Episode 413: The Great American Interchange

Thanks to Pranav for suggesting this week’s massive topic!

Further reading:

When did the Isthmus of Panama form between North and South America?

Florida fossil porcupine solves a prickly dilemma 10-million years in the making

Evidence for butchery of giant armadillo-like mammals in Argentina 21,000 years ago

Glyptodonts were big armored mammals:

The porcupine, our big pointy friend:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week, at long last, we’re going to learn about the great American interchange, also called the great American biotic interchange. Pranav suggested this topic ages ago, and I’ve been wanting to cover it ever since but never have gotten around to it until now. While this episode finishes off 2024 for us, it’s the start of a new series I have planned for 2025, where every so often we’ll learn about the animals of a particular place, either a modern country or a particular time in history for a whole continent.

These days, North and South America are linked by a narrow landmass generally referred to as Central America. At its narrowest point, Central America is only about 51 miles wide, or 82 km. That’s where the Panama Canal was built so that ships could get from the Atlantic Ocean to the Pacific and vice versa without having to go all around South America.

It wasn’t all that long ago, geologically speaking, that North and South America were completely separated, and they had been separated for millions of years. South America was part of the supercontinent Gondwana, while North America was part of the supercontinent Laurasia.

We’ve talked about continental drift before, which basically means that the land we know and love on the earth today moves very, very slowly over the years. The earth’s crust, whether it’s underwater or above water, is separated into what are called continental plates, or tectonic plates. You can think of them as gigantic pieces of a broken slab of rock, all of the pieces resting on a big pile of really dense jelly. The jelly in this case is molten rock that’s moving because of its own heat and the rotation of the earth and lots of other forces. Sometimes two pieces of the slab meet and crunch together, which forms mountains as the land is forced upward, while sometimes two pieces tear apart, which forms deep rift lakes and eventually oceans. All this movement happens incredibly slowly from a human’s point of view–like, your fingernails grow faster than most continental plates move. But even if a plate only moves 5 millimeters a year, after a million years it’s traveled 5 kilometers.

Anyway, the supercontinent Gondwana was made up of plates that are now South America, Africa, Australia, Antarctica, and a few others. You can see how the east coast of South America fits up against the west coast of Africa like two puzzle pieces. Gondwana actually formed around 800 million years ago, then became part of the even bigger supercontinent Pangaea, and when Pangaea broke apart around 200 million years ago, Gondwana and Laurasia were completely separate. North America was part of Laurasia. But Gondwana continued to break apart. Africa and Australia traveled far away from South America as molten lava filled the rift areas and helped push the plates apart, forming the South Atlantic Ocean. Antarctica settled onto the south pole and India traveled past Africa until it crashed into Eurasia. By about 30 million years ago, South America was a gigantic island.

It’s easy to think that all this happened just like taking puzzle pieces apart, but it was an incredibly long, complicated process that we don’t fully understand. To explain just how complicated it is, let’s talk for a moment about marsupials.

Marsupials are mammals that are born very early and finish developing outside of the mother’s womb, usually in a special pouch. Kangaroos, wallabies, koalas, wombats, and Tasmanian devils are all marsupials, and all from Australia. But marsupials didn’t originate in Australia and are still present in other parts of the world.

The oldest known marsupial appears in North America about 65 million years ago, which was part of the other supercontinent on Earth at the same time as Gondwana, called Laurasia. About the time marsupials were spreading out across Laurasia, from North America all the way to China, Laurasia and Gondwana were connected for a while along the northern edge of South America. Animals were able to cross from Laurasia to Gondwana before the two supercontinents split apart again. Marsupials spread from Laurasia and across Gondwana before the continent of Australia separated about 50 million years ago. Marsupials did so well in Australia that researchers think that before Australia was fully separated from Gondwana, marsupials actually started spreading back out of Australia and into Gondwana again.

While marsupials were doing extremely well in Australia, in South America, birds were the dominant vertebrate for a long time. We talked about terror birds in episode 202. Phorusrhacidae is the name for a family of flightless birds that lived from about 62 million years ago to a little under 2 million years ago. They were carnivores and various species ranged in size from about 3 feet tall to 10 feet tall, or 1 to 3 meters, and had long, strong legs that made them fast runners. The terror bird also had a long, strong neck, a sharp hooked beak, and sharp talons on its toes.

Other birds in North America were likewise huge, but could fly. Those were the teratorns, which are related to modern New World vultures. Since they had huge wingspans and could fly long distances easily, they could just fly between North and South America if they wanted to, so teratorns were found on both continents starting around 25 million years ago. They only went extinct around 10,000 years ago. The largest species known, Argentavis magnificens, lived in South America around six million years ago. It’s estimated to have a wingspan of at least 20 feet, or 6 meters, and possibly as much as 26 feet, or 8 meters. That’s the size of a small aircraft.

In addition to giant predator birds, South America had crocodilians that could grow over 30 feet long, or 9 meters, and possibly as much as 40 feet long, or 12 meters. And, of course, it had ancestral forms of animals we’re familiar with today, like sloths, anteaters, armadillos, opossums, monkeys, capybaras, and lots more. Some of these were incredibly large too, like the giant ground sloth that was as big as an African elephant and the glyptodon that was related to modern armadillos. Glyptodon had a huge bony carapace and rings of bony plates on the end of its thick tail that made it into a club-like weapon, and it was the size of a car. Both the giant ground sloths and the glyptodonts were plant-eaters, as were the notoungulates.

The notoungulates are an extinct order of hoofed animals that lived throughout South America. They were probably most closely related to rhinoceroses, horses, and other odd-toed ungulates, but they’re completely extinct with no living descendants. Some were tiny and actually looked and probably acted more like rabbits than horses, while others were massive. We talked about trigodon in episode 387, and it and many of its close relations in the family Toxodontidae were the size and build of a modern rhinoceros. Trigodon even had a small horn on its forehead. A closely related group, Litopterna, is also a completely extinct order of ungulates, which were mostly smaller and more deer-like than the notoungulates.

The Pleistocene is also called the ice age, but it’s more accurate to say that it was a series of ice ages with long periods of warmer weather in between–tens of thousands of years of warmer climate, then a colder cycle that lasted tens of thousands more years. When the glaciers were at their maximum, with ice sheets covering some parts of the world over a mile thick, or a kilometer and a half, sea levels were considerably lower because so much of the world’s water was frozen solid. That exposed more land that would ordinarily be partially or completely underwater, and it also led to a dryer climate overall. At the same time, volcanic activity in the ocean separating what is now North and South America had been building up volcanic islands for millions of years. All these factors and more combined to form the Isthmus of Panama, also called Central America, that is basically a land bridge connecting the two continents.

This started around 5 million years ago and the isthmus was fully formed by about 3 million years ago, or at least that’s the most accepted theory right now. A 2016 study suggested that the land bridge started forming far earlier than that, possibly as early as 23 million years ago, possibly 6 to 15 million years. Studies are ongoing to learn more about the timeline.

What we do know is that once the land bridge opened up, animals started migrating into this new area. Animals from North America migrated south, and animals from South America migrated north. It didn’t happen all at once, of course. It was a slow process as various animal populations expanded into Central America over generations. Some animals had trouble with the climate or couldn’t find the right foods, while others did really well and expanded rapidly.

The ancestors of some animals that made it to North America and are still around include the Virginia opossum, the armadillo, and the porcupine. Meanwhile, the ancestors of llamas, horses, tapirs, deer, canids, felids, coatis, and bears traveled to South America and are still there, along with many smaller animals like rodents. Many other animals migrated, survived for a while, but later went extinct. This included a type of elephant called the gomphothere and saber-toothed cats that migrated south, while ground sloths, terror birds, glyptodonts, capybaras, and even a type of notoungulate migrated north.

You may notice that more animals that migrated south survived into modern times. South America was much warmer overall than North America, and most animals that traveled north had trouble adapting to a colder climate and competing with animals that were already well-adapted to the cold. Animals traveling south encountered warmer climates early, and if they were able to tolerate hot weather they didn’t have to worry about any climactic shocks on the rest of their journey south. As a result, North American animals were able to establish themselves in larger numbers, which helped them adapt even faster since more babies were being born and surviving.

One South America to North America success story is the porcupine. Porcupines are rodents, and there are two groups, referred to as old world and new world porcupines. Those are not great terms but that’s what we have right now. The old world porcupines are found in parts of Africa, Asia, and Italy, although they were once more widespread in Europe, while new world porcupines are found in parts of North and South America. Old world porcupines live exclusively on the ground and are larger overall than new world ones, which spend a lot of time in trees. Surprisingly, the two groups are only distantly related. They evolved spines separately. They’re also only very distantly related to hedgehogs.

The one thing everyone knows about the porcupine is that it has quills, long sharp spines that make hedgehog spines look positively modest. Porcupine quills are dangerous. They’re modified hairs, and actual hair grows in between the quills, but they’re covered in strong keratin plates and are extremely sharp. They also come out easily and regrow all the time. A porcupine can hold its spines down flat so it won’t hurt another porcupine, which is what they do when they mate.

Only one species of porcupine lives in North America, called the North American porcupine. It lives throughout much of the northern and western part of the continent, from way up in the far north of Canada down to central Mexico, although it doesn’t live in most of the southeast. We don’t know if the North American porcupine developed after South American porcupines migrated north, or if it developed much earlier, around 10 million years ago. Porcupine experts have been arguing about this for years, because there aren’t very many porcupine fossils to study.

Then a nearly complete fossil porcupine was discovered in Florida. It was such a big deal that the scientific team that discovered it decided to create an entire college course for paleontology students to help study the specimen. The resulting study was published in May of 2024, and the results suggest that the North American porcupine evolved a lot longer ago than the Isthmus of Panama formed.

The North American porcupine had to change a lot to withstand the intense cold when its ancestors were tropical animals. The North American porcupine is very different from its South American cousins. It spends less time in trees and doesn’t have a prehensile tail, it eats a lot of bark instead of mostly leaves, and it has thick insulating fur between its quills. The fossilized specimen discovered in Florida still had a prehensile tail and didn’t have the strong jaw it needed to gnaw bark off trees, but it already showed a lot of adaptations that are seen in the North American porcupine but not in South American species.

Ultimately, of course, a lot of large animals went extinct around 12,000 to 10,000 years ago, the end of the Pleistocene. Animals like mammoths that were well-adapted to cold died out as the climate warmed, and so did their predators, like dire wolves and the American lion. The notoungulates and other megaherbivores in South America went extinct too.

One animal that I haven’t mentioned yet that migrated south successfully was Homo sapiens. Maybe you’ve heard of them. Until very recently, the accepted time frame for humans migrating into South America was about 16,000 years ago, although not everyone agreed. But in July of 2024, a new study pushed that date back to 21,000 years ago.

The study examined glyptodont fossils found in what is now Argentina. The fossils were found on the banks of a river and were determined to show butchering marks from stone tools. The bones were dated to almost 21,000 years ago, which means that humans probably moved into South America a lot earlier than that. It takes time to travel from Central America down to Argentina.

One detail most people don’t know about when it comes to the Great American Interchange is how marine animals were affected. It was exactly opposite for them. Instead of a new land to explore, which caused very different animals to encounter each other for the first time, the Isthmus of Panama cut populations of marine animals from each other. They’ve been evolving separately ever since. So I guess whether a land bridge is bad or good depends on your point of view.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 412: Whales and Dolphins

Thanks to Elizabeth, Alexandra, Kimberly, Ezra, Eilee, Leon, and Simon for their suggestions this week!

Further reading:

New population of blue whales discovered in the western Indian Ocean

An Endangered Dolphin Finds an Unlikely Savior–Fisherfolk

The humpback whale:

The gigantic blue whale:

The tiny vaquita:

The Indus river dolphin:

The false killer whale:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to have a big episode about various dolphins and whales! We’ve had lots of requests for these animals lately, so let’s talk about a bunch of them. Thanks to Elizabeth, Alexandra, Kimberly, Ezra, Eilee, Leon, and Simon for their suggestions.

We’ll start with a quick overview about dolphins, porpoises, and whales, which are called cetaceans. All cetaceans alive today are carnivorous, meaning they eat other animals instead of plants. This includes the big baleen whales that filter feed, even though the animals they eat are tiny. Cetaceans are mammals that are fully aquatic, meaning they spend their entire lives in the water, and they have adaptations to life in the water that are simply astounding.

All cetaceans alive today belong to either the baleen whale group, which filter feed, or the toothed whale group, which includes dolphins and porpoises. The two groups started evolving separately about 34 million years ago and are actually very different. Toothed whales are the ones that echolocate, while baleen whales are the ones that have extremely loud, often beautiful songs that they use to communicate with each other over long distances. It’s possible that baleen whales also use a limited type of echolocation to navigate, but we don’t know for sure. There’s still a lot we don’t know about cetaceans.

Now let’s talk about some specific whales. Ezra wanted to learn more about humpback and blue whales, so we’ll start with those. Both are baleen whales, specifically rorquals. Rorquals are long, slender whales with throat pleats that allow them to expand their mouths when they gulp water in. After the whale fills its mouth with water, it closes its jaws, pushing its enormous tongue up, and forces all that water out through the baleen. Any tiny animals like krill, copepods, small squid, small fish, and so on, get trapped in the baleen. It can then swallow all that food and open its mouth to do it again. The humpback mostly eats tiny crustaceans called krill, and little fish.

The humpback grows up to 56 feet long, or 17 meters, with females being a little larger than males on average. It’s mostly black in color, with mottled white or gray markings underneath and on its flippers. Its flippers are long and narrow, which allows it to make sharp turns.

The humpback is closely related to the blue whale, which is the largest animal ever known to have lived. It can grow up to 98 feet long, or 30 meters, and it’s probable that individuals can grow even longer. It can weigh around 200 tons, and by comparison a really big male African elephant can weigh as much as 7 tons. Estimates of the weight of various of the largest sauropod dinosaurs, the largest land animal ever known to have lived, is only about 80 tons. So the blue whale is extremely large.

The blue whale only eats krill and lots of it. To give you an example of how much water it can engulf in its enormous mouth in order to get enough krill to keep its massive body going, this is how the blue whale feeds. When it finds an area with a lot of krill floating around, it swims fast toward the krill and opens its giant mouth extremely wide. When its mouth is completely full, its weight—body and water together—has more than doubled. Its mouth can hold up to 220 tons of water. Since the whale is in the water, it doesn’t feel the weight of the water in its mouth.

Blue whales live throughout the world’s oceans, but a few years ago scientists analyzing recordings of whale song from the western Indian Ocean noticed a song they didn’t recognize. It was definitely a blue whale song, but one that had never been documented before. Not long after, one of the same scientists was helping analyze humpback whale recordings off the coast of Oman and recognized the same unusual blue whale song.

After the finding was announced, other scientists checked their recordings from the Indian Ocean and a few realized they had the mystery blue whale song too. The recordings come from a population of blue whales that hadn’t been documented before, and which may belong to a new subspecies of blue whale.

Elizabeth, Alexandra, and Leon all wanted to learn about dolphins. Kimberly also specifically wanted to learn about the Indus River dolphin and Leon about the vaquita porpoise. Dolphins and porpoises are considered toothed whales, but they’re also relatively small and can swim very fast. Orcas are actually dolphins even though they’re often called killer whales.

Even a small cetacean is really big, but the exception is the vaquita. It’s the smallest cetacean alive today, not even five feet long, or 1.5 meters. It lives only in the upper Gulf of California and is gray above and white underneath, with black patches on its face.

The vaquita spends very little time at the surface of the water, so it’s hard to spot and not a lot is known about it. It mostly lives in shallow water and it especially likes lagoons with murky water, since that’s where it can find lots of the small animals it eats, including small fish, squid, and crustaceans.

The vaquita is critically endangered, mostly because it often gets trapped in illegal gillnets and drowns.  There may be as few as ten individuals left alive. Attempts at keeping the vaquita in captivity have failed, but it’s strictly protected by both the United States and Mexico. Some scientists worry that even though vaquita females are still having healthy calves, there are so few of the animals left that they might not recover and are functionally extinct. But only time will tell, so the best thing everyone can do is what we’re already doing, keeping the vaquita and its habitat as safe as possible.

Another small cetacean is the Indus River dolphin, which grows up to 8 and a half feet long, or 2.6 meters. As you can probably guess from its name, it actually lives in fresh water instead of the ocean, specifically in rivers in Pakistan and India. It’s pinkish-brown in color and has a long rostrum, or beak-like nose, which turns up slightly at the end and is filled with sharp teeth that it uses to catch fish and other small animals. Because the rivers where it lives are murky, the dolphin doesn’t have very good eyesight. It probably can’t see anything except light and dark with its tiny eyes, but it can sense its surroundings just fine with echolocation.

Like most cetaceans, the Indus River dolphin is endangered, but it’s doing a lot better these days than it was just a few decades ago. In the 1970s only about 150 of the little dolphins were left alive, and by 2001 there were a little over 600. Today there are around 2,000. Habitat loss, pollution, and accidental drowning in fishing nets are still ongoing problems, but these days the fishing families that live along the river are helping it whenever they can. The fishers rescue dolphins who get stranded in shallow water and irrigation canals, and the government encourages this by paying the fishers a small amount for their help. Since this part of the country is very poor, a little bit of extra money can mean a big difference for the families, and of course their help means a lot to the dolphins too.

One interesting thing is that the Indus River dolphin often swims on its side. That is, it just tips over sideways and swims around as though that’s the most normal thing in the world. Scientists think this helps it navigate shallow water. And the Indus River dolphin isn’t very closely related to other dolphins and whales.

Quite a while ago now, Simon brought the false killer whale to my attention. In 1846 a British paleontologist published a book about British fossils, and one of the entries was a description of a dolphin. The description was based on a partially fossilized skull discovered three years before and dated to 126,000 years ago. It was referred to as the false killer whale because its skull resembled that of a modern orca. Scientists thought it was the ancestor of the orca and that it was extinct.

Or maybe not, because in 1861, a dead but very recently alive one washed up on the coast of Denmark.

The false killer whale is dark gray and grows up to 20 feet long, or 6 meters. It mostly eats squid and fish, including sharks. It’s not that closely related to the orca and actually looks more like a pilot whale. It will sometimes hang out with dolphins, including occasionally hybridizing with bottlenose dolphins, but then again sometimes it will eat dolphins. Watch out, dolphins.

Finally, Eilee wanted to learn about little-known whales, and that definitely means beaked whales. There are 24 known species of beaked whale, but there may still be species unknown to science. We know very little about most of the known species, because they live in remote parts of the ocean. They prefer deep water and are extremely deep divers, with the Cuvier’s beaked whale recorded as diving as deep as 1.8 miles, or almost 3 km, and staying underwater without a breath for 222 minutes. That’s approximately 220 minutes longer than a human can hold their breath.

Let’s finish with Sato’s beaked whale, which was only described in 2019. It’s black with a chunky body and small flippers and dorsal fin. It also has a short beak. It lives in the north Pacific Ocean and was thought to be a darker population of Baird’s beaked whale, which is gray, but genetic studies and a careful examination of dead beached individuals proved that it was a completely different species. It grows up to 23 feet long, or 7 meters, but since no female specimens have ever been found, we don’t know if the female is larger or smaller than the male.

We basically know nothing about this whale except that it exists, and the fact that it is alive and swimming around in the ocean right now, along with other whales, is an amazing, wonderful thing.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 406: Some Turtles and a Friend

Thanks to Riley and Dean, Elizabeth, and Leo for their suggestions this week!

Further reading:

Groundbreaking study reveals extensive leatherback turtle activity along U.S. coastline

A bearded dragon:

The tiny bog turtle:

The massive leatherback sea turtle:

The beautiful hawksbill turtle [photo by U.S. Fish and Wildlife Service]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some reptiles suggested by four different listeners: Riley and Dean, Elizabeth, and Leo.

We’ll start with the brothers Riley and Dean. Dean wants to learn more about the bearded dragon, and that may have something to do with a certain pet bearded dragon named Kippley.

“Bearded dragon” is the name given to any of eight species of lizard in the genus Pogona, also referred to as beardies. They’re native to Australia and eat plants and small animals like worms and insects. They can grow about two feet long, or 60 cm, including the tail, but some species are half that length. Females are a little smaller than males on average.

The bearded dragon gets its name because its throat is covered with pointy scales that most of the time aren’t very noticeable, but if the lizard is upset or just wants to impress another bearded dragon, it will suck air into its lungs so that its skin tightens and the spiky scales under its throat and on the rest of its body stick out. They’re not very sharp but they look impressive. Since the bearded dragon can also change color to some degree the same way a chameleon can, when it inflates its throat to show off its beard, the beard will often darken in color to be more noticeable. Both males and females have this pointy “beard.”

Bearded dragons that are sold as pets these days are more varied and brighter in color than their wild counterparts, although wild beardies can be brown, reddish-brown, yellow, orange, and even white. Australia made it illegal to catch and sell bearded dragons as pets in the late 20th century, but there were already lots of them outside of Australia by then. Pet bearded dragons are mainly descended from lizards exported during the 1970s, which means they’re quite domesticated these days and make good pets.

Like some other reptiles and amphibians, the bearded dragon has a third eye in the middle of its forehead. If you have a pet beardie and are about to say, “no way, there is definitely not a third eye anywhere, I would have noticed,” the eye doesn’t look like an eye. It’s tiny and is basically just a photoreceptor that can sense light and dark. Technically it’s called a parietal eye and researchers think it helps with thermoregulation.

Next, Riley wants to learn about turtles, AKA turbles, and especially wants everyone to know the difference between a tortoise and a turtle. It turns out that while many turtles are just fine living on land, they’re often more adapted to life in the water. Turtles have a more streamlined shell and often flipper-like legs or webbed toes. Tortoises only live on land and as a result they have shells that are more dome-shaped, and they have large, strong legs that resemble those of a tiny elephant.

You can’t always go by an animal’s common name to determine if it’s a tortoise or a turtle, but it’s also not always clear whether an animal is a tortoise or a turtle at first glance. Take the eastern box turtle, for instance, which is common in the eastern United States. It has a domed carapace, or shell, but it’s still a turtle, not a tortoise. And, I’m happy to say, it can swim quite well. This is a relief to find out because when I was about six years old, my mom visited someone who had kids a little older than me. I didn’t know them but they were nice and showed me the swampy area near their house. At one point one of the older boys found a box turtle, took it over to a little bridge over a pond, and dropped it in the water. I screamed, and he was absolutely shocked. He said he thought box turtles belonged in the water and he was helping it, but I thought they couldn’t swim and he’d just killed the poor turtle. I have continued to think he’d killed the poor turtle until just now, when I learned they can swim, and I can’t even tell you how relieved I am. Anyway, eastern box turtles have a domed shell, yes, and stumpy club-like front legs, but their hind legs are less like elephant legs than regular turtle legs. Since box turtles can live to be 100 years old, it’s possible that that one is alive and well even now.

Riley also wants everyone to know not to take a turtle from the woods, which is a very good rule to live by. In fact, it’s important not to take any wild animals from the woods no matter how cute they are. To continue our example, eastern box turtles have small territories that they defend from other box turtles. If you take the turtle out of its territory even for just a few days, when you return it to the woods, another turtle may have already taken over and will chase it away. Turtles don’t travel very fast and are vulnerable to being hit by cars and eaten by lots of different predators, so without a safe territory where it can hide and find food, it can die very quickly.

One of the turtles Leo suggested we learn about was the bog turtle. It’s the smallest turtle in North America, with a carapace barely four inches long, or 10 cm. It lives in a few parts of the eastern United States, and likes marshy areas with slightly acidic water. It spends a lot of time in the water, but also plenty of time on land. It eats worms, slugs, snails, water plants, berries, insects, and even small frogs when it can catch them.

The bog turtle is so small that pretty much anything big enough to swallow it will eat it. Its main defense is to bury itself in soft mud and hide. It’s almost completely black or dark gray in color, but it does have a bright orange spot on each side of its neck.

The bog turtle is critically endangered due to habitat loss, pollution, and poaching for the illegal pet trade. Conservationists are working to improve its habitat, and in the meantime some zoos and aquariums are helping with a captive breeding program. Since a bog turtle isn’t old enough to lay eggs until it’s at least 8 years old, the species as a whole reproduces slowly.

Leo also suggested hawksbill and leatherback turtles, and Elizabeth wants to learn about sea turtles in general. We talked about sea turtles way back in episode 75, so it’s definitely time to revisit the topic.

Seven species of sea turtle are alive today, and you can tell they’re turtles and not tortoises because they have streamlined shells and flippers instead of feet. They migrate long distances to lay eggs, thousands of miles for some species and populations, and usually return to the same beach where they were hatched. Female sea turtles come ashore to lay their eggs in sand, but the males of most species never come ashore. The exception is the green sea turtle, which sometimes comes ashore just to bask in the sun. Once the babies hatch, they head to the sea and take off, swimming far past the continental shelf where there are fewer predators. They live around rafts of floating seaweed call sargassum, which protects them and attracts the tiny prey they eat.

Six of the extant sea turtles are relatively small. Not small compared to regular turtles, small compared to the seventh living sea turtle, the leatherback. It’s much bigger than the others and not very closely related to them. It can grow some nine feet long, or 3 meters, and instead of having a hard shell like other sea turtles, its carapace is covered with tough, leathery skin studded with tiny osteoderms. Seven raised ridges on the carapace run from head to tail and make the turtle more stable in the water, a good thing because leatherbacks migrate thousands of miles every year. Not only is the leatherback the biggest and heaviest turtle alive today by far, it’s the heaviest living reptile that isn’t a crocodile. It has huge front flippers, is much more streamlined even than other sea turtles, and has a number of adaptations to life in the open ocean.

The leatherback lives throughout the world, from warm tropical oceans up into the Arctic Circle. It mostly eats jellyfish, so it goes where the jellyfish go, which is everywhere. It also eats other soft-bodied animals like squid. To help it swallow slippery, soft food when it doesn’t have the crushing plates that other sea turtles have, the leatherback’s throat is full of backwards-pointing spines. What goes down will not come back up, which is great when the turtle swallows a jellyfish, not so great when it swallows a plastic bag. It’s endangered due to pollution, accidental drowning when it gets caught in fishing nets, and habitat loss of its nesting beaches.

The hawksbill, or hawkbill sea turtle grows to a much more reasonable size, around three feet long, or 90 cm, and mostly lives around tropical reefs. It has a more pointed, hooked beak than other sea turtles, sort of like a hawk, which gives it its name. You might think it eats fish with a beak like that, but it mostly eats jellyfish and sea sponges. It especially likes the sea sponges, some of which are lethally toxic to most other animals. It also doesn’t have a problem eating even extremely stingy jellies and jelly-like animals like the Portuguese man-o-war. The hawkbill’s head is armored so the stings don’t bother it, although it does close its eyes while it chomps down on jellies. Its meat can be toxic due to the toxins it ingests. People used to kill hawksbill sea turtles for their multicolored shells, but these days it’s a protected species like all sea turtles.

The hawksbill is also biofluorescent! Researchers only found this out by accident in 2015, when a team studying biofluorescent animals in the Solomon Islands saw and filmed a hawksbill glowing like a UFO with neon green and red light. So you never know what other secrets sea turtles might be hiding.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 404: The Kraken and Chessie

Thanks to Ezra and Leo for suggesting these two sea monsters this week! Happy Halloween!

Further reading:

Legend of Chessie alive, well in Maryland

Here be sea monsters: We have met Chessie and…is it us?

Not actually a kraken, probably:

Not actually Chessie but an atmospheric photo of a toy brontosaurus:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Just a few days remain in October, so this is our Halloween episode and the end of monster month for another year! We had so many great suggestions for Halloween episodes that I couldn’t get to them all, but I might just sprinkle some in throughout the other months too. We have two great monsters to talk about this week, suggested by Ezra and Leo, the kraken and Chessie the sea serpent.

First, as always on our Halloween episode, we have a few housekeeping details. If anyone wants a sticker, feel free to email me and I’ll send you one, or more than one if you like. That offer is good all the time, not just now. I don’t have any new stickers printed but I do have lots of the little ones with the logo and the little ones with the capybara.

I also don’t have any new books out this year, but you can still buy the Beyond Bigfoot & Nessie book if you like. I am actually working on another book about mystery animals, tentatively titled Small Mysteries since it’s going to be all about mysteries surrounding small animals like frogs and invertebrates that often get overlooked. I’m hoping to have it ready to publish in early 2026 or so. I don’t know that I’ll do another Kickstarter for it since that was a lot of work, and I just finished a Kickstarter for more enamel pins and just can’t even think about the stress of doing another crowdfunding campaign anytime soon. Also, I hate to keep asking listeners for money.

Anyway, one of the things I don’t like about Beyond Bigfoot & Nessie is that I didn’t cite my sources properly, so for the Small Mysteries book I’m being very careful to have footnotes on pretty much every page so that anyone who wants to double-check my information can do so easily.

But all that is in the future. Let’s celebrate Halloween now with a couple of sea monsters!

We’ll start with Ezra’s suggestion, the kraken. It’s a creature of folklore that has gotten confused with lots of other folklore monsters. We don’t know how old the original legend is, but the first mention of it in writing dates to 1700, when an Italian writer published a book about his travels to Scandinavia. One of the things he mentions is a giant fish with lots of horns and arms, which he called the “sciu-crak.” This seems to come from the Norwegian word meaning sea krake.

“Krake” is related to the English word crooked, and it can refer to an old dead tree with crooked branches, or tree roots, or something with a hook on the end like a boat hook, or an anchor or drag, or various similar things related to hooks or multiple prongs. That has led to people naturally assuming that the kraken had many arms and was probably a giant squid, and that may be the case. But there’s another possibility, because in many old uses of the word krake, it means something weak or misshapen, like a rotten old dead tree. In the olden days in Norway, people thought that if you spoke about an animal by name, the spirit that protected that animal would hear you. Some historians think that whale-hunters referred to whales as krake so the whale’s protective spirit wouldn’t guess that they were planning a whale-hunt. Who would refer to a huge, strong animal like a whale as weak and crooked, after all?

Whatever its origins, the kraken’s modern form is mainly due to a Danish bishop called Erik Pontoppidan. He wrote about the kraken in 1753, and embellished the story by saying the kraken could reach out of the ocean with its long arms to grab sailors or just pull an entire ship down into the water and sink it. He also said the kraken was so big that when it rested at the water’s surface, sailors would mistake it for an island. This is a common story in many cultures, always referring to whales. Pontoppidan suggested the kraken might be a giant octopus, but also thought it might be a giant starfish or even a giant crab. He seemed to think the word kraken should be krabben, and I swear I didn’t make that up.

Either way, the kraken is a monster of folklore, not a real animal. That’s a relief! Now you don’t have anything to worry about in the ocean at all, right?

Next, let’s learn about another water monster, Chessie, suggested by Leo. Leo also suggested we talk about Chesapeake Bay in general.

Chesapeake Bay is located on the east coast of North America, specifically where the states of Virginia, Maryland, and Delaware meet. On the map it looks sort of like a huge crack in the land, but while rivers and streams empty into it like they would a gigantic lake, it’s connected to the Atlantic Ocean. It’s about 200 miles long, or 320 km, and up to 30 miles wide, or 48 km.

It formed about 35 million years ago when a small meteor struck the area. During the Pleistocene, AKA the ice ages, the Susquehanna River flowed through the crater and into the sea. Around 10,000 years ago, ocean levels rose due to melting glaciers, and flooded the river valley that had started out as an impact crater. Now it’s a bay.

Chesapeake Bay isn’t technically a lake, but it’s also not really part of the ocean. Part of the bay is freshwater from the rivers that flow into it, while at the end that connects to the Atlantic Ocean, it’s salty. In between it’s brackish water that’s kind of salty but not nearly as salty as the ocean. It’s home to hundreds of animals, with many more visiting the bay during migration. Sometimes whales are even spotted in the bay.

We could literally talk about the animals and the history of Chesapeake Bay all day and not run out of topics, so I have plans to revisit some of the animals in future episodes. Today we mainly want to focus on the sea monster known as Chessie.

As you may have already guessed, the name Chessie isn’t just short for Chesapeake, it also echoes the name Nessie, the Loch Ness Monster. The first Nessie sighting was in 1933, leading to a lake monster craze in Scotland and many other parts of the world. Suddenly people were seeing monsters everywhere, such as Champ from Lake Champlain, which we talked about in episode 29 along with Nessie.

No one’s sure when the first Chessie sighting happened. Some people say it was as early as 1936, while others claim it wasn’t until 1980. In 1943 two fishermen reported seeing a strange creature in the water about 75 yards from their boat, or 68 meters. At first they thought there was something black floating in the water, with the visible part of it about 12 feet long, or 3 ½ meters. Then they realized it was alive. Its head was shaped like a horse’s but was only about the size of an American football. It’s not clear if it raised its head completely out of the water like a sea serpent in a cartoon, but the men did say that it turned its head almost all the way around several times.

There are also reports from 1977, 1978, 1980, 1982, 1997, and 2014. In 1978 a retired CIA officer saw what looked like a 15-foot, or 4 ½ meter, snake swimming in the water. In 1982 a man named Bob Frew took some grainy videocamera footage of something that he described as “a telephone pole that swims.” The video shows a brown object swimming like a marine snake, with a side to side motion.

In the 1980s people in the state of Maryland tried to get Chessie listed as a protected species. It didn’t work, but it did bring attention to the state of the Chesapeake Bay. The bay was increasingly polluted by industrial and agricultural waste that was allowed to enter the bay untreated, leading to algal blooms that deoxygenated the water and killed everything around them. The once-famous oyster reefs in the bay started to be overharvested too, and since oysters are natural water filters, their absence has caused an extra decrease in water quality. With Chessie acting as a mascot for water quality and ecology, people paid more attention to what was happening to the bay.

Chessie the monster doesn’t have a lot of sightings, and most likely they’re all misidentifications of ordinary animals or items, like whales or floating logs. There are some amazing creatures that live in or visit the bay, including a fish called the sturgeon that can grow up to 15 feet long, or 4.6 meters, bull sharks that can grow up to 13 feet long, or 4 meters, bottlenose dolphins, sea turtles, even manta rays. Most people agree that Chessie probably isn’t an actual sea serpent.

But there is another Chessie that’s definitely real, although you can’t actually call him a monster. A Florida manatee was spotted in the summer of 1994 swimming around in the bay and exploring some of the river mouths. Since Chesapeake Bay is nice and warm in summer, the manatee was fine at first. But by October he was still there, and the water was getting too cold for a manatee to tolerate.

Maryland’s Department of Natural Resources worked with the Coast Guard and a lot of volunteers to find the manatee, capture him safely, and get him back to Florida. He was given a clean bill of health by veterinarians and was tagged and released.

The following summer, he swam back to Chesapeake Bay. But who can blame him? It’s a beautiful place!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 402: The Hoop Snake and Friends

Thanks to Nora and Richard from NC this week as we learn about some scary-sounding reptiles, including the hoop snake!

Further reading:

The Story of How the Giant “Terror Skink” Was Presumed Extinct, Then Rediscovered

San Diego’s Rattlesnakes and What To Do When They’re on Your Property

Snake that cartwheels away from predators described for the first time

Giant new snake species identified in the Amazon

The terror skink, AKA Bocourt’s terrific skink [photo by DECOURT Théo – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=116258516]:

The hoop snake according to folklore:

The sidewinder rattlesnake [photo taken from this article]:

The dwarf reed snake [photo by Evan Quah, from page linked above]:

The green anaconda [photo by MKAMPIS – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=62039578]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As monster month continues, we’re going to look at some weird and kind of scary, or at least scary-sounding, snakes and lizards. Thanks to Nora and Richard from NC for their suggestions this week!

We’ll start with the terror skink, whose name should inspire terror, but it’s also called Bocourt’s terrific skink, which is a name that should inspire joy. Which is it, terror or joy? I suppose it depends on your mood and how you feel about lizards in general. All skinks are lizards but not all lizards are skinks, by the way.

The terror or possibly terrific skink lives on two tiny islets, which are miniature islands. These islets are themselves off the coast of an island called the Isle of Pines, but in French, which I cannot pronounce. The Isle of Pines is only 8 miles wide and 9 miles long, or 13 by 15 km, and is itself off the coast of the bigger island of New Caledonia. All these islands lie east of Australia. Technically the islets where the skink lives are off the coast of another islet that is itself off the coast of the Isle of Pines, which is off the coast of New Caledonia, but where exactly it lives is kept a secret by the scientists studying it.

The skink was described in 1876 but only known from a single specimen captured on New Caledonia around 1870, and after that it wasn’t seen again and was presumed extinct. Colonists and explorers brought rats and other invasive animals to the New Caledonian islands, which together with habitat loss have caused many other native species to go extinct.

But in December 2003, a scientific expedition studying sea snakes around the New Caledonian islands caught a big lizard no one recognized. Once the expedition members realized it was a terror skink, alive and well, they took lots of pictures and videos of it and then released it back into the wild. Since then, more specimens have been discovered during four different expeditions, but only on the islets, not on any of the bigger islands. It’s so critically endangered that its location has to be kept secret, because if someone captures some of the lizards to sell on the illegal pet market, the species could easily be driven to extinction.

The terror skink is gray-brown with darker stripes, a long tail, and a slightly downturned mouth that makes it look grumpy. It grows about 20 inches long, or 50 cm, including its tail. This is really big for a skink, so technically it’s a giant skink.

It gets the name terror skink from its size and from its teeth, which are large and curved like fangs. It mainly eats one particular species of land crab, which is why its jaws are so strong and its teeth are so sharp, so it can bite through the crab’s exoskeleton.

Another lizard with a spooky name that has been presumed extinct is the gray ghost lizard, suggested by Richard from NC. It’s more properly called the giant Tongan ground skink, and it’s native to some more South Pacific islands—specifically, the Tongan Islands. These islands are even farther east from Australia than the New Caledonian islands, and are actually closer to New Zealand than to Australia, although they’re not really very close to either.

The giant Tongan ground skink was described in 1839 from two specimens collected in the late 1820s on Tongatapu Island. They’re the only two specimens known and the lizard is considered extinct, especially considering that these days, the island is almost completed deforested and rats, dogs, and cats have been introduced to it, which has driven many species to extinction.

But after the terror skink was rediscovered, scientists started to wonder if the gray ghost might still be around. It was called the gray ghost because it was so hard to see, since it was dark gray in color. The native Tongan people considered it a good omen if someone saw one, since it was so rare.

A paper published in early 2024 suggests that the gray ghost might be living on some smaller islands where forests still remain, and also suggested that it might be nocturnal and a burrowing skink. That would explain why it was so rarely seen by the people who lived on its island when it was still alive.

We know basically nothing about the gray ghost. Hopefully an expedition to the smaller Tongan islands will rediscover it so we can learn more about it and protect it.

Richard from NC also suggested we talk about the hoop snake, an animal of folklore. I remember reading about it as a kid in a book about American folklore animals, most of which were clearly jokey and not meant to seem real. The hoop snake sounded more realistic.

The hoop snake was supposed to be a long, slender snake that slithered around normally most of the time, but when it needed to move faster, it would grab the end of its tail in its mouth and roll like a wheel, or a hoop. Some versions of the story had the snake rolling along with the tip of its tail pointed forward, and since the tail was supposed to be sharp and venomous, it would roll after you so fast that when its tail stabbed you, you’d drop dead. The only way to escape would be to jump behind a tree. The tail would stab the tree instead and you could run away while the hoop snake was trying to unstick its tail. The venom in its tail was supposed to be so deadly that the tree would turn black and die. Other versions of the story said you had to jump through the snake’s hoop to confuse it, which would allow you to get away safely.

All this is weird, to say the least, but some snakes do have ways of traveling that are unusual. The sidewinder, for instance, is a real species of rattlesnake from the southwestern United States and northwestern Mexico. It grows around 2 ½ feet long, or 80 cm, and has pointy scales, called keeled scales, including a pair above its eyes that make it look like it has little horns. Since it’s a type of rattlesnake, it has a rattle that it can shake to make a loud warning noise. It’s mostly brown in color, or sometimes pinkish, yellowish, or even whitish, with darker stripes or blotches down its back. Its coloration helps camouflage it against the ground, and it will actually change color slightly depending on the temperature. This is something other rattlesnakes can do too.

The sidewinder lives in desert conditions where it has to travel through loose sand, and the sand is also extremely hot. While the snake can travel normally when it wants to, it sidewinds to move quickly over loose sand or very hot sand that might burn it. It lifts most of its body up so that it’s only touching the ground in two places, then undulates its body so that the sections touching the ground constantly move. That way no part of its body has to stay in contact with hot sand for more than a split second. It travels in a path that runs diagonal to the direction its body is pointing. That sounds complicated, but it’s easy for the snake. It’s not even the only snake that can travel by sidewinding. Other desert-living snakes travel across hot sand by sidewinding, including several species from Africa, but just about any snake can do it if they need to. It allows a snake to travel over surfaces that are too slippery for its belly scales to get a grip.

The story of the hoop snake might be based on garbled reports of sidewinders, but it might just be a completely invented animal. The hoop snake story is found in other parts of the world too, especially Australia, although it dates back to at least the late 18th century in the United States.

No snake in the world has the anatomy to allow it to roll like a hoop without hurting itself. But there is one other snake that does something very similar, called cartwheeling. It’s the dwarf reed snake that lives in Malaysia and other parts of southeast Asia. Reed snakes aren’t very well known to science, so this cartwheeling activity wasn’t documented scientifically until recently, with the study published in 2023. Reed snakes are nocturnal and spend most of the daytime hiding under rocks or logs, or buried in dead leaves or sand, so they’re not seen very often by people. The dwarf reed snake is slender and only grows about 10 inches long, or 25 cm.

Some small snakes can jump short distances by pushing their tails against the ground. The dwarf reed snake does something similar, but more complicated. It pushes off with its tail, with its body curved in a sort of S shape. It lands on its head and rolls over completely, head to tail, and then pushes off the ground again with its tail. It can move extremely fast in this way to get away from predators, but it takes a whole lot of energy. But when it’s moving downhill, with gravity on its side, it can continue to cartwheel longer.

Cartwheeling isn’t something the snake does often, and it’s rare that a human would ever observe it. But just like sidewinding, some scientists think cartwheeling might be a motion that more snakes can do if they really need to. Maybe that’s where the hoop snake legend started.

Let’s finish with a suggestion from Nora, who wanted to learn more about the green anaconda. That’s a scary snake for sure, because it happens to be the biggest snake alive today, and almost the longest, as far as we know.

The green anaconda lives throughout much of South America, although not in Patagonia because like most reptiles, it needs warm weather to function. It’s a beautiful olive green with black blotches, and it’s a big, bulky snake. It spends a lot of time in the water, which helps it stay cool in hot weather and helps support its weight comfortably, and its eyes are near the top of its head so it can watch for prey while it’s mostly submerged.

The anaconda is a member of the boa family and is a constrictor. It’s not venomous, but you really don’t want a hug from a hungry anaconda. Its body is bulky because it’s incredibly strong, and once it starts to contract its muscles, whatever it’s constricting has only minutes left to live. It can kill animals as large as caimans, which are a type of crocodile, tapirs, capybaras, deer, and even jaguars. For the most part, though, an anaconda doesn’t want to bother with prey that could potentially hurt it, so it will stick with smaller animals that are still big enough to make it worth the effort. And yes, it is possible that an anaconda in the wild could kill and eat a human, but there’s no reliable evidence that it’s ever happened.

It’s hard to know exactly how long and how heavy an anaconda can get. There are lots of stories of 30-foot, or 9-meter snakes, but that seems to be a wild exaggeration. Snakes are stretchy, and a healthy live snake doesn’t really want to stretch out straight to be measured. A dead snake is even stretchier than a live snake. A shed snakeskin is the stretchiest of all, and usually has stretched out quite a bit when the snake was shedding. A good estimate is that a big female anaconda can grow about 20 feet long, or 6 meters, and can weigh around 250 lbs, or 114 kg. Males are smaller on average, and a wild snake will weigh less than one kept in captivity.

There are definitely larger individual anacondas, especially considering that reptiles continue to grow throughout their lives, but they’re probably not that much longer. This is only a little shorter than the reticulated python, which can definitely grow up to 23 feet long, or 7 meters.

One important detail about the size of the green anaconda is that the biggest snakes live in the Amazon rainforest–but the Amazon rainforest is really hard for humans to navigate safely and most anacondas killed or kept in captivity lived in other parts of South America. So there might easily be anacondas in the rainforest that are much bigger than the ones scientists have been able to measure so far.

In February of 2024, a journal article was published about a 2022 National Geographic nature documentary and scientific expedition to the Amazon basin to find a rumored population of extra-large anacondas. The expedition was led by hunters from the Waorani people, who consider the snakes sacred, and the hunters and their chief were credited as co-authors of the paper, as they should be since they provided so much information.

The scientists were able to examine several fully grown anacondas and take tiny tissue and blood samples to test later. They were astounded at the size of the snakes they found, including one that measured 20 and a half feet long, or 6.3 meters. The hunters reported seeing snakes that they estimated as over 24 feet long, or 7.5 meters, that might have weighed as much as 500 pounds, or 226 kg.

Beyond mere size, though, is something very interesting, which the scientists learned when they got home and ran genetic tests. The anacondas are actually quite different genetically from other anacondas known to science, that live farther south. They described the snake as a new species, which they refer to as the northern green anaconda, but it has actually resulted in a lot of controversy. Some scientists agree that the northern green anaconda is a separate species, others think it’s only a subspecies of the green anaconda, while others think the genetic differences are minor and separating the northern green anaconda from other anacondas isn’t justified by the evidence.

Obviously scientists need to follow up and learn more about the anacondas, but one thing is clear. There are some really, really big snakes out there in the Amazon.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 399: Bears

Thanks to Anbo, Murilo, Clay, and Ezra for their suggestions this week! Let’s learn about some bears!

Further reading:

Snack attack: Bears munch on ants and help plants grow

Extinct vegetarian cave bear diet mystery unravelled

Ancient brown bear genomes sheds light on Ice Age losses and survival

The sloth bear has shaggy ears and floppy lips [photo from this site]:

An absolute unit of a Kodiak bear in captivity [photo by S. Taheri – zoo, own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1118252]:

A polar bear:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re revisiting a popular topic, bears! We’ll talk about some bears we’ve never covered before, with suggestions from Anbo, Clay, Ezra, and Murilo. We’ll even discuss a small bear mystery which has mostly been solved by science.

To start us off, Anbo wanted to learn about bears in general. We’ve had bear episodes before, but our last episode all about bears was way back in 2017, in episode 42. Some of our listeners weren’t even born back then, which makes me feel super old.

Bears live throughout much of the world today, but they evolved in North America around 38 million years ago. These ancestral bears were small, about the size of a raccoon, but they were successful. They spread into Asia via the land bridge Beringia, where they were even more successful than in North America, so successful that by around 30 million years ago, descendants of those earliest bear ancestors migrated from Asia back into North America. But it wasn’t until the Pleistocene around 2 ½ million years ago that bears really came into their own.

That’s because bears are megafauna, and megafauna evolved mainly as an adaptation to increasingly cold climates. As the ice ages advanced, a lot of animals grew larger so they could stay warm more easily. Predators also had to grow larger as their prey became larger, since if you want to hunt an animal the size of a bison or woolly rhinoceros, you’d better be pretty big and strong yourself.

Bears mostly weren’t hunting animals that big, though. Modern studies suggest that overall, bears are omnivores, not fully carnivorous. Bears eat a lot of plant material even if you don’t count the panda, which isn’t very closely related to other bears. Even when a bear does eat other animals, they’re not usually very big ones.

Let’s take Murilo’s suggestion as an example, the sloth bear. The sloth bear lives in India and is increasingly vulnerable due to habitat loss and poaching. It’s probably most closely related to the sun bear that we talked about in episode 234, which also lives in parts of South Asia. Both the sun bear and the sloth bear have long black hair and a white or yellowish V-shaped marking on the chest. The sloth bear’s hair is especially long on its neck and shoulders, like a mane, and its ears even have long hair.

The sloth bear stands around 3 feet high at the shoulder at most, or 91 cm, and a big male can be over 6 feet tall, or almost 2 meters, when he stands on his hind legs. This isn’t gigantic for bears in general, but it’s not small either. Scientists think the V-shaped marking on its chest warns tigers to leave the sloth bear alone, and tigers mostly do. If tigers think twice about attacking an animal, you know that animal has to be pretty tough.

The sloth bear has massive claws on big paws. The claws can measure 4 inches long, or 10 cm, although they’re not very sharp. The bear has an especially long muzzle but its teeth aren’t very large. Like most bears, it’s good at climbing trees and can run quite fast, and it swims well too. It even has webbed toes.

With all this in mind, what do you think the sloth bear eats? I’ll give you some more hints. It has loose, kind of flappy lips, especially the lower lip. It doesn’t have any teeth in the front of its upper jaw. It mainly uses its huge claws to dig.

If you guessed that the sloth bear eats ants, termites, and other insects, you are right! It digs into termite and ant nests and uses its long, flexible lips to slurp up as many insects as it can, giving them a quick crunch with its back teeth before swallowing them down.

Insects are actually quite nutritious, and the sloth bear isn’t the only bear that eats them. All bears snack on ants and other insects sometimes. You may have heard that bears love honey and will tear open beehives to get it, and while that’s true, the bear is mainly after the larval bees because they’re so nutritious. The honey is just, you know, dessert.

Next, Clay wanted to learn about the Kodiak bear, which may be the largest bear in the world. It’s a subspecies of brown bear and is sometimes called the Alaskan brown bear since it lives on some Alaskan islands called the Kodiak Archipelago. It’s light brown or rusty-red in color.

The Kodiak bear has been restricted to these islands for at least 10,000 years, since the end of the Pleistocene when the sea levels rose as glaciers melted. It demonstrates island gigantism, which is actually quite unusual. Because islands have limited resources, but are relatively protected from large numbers of predators, small animals are the ones that generally adapt to island life by growing larger. Animals that start off large generally adapt by growing smaller, called island dwarfism. That’s why some islands have been home to dwarf elephants but giant rodents.

In the case of the Kodiak bear, it has a source of protein that helps it grow so incredibly large, salmon. Five species of salmon spawn in the freshwater on the islands, and the bears are able to put on lots of weight to survive the harsh winter by eating as much salmon as they can catch. They also have lots of nutritious plants to eat. They actually prefer some plants to eating salmon, which makes sense when you think about it. A wild animal needs to conserve energy, and it can take a lot of energy to catch fish. It’s a lot easier to eat berries, which can’t swim away.

So how big can a Kodiak bear get? A big male can stand up to 10 feet tall on his hind legs, or 3 meters, and be 5 feet tall, or 1.5 meters, when standing on all fours. Bears kept in captivity can grow even larger. That’s much bigger than a grizzly and about the same size as the closely related polar bear, which brings us to Ezra’s suggestion.

Ezra wanted to learn about the polar bear, which lives in the Arctic and areas near the Arctic. It doesn’t live near the Antarctic, or south pole, which means polar bears don’t eat penguins, because penguins live around the Antarctic. The polar bear does eat a whole lot of other animals, though, and is the most carnivorous of all bears. It especially likes eating seals, and will also catch and kill walruses, caribou, and beluga whales. That’s right, the polar bear can actually kill an entire whale. The beluga is fairly small for a whale and relies on breathing holes in the ice, and sometimes when it comes up to breathe, there’s a polar bear waiting for it. Most of the time, though, the polar bear eats much smaller animals.

The polar bear spends a lot of its time on sea ice, and a lot of the time in the sea. It swims incredibly well and spends so much time in the water that some people consider it a marine animal. It’s certainly semi-aquatic. Its kidneys are adapted to filter excess salt out of its blood from seawater, and its small eyes are closer to the top of its head than in other bears. This helps it see above water while swimming.

The polar bear is closely related to the brown bear and will sometimes interbreed with the brown bear where their ranges overlap. The resulting hybrid bear is usually light brown in color. The polar bear is famously white, although its fur becomes yellowish as the year goes on. It sheds its winter coat in the spring and the new hair that grows in is white.

Actually, the polar bear’s fur is transparent, but it looks white because of the way it scatters light. The guard hairs are long and coarse, protecting a shorter, softer undercoat that helps keep the bear warm even on bitterly cold nights. Unlike other bears, the polar bear doesn’t hibernate, except for pregnant females.

There used to be a bear of similar size that lived in Europe and Asia during the Pleistocene and only went extinct about 24,000 years ago. The cave bear gets its name because so many of its remains have been found in caves. It may have hibernated in caves like some bears do today, or it might have used caves as shelters year-round.

Scientists think the cave bear was most closely related to brown bears and polar bears. The males were much larger than females, and a big male was as big as a Kodiak or polar bear. But this giant bear probably wasn’t too much of a problem for our ancient ancestors and Neandertal relations, because it was almost entirely vegetarian.

Scientists have studied the wear pattern on cave bear teeth and determined that it was eating a whole lot of fruit, especially berries. It probably did eat at least some meat, but it’s likely that most of it came from scavenged carcasses. The cave bear didn’t even have all the teeth that other bears have.

All this talk about huge bears brings us to a mystery. It may even be a mystery you were wondering about yourself. How did bears survive the end of the Pleistocene when so many other megafauna went extinct, from the mammoth and giant ground sloth to the dire wolf and sabertooth cat?

A team of scientists from Denmark and Japan decided to examine the genetics of ancient brown bears, to learn how individuals were related and therefore how bears migrated across the world over time. They extracted genetic material from the remains of bears that lived as much as 60,000 years ago and as recently as 3,800 years ago and compared them to each other and to bears alive today.

Scientists already knew that brown bears used to live in more parts of the world than they do today. The prevailing view was that as the climate warmed after the ice ages, the bears retreated into colder parts of the world where they were more comfortable. But the team learned something surprising from the study, which was published in January of 2024.

Brown bears that lived before the end of the Pleistocene, approximately 11,000 years ago, had much broader genetic diversity than the bears that lived more recently. That means that bears that lived as far south as Japan and Ireland during the Pleistocene didn’t move to colder parts of the world, they died out. Each population that went regionally extinct made the brown bear gene pool that much smaller.

Most likely it was a combination of luck and adaptability that allowed bears to survive the end-Pleistocene extinctions. Just think how sad it would be if I ended this episode by saying that bears went extinct 11,000 years ago. Instead, we can still go to the zoo and see all kinds of bears whenever we want to.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 391: Welcome to Snake Island

Follow the enamel pin Kickstarter here!

Let’s learn about some snakes this week! Thanks to Eilee, BlueTheChickenWing, and Richard from NC for their suggestions.

Further Reading:

Snake Island’s Venomous Vipers Find a New Home in Sao Paulo

‘Rarest Snake’ in the U.S. Hatches at Tennessee Zoo

The golden lancehead [picture from first article linked above]:

The Martinique lancehead/fer-de-lance:

The Louisiana pine snake, and a pine cone:

Show Transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

After today, the next four weeks will be all about invertebrates, or animals without a backbone, because it’s almost Invertebrate August! But this week let’s learn about some animals that are basically nothing but backbones, snakes! Thanks to Eilee, BlueTheChickenWing, and Richard from NC for their suggestions!

Also, if you like enamel pins even slightly as much as I do, I’m starting a Kickstarter in a few weeks to make some more. These will be bigger than the ones I made a few years ago and will include an aye-aye. Where else are you going to get an aye-aye enamel pin? There’s a link in the show notes if you want to sign up for an email reminder when the campaign goes live in mid-August. https://www.kickstarter.com/projects/kateshaw/familiar-friends-enamel-pins

Anyway, let’s start with Snake Island, suggested by Eilee. Snake Island is off the coast of Brazil in South America, and it’s quite small, only about 106 acres total, or 43 hectares. It’s hilly and a little over half of it is covered with a temperate rainforest, while the rest is grassy or just bare rocks. No one lives there these days and it’s a protected area that only scientists are allowed to visit, with the exception of members of the Brazilian navy who occasionally stop by to maintain the lighthouse that keeps ships from smashing into the rocky coast. Lots of birds live on the island or visit there, but other than that it’s mostly just snakes.

Specifically, the critically endangered golden lancehead pit viper lives on Snake Island and nowhere else in the world. It can grow nearly four feet long, or 118 cm, and is pale gold or golden-brown in color with darker splotches. It’s also incredibly venomous—but no one has ever been bitten by one as far as we know. If somehow you were bitten by one, it probably wouldn’t be a pleasant situation but you also probably wouldn’t die. That’s mainly because the golden lancehead’s venom is adapted to kill birds and reptiles, not mammals. And that’s because there are no mammals living on Snake Island.

The golden lancehead spends most of its time in trees or bushes, hunting for birds. It mainly eats two particular species of small bird that live on the island, although it will also eat other birds, lizards, and invertebrates like insects. Some reports say it will even eat smaller golden lanceheads. There’s another snake that lives on the island, Sauvage’s snail-eater, and the golden lancehead might occasionally snack on one of those. The snail-eater is also present on mainland Brazil and isn’t venomous. You can probably guess that it mainly eats snails. It’s small and thin, lives in trees, and is brownish-yellow with darker stripes and splotches.

The issue with Snake Island and its snakes is that there isn’t that much land available for the snakes to live on, and the forest has been damaged by human activity. Big chunks of forest were cleared by fire when people decided to try growing bananas on the island, which didn’t work very well. No one lives there now, but poachers do occasionally visit the island to catch snakes for the illegal wildlife trade. The golden lancehead is starting to show signs of inbreeding and disease as a result. As if that wasn’t bad enough, because the island is so close to the coast of Brazil, and mainland Brazil has its own problems with deforestation, fewer birds are migrating through the area every year. That means fewer birds stop at Snake Island and the snakes have less to eat.

Some reports claim that the island is so overrun by snakes that you’d encounter one with every step if you visited, but that’s not actually true. The snakes don’t live everywhere, and they spend almost all their time in trees. Recent studies estimate that around 2,000 to 4,000 snakes live on the island, which sounds like a lot until you remember that these are the only golden lanceheads in the whole world! Fortunately, rumors that anyone who sets foot on the island is at risk of being bitten and dying horribly from the golden lancehead’s venom keep a lot of people away. A captive breeding program in São Paulo, Brazil is also working to help the snakes.

The golden lancehead is a type of pit viper, closely related to other pit vipers found in Brazil. Its ancestors were trapped on the island when ocean levels rose at the end of the Pleistocene, around 11,000 years ago, and it’s been evolving separately ever since. Species in the genus Bothrops are also called fer-de-lance snakes, and that brings us to our next suggestion from BlueTheChickenWing.

BlueThe ChickenWing left us a nice review a while back and made two suggestions, one of which is the fer-de-lance. Fer-de-lance is a French term meaning spearhead, or lancehead, as in golden lancehead. The golden lancehead belongs to the genus Bothrops, pit vipers that are found throughout much of Central and South America as well as some Caribbean islands. We’re only going to talk about one other species of fer-de-lance this week, though, Bothrops lanceolatus, also called the Martinique lancehead. It too lives on an island, in this case the Caribbean island of Martinique.

The Martinique lancehead can grow up to 5 feet long, or 1.5 meters, with unverified reports of individuals twice that length. It’s light brown with darker speckles and a paler belly. It lives in forested areas and spends most of its time hidden, waiting for an animal to happen by. Then it strikes! It eats pretty much anything it can catch, including frogs and rats, bats and birds, rabbits, lizards, other snakes, and even large insects. Its venom isn’t as potent as the golden lancehead’s but it’s still dangerous to humans, and unlike the golden lancehead, it can and does occasionally bite people.

The Martinique lancehead is endangered due to habitat loss and poaching. People are naturally afraid of the snake and will kill it when they can, when all it wants is to be left alone to eat animals like rats and other snakes that people don’t want around either. Hospitals in Martinique keep antivenin in stock to treat the 20 or 30 people who are bitten by a fer-de-lance every year. Most people are fine after receiving treatment, but those who can’t get to the hospital in time or who try to treat the bite at home sometimes die.

The Martinique lancehead gives birth to live young, as is the case for other fer-de-lance snakes. The eggs remain inside the mother until the babies hatch, at which point the mother delivers them and they slither away to live on their own.

Speaking of snakes having babies, let’s finish with a suggestion by Richard from NC, who sent me an article that was only published literally two days ago as this episode goes live. This is not about a snake that lives on an island, but it’s so interesting I wanted to include it. It’s about the Louisiana pine snake, which is not venomous, but which is one of the rarest snakes in North America.

The pine snake is a type of constrictor, and like other constrictors it can grow quite large. The largest individual ever reliably measured was over 5 and a half feet long, or 1.8 meters. It’s tan or yellowish in color with a darker brown pattern.

It lives in open pine forests and grasslands in parts of western Louisiana and east Texas, but even when it wasn’t so rare, hardly anyone ever saw one because it spends most of its time underground. It’s specialized to eat a little rodent called Baird’s pocket gopher, and when it’s not actually hunting the gopher, it hangs out in the gopher’s old burrows to stay cool and safe. In winter it hibernates in a gopher burrow, and there’s nothing the gopher can do about that.

Baird’s pocket gopher looks a little bit like a small guinea pig because of its large head, tiny ears and eyes, chunky body, and short legs. It has long claws that help it dig rapidly in the sandy ground it prefers. While the Louisiana pine snake mostly eats the gophers, it will also eat other small animals like frogs, rabbits, and bird eggs when it finds them. The snake is threatened by habitat loss, especially the problem of roads being built through its habitat. A lot of snakes are killed by cars while trying to cross the road. Since the snake usually only lays a few eggs a year, rarely more than five, it’s hard for populations to grow.

Fortunately, the Memphis Zoo in Tennessee is headquarters for a careful captive breeding program of the pine snake. And a few days ago, a baby snake hatched and is doing great! Hopefully more will hatch soon. The babies will be cared for until they’re big enough to be safe from most predators, and then they’ll be released into the wild. So far around 300 captive-born snakes have been released into the wild, increasing the Louisiana pine snake’s chance for long-term survival.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 390: The Wallaby and Wiwaxia

Thanks to Jaxon and Lorenzo for their suggestions this week!

Further reading:

Rock-wallaby bite size ‘packs a punch’

Tiny Australian wallaby the last living link to extinct giant kangaroos

Extraordinary Fossil of Giant Short-Faced Kangaroo Found in Australia

Wiwaxia corrugata – The Burgess Shale

The nabarlek:

The banded hare-wallaby:

Wiwaxia was a little less cute than wallabies are:

An artist’s rendition of what Wiwaxia might have looked like when alive [picture from last page linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Every so often I get an animal suggestion that I’m positive we’ve already covered, but then I’m flabbergasted when it turns out we haven’t. That’s the case for the animals we’ll learn about this episode, with thanks to Jaxon and Lorenzo!

A while ago, Jaxon left us a nice review and suggested we talk about wallabies. I was CONVINCED we’d talked about the wallaby repeatedly, but I think I was thinking about the wombat. We’ve hardly ever mentioned the wallaby, and it’s such a great animal!

The wallaby is a marsupial that basically looks like a miniature kangaroo, although some species grow pretty large. The resemblance makes sense because kangaroos and wallabies are closely related, but everything else about the wallaby family tree is confusing. That’s because there are a lot of animals called wallabies that aren’t actually the same type of animal. “Wallaby” is just a catchall term used by people to describe any animal that looks kind of like a miniature kangaroo.

Wallabies are native to Australia and New Guinea, but various species have been introduced to other places where they’re invasive, including New Zealand, France, England, Scotland, and Hawaii. Most of these non-native populations happened by accident when pets or zoo animals escaped into the wild, but some were introduced on purpose by people who didn’t know they were causing damage to the local ecosystems.

One thing everyone knows about kangaroos, which is also true for wallabies, is that they hop instead of running. Their hind legs are extremely strong with big feet, and in fact the name of the family they share, Macropodidae, means big feet. So, you know, Bigfoot exists but maybe doesn’t look like most people think. The animal hops by leaning forward and jumping, with its big hind feet leaving the ground at about the same time, and landing at the same time too before it bounces again. Its big tail helps it balance. But there’s a lot more to this hopping than you might think.

While the wallaby or kangaroo has strong leg muscles, what’s even more important is that it has very strong, very elastic tendons in its legs. These basically act like massively strong rubber bands. When you stretch a rubber band, it stores energy that it releases when you let go of it and it snaps back and whips you in the thumb and you wonder why you did that because it hurt. The tendons in the wallaby’s legs store energy when it hops, and when it lands, the energy releases and helps bounce the animal right back into the next hop. Once it gets going, its muscles are only doing a fraction of the work to keep it hopping at high speed. Even better for the animal, a lot of its breathing is regulated by its movements when it’s hopping, so it always has plenty of oxygen to power its body while moving fast. When it lands after a bounce, the impact pushes its breath out of its lungs, but the action of bringing its legs forward helps suck fresh air in. It’s an incredibly efficient way to move, and allows the animal to travel long distances to find food and water without spending a lot of energy.

Wallabies eat plants, and naturally the bigger species can eat bigger, tougher plants than smaller species. The exception is the dwarf rock-wallaby, according to a study published in March of 2024. There are over a dozen species of rock-wallaby, but in general they live in small groups in rocky areas. They’re nocturnal and spend the day sleeping in shady areas among the rocks, under rock overhangs, or in small caves in cliffs. At night they come out to find plants, but because they live in such harsh environments, most of the plants are pretty tough. Two species of dwarf rock-wallaby in particular turn out to have incredibly strong jaws for their size, as strong as the jaws of much larger species. Their teeth are also larger to help them grind up tough plants, and one species, called the nabarlek wallaby, even grows new molars throughout its life as the old ones wear down. That’s the only marsupial known to grow new molars throughout its life.

The nabarlek is reddish-gray in color and only weighs about 3 ½ pounds at most, or 1.6 kilograms, and is barely more than a foot long, or 30 cm, with its fluffy tail almost doubling that length. When it hops, it curls its tail up over its back. It eats grass, ferns, and other tough plants. Like most species of wallaby, it’s endangered due to habitat loss and introduced predators like foxes.

Another very small wallaby is the banded hare-wallaby, which only has a few small populations remaining on a few islands. It’s almost exactly the same size and weight as the nabarlek and is gray with lighter speckles and darker stripes on its back. It’s also nocturnal and lives in brushy areas where it can hide easily.

Even though these wallabies are smaller than domestic cats, some 45,000 years ago there used to be a type of kangaroo that was extremely large. The short-faced kangaroo stood as tall as a big grey or red kangaroo, about five feet tall, or 1.5 meters, but was much bulkier—as much as twice the weight of a modern kangaroo. It was so heavy that some researchers think it couldn’t hop but actually walked on its hind legs instead like a person. (Bigfoot.)

A few years ago, scientists comparing the genetic sequence of the short-faced kangaroo to other macropods discovered that this big strong kangaroo’s closest living relative was the tiny banded hare-wallaby.

Our next animal is a suggestion from Lorenzo, who sent a bunch of requests a while back. Before we talk about the animal, I should probably explain the situation with the List. This is the list of topics that I want to cover, a lot of them suggestions from listeners and a lot of them animals I’ve added myself. It started out as a simple Word document, but after a few years I moved it over to a spreadsheet and divided it into categories. There’s a page for mammals, a page for birds, and so on. I copied and pasted Lorenzo’s suggestions into the reptiles page because I recognized the first few as reptiles, or at least therapsids.

Well, at some point I took a closer look at the list of Lorenzo’s suggestions and added a note, “these may not all be reptiles.” Then later I took an even closer look and added another note, “these down here are basal arthropods, why did you put them under reptiles?” But next to today’s animal, at some point I added the note “I think this is a bird.”

Dear listener, Wiwaxia is not a bird. Scientists aren’t actually sure what it is, but 100% it is not a bird. It lived just over half a billion years ago in the early to middle Cambrian period, which we talked about in episode 69 about the Cambrian explosion. That’s when life on earth evolved from relatively simple, tiny organisms to much larger and more complex ones. Many of the Cambrian animals look bizarre and confusing to us today because they’re so different from the animals we’re familiar with, and that’s the case for Wiwaxia.

Wiwaxia grew about 2 inches long at most, or 5 cm, and slightly less wide. It was flat underneath like a slug, and it probably moved sort of like a slug too. The upper part of its body was covered in overlapping plates called sclerites, which acted as armor. As the animal grew older, it also developed spines that grew between the sclerites in two rows, with the longest spines growing 2 inches long, or 5 cm. Modern marine invertebrates have mineralized spines and scales that make them harder, but this hadn’t evolved yet and wiwaxia’s were basically the same material as the rest of the body, but tougher. Both the scales and the spines were shed and regrown every so often.

Like all the other animals in the Cambrian, wiwaxia lived in warm, shallow ocean water. It had a feeding apparatus at its front that had tiny conical teeth, and scientists think it used this feeding apparatus to scrape bacteria off the microbial mats that lived on the sea floor in most places, or it might have lived directly on the sea floor or on rocks. Either way, its feeding apparatus is enough like the radula found in modern mollusks that it’s been tentatively placed in the phylum Mollusca. This means it may be a very distant ancestor of slugs, snails, clams, mussels, oysters, squid, octopuses, and lots of other animals.

Wiwaxia was originally classified as an ancestor or at least a relation of modern polychaete worms, and a lot of scientists still think that’s correct. Since the original description of wiwaxia in 1899, a lot of specimens have been discovered in the Burgess shale in Canada, along with lots more found in China, Russia, the Czech Republic, and Australia, with more fossils found in other places that might be wiwaxia spines.

Because all the Cambrian fossils discovered are flattened, there’s a limit to how much we know about its anatomy when alive. The best fossils are reexamined frequently as new and more powerful methods of study are invented. Wiwaxia was apparently very common throughout the world between about 520 and 505 million years ago, so as more and more fossils are discovered, we’ll definitely learn more about it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 389: Updates 7 and the Lava Bear

It’s our annual updates episode! Thanks to Kelsey and Torin for the extra information about ultraviolet light, and thanks to Caleb for suggesting we learn more about the dingo!

Further reading:

At Least 125 Species of Mammals Glow under Ultraviolet Light, New Study Reveals

DNA has revealed the origin of this giant ‘mystery’ gecko

Bootlace Worm: Earth’s Longest Animal Produces Powerful Toxin

Non-stop flight: 4,200 km transatlantic flight of the Painted Lady butterfly mapped

Gigantopithecus Went Extinct between 295,000 and 215,000 Years Ago, New Study Says

First-Ever Terror Bird Footprints Discovered

Last surviving woolly mammoths were inbred but not doomed to extinction

Australian Dingoes Are Early Offshoot of Modern Breed Dogs, Study Shows

A (badly) stuffed lava bear:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have our annual updates episode, and we’ll also learn about a mystery animal called the lava bear! As usual, a reminder that I don’t try to update everything we’ve ever talked about. That would be impossible. I just pick new information that is especially interesting.

After our episode about animals and ultraviolet light, I got a great email from Kelsey and Torin with some information I didn’t know. I got permission to quote the email, which I think you’ll find really interesting too:

You said humans can’t see UV light, which is true, however humans can detect UV light via neuropsin (a non-visual photoreceptor in the retina). These detectors allow the body to be signaled that it’s time to do things like make sex-steroid hormones, neurotransmitters, etc. (Spending too much time indoors results in non-optimal hormone levels, lowered neurotransmitter production, etc.)

Humans also have melanopsin detectors in the retina and skin. Melanopsin detectors respond to blue light. Artificial light (LEDs, flourescents, etc) after dark entering the eye or shining on the skin is sensed by these proteins as mid-day daylight. This results in an immediate drop in melatonin production when it should be increasing getting closer to bedtime.”

And that’s why you shouldn’t look at your phone at night, which I am super bad about doing.

Our first update is related to ultraviolet light. A study published in October of 2023 examined hundreds of mammals to see if any part of their bodies glowed in ultraviolet light, called fluorescence. More than 125 of them did! It was more common in nocturnal animals that lived on land or in trees, and light-colored fur and skin was more likely to fluoresce than darker fur or skin. The white stripes of a mountain zebra, for example, fluoresce while the black stripes don’t.

The study was only carried out on animals that were already dead, many of them taxidermied. To rule out that the fluorescence had something to do with chemicals used in taxidermy, they also tested specimens that had been flash-frozen after dying, and the results were the same. The study concluded that ultraviolet fluorescence is actually really common in mammals, we just didn’t know because we can’t see it. The glow is typically faint and may appear pink, green, or blue. Some other animals that fluoresce include bats, cats, flying squirrels, wombats, koalas, Tasmanian devils, polar bears, armadillos, red foxes, and even the dwarf spinner dolphin.

In episode 20 we talked about Delcourt’s giant gecko, which is only known from a single museum specimen donated in the 19th century. In 1979 a herpetologist named Alain Delcourt, working in the Marseilles Natural History Museum in France, noticed a big taxidermied lizard in storage and wondered what it was. It wasn’t labeled and he didn’t recognize it, surprising since it was the biggest gecko he’d ever seen—two feet long, or about 60 cm. He sent photos to several reptile experts and they didn’t know what it was either. Finally the specimen was examined and in 1986 it was described as a new species.

No one knew anything about the stuffed specimen, including where it was caught. At first researchers thought it might be from New Caledonia since a lot of the museum’s other specimens were collected from the Pacific Islands. None of the specimens donated between 1833 and 1869 had any documentation, so it seemed probable the giant gecko was donated during that time and probably collected not long before. More recently there was speculation that it was actually from New Zealand, since it matched Maori lore about a big lizard called the kawekaweau.

In June of 2023, Delcourt’s gecko was finally genetically tested and determined to belong to a group of geckos from New Caledonia, an archipelago of islands east of Australia. Many of its close relations are large, although not as large as it is. It’s now been placed into its own genus.

Of course, this means that Delcourt’s gecko isn’t the identity of the kawekaweau, since it isn’t very closely related to the geckos of New Zealand, but it might mean the gecko still survives in remote parts of New Caledonia. It was probably nocturnal and lived in trees, hunting birds, lizards, and other small animals.

We talked about some really big worms in episode 289, but somehow I missed the longest worm of all. It’s called the bootlace worm and is a type of ribbon worm that lives off the coast of Norway, Denmark, Sweden, and Britain, and it’s one of the longest animals alive. The longest worm we talked about in episode 289 was an African giant earthworm, and one was measured in 1967 as 21 feet long, or 6.7 meters. The bootlace worm is only 5 to 10 mm wide, but it routinely grows between 15 and 50 feet long, or 5 to 15 meters, with one dead specimen that washed ashore in Scotland in 1864 measured as over 180 feet long, or 55 meters.

When it feels threatened, the bootlace worm releases thick mucus. The mucus smells bad to humans but it’s not toxic to us or other mammals, but a recent study revealed that it contains toxins that can kill crustaceans and even some insects.

We talked about the painted lady butterfly in episode 203, which was about insect migrations. The painted lady is a small, pretty butterfly that lives throughout much of the world, even the Arctic, but not South America for some reason. Some populations stay put year-round, but some migrate long distances. One population winters in tropical Africa and travels as far as the Arctic Circle during summer, a distance of 4,500 miles, or 7,200 km, which takes six generations. The butterflies who travel back to Africa fly at high altitude, unlike monarch butterflies that fly quite low to the ground most of the time. Unlike the monarch, painted ladies don’t always migrate every year.

In October of 2013, a researcher in a small country in South America called French Guiana found some painted lady butterflies on the beach. Gerard Talavera was visiting from Spain when he noticed the butterflies, and while he recognized them immediately, he knew they weren’t found in South America. But here they were! There were maybe a few dozen of them and he noticed that they all looked pretty raggedy, as though they’d flown a long way. He captured several to examine more closely.

A genetic study determined that the butterflies weren’t from North America but belonged to the groups found in Africa and Europe. The question was how did they get to South America? Talavera teamed up with scientists from lots of different disciplines to figure out the mystery. Their findings were only published last month, in June 2024.

The butterflies most likely rode a well-known wind current called the Saharan air layer, which blows enough dust from the Sahara to South America that it has an impact on the Amazon River basin. The trip from Africa to South America would have taken the butterflies 5 to 8 days, and they would have been able to glide most of the time, thus conserving energy. Until this study, no one realized the Saharan air layer could transport insects.

We talked about the giant great ape relation Gigantopithecus in episode 348, and only a few months later a new study found that it went extinct 100,000 years earlier than scientists had thought. The study tested the age of the cave soils where Gigantopithecus teeth have been discovered, to see how old it was, and tested the teeth again too. As we talked about in episode 348, Gigantopithecus ate fruit and other plant material, and because it was so big it would have needed a lot of it. It lived in thick forests, but as the overall climate changed around 700,000 years ago, the forest environment changed too. Other great apes living in Asia at the time were able to adapt to these changes, but Gigantopithecus couldn’t find enough food to sustain its population. It went extinct between 295,000 and 215,000 years ago according to the new study, which is actually later than I had in episode 348, where I wrote that it went extinct 350,000 years ago. Where did I get my information? I do not know.

The first footprints of a terror bird were discovered recently in Argentina, dating to 8 million years ago. We talked about terror birds in episode 202. The footprints were made by a medium-sized bird that was walking across a mudflat, and the track is beautifully preserved, which allows scientists to determine lots of new information, such as how fast the bird could run, how its toes would have helped it run or catch prey, and how heavy the bird was. We don’t know what species of terror bird made the tracks, but we know it was a terror bird.

We talked about the extinction of the mammoth in episode 256, especially the last population of mammoths to survive. They lived on Wrangel Island, a mountainous island in the Arctic Ocean off the coast of western Siberia, which was cut off from the mainland about 10,000 years ago when ocean levels rose. Mammoths survived on the island until about 4,000 years ago, which is several hundred years after the Great Pyramid of Giza was built. It’s kind of weird to imagine ancient Egyptians building pyramids, and at the same time, mammoths were quietly living on Wrangel Island, and the Egyptians had no idea what mammoths were. And vice versa.

A 2017 genetic study stated that the last surviving mammoths were highly inbred and prone to multiple genetic issues as a result. But a study released in June of 2024 reevaluated the population’s genetic diversity and made a much different determination. The population did show inbreeding and low genetic diversity, but not to an extent that it would have affected the individuals’ health. The population was stable and healthy right to the end.

In that case, why did the last mammoths go extinct? Humans arrived on the island for the first time around 1700 BCE, but we don’t know if they encountered mammoths or, if they did, if they killed any. There’s no evidence either way. All we know is that whatever happened, it must have been widespread and cataclysmic to kill all several hundred of the mammoths on Wrangel Island.

We talked about the dingo in episode 232, about animals that are only semi-domesticated. That episode came out in 2021, and last year Caleb suggested we learn more about the dingo. I found a really interesting 2022 study that re-evaluated the dingo’s genome and made some interesting discoveries.

The dingo was probably brought to Australia by humans somewhere between 3,500 and 8,500 years ago, and after the thylacine was driven to extinction in the early 20th century, it became the continent’s apex predator. Genetic studies in the past have shown that it’s most closely related to the New Guinea singing dog, but the 2022 study compared the dingo’s genome to that of five modern dog breeds, the oldest known dog breed, the basenji, and the Greenland wolf.

The results show that the dingo is genetically in between wolves and dogs, an intermediary that shows us what the dog’s journey to domestication may have looked like. The study also discovered something else interesting. Domestic dogs have multiple copies of a gene that controls digestion, which allows them to eat a wide variety of foods. The dingo only has one copy of that gene, which means it can’t digest a lot of foods that other dogs can. Remember, the dingo has spent thousands of years adapting to eat the native animals of Australia. When white settlers arrived, they would kill dingoes because they thought their livestock was in danger from them. The study shows that the dingo has little to no interest in livestock because it would have trouble digesting, for instance, a lamb or calf. The animals most likely to be hurting livestock are domestic dogs that are allowed to run wild.

We’ll finish with a mystery animal called the lava bear. In the early 20th century, starting in 1917, a strange type of bear kept being seen in Oregon in the United States. Its fur was light brown like a grizzly bear’s, but otherwise it looked like a black bear—except for its size, which was very small. The largest was only about 18 inches tall at the back, or 46 cm, and it only weighed about 35 pounds, or 16 kg. That’s the size of an ordinary dog, not even a big dog. Ordinarily, a black bear can stand 3 feet tall at the back, or about 91 cm, and weighs around 175 pounds, or 79 kg, and a big male can be twice that weight and much taller.

The small bear was seen in desert, especially around old lava beds, which is where it gets its name. A shepherd shot one in 1917, thinking it was a bear cub, and when he retrieved the body he was surprised to find it was an adult. He had it taxidermied and photographs of it were published in the newspapers and a hunting magazine, which brought more hunters to the area.

People speculated that the animal might be an unknown species of bear, possibly related to the grizzly or black bear, and maybe even a new species of sun bear, a small bear native to Asia.

Over the next 17 years, many lava bears were killed by hunters and several were captured for exhibition. When scientists finally got a chance to examine one, they discovered that it was just a black bear. Its small size was due to malnutrition, since it lived in a harsh environment without a lot of food, and its light-colored fur was well within the range of fur color for an American black bear. Lava bears are still occasionally sited in the area around Fossil Lake.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 388: Washington’s Eagle

Further reading:

Audubon’s Bird of Washington: Unraveling the fraud that launched The Birds of America

The Mystery of the Missing John James Audubon Self-Portrait

Washington’s eagle, as painted by Audubon:

The tiny detail in Audubon’s golden eagle painting that is supposed to be a self-portrait:

The golden eagle painting as it was published. Note that there’s no tiny figure in the lower left-hand corner:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This past weekend I was out of town, or to be completely honest I will have been out of town, because I’m getting this episode ready well in advance. Since July 4 was only a few days ago, or will have been only a few days ago, and July 4 is Independence Day in the United States of America, I thought it might be fun to talk about a very American bird, Washington’s eagle.

We talked about it before way back in episode 17, and I updated that information for the Beyond Bigfoot & Nessie book for its own chapter. When I was researching birds for episode 381 I revisited the topic briefly and realized it’s so interesting that I should just turn it into a full episode.

We only have two known species of eagle in North America, the bald eagle and the North American golden eagle. Both have wingspans that can reach more than 8 feet, or 2.4 meters, and both are relatively common throughout most of North America. But we might have a third eagle, or had one only a few hundred years ago. We might even have a depiction of one by the most famous bird artist in the world, James Audubon.

In February 1814, Audubon was traveling on a boat on the upper Mississippi River when he spotted a big eagle he didn’t recognize. A Canadian fur dealer who was with him said it was a rare eagle that he’d only ever seen around the Great Lakes before, called the great eagle. Audubon was familiar with bald eagles and golden eagles, but he was convinced the “great eagle” was something else.

Audubon made four more sightings over the next few years, including at close range in Kentucky where he was able to watch a pair with a nest and two babies. Two years after that he spotted an adult eagle at a farm near Henderson, Kentucky. Some pigs had just been slaughtered and the eagle was looking for scraps. Audubon shot the bird and took it to a friend who lived nearby, an experienced hunter, and both men examined the body carefully.

According to the notes Audubon made at the time, the bird was a male with a wingspan of 10.2 feet, or just over 3 meters. Since female eagles are generally larger than males, that means this 10-foot wingspan was likely on the smaller side of average for the species. It was dark brown on its upper body, a lighter cinnamon brown underneath, and had a dark bill and yellow legs.

Audubon named the bird Washington’s eagle and used the specimen as a model for a life-sized painting. Audubon was meticulous about details and size, using a double-grid method to make sure his bird paintings were exact. This was long before photography.

So we have a detailed painting and first-hand notes from James Audubon himself about an eagle that…doesn’t appear to exist.

Audubon painted a few birds that went extinct afterwards, including the ivory-billed woodpecker and the passenger pigeon, along with less well-known birds like Bachman’s warbler and the Carolina parakeet. He also made some mistakes. Many people think Washington’s eagle is another mistake and was just an immature bald eagle, which it resembles.

But here’s the problem. Audubon wasn’t always truthful. He painted some birds that he never saw but claimed he did, because another bird illustrator had painted them first. Once he claimed he went hunting with Daniel Boone in Kentucky in 1810, but at that time Boone would have been in his 70s and was living several states away.

Audubon also claimed that he discovered a little bird called Lincoln’s sparrow, but this wasn’t the case. His wife’s transcript of his diary doesn’t match up with the account that Audubon published about the discovery, but magically, when his granddaughter published her version of the diary later, Audubon’s discovery of the sparrow was in it. Historians think his granddaughter changed the diary entry to match up with Audubon’s published claim, and then she burned the original diaries. Further research into Audubon’s published writings have revealed plagiarism, false data, outright lies, and even completely fake species.

Audubon was also patriotic, as evidenced by his naming the eagle after George Washington. His journals and letters are full of praise for Washington, who died in 1799, only fifteen years before Audubon first saw the “great eagle.” There’s always a chance that Audubon wanted to name a bird after his idol, but not just any bird. It had to be majestic and bold, the largest eagle in the world! Maybe he decided to invent one.

Audubon also needed money to continue his work of painting birds, and most of the money came from English nobility. His painting and notes about a gigantic eagle made a real splash, bringing him money and fame for the rest of his life. But no evidence of the eagle’s existence has been discovered in the last 200 years. All we have are one man’s notes, a painting, and some stories of other specimens here and there. What we don’t have are the specimens, not even any feathers.

While we’re talking about one Audubon eagle mystery, let’s learn about another mystery. While Audubon was an incredible painter of birds, he wasn’t all that great at painting people. Only two of his famous bird paintings contain human figures, and one of them is his painting of the golden eagle. The other is a hunter painted in the background of the snowy egret, but Audubon didn’t paint that figure himself. He painted the bird, but hired another artist to paint the background. But this isn’t the case for the golden eagle painting, and that’s where the mystery lies. Even though it’s not technically anything to do with the bird, I know we’re all here for a good mystery too, so let’s talk about this painting.

Most of the time Audubon shot the birds he painted, which isn’t a great thing to do but which was common back then for scientists and collectors to shoot even very rare animals. Few people really understood conservation at the time. In the case of the golden eagle, though, the bird was already so rare in the early 19th century that Audubon couldn’t find one to shoot. He eventually bought one from a museum in 1833—but the bird wasn’t dead. It was injured, and Audubon was so impressed by its beauty that he almost set it free. But he needed to paint the bird, and in order to do that to his own meticulous standard, the bird had to be dead so he could really examine it in detail. So, after wrestling with his conscience, he killed the bird.

He spent the next two weeks drawing, studying, and eventually painting the bird. As soon as he finished, he reportedly had a mental breakdown. Not only had he been painting almost nonstop for years at that point, he really didn’t like killing birds. Plus, in the case of the golden eagle, instead of shooting it from a distance, he had killed it up close in person—as humanely as possible, but he still ended its life, and that bothered him.

The mystery comes from a detail in the painting’s background. The golden eagle is shown in front of a dramatic background of snowy mountains, with a dead snowshoe hare in its talons. But in a tiny detail in the lower left-hand corner, a man is shown crossing a gorge on a fallen tree trunk. Strapped onto the man’s back is a dead golden eagle.

The man is awkwardly rendered, but experts believe it’s a self-portrait of Audubon himself. Some experts believe Audubon included himself with a dead eagle, navigating a perilous climb, to indicate his emotional struggle in killing the bird. But when the painting was eventually included in Audubon’s famous book of bird illustrations, the figure was gone. The gorge with the fallen tree remains, but the little man carrying the dead bird has been painted out.

The question is why. Who made that decision, Audubon himself or the publisher? If Audubon did it, was it because he was embarrassed that he’d included a self-portrait, or was he embarrassed at the poor rendering of his figure, or did he just think it detracted from the painting, or some other reason? If the publisher did it, did he dislike the badly painted little man, or did Audubon ask him to remove the figure, or some other reason? We don’t know, and very likely we’ll never know.

While Audubon reportedly loved birds, it turns out he wasn’t a great human. Besides shooting a whole lot of birds and other animals, sometimes hundreds in a single day, and lying in published scientific papers, he “owned” enslaved people and reportedly made money selling them. (Just saying that sentence makes me so mad. You cannot own people.) In 2023, members of the National Audubon Society called for the group to change its name and drop any mention of Audubon, and when the board of directors said no, a lot of members resigned.

I came into this topic really hoping Washington’s eagle was a real bird, and believing that James Audubon was an artist who loved birds and was an honest man who made some mistakes. Now I’ve discovered that Audubon was a liar and a bad person, and that Washington’s eagle was probably just the result of one of his lies. At least we still have golden eagles, bald eagles, and lots of other amazing birds to admire!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!