this a symbiotic relationship. The worm was only discovered in 2019 near Japan and described in early 2022 as Ramisyllis kingghidorahi.

Almost all worms known are shaped, well, like worms. They have a mouth at one end, an anus at the other, and in between they’re basically just a tube. Ramisyllis is one of only three worms known that have branched bodies, which is why they’re called branching sea worms. In this case, Ramisyllis has a single head, which stays in the sponge, but its other end branches into multiple tail ends that occasionally break off and swim away. The tails are specialized structures called stolons. When a stolon breaks off, it swims away and releases the eggs or sperm it contains into the water before dying. The worm then regenerates another stolon in its place.

Ramisyllis’s branches are asymmetrical and the worms found so far can have dozens of branches. Its close relation, a species that lives in sponges off the coast of northern Australia, can have up to 100 branches. Researchers suspect that there are a lot more species of branching sea worms that haven’t been discovered yet.

Next, let’s head back to land to learn about a regular-sized earthworm. There are quite a few species across three different earthworm families that exhibit a particular trait, found in North and South America, Australia and New Zealand, and parts of Africa. A few species have been introduced to parts of Europe too. What’s the trait that links all these earthworms? THEY CAN GLOW IN THE DARK.

Bioluminescent earthworms don’t glow all the time. Most of the time they’re just regular earthworms of various sizes, depending on the species. But if they feel threatened, they exude a special slime that glows blue or green in the dark, or sometimes yellowish like firefly light. The glow is caused by proteins and enzymes in the slime that react chemically with oxygen.

Researchers think that the light may startle predators or even scare them away, since predators that live and hunt underground tend to avoid light. The glow may also signal to predators that the worm could taste bad or contain toxins. The light usually looks dim to human eyes but to an animal with eyes adapted for very low light, it would appear incredibly bright.

One bioluminescent earthworm is called the New Zealand earthworm. It can grow up to a foot long, or 30 cm, although it’s only about 10 mm thick at most, and while it’s mostly pink, it has a purplish streak along the top of its body (like a racing stripe).

Like other earthworms, the New Zealand earthworm spends most of its time burrowing through the soil to find decaying organic matter, mostly plant material, and it burrows quite deep, over 16 feet deep, or 5 meters. If a person tried to dig a hole that deep, without special materials to keep the hole from collapsing, it would fall in and squish the person. Dirt and sand are really heavy. The earthworm has the same problem, which it solves by exuding mucus from its body that sticks to the dirt and hardens, forming a lining that keeps the burrow from collapsing. This is a different kind of mucus than the bioluminescent kind, and all earthworms do this. Not only does the burrow lining keep the worm safe from being squished by cave-ins, it also contains a toxin that kills bacteria in the soil that could harm the worm.

Worms that burrow as deep as the New Zealand earthworm does are called subsoil worms, as opposed to topsoil worms that live closer to the surface. Topsoil contains a lot more organic material than subsoil, but it’s also easier for surface predators to reach. That’s why topsoil worms tend to move pretty fast compared to subsoil worms.

The New Zealand earthworm glows bright orange-yellow if it feels threatened, so bright that the Maori people used the worm as bait when fishing since it’s basically the best fish lure ever.

Another New Zealand earthworm is called the North Auckland worm, and while it looks like a regular earthworm that’s mostly pink or greenish, it’s also extremely large. Like, at least four and a half feet long, or 1.4 meters, and potentially much longer. It typically lives deep underground in undisturbed forests, so there aren’t usually very many people around on the rare occasion when heavy rain forces it to the surface. Since earthworms of all kinds absorb oxygen through the skin, instead of having lungs or gills, they can’t survive for long in water and have to surface if their burrow completely floods.

We don’t actually know that much about the North Auckland worm. Like the New Zealand earthworm, it’s a subsoil worm that mostly eats dead plant roots. Some people report that it glows bright yellow, although this hasn’t been studied and it’s not clear if this is a defensive reaction like in the New Zealand earthworm. It’s possible that people get large individual New Zealand earthworms confused with smaller North Auckland worm individuals. Then again, there’s no reason why both worms can’t bioluminesce.

An even bigger worm is the giant beach worm. It’s a polychaete worm, not an earthworm, and like other polychaete worms, including the branching sea worm we talked about earlier, it has a segmented body with setae that look a little like legs, although they’re just bristles. The giant beach worm’s setae help it move around through and over the sand. It hides in a burrow it digs in the sand between the high and low tide marks, but it comes out to eat dead fish and other animals, seaweed, and anything else it can find. It has strong jaws and usually will poke its head out of its burrow just far enough to grab a piece of food. It has a really good sense of smell but can’t see at all.

There are two species of giant beach worm that live in parts of Australia, especially the eastern and southeastern coasts, where people dig them up to use as fish bait. The largest species can grow up to 8 feet long, or 2.4 meters, and possibly even longer. There are also two species that live in Central and South America, although we don’t know much about them.

Another huge Australian worm is the endangered Giant Gippsland earthworm that lives in Victoria, Australia. It’s also a subsoil worm and is about 8 inches long, or 20 cm…when it’s first hatched. It can grow almost ten feet long, or 3 meters. It’s mostly bluish-gray but you can tell which end is its head because it’s darker in color, almost purple. It lives beneath grasslands, usually near streams, and is so big that if you happen to be in the right place at the right time on a quiet day and listen closely, you might actually hear one of the giant worms moving around underground. When it moves quickly, its body makes a gurgling sound as it passes through the moist soil in its burrow.

The Giant Gippsland earthworm is increasingly endangered due to habitat loss. It also reproduces slowly and takes as much as five years to reach maturity. Conservationists are working to protect it and its remaining habitat in Gippsland. The city of Korumburra used to have a giant worm festival, but it doesn’t look like that’s been held for a while, which is too bad because there aren’t enough giant worm festivals in the world.

To finish us off, let’s learn what the longest worm ever reliably measured is. It was found on a road in South Africa in 1967 and identified as Microchaetus rappi, or the African giant earthworm. It’s mostly dark greenish-brown in color and it looks like an earthworm, because it is an earthworm. On average, this species typically grows around 6 feet long, or 1.8 meters, which is pretty darn big, but this particular individual was 21 feet long, or 6.7 meters. It’s listed in the Guinness Book of World Records as the longest worm ever measured. Beat that, other worms. I don’t think you can.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 288: Mystery Invertebrates

Thanks to Joel for suggesting this week’s topic!

Happy birthday to Fern this week!

Further reading:

Small, rare crayfish thought extinct is rediscovered in cave in Huntsville city limits

Hundreds of three-eyed ‘dinosaur shrimp’ emerge after Arizona monsoon

An invertebrate mystery track in South Africa

The case of the mysterious holes in the sea floor

Contemplating the Con Rit

The Shelton Cave crayfish, rediscovered:

The three-eyed “tadpole shrimp” or “dinosaur shrimp,” triops [photo from article linked above]:

A leech track in South Africa [photo from article linked above]:

A track, or at least a series of holes, discovered in the deep seafloor [photos from article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Thanks to Joel who suggested we do an episode about mystery invertebrates! It took me a while, but I think you’re really going to like this episode. Some of the mysteries are solved and some are not, but they’re all fun.

Before we get to the mystery animals, though, we have a birthday shout-out! A great big happy birthday to Fern! I hope you have your favorite type of birthday cake or other treat and get to enjoy it with your loved ones.

Our first mystery starts in a cave near Huntsville, Alabama in the southern United States, which is in North America. Shelta Cave is a relatively small cave system, only about 2,500 feet long, or 760 meters. That’s about half a mile. It’s a nature preserve now but in the early 1900s it was used as an underground dance hall with a bar and everything.

Biologist John Cooper studied the cave’s aquatic ecosystem in the 1960s when he was doing his dissertation work. His wife Martha helped him since they were both active cavers. At the time, the cave ecosystem was incredibly diverse, including three species of crayfish. One was called the Shelta Cave crayfish, which was only a few inches long, or about 5 cm, mostly translucent or white since it didn’t have any pigment in its body, and with long, thin pincers.

It was rarer than the cave’s other two crayfish species, and unlike them it had only ever been found in Shelta Cave. From 1963 to 1975, only 115 individuals had been confirmed in repeated studies of the cave’s ecosystem.

Then, in the 1970s, several things happened that caused a serious decline in the diversity of life in the cave.

The first was development of the land around the cave into subdivisions, which meant that more pesticides were used on lawns and flower beds, which made its way into the groundwater that entered the cave. It also meant more people discovering the cave and going in to explore, which was disturbing a population of gray bats who also lived in the cave. To help the bats and keep people out, the park service put a gate over the entrance, but the initial gate’s design wasn’t a very good one. It kept people out but it also made it harder for the bats to go in and out, and eventually the bats gave up and moved out of the cave completely. This really impacted the cave’s ecosystem, since bats bring a lot of nutrients into a cave with their droppings and the occasional bat who dies and falls to the cave floor.

The gate has since been replaced with a much more bat-friendly one, but studies afterwards showed that a lot of the animals found in the cave had become rare. The Shelta Cave crayfish had disappeared completely. One was spotted in 1988 but after that, nothing, and the biologists studying the cave worried that it had gone extinct.

Then, in 2019, a team of scientists and students surveying life in the cave spotted a little white crayfish with long, thin pincers in the water. The team leader dived down and scooped it up with his net to examine more closely. The crayfish turned out to be a female Shelta Cave crayfish with eggs, which made everyone excited, and after taking a tiny tissue sample for DNA testing, and lots of photographs, they released her back into the water. The following year they found a second Shelta Cave crayfish.

The Shelta Cave crayfish is so little known that we don’t even know what it eats or how it survives in the same environment with two larger crayfish species. Biologist Dr. Matthew Niemiller is continuing Dr. Cooper’s initial studies of the cave and will hopefully be able to learn more about the crayfish and its environment.

Next let’s travel from a cool, damp, flooded cave in Alabama to northern Arizona. Arizona is in the western United States and this particular part of the state has desert-like conditions most of the year. Almost a thousand years ago, people built what is now called Wupatki Pueblo, a 100-room building with a ballcourt out front and a big community room. It was basically a really nice apartment building. Wupatki means “tall house” in the Hopi language, and while the pueblo people who built it are long gone, Wupatki is still an important place for the Hopi and other Native American tribes in the area. It’s also a national monument that has been studied and restored by archaeologists and is open to the public.

In late July 2021, torrential rain fell over the area, so much rain that it pooled into a shallow temporary lake around Wupatki, including flooding the ballcourt. The ballcourt is 105 feet across, or 32 meters, and surrounded by a low wall. One day while the ballcourt was still flooded, a tourist came up to the lead ranger, Lauren Carter. The visitor said there were tadpoles in the ballcourt.

There are toads in the area that live in burrows and only come out during the wet season when there’s rain, and Carter thought the tadpoles might be from the toads. She went to investigate, saw what looked like tadpoles swimming around, and scooped one up in her hands to take a closer look. But the tadpoles were definitely not larval toads. In fact, they kind of looked like teensy horseshoe crabs, with a rounded shield over the front of the body and a segmented abdomen and tail sticking out from behind, with two long, thin spines at the very end that are called caudal extensions. It had two pairs of antennae and lots of small legs underneath, some adapted for swimming. The largest of the creatures were about two inches long, or 5 cm.

What on earth were they, and where did they come from? This area is basically a desert. Carter stared at the weird little things and remembered hearing about something similar when she worked at the Petrified Forest National Park, also in Arizona. She looked the animal up and discovered what it was.

It’s called Triops and is in the order Notostraca. Notostracans are small crustaceans shaped sort of like tadpoles, which is why it’s sometimes called the tadpole shrimp, but it’s not a shrimp. It has two eyes on the top of its head visible through its flattened, smooth carapace. Species in the genus Triops also have a so-called third eye between the two ordinary eyes, although it’s a very simple eye that probably only detects light and dark. Many crustaceans have these third eyes in their larval forms but very few retain them into adulthood.

Notostracans have been around for about 365 million years, and haven’t changed much in the last 250 million years. It’s an omnivore that mostly lives on the bottom of freshwater pools and shallow lakes, often temporary ones like the flooded ballcourt, although some species live in brackish water and saline pools, or permanent waterways like peat bogs.

Triops eggs are able to tolerate high temperatures and dry conditions, with the eggs remaining viable for years or even decades in the sediment of dried-up ponds. When enough water collects, the eggs hatch and within 24 hours are miniature versions of the adult Triops. They grow up quickly, lay lots of eggs, and die within a few months or when the water dries up again.

Triops eggs are even sold as aquarium pets, since they’re so unusual looking and are easy to care for. They basically eat anything. They especially like mosquito larvae, so if you see some in your local pond or other waterway, give them a tiny high-five.

In 1996, some workers near Indianapolis, Indiana were servicing a tank full of chemical byproducts from making plastic auto parts when they noticed movement in the toxic goo. They investigated and saw several squid-like creatures swimming around. They were red-brown and about 8 inches long, or 20 cm, including their arms or tentacles, but were only about an inch wide, or 2.5 cm.

The workers managed to capture one and put it in a jar, which they stuck in the break room refrigerator. By the time someone in management arranged to have it examined by a scientist, the jar had been thrown out. If you’ve ever tried to keep food in a break room fridge, you’ll know that there’s always someone who will throw out everything in the fridge that isn’t theirs, no matter whether it’s labeled or brand new or not. I have had my day’s lunch thrown out that had only been in the fridge a few hours. Anyway, when the tank was cleaned out the following year, no one found any creatures in it at all.

This sounds really interesting, but there’s precious little information to go on. The story appeared in a few newspapers but we have no names of the people who reportedly saw the creatures, no follow-up information. It has all the hallmarks of a hoax or urban legend. The creatures’ size also seems quite large for extremophiles in a small, closed environment. What would they find to eat to get so big?

Next let’s talk about some mysterious tracks made by invertebrates, as far as we know. We’ll start with a track on land that was a mystery at first, but was solved. A man in the Kruger National Park in South Africa named Rudi Hulshof came across a weird track in the sandy dirt that he didn’t recognize. It was maybe 10 mm wide and kind of looked like a series of connected rectangles, as though a tiny person was moving a tiny cardboard box by rolling it over and over, but there weren’t any footprints, just the body track.

Curious, Hulshof followed the track to find what had made it, and finally discovered the culprit. It was a leech! Most leeches live in water, whether it’s the ocean, a pond or swamp, a river, or just flooded ground. Most species are parasitic worms that attach to other animals with suckers, then pierce the animal’s skin and suck its blood. The leech stays on the animal until it’s full, then drops off. Some leeches are terrestrial, but it appears that this one was a freshwater leech that had attached to an animal passing through the water, then dropped off onto land. It had crawled as far as it could trying to find a better environment, but when Hulshof found it it was dead, so it had not had a good day.

The leech moves on land by stretching the front of its body forward, then dragging its tail end up in a bunch kind of like a worm (it is a kind of worm), so that’s why its track was so unusual-looking. It’s a good thing Hulshof found the leech before something ate it, or else he’d probably still be wondering what had made that track.

We have photographs of other tracks that are still mysterious. You may have heard about one that’s been in the news lately. This one was found by a deep-sea rover in July 2022, more than a mile and a half deep, or 2500 meters, in the north Atlantic Ocean.

The track may or may not actually be a track, although it looks like one at first glance. It consists of a line of little holes in the seafloor, one after the other, although they’re not all the same distance apart. The rover saw them on two separate dives in different locations, so it wasn’t just one track, but although the scientists operating the rover remotely tried to look into the holes, they couldn’t get a good enough view. It does look like there’s sediment piled up next to the holes, so researchers think something might actually be digging the holes, either digging down from the surface to find food hidden in the sediment, or digging up from inside the sediment to find food in the water. The rover did manage to get a sample of sediment from next to one of the holes and a water sample from just above it, and eventually those samples will be tested for possible environmental DNA that might help solve the mystery.

This wasn’t the first time these holes have been seen in the area, though. An expedition in 2004 saw them and hypothesized that the holes are made by an invertebrate with a feeding appendage of some kind that it uses to dig for food. Not only that, we have similar-looking fossil holes in rocks formed from deep marine sediments millions of years ago.

Other deep-sea tracks have a known cause, and humans are responsible. In the 1970s and 1980s, ships with deep-sea dredging equipment traveled through parts of the Pacific Ocean, testing the ocean floor to see whether the minerals in and beneath the sediment were valuable for mining. A few years ago scientists revisited the same areas to see how the ecosystems impacted by test mining had responded.

The answer is, not well. Even after 40 years or so since the deep-sea mining equipment sampled the sea floor, the marks remain. The deep sea is a fragile ecosystem to start with, and any disturbance takes a long, long time to recover—possibly thousands of years. So while the holes discovered in 2022 were almost certainly made by an animal or animals, they might be quite old.

Let’s finish with a mystery animal we’ve talked about before, but a really long time ago—way back in episode 6. It’s definitely time to revisit it.

In 1883 when he was 18 years old, a Vietnamese man named Tran Van Con had seen the body of an enormous creature washed up on shore at Hongay in Vietnam. Van Con said it was probably 60 feet long, or 18 meters, but less than three wide wide, or 90 cm. It had dark brown plates on its back with long spines sticking out from them to either side, and the segment at its tail end had two more spines pointing straight back. It didn’t have a head, which had presumably already rotted off, or something bit it off before the animal washed ashore. It had been dead for a long time considering the smell. In fact, it smelled so terrible that locals finally towed it out to sea to get rid of it. It sank and that was the last anyone ever saw of it. The locals referred to it as a con rit, which means “millipede,” since the armor plates made it look like the segmented body of an immense millipede.

Lots of people have made suggestions as to what the con rit could be, but nothing really fits. It was the length of a whale, but it doesn’t sound like any kind of whale known. The armored plates supposedly rang like metal when hit with a stick. Even if this was an exaggeration, it probably meant the armor plates were really hard, not just the skin of a dead whale that had hardened in the sun. It also implies that the plates had empty space under them, allowing them to echo when hit. Zoologist Dr. Karl Shuker suggests that the plates might have been the exoskeleton of a crustacean of some kind, which makes a lot more sense than a whale, but the sheer size of the carcass is far larger than any crustacean, or even any arthropod, ever known.

There’s also some doubt that the story is accurate. It might even be a hoax. We only know about the con rit at all because the director of Indochina’s Oceanographic and Fisheries service, Dr. A. Krempf, talked to Tran Van Con about it in 1921. That was 38 years after Van Con said he saw the creature, so he might have misremembered details. Not only that, Krempf translated the story from Vietnamese, and there’s no way of knowing how accurate his translation was.

The con rit is also a monster from Vietnamese folktales, a sort of sea serpent that had lots of feet. It was supposed to attack fishing boats to eat the sailors, until a king caught it and chopped it up into pieces. A local mountain was supposedly formed from its head, and the other pieces of its body turned into the unusual stones found on a nearby island.

There’s always the possibility that Tran Van Con actually told Krempf this folktale, but that Krempf misunderstood and thought he was telling him something he actually witnessed. Then again, there are eight reports from ships in the area between 1893 and 1915 of creatures that might have been a con rit. One account from 1899 was a sighting of a creature estimated as being 135 feet long, or 41 meters, which was rowing itself along at the surface by means of multiple fins along its sides.

Whatever the con rit was, there haven’t been any sightings since 1915. That doesn’t mean there isn’t a population of incredibly long invertebrates living in the deep ocean in southeast Asia. If it does exist, maybe one day a deep-sea rover will spot one. Maybe it dug those little holes, who knows?

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 287: Sand Crabs, Sea Slugs, and a Mystery Octopus

Sign up for our mailing list! Even though I hardly ever send an email to it!

It’s INVERTEBRATE AUGUST! Thanks to Elizabeth, Richard, and Llewelly for their suggestions this week!

Further reading:

Meet Phylliroe: the sea slug that looks and swims like a fish

Hey, so these sea slugs decapitate themselves and grow new bodies

Found, Then Lost, Then Found Again: Scientists Have Rediscovered the Sand Octopus

A sand crab in the air:

Sand crabs in the water, feeding:

Phylliroe is a sea slug that looks like a fish (pictures from article linked to above):

How I used to draw snails when I was a kid, adding an extra foot because I didn’t understand that the “foot” of a snail/slug is the flat part of the body that touches the ground:

The mysterious sand octopus in mid-swim:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the first week of invertebrate August and we’re heading to the ocean for our first episode! Let’s jump right in with an episode about sand crabs, a couple of sea slugs, and an octopus mystery that was recently solved. Thanks to Elizabeth, my brother Richard, and Llewelly for their suggestions!

We’ll start with Elizabeth’s suggestion. The sand crab is also called the sand bug, the mole crab, or similar names that refer to its habit of burrowing into the sand. It’s common throughout much of the world’s oceans, especially in warm areas, and can be extremely numerous. It’s also sometimes called the sand flea, but it’s not the kind of tiny jumping crustacean that bites, also called the sand flea. This little crustacean is harmless to humans. It doesn’t even have pincers.

The sand crab isn’t a true crab although it is closely related to them. It’s gray-brown and has a tough carapace to protect it when it’s washed around by waves and to help protect it from predators. Females are larger than males and can grow up to an inch and a half long in the largest species, or about 35 mm, and an inch wide, or 25 mm. So it’s longer than it is wide, unlike most crabs, and its carapace is domed sort of like a tiny tortoise shell. Overall, it’s shaped sort of like a streamlined barrel. I saw one site that called it the sand cicada and it is actually about the same size and shape as a cicada, which it isn’t related to at all except that they’re both invertebrates. Some species have little spines on the carapace while others are smooth.

The sand crab lives in the ocean, specifically in the intertidal zone right at the area where waves wash up on the beach. This is called the swash, by the way, which is a great word. The sand crab burrows into the sand tail-first, using its strong rear legs, and during the time that there’s water over the sand, it unfurls its feathery antennae to filter tiny food particles from the water. When the wave goes out, it retracts its antennae and works on staying buried in the sand as the next wave rolls in.

In some species, males are very similar to females, but smaller. In other species, they’re tiny, barely 3 mm long at most, and even as adults they resemble larvae. The male finds a female and grabs hold of her leg, and there he stays. I tried to find out more about this, but it doesn’t look like the humble sand crab gets a lot of attention. If you’re interested in becoming a scientist who studies invertebrates and you want to spend a lot of time on the beach, the sand crab would make a good study buddy.

Lots of fish and birds eat sand crabs, and people do too. In many places they’re considered a delicacy and grilled as a snack. This isn’t surprising since they’re related to other crustaceans people like to eat, like crabs and lobsters.

Next, let’s learn about two strange sea slugs. We’ve talked about sea slugs a few times before, including in episodes 215 and 129, but there are a lot of species, with more being discovered pretty often.

Llewelly sent me a link ages ago about a sea slug that’s related to the sea bunny, which we talked about in the cutest invertebrates episode, 215. It’s called Phylliroe and doesn’t look like a little bunny or a slug. It looks like a fish.

Phylliroe grows a few inches long at most, or 5 cm, and the article Llewelly sent, which I’ve linked to in the show notes, points out that it’s about the size of a goldfish. Its rear end is shaped roughly like a fish tail, which it uses just like a fish tail to propel itself through the water. It’s probable that Phylliroe’s shape doesn’t have anything to do with disguising it, but instead is just the result of convergent evolution. A body streamlined to move through the water with minimal resistance is always going to be fish-shaped, because that’s why fish are shaped the way they are. The fish-like tail is also an efficient way to move through the water relatively quickly.

Phylliroe mostly eats tiny jellyfish, which it grabs with its small foot. It doesn’t need a big flat foot to glide on, since it doesn’t live on the sea floor like some of its relations, so over many, many generations its foot has become smaller and smaller until it’s just a little tiny foot near its mouth. It’s still sticky, though, which means jellies stick to it, which means it’s easier for Phylliroe to eat the jellies.

Phylliroe is mostly see-through, although you can see its digestive system. It also has two so-called horns, called rhinophores, that it probably uses to sense the chemical signature of its prey in the water. If you remember the sea bunny, its rhinophores look like bunny ears. Phylliroe’s look more like thick antennae or barbels. Phylliroe also exhibits bioluminescence, which is not a typical trait for a sea slug.

My brother Richard alerted me to another sea slug a while back, this one referred to as the Deadpool slug. The reason why it’s called the Deadpool slug is lost on me because I haven’t seen that movie or read the comic book, but the sea slug can separate its head from its body when it wants to, and it just grows a new body. The old body eventually dies instead of growing a new head.

The Deadpool slug is one of a type of sea slug that we talked about back in episode 129, about the blurry line between plants and animals. It eats algae and incorporates the algae’s chloroplasts into its body to use. Chloroplasts are what allows a plant to photosynthesize energy from sunlight, and the sea slug absolutely uses them for the same thing. Researchers think the Deadpool slug uses the energy from photosynthesis to regrow its body even though it has no digestive system after it separates its head from its body.

The big question is why the Deadpool slug wants to grow a new body in the first place. It doesn’t seem to be a defensive strategy if the sea slug is attacked. Instead, researchers think it often happens when the body contains too many parasites, specifically a type of tiny parasitic copepod, which is a crustacean. It might also happen after a predator bites a big chunk off the slug. Instead of hauling around a damaged body, the sea slug just jettisons the old body and regrows it.

Let’s finish with a recently solved octopus mystery that goes back almost 200 years. In 1838, the United States launched a scientific expedition throughout the Pacific Ocean and parts of the Atlantic that lasted four years. While it was mostly for exploration and mapping of places seldom or never visited by outsiders, the expedition also brought along a team of scientists and artists to document and study all the animals and plants they found. One of the things they found was an octopus.

The scientists didn’t fish the octopus up themselves. They actually bought several of them at a fish market in Brazil. It was red with little white spots all over it and not very big, although a dead octopus tends to shrink, especially when it’s out of water. The specimens were preserved in a jar of alcohol and brought back to the United States, where in 1852 they were studied by an expert on mollusks, Augustus Addison Gould. Octopuses are in the phylum Mollusca and Gould had examined lots and lots of octopuses. He decided this one was a new species and named it Callistoctopus furvus.

At some point the specimens were either lost or destroyed. Decades passed, then a century, then almost two centuries. Modern scientists thought Gould was probably wrong and that the little red octopus was one known from the Mediterranean Sea, Calistoctopus macropus. It’s red with little white spots, and has a mantle length only about 8 inches long, or 20 cm, although it has long arms and has been measured as almost five feet long, or 1.5 meters, if you include the arms. It lives in shallow water, where it spends a lot of time hunting for small animals that live in coral or in sea grass. It’s sometimes called the grass octopus.

Then a graduate student in Brazil named Manuella Dultra was studying octopuses, and part of her research involved talking to local fishers. They told her about an octopus that lived in shallow water and often buried itself in sand to hide, which is why they called it the sand octopus. They also said it was generally only seen when the wind blew from the east, and was more likely to be out and about during the new moon. Naturally Dultra wanted to find one. She asked the fishers to keep an eye out, and in 2013 she was given a freshly caught specimen.

The biologists at Dultra’s university identified the octopus as C. macropus, the grass octopus. Dultra wasn’t so sure. She noticed a lot of differences that seemed significant, and decided to do more research. She and her team gathered genetic material from specimens the local fishers caught, and sure enough, it was different from the grass octopus.

At the same time, researchers in Mexico had also found a sand octopus that they thought might be C. furvus. When Dultra compared her specimens’ DNA profile with the DNA profile from the Mexican octopus, it matched.

The discovery is still very new and isn’t accepted by all scientists yet, not until more studies are completed. The sand octopus appears to be rare, and once it’s definitely identified as its own species or subspecies and we learn more about it, we can do more to protect it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 273: Noisy Invertebrates

Thanks to Isaac, Joel, Ethan, and Richard E. for their suggestions this week!

Don’t forget to check out our crowdfunding campaign for some cute enamel pins!

Further reading:

Snapping Shrimp Drown Out Sonar with Bubble-Popping Trick

One example of a pistol shrimp–there are many, many species (photo from this site):

A walnut sphinx moth sitting on someone’s hand (photo by John Lindsey, found on this page):

A caterpillar (photo by Ashley Bosarge, found on this page):

The Asian longhorned beetle (from this site):

The white-spotted sawyer pine beetle is another type of longhorned beetle:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s been too long since we’ve had an invertebrates episode, so this week let’s learn about some invertebrates that make noise. Thanks to Isaac, Joel, Ethan, and Richard E. for their suggestions!

We don’t have a birthday shout-out this week, but we do have a reminder that the next five episodes, the ones releasing in May, are our Kickstarter episodes! Those are from the Kickstarter level where the backer got to choose the topic and work with me to craft the episode. I’ve been amazed at how fantastic those episodes turned out, and I think you’ll like them.

Speaking of crowdfunding campaigns, a quick reminder that the Tiny Pin Friends Indiegogo is still going on. It’s sort of stuck halfway to our goal, probably because I got busy with the book release and haven’t been telling people about the pins, so if you want to take a look at the pin designs, there’s a link in the show notes. Thanks!

Now, on to the invertebrates! Both Isaac and Joel suggested the same topic at different times, pistol shrimp. This is a group of shrimps also called snapping shrimps. Most species live in warm, shallow coastal habitats like coral reefs, but some live in colder water and at least one lives in freshwater caves.

The pistol shrimp only grows a few inches long at most, or about 5 cm. It gets its name from its big claw, which functions in a similar way to the workings of a pistol (sort of). But instead of shooting bullets, the claw shoots bubbles—but so incredibly fast, they might as well be bullets.

A pistol shrimp has two claws, but one is small and used for picking stuff up and grabbing food. The other claw is the pistol claw that’s much bigger and stronger. Which claw is which depends on the individual, and if a shrimp’s pistol claw gets damaged or bitten off, its other claw will develop into a pistol claw. The damaged or lost claw eventually regenerates into a little claw for manipulating food.

The pistol shrimp is mostly an ambush hunter. It will hide in a burrow or rock crevice with its antennae sticking out, and when a small animal like a fish happens by, the shrimp will emerge from its hiding place just far enough to get a good shot at the animal. It opens its big claw and snaps it shut so fast and so forcefully that it shoots tiny bubbles out at speeds of over 60mph, or 100 km/hour. Obviously the bubbles don’t travel very far at that speed, really only a few millimeters, but it’s powerful enough at this short range to stun or outright kill a small animal. The shrimp then grabs its stunned or dead prey and drags it back into its hiding spot to eat.

The process is way more complicated than it sounds. When the claw opens, water rushes into a tiny chamber in the claw. When it snaps closed, a tiny point on the claw pushes into the chamber, which leaves no room for the water. The water is therefore forced out of the chamber at such incredibly high pressure that it leaves vapor-filled cavities in the water, the bubbles, which collapse with a loud snapping sound. The pressure wave from the collapsing bubble is what actually kills or stuns an animal. Physics! I don’t understand it! Check the show notes for an article that goes into more detail about this process, which I’ve hopefully described correctly.

The bubble’s collapse makes such a loud noise that the pistol shrimp is one of the loudest animals in the ocean, but the sound lasts for less than a millisecond. It takes 100 to 400 milliseconds for you to blink your eye, to give you a comparison. The collapsing bubble also produces light and intense heat, but it’s such a tiny bubble with such a limited range that the heat and light don’t make any difference. The light isn’t very bright and lasts such a tiny amount of time that the human eye can’t even perceive it.

The pistol shrimp doesn’t only use its big claw to hunt for food and defend itself from potential predators. It also communicates with other pistol shrimp with the sound, and pistol shrimp can live in colonies of hundreds of individuals. With them all snapping together, no matter how short each snap is, the collective sound can be incredibly loud—so loud it interferes with sonar in submarines.

This is what it sounds like, although it also kind of sounds like popcorn popping, if you ask me:

[snapping shrimp sounds]

Next, Ethan suggested the walnut sphinx moth, because his son found one, they looked it up, and they were both amazed at how awesome it is. It lives in the eastern part of North America and is a big, robust moth with a wingspan up to 3 inches across, or 7.5 cm. Its wings and body are mostly brown and gray, often with darker and lighter markings but sometimes all one color. The edges of its wings have an uneven scallop shape and when it perches, it spreads both pairs of wings out in a sort of X shape. Its wing shape and coloring make it look a lot like an old dead leaf.

Like many moths, the walnut sphinx moth doesn’t eat at all as an adult. After it metamorphoses into an adult, it only lives long enough to mate and lay eggs. It spends most of its life as a caterpillar, where it eats the leaves of various kinds of trees, especially nut trees, including walnut, hazelnut, and hickory. The caterpillar is a pretty green with tiny white dots all over and yellow or white streaks along its sides, although some individuals are red, orange, or pink instead of green. It has a red or green horn on its tail end.

The most amazing thing about this moth is how the caterpillar keeps from being eaten. Lots of animals like to eat caterpillars, especially birds, but when a bird tries to grab this caterpillar, it thrashes around and actually makes a sound! You don’t typically think of caterpillars as noisy. It’s actually not very loud, but it does make a little whistle that mimics a bird’s alarm call, and can make a little buzzing sound too. The caterpillar makes the sound through its breathing tubes, called spiracles.

Researchers have played the caterpillar’s whistle sound at bird feeders and the birds react as though they’re hearing a bird making an alarm call.

This is what the whistle sounds like [whistle] and this is what the buzzing sounds like [buzz].

Richard E. recently tweeted some amazing pictures of beetles and suggested we cover more beetles, and I totally agree! We’ll finish with a beetle that makes this weird creaky sound:

[beetle sound]

The Asian longhorned beetle is sometimes called the starry sky beetle because it’s black with white dots. It’s native to eastern China and Korea, but it’s an invasive species in North America, parts of Europe, and other parts of Asia. It can grow about an inch and a half long, or 4 cm, but its antennae are up to twice as long as its whole body.

The female chews little holes in the bark of a tree and lays a single egg in each hole. When the larva hatches, it burrows deeper into the tree, eating sap and wood, until it’s ready to pupate. When it emerges as an adult, it chews its way out of the tree for the first time in its life, and flies away to find a mate. It especially likes poplar, maple, and willow trees. If enough beetle larvae are eating their way through a tree, the tree becomes weakened and can lose branches or even die.

There are lots of other species of longhorned beetle, though, and a lot of them make creaky scraping sounds. The male has ridges on his head that he scrapes along his thorax to attract a mate.

The white-spotted sawyer, also called the pine beetle, is native to North America and is black with a single white spot at the base of the wings, and sometimes with more white spots on the wings. It looks a lot like the Asian longhorned beetle but has black antennae whereas the Asian beetle has black and white antennae.

Like the many other longhorned beetle species, the female chews little holes in a tree to lay eggs in, but in this case she prefers pine and spruce trees, especially ones that are dead or dying or have sustained fire damage. The male white-spotted sawyer finds a good tree and defends it from other males, and if a female likes the tree she’ll mate with the male. But while the male keeps other males away, other females sometimes sneak in and lay eggs in the holes the female has already chewed in the tree. These nest holes take a long time to make and if a female can sneak some of her eggs into holes another female has already made, it saves her a lot of effort.

In addition to the male making a creaking noise to attract a mate, longhorned beetle larvae just generally make a lot of noises as they chew their way through a tree. If you’re ever walking through the woods and hear this sound, now you know what it is:

[creaky beetle sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 262: Animals Discovered in 2021

It’s the second annual discoveries episode! Lots of animals new to science were described in 2021 so let’s find out about some of them.

Further reading:

First description of a new octopus species without using a scalpel

Marine Biologists Discover New Species of Octopus

Bleating or screaming? Two new, very loud, frog species described in eastern Australia

Meet the freaky fanged frog from the Philippines

New alpine moth solves a 180-year-old mystery

Meet the latest member of Hokie Nation, a newly discovered millipede that lives at Virginia Tech

Fourteen new species of shrew found on Indonesian island

New beautiful, dragon-like species of lizard discovered in the Tropical Andes

Newly discovered whale species—introducing Ramari’s beaked whale (Mesoplodon eueu)!

Scientists describe a new Himalayan snake species found via Instagram

The emperor dumbo octopus (deceased):

The star octopus:

New frog just dropped (that’s actually the robust bleating tree frog, already known):

The slender bleating tree frog:

The screaming tree frog:

The Mindoro fanged frog:

Some frogs do have lil bitty fangs:

The hidden Alpine moth, mystery solver:

The Hokie twisted-claw millipede:

One of 14 new species of shrew:

The snake picture that led to a discovery:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This episode marks our 5th year anniversary! I also finally got the ebook download codes sent to everyone who backed the Kickstarter at that level. The paperback and hardback books will hopefully be ready for me to order by the end of February and I can get them mailed out to backers as soon as humanly possible. Then I’ll focus on the audiobook! A few Kickstarter backers still haven’t responded to the survey, either with their mailing address for a physical book or for names and birthdays for the birthday shout-outs, so if that’s you, please get that information to me!

Anyway, happy birthday to Strange Animals Podcast and let’s learn about some animals new to science in 2021!

It’s easy to think that with all the animals already known, and all the people in the world, surely there aren’t very many new animals that haven’t been discovered yet. But the world is a really big place and parts of it, especially the oceans, have hardly been explored by scientists.

It can be confusing to talk about when an animal was discovered because there are multiple parts to a scientific discovery. The first part is actually finding an animal that the field scientists think might be new to science. Then they have to study the animal and compare it to known animals to determine whether it can be considered a new species or subspecies. Then they ultimately need to publish an official scientific description and give the new animal a scientific name. This process often takes years.

That’s what happened with the emperor dumbo octopus, which was first discovered in 2016. Only one individual was captured by a deep-sea rover and unfortunately it didn’t survive being brought to the surface. Instead of dissecting the body to study the internal organs, because it’s so rare, the research team decided to make a detailed 3D scan of the octopus’s body instead and see if that gave them enough information.

They approached a German medical center that specializes in brain and neurological issues, who agreed to make a scan of the octopus. It turned out that the scan was so detailed and clear that it actually worked better than dissection, plus it was non-invasive so the preserved octopus body is still intact and can be studied by other scientists. Not only that, the scan is available online for other scientists to study without them having to travel to Germany.

The emperor dumbo octopus grows around a foot long, or 30 cm, and has large fins on the sides of its mantle that look like elephant ears. There are 45 species of dumbo octopus known and obviously, more are still being discovered. They’re all deep-sea octopuses. This one was found near the sea floor almost 2.5 miles below the surface, or 4,000 meters. It was described in April of 2021 as Grimpoteuthis imperator.

Oh, and here’s a small correction from the octopus episode from a few years ago. When I was talking about different ways of pluralizing the word octopus, I mispronounced the word octopodes. It’s oc-TOP-uh-deez, not oc-tuh-podes.

Another octopus discovered in 2021 is called the star octopus that has a mantle length up to 7 inches long, or 18 cm. It lives off the southwestern coast of Australia in shallow water and is very common. It’s even caught by a local sustainable fishery. The problem is that it looks very similar to another common octopus, the gloomy octopus. The main difference is that the gloomy octopus is mostly gray or brown with rusty-red on its arms, while the star octopus is more of a yellowy-brown in color. Since individual octopuses show a lot of variation in coloration and pattern, no one noticed the difference until a recent genetic study of gloomy octopuses. The star octopus was described in November 2021 as Octopus djinda, where “djinda” is the word for star in the Nyoongar language of the area.

A study of the bleating tree frog in eastern Australia also led to a new discovery. The bleating tree frog is an incredibly loud little frog, but an analysis of sound recordings revealed that not all the calls were from the same type of frog. In fact, in addition to the bleating tree frog, there are two other really loud frog species in the same area. They look very similar but genetically they’re separate species. The two new species were described in November 2021 as the screaming tree frog and the slender bleating tree frog.

This is what the slender bleating tree frog sounds like:

[frog call]

This is what the screaming tree frog sounds like:

[another frog call]

Another newly discovered frog hiding in plain sight is the Mindoro fanged frog, found on Mindoro Island in the Philippines. It looks identical to the Acanth’s fanged frog on another island but its mating call is slightly different. That prompted scientists to use both acoustic tests of its calls and genetic tests of both frogs to determine that they are indeed separate species.

Lots of insects were discovered last year too. One of those, the hidden alpine moth, ended up solving a 180-year-old scientific mystery that no one even realized was a mystery.

The moth was actually discovered in the 1990s by researchers who were pretty sure it was a new species. It’s a diurnal moth, meaning it’s active during the day, and it lives throughout parts of the Alps. Its wingspan is up to 16mm and it’s mostly brown and silver.

Before they could describe it as a new species and give it a scientific name, the scientists had to make absolutely sure it hadn’t already been named. There are around 5,000 species of moth known to science that live in the Alps, many of them rare. The researchers narrowed it down finally to six little-known species, any one of which might turn out to be the same moth as the one they’d found.

Then they had to find specimens of those six species collected by earlier scientists, which meant hunting through the collections of different museums throughout Europe. Museums never have all their items on display at any given time. There’s always a lot of stuff in storage waiting for further study, and the larger a museum, the more stuff in storage it has. Finding one specific little moth can be difficult.

Finally, though, the scientists got all six of the other moth species together. When they sat down to examine and compare them to their new moth, they got a real surprise.

All six moths were actually the same species of moth, Dichrorampha alpestrana, described in 1843. They’d all been misidentified as new species and given new names over the last century and a half. But the new moth was different and at long last, in July 2021, it was named Dichrorampha velata. And those other six species were stricken from the record! Denied!

You don’t necessarily need to travel to remote places to find an animal new to science. A professor of taxonomy at Virginia Tech, a college in the eastern United States, turned over a rock by the campus’s duck pond and discovered a new species of millipede. It’s about three quarters of an inch long, or 2 cm, and is mostly a dark maroon in color. It’s called the Hokie twisted-claw millipede.

Meanwhile, on the other side of the world on the island of Sulawesi, a team of scientists discovered FOURTEEN different species of shrew, all described in one paper at the end of December 2021. Fourteen! It’s the largest number of new mammals described at the same time since 1931. The inventory of shrews living on Sulawesi took about a decade so it’s not like they found them all at once, but it was still confusing trying to figure out what animal belonged to a known species and what animal might belong to a new species. Sulawesi already had 7 known species of shrew and now it has 21 in all.

Shrews are small mammals that mostly eat insects and are most closely related to moles and hedgehogs. Once you add the 14 new species, there are 461 known species of shrew living in the world, and odds are good there are more just waiting to be discovered. Probably not on Sulawesi, though. I think they got them all this time.

In South America, researchers in central Peru found a new species of wood lizard that they were finally able to describe in September 2021 after extensive field studies. It’s called the Feiruz wood lizard and it lives in the tropical Andes in forested areas near the Huallaga River. It’s related to iguanas and has a spiny crest down its neck and the upper part of its back. The females are usually a soft brown or green but males are brighter and vary in color from green to orangey-brown to gray, and males also have spots on their sides.

The Feiruz wood lizard’s habitat is fragmented and increasingly threatened by development, although some of the lizards do live in a national park. Researchers have also found a lot of other animals and plants new to science in the area, so hopefully it can be protected soon.

So far, all the animals we’ve talked about have been small. What about big animals? Well, in October 2021 a new whale was described. Is that big enough for you? It’s not even the same new whale we talked about in last year’s discoveries episode.

The new whale is called Mesoplodon eueu, or Ramari’s beaked whale. It’s been known about for a while but scientists thought it was a population of True’s beaked whale that lives in the Indian Ocean instead of the Atlantic.

When a dead whale washed ashore on the South Island of New Zealand in 2011, it was initially identified as a True’s beaked whale. A Mātauranga Māori whale expert named Ramari Stewart wasn’t so sure, though. She thought it looked different than a True’s beaked whale. She got together with marine biologist Emma Carroll to study the whale and compare it to True’s beaked whale, which took a while since we don’t actually know very much about True’s beaked whale either.

The end result, though, is that the new whale is indeed a new species. It grows around 18 feet long, or 5.5 meters, and probably lives in the open ocean where it dives deeply to find food.

We could go on and on because so many animals were discovered last year, but let’s finish with a fun one from India. In June of 2020, a graduate student named Virender Bhardwaj was stuck at home during lockdowns. He was able to go on walks, so he took pictures of interesting things he saw and posted them online. One day he posted a picture of a common local snake called the kukri snake.

A herpetologist at India’s National Centre for Biological Sciences noticed the picture and immediately suspected it wasn’t a known species of kukri snake. He contacted Bhardwaj to see where he’d found the snake, and by the end of the month Bhardwaj had managed to catch two of them. Genetic analysis was delayed because of the lockdowns, but they described it in December of 2021 as the Churah Valley kukri snake.

The new snake is stripey and grows over a foot long, or 30 cm. It probably mostly eats eggs.

It just goes to show, no matter where you live, you might be the one to find a new species of animal. Learn all you can about your local animals so that if you see one that doesn’t quite match what you expect, you can take pictures and contact an expert. Maybe next year I’ll be talking about your discovery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 259: Indestructible Animals

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Nicholas and Emma for their suggestions this week as we learn about some (nearly) indestructible animals!

Further listening:

Patreon episode about Metal Animals (unlocked, no login required)

Further reading:

Even a car can’t kill this beetle. Here’s why

The scaly-foot snail’s shell is made of actual iron – and it’s magnetic

The scaly-foot gastropod (pictures from article linked above):

The diabolical ironclad beetle is virtually unsquishable:

Limpet shells:

The business side of a limpet:

Highly magnified limpet teeth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some indestructible animals, or at least animals that are incredibly tough. You may be surprised to learn that they’re all invertebrates. It’s a suggestion by Nicholas, and one of the animals Nicholas suggested was also suggested by Emma.

We’ll start with that one, the scaly-foot gastropod, a deep-sea snail. We actually covered this one a few years ago but only in a Patreon episode. I went ahead and unlocked that episode so that anyone can listen to it, since I haven’t done that in a while, so the first part of this episode will sound familiar if you just listened to that one.

The scaly-foot gastropod lives around three hydrothermal vents in the Indian Ocean, about 1 ¾ miles below the surface, or about 2,800 meters. The water around these vents, referred to as black smokers, can be more than 350 degrees Celsius. That’s 660 degrees F, if you even need to know that that’s too hot to live.

The scaly-foot gastropod was discovered in 2001 but not formally described until 2015. The color of its shell varies from almost black to golden to white, depending on which population it’s from, and it grows to almost 2 inches long, or nearly 5 cm. It doesn’t have eyes, and while it does have a small mouth, it doesn’t use it for eating. Instead, the snail contains symbiotic bacteria in a gland in its esophagus. The bacteria convert toxic hydrogen sulfide from the water around the hydrothermal vents into energy the snail uses to live. It’s a process called chemosynthesis. In return, the bacteria get a safe place to live.

The snail’s shell contains an outer layer made of iron sulfides. Not only that, the bottom of the snail’s foot is covered with sclerites, or spiky scales, that are also mineralized with iron sulfides. While the snail can’t pull itself entirely into its shell, if something attacks it, the bottom of its foot is heavily armored and its shell is similarly tough.

Researchers are studying the scaly-foot gastropod’s shell to possibly make a similar composite material for protective gear and other items. The inner layer of the shell is made of a type of calcium carbonate, common in mollusk shells and some corals. The middle layer of the shell is regular snail shell material, organic periostracum, [perry-OSS-trickum] which helps dissipate heat as well as pressure from squeezing attacks, like from crab claws. And the outer layer, of course, is iron sulfides like pyrite and greigite. Oh, and since greigite is magnetic, the snails stick to magnets.

Unfortunately, the scaly-foot gastropod is endangered due to deep-sea mining around its small, fragile habitat. Hopefully conservationists can get laws passed to protect the thermal vents and all the animals that live around them.

The scaly-foot gastropod is the only animal known that incorporates iron sulfide into its skeleton or exoskeleton, although our next indestructible animal, the diabolical ironclad beetle, has iron in its name.

The diabolical ironclad beetle lives in western North America, especially in dry areas. It grows up to an inch long, or 25 mm, and is a dull black or dark gray in color with bumps and ridges that make it look like a piece of tree bark. Since it lives on trees, that’s not a coincidence. It spends most of its time eating fungus that grows on and under tree bark.

Like a lot of beetles, it’s flattened in shape. This helps it slide under tree bark and helps it keep a low profile to avoid predators like birds and lizards. But if a predator does grab it and try to crunch it up to eat, the diabolical ironclad beetle is un-crunchable. Its exoskeleton is so tough that it can withstand being run over by a car. When researchers want to mount a dead beetle to display, they can’t just stick a pin through the exoskeleton. It bends pins, even strong steel ones. They have to get a tiny drill to make a hole in the exoskeleton first.

The beetle’s exoskeleton is so strong because of the way it’s constructed. In a late 2020 article in Nature, a team studying the beetle discovered that the exoskeleton is made up of multiple layers that fit together like a jigsaw puzzle. Each layer contains twisted fibers made of proteins that help distribute weight evenly across the beetle’s body and stop potential cracking. At the same time, the arrangement of the exoskeleton’s sections allows for enough give to make it just flexible enough to keep from cracking under extreme pressure. Of course, this means the beetle can’t fly because its wing covers can’t move, but if it falls from a tree it doesn’t need to worry about hurting itself.

Engineers are studying the beetle to see if they can adapt the same type of structures to make airplanes and cars safer.

Nicholas also suggested the limpet, another mollusk. It’s a type of snail but it doesn’t look like the scaly-foot gastropod or like most other snails. Its shell is shaped like a little cone with ridges that run from the cone’s tip to the bottom, sort of like a tiny ice-cream cone that you don’t want to eat. There are lots of species and while a few live in fresh water, most live in the ocean. The limpets we’re talking about today are those in the family Patellidae.

If you think about a typical snail, whose body is mostly protected by a shell and who moves around on a wide flat part of its body called a foot, you’ll understand how the limpet is a snail even though it looks so different superficially. The conical shell protects the body, and the limpet does indeed move around on a so-called foot, gliding along very slowly on a thin layer of mucus.

The limpet lives on rocks in the intertidal zone and is famous for being able to stick to a rock incredibly tightly. It has to be able to do so because otherwise it would get washed off its rock by waves, plus it needs to be safe when the tide is out and its rock is above water. The limpet makes a little dimple in the rock that exactly matches its shell, called a home scar, and as the tide goes out the limpet returns to its home scar, seals the edges of its shell tight to the rock, and waits for the water to return. It traps water inside its shell so its gills won’t dry out while it waits. If the rock is too hard for it to grind down to match its shell, it grinds the edges of its shell to match the rock. It makes its home scar by rubbing its shell against one spot in the rock until both are perfectly matched.

The limpet mostly eats algae. It has a tiny mouth above its foot and in the mouth is a teensy tongue-like structure called a radula, which is studded with very hard teeth. It uses the radula to rasp algae off of the rocks. Other snails do this too, but the limpet has much harder teeth than other snails. Much, much harder teeth. In fact, the teeth of some limpet species may be the hardest natural material ever studied.

The teeth are mostly chitin, a hard material that’s common in invertebrates, but the surface is coated with goethite [GO-thite] nanofibers. Goethite is a type of of iron, so while the limpet does have iron teeth, it still doesn’t topple the scaly-foot gastropod as the only animal known with iron in its skeleton. Not only does the goethite help make the teeth incredibly strong, which is good for an animal that is scraping those teeth over rocks constantly, the dense chitin fibers in the teeth make them resistant to cracking.

The limpet replaces its teeth all the time. They grow on a sort of conveyer belt and move forward until the teeth in front, at the business end of the radula, are ready to use. It takes about two days for a new tooth to fully form and move to the end of the radula, where it’s quickly worn down and drops off.

Meanwhile, even though the limpet’s shell doesn’t contain any iron, its shape and the limpet’s strong foot muscles mean that once a limpet is stuck to its rock, it’s incredibly hard to remove it. It just sits there being more or less impervious to predation. Humans eat them, although they have to be cooked thoroughly because they’re tough otherwise, naturally.

Finally, one animal that Nicholas suggested is probably the royalty of indestructible animals, the water bear or tardigrade. Because we talked about it recently, in episode 234, I won’t go over it again. I’ll just leave you with an interesting note that I missed when researching that episode.

In April of 2019, an Israeli spacecraft was launched that had dormant tardigrades onboard as part of an experiment about tardigrades in space. There were no people onboard, fortunately, because the craft actually crashed on the moon instead of landing properly. The ship was destroyed but the case where the tardigrades were stored appears to be intact.

It’s not exactly easy to run up to the moon and check on the tardigrades, so we don’t know if they survived the crash landing. Studies since then suggest they probably didn’t, but until we can actually land on the moon and send a rover or an astronaut out to check, we don’t know for sure. Tardigrades can survive incredibly cold, dry conditions while dormant. It’s not exactly the experiment researchers intended, but it’s definitely an interesting one.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 253: The Sand Striker

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

This week let’s learn about a weird marine worm and its extinct ancestor!

Further reading:

Eunice aphroditois is a rainbow, terrifying

The 20-million-year-old lair of an ambush-predatory worm preserved in northeast Taiwan

Here’s the money shot of the sand striker with its jaws open, waiting for an animal to get too close. The stripy things are antennae:

The fossilized burrow with notes:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going back in time 20 million years to learn about an animal that lived on the sea floor, although we’ll start with its modern relation. It’s called the sand striker and new discoveries about it were released in January 2021.

Ichnology is the study of a certain type of trace fossil. We talked about trace fossils in episode 103, but basically a trace fossil is something associated with an organism that isn’t actually a fossilized organism itself, like fossilized footprints and other tracks. Ichnology is specifically the study of trace fossils caused by animals that disturbed the ground in some way, or if you want to get more technical about it, sedimentary disruption. That includes tracks that were preserved but it also includes a lot of burrows. It’s a burrow we’re talking about today.

Because we often don’t know what animal made a burrow, different types of burrows are given their own scientific names. This helps scientists keep them organized and refer to a specific burrow in a way that other scientists can immediately understand. The sand striker’s fossilized burrow is named Pennichnus formosae, but in this case we knew about the animal itself before the burrow.

The sand striker is a type of polychaete worm, and polychaete worms are incredibly successful animals. They’re found in the fossil record since at least the Cambrian Period half a billion years ago and are still common today. They’re also called bristle worms because most species have little bristles made of chitin. Almost all known species live in the oceans but some species are extremophiles. This includes species that live near hydrothermal vents where the water is heated to extreme temperatures by volcanic activity and at least one species found in the deepest part of the ocean that’s ever been explored, Challenger Deep.

A polychaete worm doesn’t look like an earthworm. It has segments with a hard exoskeleton and bristles, and a distinct head with antennae. Some species don’t have eyes at all but some have sophisticated vision and up to eight eyes. Some can swim, some just float around, some crawl along the seafloor, and some burrow in sand and mud. Some eat small animals while others eat algae or plant material, and some have plume-like appendages they use to filter tiny pieces of food from the water. Basically, there are so many species known—over 10,000, with more being discovered almost every year, alive and extinct—that it’s hard to make generalizations about polychaete worms.

Most species of polychaete worm are small. The living species of sand striker generally grows around 4 inches long, or 10 centimeters, and longer. We’ll come back to its size in a minute. Its exoskeleton, or cuticle, is a beautifully iridescent purple. It doesn’t have eyes, instead sensing prey with five antennae. These aren’t like insect antennae but look more like tiny tentacles, packed with chemical receptors that help it find prey.

The sand striker lives in warm coastal waters and spends most of its time hidden in a burrow in the sand. It’s especially common around coral reefs. While it will eat plant material like seaweed, it’s mostly an ambush hunter.

At night the sand striker remains in its burrow but pokes its head out with its scissor-like mandibles open. When the chemical receptors in its antennae detect a fish or other animal approaching, it snaps its mandibles on it and pulls it back into its burrow. Its mandibles are so strong and sharp that sometimes it will cut its prey in half and then, of course, it pulls both halves into its burrow to eat. If the prey turns out to be large, the sand striker injects it with venom that not only stuns and kills it, it starts the digestive process so the sand striker can eat it more easily. It does all this so quickly that it can even catch fish and octopuses. The mandibles are at the end of a feeding apparatus called a pharynx, which it can retract into its body.

If a person tries to handle a sand striker, they can indeed get bitten. The sand striker’s mandibles are sharp enough to inflict a bad bite, and if it injects venom it can make the bite even more painful. Not only that, the sand striker’s body is covered with tiny bristles that can also inflict stings, with a venom strong enough that it can cause nerve damage in a human that results in permanent numbness where the person touched it. Don’t pet a sand striker.

Remember how I said the sand striker grows 4 inches or longer? That’s actually the low end of its size. The average sand striker is about 2 feet long, or 61 centimeters, but it can sometimes grow 3 feet long, or 92 centimeters, or even more. Sometimes a lot more.

In January 2009, someone noticed something in a float along the side of a mooring raft in Seto Fishing Harbor in Japan. The mooring raft had been in place for 13 years at that point and no one knew that a sand striker had moved into one of the floats. It had a nice safe home to use as a burrow. Sand strikers grow quickly and this one was living in a more or less ideal situation, so it just grew and grew until when it was found, it was just shy of 10 feet long, or 3 meters. Even so, it was still only about an inch thick, or 25 millimeters.

There are unverified reports of even longer sand strikers, some up to 50 feet long, or 15 meters. Look, seriously, do not pet it. Since sand strikers spend most of the time in burrows, it’s rare to get a good look at a full-length individual in the wild and we don’t know how long they can really get.

In case you’d forgotten, though, we started the episode talking about a fossilized burrow. In a fossil bed in northeast Taiwan, a team of paleontologists uncovered hundreds of strange burrows dating to about 20 million years ago. The burrows were L-shaped and as much as 6.5 feet long, or 2 meters, and about an inch across, or 2.5 centimeters. Even more confusingly, the fossilized sediment showed feather-like shapes in the upper section of the burrows.

The team of scientists studying the burrows had no idea what the feather-like structures were. The burrows were mysterious from start to finish anyway, since they were so much larger than most burrows in the seafloor.

They decided to do something unusual to solve some of the mysteries. They reached out not only to marine biologists but to marine photographers and aquarium keepers to get their insights. And, as you’ve probably guessed by now, the fossilized burrows most closely match those of the sand striker.

They even found out what the feather-shaped structures were. When a sand striker grabs a fish or other prey and drags it into its burrow, a lot of time it’s still alive, at least at first. Its struggles to get away can cause the sides of the burrow to shift. The sediment can’t collapse all the way because the worm lines it with mucus, so the partial collapsing and shifting results in feathery shapes.

These fossilized burrows are the first trace fossils known to be made by a marine ambush predator, which is pretty awesome. It’s even more awesome that some modern sand strikers are using the same type of burrows over 20 million years later.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 251: Modern Mimics and HIREC

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

This week let’s look at some animals that have evolved rapidly to adapt to human-caused environmental pressures. Thanks to Otto and Pranav for their suggestions!

Further reading:

Long-term changes of plumage between urban and rural populations of white-crowned sparrows (Zonotrichia leucophrys)

A light-colored peppered moth (left) and darker-colored peppered moths (right):

Soot is hard to clean off buildings and other items (image from this page):

A white-crowned sparrow in the California countryside:

A (deceased museum specimen being photographed) white-crowned sparrow from the city of San Francisco, CA (taken from the study linked above):

A decorator crab that has attached bits of plastic and other trash to its body (image from this page):

The hermit crab sometimes uses trash instead of shells to hide in:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have two listener suggestions. Otto suggested we learn about camouflage that mimics modern things, and Pranav suggested animals that show rapid evolution due to humans.

We’ve talked about animals that use camouflage in lots of episodes, especially episode 191, Masters of Disguise. If you want to learn more about camouflage itself, that’s a good one to listen to. In addition, rapid evolution due to humans is a hot area of research right now. It even has its own scientific term, human-induced rapid evolutionary change, often shortened to the acronym HIREC.

Let’s start this episode with the story of a humble moth, because it’s a classic example of both HIREC and modern camouflage.

The peppered moth lives throughout much of the northern hemisphere. Its wingspan is a little over 2 inches across, or about 6 centimeters, and its caterpillar looks just like a little twig. Not only that, the caterpillar can change its coloring to match the twigs of the tree it’s on. But it’s not the caterpillars we’re talking about today.

The peppered moth gets its name from the coloring of its wings, which are white with black speckles, like pepper spilled on a plate. The pattern of speckles is unique to each individual, with some moths having more pepper speckles than others. Some moths have so many speckles that they look gray. But in the 19th century, geneticists studying moths in England noticed that the peppered moth seemed to be changing color as a species. Specifically, some of the peppered moths were completely black.

Black peppered moths had never been documented before 1811. They were still rare in the mid-19th century, but by 1900 almost all of the peppered moths in cities in England were black. Scientists noticed this and tried to figure out what was going on.

Pollution is what was going on. The industrial revolution was in full swing, but all those factories and trains and even ordinary houses were burning coal. Burning coal results in soot that’s carried on smoke and settles on everything. If you have a coal fire in your house, your walls and furniture are going to end up dark with soot. My aunt and uncle renovated a house from the late 19th century and had a lot of trouble cleaning soot from the walls and woodwork, even the old curtains that had been in the house. Similarly, when I lived briefly near Pittsburgh, Pennsylvania, there were still a lot of brick and stone buildings that were black from soot, but one beautiful old church had recently been cleaned and it turned out that the stone it was built from was pale gray, not black.

It wasn’t coal soot getting on the moths, though. It was coal soot on the trees where the moths spent most of their time. Most tree trunks are gray, but with all that coal soot in the air, the trees were coated with it and were much darker gray or even black. A light-colored moth that settled on a black tree branch showed up to predators, but a black moth on the same branch was camouflaged. The black moths survived more often to lay eggs while the white or gray moths didn’t, passing on the genetic likelihood that their babies would grow up to be dark-colored instead of light-colored.

It wasn’t just peppered moths that this happened to, either. More than 100 species of moth were documented to be dark gray or black during this time when they were ordinarily much lighter in color. Scientists call this industrial melanism.

Soot is made up of tiny particles that work their way into the crevices of wood and stone and everything else they come in contact with. You can’t just wipe or rinse it off. It’s acidic too and will kill plants, especially lichens that grow on trees, and it even eats away at stone and brick. It’s dangerous to breathe because the tiny particles lodge in your lungs and eventually stop you from being able to absorb oxygen as efficiently. If you’ve heard of the infamous London smog from the olden days, a big contributor to the smog was coal smoke. In 1952 a five-day smog event in London killed an estimated 12,000 people. That led directly to the Clean Air Act of 1956, and these days London doesn’t have that kind of deadly smog anymore.

Once factories and homes switched to electricity, natural gas, or other alternatives to burning coal, and trains switched to diesel fuel, trees stopped being coated with soot. Older trees that had survived were still dark, but young ones grew up with normal colored trunks and branches. Gradually, the black moths became less and less numerous compared to light-colored moths.

Cities in general result in rapid evolution of animals, including how they camouflage themselves. A study published in May of 2021 found that some birds living in cities are developing different colored feathers. Specifically, white-crowned sparrows living in San Francisco, California have much duller, darker feathers on their backs than white-crowned sparrows living outside of the city. Other studies have found that birds in cities sing much louder and at a higher pitch than birds in the countryside, since they have to compete with traffic and other noise.

A Swiss study on the effects of light on ermine moths indicated that while moths who developed from caterpillars collected from the countryside showed a normal attraction to light, moths from caterpillars collected in the city ignored the light. Since moths often die when they collide with electric lights, the city moths who survived to lay eggs were the ones who didn’t fly into a hot lightbulb.

Another study compared the genomes of white-footed mice that live in various parks in New York City with white-footed mice that live in state parks well outside of the city. The mice in city parks showed a lot less genetic diversity, naturally, since those mice are isolated populations. Mice can’t take cabs to visit mice in other parks, much less leave the city for a vacation. But the city mice showed another surprising difference. Their digestive systems have adapted to a much different diet than their country cousins. Some researchers suggest that the city mice may eat more junk food, which people throw away and the mice find, while other researchers think it’s just a difference in the kinds of insects and plants available in city parks for the mice to eat. Either way, it’s a distinct genetic difference that shows how the city mice are evolving to adapt to their urban environments.

Another example is a type of reptile called the crested anole. It’s related to the iguana and is native to the Americas. There are lots of species and subspecies of anole, many of which live on islands and show distinct adaptations to various habitats. The crested anole lives in Puerto Rico and on some nearby islands and grows up to 3 inches long, or 7.5 cm, not counting its long tail. The male is more brightly colored than the female, usually green or brown with darker spots. It’s not related to the chameleon but it is able to change color. It eats small animals, including insects, worms, even other anoles. Anoles are really interesting animals that deserve their own episode one day, so let’s just talk about how the crested anole that lives in cities has adapted to urban life.

One thing the crested anole is known for is its ability to climb right up tree trunks and even perch head-down in a tree. Its toe pads have microscopic scales and hairs that help them adhere to smooth surfaces, something like a gecko’s toes. But there’s a big difference in a tree trunk, no matter how smooth it is, and a pane of glass. Anoles in cities can climb up and down windows and painted walls. Researchers examined the toe pads of city crested anoles and compared them to the toe pads of crested anoles who lived in the countryside. They found that the city anoles had larger toes with more scales, and they even had longer legs. The research team also raced anoles along various surfaces and filmed them in slow motion to study how they were able to maneuver, which sounds like a great day at work.

The crested anoles have only lived in cities for a few decades, so their differences from country anoles evolved very quickly. But not all species of anole can adapt as well and as rapidly as the crested anoles have. Other city anole species don’t show differences from their country cousins.

Human-induced rapid evolutionary change isn’t restricted to cities. Trophy hunters who target the biggest animals with the biggest horns or antlers and leave smaller individuals alone have resulted in only smaller males with smaller horns or antlers surviving to breed. Many populations of bighorn sheep now actually only have small horns. Similarly, elephants have been killed for their tusks for long enough that many elephants are being born without tusks, because tuskless elephants are the ones that survive to breed. Entire populations of some fish species are smaller overall after many generations of being caught with nets, because only the individuals who are small enough to escape the nets survive to breed.

I tried hard to find more examples of animals that camouflage themselves to blend in to human-made items like roads. I’m sure this is happening throughout much of the world, but I couldn’t find any scientific studies about it. If any of you are thinking of going into biology, that might be an interesting field of study. But I did find one other example.

Self-decoration is a type of camouflage I don’t think we’ve talked about before. It’s where an animal decorates its body with items that help it blend in with its surroundings. Some caterpillars will stick little bits of lichen or other plant pieces to their bodies to help them hide, and some invertebrates of various kinds actually pile their own poop on their back as a disguise.

A group of crabs called decorator crabs will stick plants, sponges, and other items to their backs, and different species have preferences as to what items they use. Some species prefer stinging or toxic decorations, such as certain sea anemones which they basically pick up and plant on their backs. Researchers think the sea anemones actually benefit from being used as camouflage, because crabs are messy eaters and the anemones can catch and eat pieces of food that float away from the crab’s mouthparts. A decorator crab’s carapace is often rough in texture with tiny hooks to help things stick to it like Velcro.

Some decorator crabs don’t seek out particular decorations but just make use of whatever small items they find in their local environment. In the past few decades, scientists, divers, and other people who find crabs interesting have noticed more and more decorator crabs using little pieces of trash as decoration. This includes fragments of plastic and pieces of fishing nets.

This is similar to what’s happening with hermit crabs, which we talked about in episode 182. In many places hermit crabs are using trash like bottle caps instead of shells since there’s so much trash on beaches these days. This is your reminder to pick up any trash you find on the beach, but be careful not to cut yourself and also make sure you’re picking up actual trash and not a camouflaged crab.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 248: The Giant Jellyfish Revisited

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

We’re down to the last few days to back our Kickstarter!

We’ve got a slightly different type of episode this week. Follow along as I try to find out more about the giant jellyfish that nearly sank a ship!

Further reading:

Kraken: Monster of the Deep

A lion’s mane jellyfish:

A giant squid:

The first photo ever taken of a giant squid:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Halloween is behind us and we’re all now ready to head into winter, if we live in the northern hemisphere, or summer, if we live in the southern hemisphere. This week’s episode is a little different, but hopefully you’ll like it.

Before we get into this week’s topic, let me give you the very last Kickstarter update, I promise! From here on out you’ll only get updates through the Kickstarter page if you backed the project. If you’re listening to this episode within a day or two of its release on November 1, 2021, you still have time to back the Beyond Bigfoot & Nessie book! The campaign ends on Nov. 5, but at 12:03 am eastern time, and one of the many things I’ve learned about running a Kickstarter is maybe don’t launch the project at midnight because then it ends at midnight. Remember that if we reach 100 backers before the end, I’ll release a second bonus episode from the audiobook. I’m really late getting this episode done so it’s actually Halloween as I record this, and we currently have 67 backers, which is amazing! Remember, we have a $1 tier if you just want to pitch a dollar in.

That reminds me, after the campaign is over I’m going to update the first bonus episode and take out the ten minutes of Kickstarter talk that starts it. Thanks again to everyone who’s backed the project. I’m blown away by everyone’s support! If you want a copy of the book but not right now, it’ll be available to buy from your regular book-buying places but only after all the Kickstarter backer rewards are sent.

As it happens, this week’s episode is connected with the Beyond Bigfoot & Nessie book. Specifically, I decided to add a chapter about the giant jellyfish we talked about in episode 16, but to do that I needed to do a lot more research.

That story has actually bothered me for a long time. When I first started the podcast, I wasn’t always as diligent in my research as I am now. If a story came from a source I trusted or had enough realistic-sounding details, I’d assume it was accurate. This story met both criteria but whenever I thought about it, something felt off. So I was glad to dig in and find out more.

This episode is about the research process I went through, which will give you a little bit of a behind-the-scenes look at how I approach each episode. We’ll also learn about a couple of other weird events where a ship or boat was seemingly attacked by a sea monster.

Let’s start with the story as I reported it in episode 16. I think you will appreciate how much better our audio quality is these days. Here it is:

“In 1973, the Australian ship Kuranda collided with a huge jelly in the South Pacific while traveling through a storm on her way to the Fiji Islands. The jelly was so enormous that the deck was covered in jellyfish goo and tentacles up to two feet deep [61 cm]. One crew member died after getting stung. The weight of the jelly was so great, an estimated 20 tons [18 metric tons] that it started to push the ship nose-down and the captain, Langley Smith, sent out an SOS. The salvage tug Hercules arrived and sprayed the Kuranda’s deck with a high-pressure hose, dislodging the jelly. Samples were sent to Sydney and tentatively identified as a lion’s mane jelly.”

My first step was to find where I got that story. I was pretty sure it was from Karl Shuker’s blog but when I looked, it wasn’t there. I checked his books that I own and it wasn’t there either. A quick internet search turned up the story in a lot of places with more or less identical wording, but no one said where they’d found the story—except one site, which referenced a book called Mysteries and Monsters of the Sea.

I looked it up and discovered it was a 1998 book, also published as Mysteries of the Deep, made up of articles from FATE Magazine. One of those articles is titled “Giant Jellyfish” and is by Karl Shuker.

The story appeared in the March 1994 issue of FATE, so my next step was to find the article. Karl Shuker is a zoologist who writes a lot about mystery animals, and he’s very good about sharing his sources.

FATE Magazine is still around and isn’t giving its old issues away for free. Then, in one of those amazing, wonderful coincidences, I found an ebay auction for that very issue that had nice clear photographs of several pages to show how good a condition it was in. One of those pages just happened to be the one I needed. I grabbed a screenshot and enlarged it so I could read the text. Shuker writes, “One of the most dramatic cases on record was documented by James Sweeney in Sea Monsters (1977), and took place in January 1973.”

Bingo! Now I just had to find a copy of that book. I found a used copy online that wasn’t very expensive and ordered it, but a little more searching online led me to a digitized version that I was able to access by logging in to the Internet Archive.

I found the story on pages 73-76. It has lots of details that should be easily corroborated, although unfortunately there isn’t a specific date. My next step was my newspapers.com account to see how the event was reported at the time.

This is where I came up against a blank wall. There was nothing in any of the hundreds of digitized newspaper archives available. I searched for the name of the ship, the Kuranda. I searched for the name of the captain, Langley Smith. I couldn’t find a single mention of either, never mind an encounter with a gigantic jellyfish.

It wasn’t looking good for the story, but I had one more clue. The account starts out in Sweeney’s book:

One of the strangest, and probably best documented, sea monster stories to be found anywhere is recorded in the Colonial Secretary’s File of the Archives, State Library, Melbourne, Australia. Written testimony submitted by the officer of the watch and others tells clearly what happened to the steamer Kuranda.”

Melbourne is in Victoria, so after some searching online for the archives mentioned in the book and not finding them, I used the Ask a Librarian feature on the State Library Victoria website. I got a response only a few hours later asking for a little more information, which I supplied. I gave the gist of the story, including the details of the ship’s name, the captain’s name, and so forth, and I even gave the link to the digitized version of Sweeney’s book.

A few days later I got a response from a librarian named Jane. I’ll break it down for you.

Jane discovered there were two ships named Kuranda. One was broken up in 1936, the other wrecked in 1969.

In 1973, when this story was supposed to have taken place, there was no longer a colonial secretary in any Australian state. Therefore there is no Colonial Secretary’s File of the Archives from 1973 or after.

And there are no records of a Langley Smith who is a ship’s captain.

At this point I decided, reluctantly, that the story is probably fiction. I actually dug around looking at the table of contents of various 1970s magazines that might have published a fictional story about the giant jellyfish and claimed or implied it was real. I even thought about finding Sweeney’s email and just asking him if he remembered where he learned about this story. Sadly, it turns out that he died in 2019.

According to his obituary, Sweeney worked as a forest ranger for most of his life and was also a voracious reader. I don’t want to believe that a forest ranger who likes to read could possibly stretch the truth so I assume he read about the giant jellyfish somewhere, thought it was a true story, and added it to his book. This was long before the internet so he couldn’t just look stuff up online like I’m doing.

Just to make sure, though, let’s take a look at something else Sweeney mentions in his book. He writes, “Perhaps those aboard Kuranda were luckier than they realized. For the Times of London carried a story somewhat similar. Unfortunately, it ended in absolute horror.”

Back I went to newspapers.com, and by the way, a big thanks to the podcast’s Patreon supporters whose contributions allow me to subscribe. The Times isn’t listed on the site, which mostly focuses on American newspapers, but when I did a search for the name of the ship given in Sweeney’s book, the steamer Strathowen, during the 1870s when he reported it occurred, I got lots of hits.

Here’s an excerpt from The Freeman’s Journal of Dublin, Ireland from July 2, 1874.

“The octopus is likely to lose none of its popularity in the Brighton Aquarium, if we are to believe a strange story which comes from India. The master of the screw steamer Strathowen, on his way to Madras, observed a little schooner lying becalmed, and between him and her what he at first thought to be a bank of weed. The mass was perfectly quiet, but after a time began to move towards the schooner. Suddenly it struck her, and sunk her to the bottom. The master of the Strathowen put about, dropped boats, and saved five men from the sunken ship. James Floyd, the master, was rescued, and he tells his story in the most circumstantial fashion. The Pearl schooner, 150 tons, was bound from the Mauritius to Rangoon. On the 10th of May about five in the evening he observed a great mass rising slowly out of the sea. It remained stationary, and looked like the back of a huge whale. In a hapless moment he took his rifle and hit the monster, which began to lash about furiously. … All the men were then ordered up, and knives and hatchets and cutlasses were grasped, and all awaited the advent of the terrible stranger. The narrator proceeds: ‘We could now see a huge oblong mass moving by jerks just under the surface of the water, and an enormous train following; the oblong body was at least half the size of our vessel in length, and just as thick. The wake or train might have been 100 feet long. In the time that I have taken to write this, the brute struck us, and the ship quivered under the thud; in another moment, monstrous arms like trees seized the vessel, and she heeled over. In another second the monster was aboard, squeezed in between the two masts…. [T]he brute holding on by his arms, slipped his vast body overboard, and pulled the vessel down with him on her beam ends.” The general opinion amongst the sailors is that the big bank of sea-weed was an octopus, but we dare say a little confirmation of the story would be welcomed by us all whether naturalists or not.”

This is actually a brief and measured account of the story that appeared in the Times and which later hit the American papers. The longer account reads very much like fiction. The Dublin paper’s tone of interested skepticism matches what I feel, but the story does corroborate what Sweeney wrote in his book about sea monsters, so at least Sweeney wasn’t making stuff up.

I found a 2019 article in Skeptical Inquirer that did all the research about the octopus or squid sinking the Pearl. According to the author, there’s no record of a ship named the Strathowen or a captain named James Floyd. The author also points out that Jules Verne’s novel Twenty Thousand Leagues under the Sea was published in 1869, only five years before, and included an attack on the submarine by giant cephalopods.

Before you get too discouraged, though, the Skeptical Inquirer article also talks about a giant squid attacking a small boat, and that one actually happened.

In October 1873 in Conception Bay, Newfoundland, two fishermen and a boy were crossing the bay in a rowboat and noticed something floating in the water. As they neared it, it grabbed the boat with two tentacles and pulled so hard that the boat started to take on water. Luckily there was a hatchet in the boat, and the boy grabbed it and chopped off the tentacles. Later he sold the longer tentacle to a minister who lived nearby and who was interested in squid, which were often referred to as devil-fish back then. The minister, Moses Harvey, wrote about it later and reported that the partial tentacle was as thick as a man’s wrist and measured 19 feet long, or almost 6 meters.

Only a few weeks later Harvey bought a giant squid that had been tangled in a fishing net and hauled ashore. He arranged to get a photograph of it because he knew a lot of people wouldn’t believe how big it was otherwise, and his photo was the very first one taken of a giant squid. It wasn’t until 2004 that the first photographs of a living giant squid were taken.

We talked about the giant squid in episode 74 and we talked about some other types of huge squid in episode 235. I’m willing to bet that there are even larger squid living their quiet squid lives in the depths of the ocean, just as there are probably jellyfish larger than any human has ever seen. Let’s just hope they leave ships and boats alone.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month. This month’s Patreon episode is about two hikers in the Pyrenees Mountains who heard a ferocious, terrifying roar out of the darkness near their camp.

Thanks for listening!

Episode 247: Shapeshifters

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Happy Halloween! Let’s learn about some shapeshifters of folklore, including the werewolf and kitsune (thanks to Joel, Pranav, and Emma!), and a real-life shapeshifter.

Don’t forget the Kickstarter, as if I’d let you forget it: https://www.kickstarter.com/projects/kateshaw/beyond-bigfoot-and-nessie

Further reading:

Folklore and Mythology

Breeding Butterflies

Further listening:

MonsterTalk (note: sometimes there’s adult language or really scary themes)

Sandman Stories Presents podcast

A death’s head hawkmoth, looking spooky:

A death’s head hawkmoth caterpillar, not looking spooky at all:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s Halloween week and that means we need to talk about a truly spooky monster! Both Joel and Pranav suggested the werewolf a while back and Emily suggested the kitsune [kee-tsoo-neh], so let’s learn about shapeshifters and were-animals of all kinds. “Wer” is an Old English word that just means “man,” and just to get confusing, the word “man” used to refer to any person. The word “wif” referred to a woman, with wifman actually meaning woman. From those words we get the modern uses of wife, woman, and man, while “wer” is obsolete except in werewolf.

Let me derail myself from talking about language by reminding you about our Kickstarter! It ends pretty soon, on November 5, 2021, so if you’ve been thinking about backing the project this would be a great time. It’s to help me publish a book all about mystery animals, called Beyond Bigfoot and Nessie: Lesser-Known Mystery Animals from Around the World. The book has a foreword by Blake Smith of MonsterTalk, the science show about monsters, and if you don’t already listen to that podcast, it’s a whole lot of fun and informative too. Thanks to everyone who has already backed the project!

Now, Happy Halloween and on to the spookiness!

The important first question we need to answer is if werewolves really exist.

No. They do not exist outside of folklore and fiction, and I’ll explain why later so you don’t ever have to worry about werewolves or any other shapeshifters. But first, let’s learn what werewolves and kitsunes are.

Werewolves are supposed to be people who can turn into wolves. Depending on the story, this can happen when the person wants to turn into a wolf or it can happen during the full moon whether the person wants to be a wolf or not. Sometimes the person has a magical wolfskin or some other item that they put on in order to transform. Sometimes they have to cast a magic spell, but sometimes it’s a curse that someone else has inflicted on them. Some stories say that the only way to kill a werewolf is by shooting it through the heart with a silver bullet, especially one that’s been blessed by a priest.

The werewolf is mainly from European folklore, where for many centuries all werewolves were also supposed to be witches. Until about the 18th century in some areas, if someone accused you of being a werewolf, you could be put on trial as a witch. Lots of people were convicted of witchcraft and killed during waves of witch-hunts in various parts of Europe. Most of the people accused were women, especially elderly women, especially women who were widowed or single, especially women who owned land that someone else wanted. Hmm.

The kitsune is a creature of Asian folklore, especially from Japan, that’s basically a fox that can work magic. It’s sometimes said that all foxes can turn into humans if they want, especially older foxes. The older and more powerful a kitsune is, the more tails it’s supposed to have, up to nine. Kitsunes sometimes play tricks on people but they can also act as guardians and friends.

About the same time that old ladies were being accused of being werewolves in Europe, though, around the 15th to the 18th centuries, something similar happened in Japan. People were much more superstitious during this time and thought the kitsune was a dangerous goblin-like creature that could possess people and make them act like animals. These days the kitsune is back to being considered mostly a friendly trickster.

Werewolves weren’t the only shapeshifters in the folklore of Europe, although they were the most common. A German story collected in 1879 is about someone who could transform into a fox using an item called a strap.

“In the village of Dodow near Wittenburg there lived an old woman who possessed a fox strap. With its help she could transform herself into a fox, and thus her table never lacked for geese, ducks, and all kinds of poultry.

“Her grandchild knew about it, and one day when the schoolmaster was talking about magic in the school, the child told about the fox strap, and the next day brought it to school.

“The schoolmaster took it into his hand and unintentionally approached his head with it. Suddenly he was standing before the children, transformed into a fox. They broke out with a deafening noise. This so frightened the little schoolmaster that he jumped out the window with a single leap.

“He ran to the hill that lay near the village and there built himself a den.

“One day a great hunt was organized, and our fox was among those pursued by the huntsmen. A bullet hit him, and suddenly a schoolmaster was lying there before the bewildered huntsman. The bullet had struck the fox strap and ripped it apart.”

Witches were also supposed to be able to transform themselves into hares, cats, dogs, even geese in European folklore. In other parts of the world, though, folklore is full of people who can turn into different animals, and the animals are always ones local to the area. In various parts of Africa there are stories of people who transform into hyenas, leopards, and lions, while in various coastal areas of the world there are stories of seals, orcas, dolphins, and other water animals that can transform into people or which are humans in disguise.

The nagual is a story from many places in Mesoamerica, dating back to the ancient Aztecs and Olmecs and other people who lived in what is now Mexico and parts of Central and South America. The nagual was supposed to be someone who could shapeshift into a jaguar. Some people today still believe in the nagual the same way some people still believe in werewolves, and like many other shapeshifters it’s often connected with witches. Modern nagual stories are about witches who can transform into various animals at night, including owls, bats, turkeys, pumas, and even wolves. In some stories they’re thieves and murderers, while in other stories they help people.

Of course, not all folktales about shapeshifters are spooky. Sometimes they’re just meant to be funny, like this story from India.

Once there was a boy who herded buffaloes, and he noticed that at noon every day a dog would visit some nearby pools of water in a little valley. One day he hid to watch the dog. To his surprise, when the dog reached the water, it took its skin off and out stepped a beautiful young woman! She bathed in the pool, then put her dog-skin back on and left. The boy followed her to see what house she went to, then went back to watching his buffaloes.

Later that year the boy’s parents decided it was time for him to marry and began to look for a wife for him. But he told them he wanted a dog as his wife and even had a particular dog picked out. Everyone laughed at him, but he was determined to marry the dog and so his parents agreed.

The wedding took place and that night the new bridegroom pretended to fall asleep, and when the dog got up he watched to see what she would do. She took her dog-skin off and started to leave the house, but the groom jumped up and threw the dog-skin on the fire, where it burned up. His wife remained in her human form and they lived happily ever after.

Here’s another story, this one from Korea and published in 1911. Once a very poor old couple lived on the edge of a town, where they grew just enough rice to keep from starving. The old man caught fish to sell for extra money, but one day when he went to the lake, it was almost dried up and all the fish were gone. In the middle of the lake was a giant frog.

The old man shouted at the frog, “How dare you drink up the lake and eat up all the fish!” But the frog said, “You’ll thank me for it one day. Take me home and let me live in your house, and you’ll see how lucky you’ll be.”

The old man didn’t know what to do. Without the water from the lake, his rice would die, and without the fish from the lake, he had nothing to sell. He took the giant frog home.

The old man and his wife gave the frog the best room in their small house and the best food they had. In return, the frog turned out to be a very pleasant lodger and would talk and laugh with the couple long into the night, telling stories and singing songs.

After a week, the frog said he needed to take a wife, but she had to be beautiful and of noble birth. The old man went to the town’s magistrate, whose youngest daughter was the most beautiful woman in the land, and explained that a giant frog would like to marry the magistrate’s daughter.

The magistrate laughed at first, but when he realized the old man was serious, he ordered him to be beaten. But immediately, hail began to fall from the sky—first tiny hailstones, then bigger and bigger ones. The magistrate hastily changed his mind and said his daughter could marry the frog, and the hail stopped.

In this time and place, a bride went to her wedding with her eyes closed and painted over with wax so she couldn’t see her husband until after the ceremony. Imagine the bride’s horror, after the wax was removed and she took her first look at her new husband, when she discovered he was a giant frog! The bride was furious, but the frog said, “You’ll be glad you married me. Will you take these scissors and loosen the skin of my back? It’s too tight and hurts me.”

The bride was so angry that she took the scissors and cut the frog’s skin open all the way down his back. Then, to her astonishment, he wriggled right out of his skin and out stepped a handsome prince wearing fine silk clothes. He had been enchanted and the spell could only be broken when he married a human woman. He and his wife lived happily ever after, and the poor old couple who had helped him were given all the riches they desired and lived in a palace to the end of their days.

I could keep going forever, because there are a whole lot of stories about shapeshifters from around the world. If you want more folktales, I recommend the podcast “Sandman Stories Presents.” Each episode is another folktale. It’s really interesting and the host’s voice is soothing if you need a podcast to help you fall asleep.

Outside of folklore and mythology, shapeshifters aren’t real. To understand why, we have to look at a very different animal, the butterfly—or, since this is a Halloween episode and most moths are nocturnal, the moth. Let’s learn about an especially Halloween-y moth, the African death’s-head hawkmoth. It gets its name from a pattern on its back that looks sort of like a human skull. Its upper wings are black and its lower wings are usually yellowy-orange. Its wingspan is as much as 5 inches across, or 13 cm. It lives in parts of Africa and migrates to Europe for the summer.

The deaths-head hawkmoth caterpillar can grow up to 6 inches long, or 15 cm, and has a curved horn-like structure basically on its butt. After it hatches, it spends the next month or two eating leaves, especially the leaves of potato and tomato plants. During this time it will go through five stages of development, called instars, where it sheds its skin and grows larger. Finally, the caterpillar burrows into the ground and forms a little nesting chamber in the dirt. For the next few weeks it just sits in the chamber while moisture evaporates from its body and it forms a hard shell-like structure called a pupa.

Inside the pupa, the caterpillar transforms into a moth by breaking down its own body with digestive juices. The resulting goo of undifferentiated cells reforms into a moth body, a process that takes weeks. Finally the newly formed moth emerges from the shell of its pupa and from the ground, climbs onto a leaf or twig, and hangs there for a little while as its wings uncrumple and extend to their full size.

The transformation of a moth or butterfly, or other insects that go through the same process, is astounding and not fully understood. What we do know is that it takes massive amounts of energy. A caterpillar eats all the time in order to store up energy to metamorphose into a moth or butterfly. If there was an easier way, for instance if a caterpillar just had to cast a magic spell or put on a mothskin coat to transform, they would do it the easy way. But they don’t, because this is the most efficient way to transform from one body to another that nature has developed. It takes weeks, it’s messy and dangerous because the animal is helpless the whole time, and it only happens once in an insect’s lifetime.

So that’s that. Werewolf movies are a lot of fun to watch, especially this time of year, but you don’t have to lie awake at night afterwards worried that a werewolf is going to bite you.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!