Episode 330: Vintana and Tiarajudens

Thanks to Lorenzo for suggesting Tiarajudens! We’ll learn about it this week along with another extinct animal, Vintana.

Further reading:

Funky facial flanges [the skull picture below comes from this site]

First Postcranial Fossils of Rare Gondwanatherian Mammal Unearthed in Madagascar

The Earliest Saberteeth Were for Fighting, Not Biting [the skeleton picture below comes from this site]

Vintana’s skull had weird jugal flanges:

Tiarajudens had saber teeth as well as palatal teeth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Just last month we had an episode about the tenrec and an extinct animal called Adalatherium. At the end of that episode, I said something I say a lot, that we don’t know very much about it or the other ancient mammals that lived at the time, and that I hoped we would find some new fossils soon. Well, guess what! A paper about a newly discovered Gondwanathere fossil was published just a few days ago as this episode goes live. Rather than save it for the updates episode later this summer, let’s learn about an animal named Vintana sertichi, along with a suggestion from Lorenzo for another extinct animal.

As you may remember from episode 324, Adalatherium is a member of a group of animals called Gondwanatheria, which arose in the southern hemisphere around the time that the supercontinent Gondwana was breaking apart. We only have a few fossils of these animals so paleontologists still don’t know how they’re related, although we do know they’re not related to the mammals living today. Every new specimen found of these rare mammals helps scientists fill the gaps in our knowledge. That’s what happened with Vintana.

Vintana lived at the end of the Cretaceous, until the asteroid strike about 66 million years ago that killed off the non-avian dinosaurs and a whole lot of other animals, probably including Vintana. The first fossilized specimen was a skull found in Madagascar and described in 2014. It was really well preserved, which allowed scientists to learn a lot about the animal.

Vintana was an active animal that ate plants. It had large eyes and a good sense of smell and hearing, so its ears might have been fairly large too. Its face probably looked a lot like a big rodent’s face, but the skull itself had a weird feature. The cheekbones extended downward on each side next to the jaw, and these extensions are called jugal flanges. They would have allowed for the attachment of really big jaw muscles. That suggests that Vintana could probably give you a nasty bite, not that you need to worry about that unless you find a time machine. It might also mean that Vintana ate tough plants that required a lot of chewing.

Vintana probably looked a lot like a groundhog, or marmot, which we talked about recently in episode 327. It wasn’t related to the groundhog, though, and was bigger too. Scientists estimate it weighed about 20 lbs, or 9 kg.

The fossil specimen of Adalatherium that we talked about in episode 324 was discovered in Madagascar in 2020. When a tail vertebra from another mammal was found in the same area, researchers scanned and compared it to Adalatherium’s vertebrae. They were similar but not an exact match, plus the new bone was almost twice as large as the same bone in Adalatherium’s spine. It matched the size of Vintana and was assigned to that species. Vintana was probably related to Adalatherium but was bigger and had a shorter, wider tail. And as of right now, that’s just about all we know about it.

Next, let’s learn about another extinct animal, this one suggested by Lorenzo. Lorenzo gave me a bunch of great suggestions and I picked this one to pair with Vintana, because otherwise this episode would have been really short. Vintana lived at the end of the dinosaurs, but Tiarajudens lived long before the dinosaurs evolved, around 260 million years ago.

Tiarajudens was a therapsid, a group that eventually gave rise to mammals although it’s not a direct ancestor of mammals. Technically it’s an anomodont. We don’t have a complete skeleton so we don’t know for sure how big it was, but we do have a skull and some leg bones so we know it was about the same size or a little bigger than a big dog. There are only two species known, one from what is now South America and one from what is now Africa, but 260 million years ago those two landmasses were connected and were part of the supercontinent Gondwana.

Tiarajudens had weird teeth even compared to other anomodonts. It had a pair of saber teeth that resembled the tusks found in later anomodonts, but they weren’t really tusks. They were big fangs that grew from the upper jaw and jutted down out of the mouth well past the bottom of the jaw. Later anomodonts probably used their tusks to dig up plants, but there aren’t wear marks on Tiarajudens’s saber teeth that would indicate it used them for digging. Many paleontologists think it used them for defense and to fight other Tiarajudenses over mates or territory. We don’t know if the saber teeth were present in all individuals, since we’ve only found a few specimens.

Tiarajudens also had palatal teeth. These days palatal teeth are mostly found in amphibians, especially frogs. Palatal teeth grow down from the roof of the mouth and Tiarajudens’s were flat like molars. We haven’t found a lower jaw yet so we don’t know what the bottom teeth looked like, but from the wear marks on the upper teeth, it was clear that Tiarajudens was actually chewing its food. That was really unusual among all animals at the time, and in fact Tiarajudens is one of the first animals to really chew its food instead of giving it a chomp or two and swallowing it mostly whole. It ate plants, probably tough ones that required a lot of chewing.

So what did Tiarajudens look like beyond its teeth? It probably resembled a bulky four-legged dinosaur with a short tail, but it may have had whiskers. That’s as much as we know right now, because Tiarajudens was not only an early therapsid, it was different in many ways from most other therapsids known. For instance, it had what are called gastralia, or belly ribs, which were once common in tetrapods. Some dinosaurs had gastralia, including T. rex, but most therapsids didn’t. These days crocodiles and their relations still have gastralia, and so does the tuatara, but most animals don’t.

Both Tiarajudens and Vintana were unusual animals that we just don’t know much about. Let’s hope that changes soon and scientists find more fossils of both. I’ll keep you updated.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 329: Manatees and a Surprise Sloth

Thanks to Alexandra and Pranav for their suggestions this week! Let’s learn about manatees and sloths, including a surprising extinct sloth.

Further reading:

Sloths in the Water

A West Indian manatee:

A three-toed sloth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Alexandra and Pranav, who wanted an episode about manatees. We’ll also talk about another marine mammal, a weird extinct one you may never have heard of.

The manatee is also called the sea cow, because it sort of slightly resembles a cow and it grazes on plants that grow underwater. It’s a member of the order Sirenia, which includes the dugong, and sirenians are probably most closely related to the elephant. This sounds ridiculous at first, but there are a lot of physical similarities between the manatee and the elephant. Their teeth are very similar, for instance, even if the manatee doesn’t grow tusks. The elephant has a pair of big chewing teeth on each side of its mouth that look more like the bottoms of running shoes than ordinary teeth. Every so many years, the four molars in an elephant’s mouth start to get pushed out by four new molars. The new teeth grow in at the back of the mouth and start moving forward, pushing the old molars farther forward until they fall out. The manatee has this same type of tooth replacement, although its teeth aren’t as gigantic as the elephant’s teeth. The manatee also has hard ridged pads on the roof of its mouth that help it chew its food.

Female manatees are larger than males on average, and a really big female manatee can grow over 15 feet long, or 4.6 meters. Most manatees are between 9 and 10 feet long, or a little less than 3 meters. Its body is elongated like a whale, but unlike a whale it’s slow, usually only swimming about as fast as a human can swim. Its skin is gray or brown although often it has algae growing on it that helps camouflage it. The end of the manatee’s tail looks like a rounded paddle, and it has front flippers but no rear limbs. Its face is rounded with a prehensile upper lip covered with bristly whiskers, which it uses to find and gather water plants.

Every so often a manatee will eat a little fish, apparently on purpose. Since most herbivorous animals will eat meat every so often, this isn’t unusual. Mostly, though, the manatee spends almost all of its time awake eating plants, often from the bottom of the waterway where it lives. It lives in shallow water and will use its flippers to walk itself along the bottom, and also uses its flippers to dig up plants. Its upper lip is divided in two like the upper lips of many animals, which you can see in a dog or cat as that little line connecting the bottom of the nose to the upper lip. In the manatee, though, both sides of the lips have a lot of muscles and can move independently.

There are three species of manatee alive today: the West Indian manatee that lives in the Gulf of Mexico down to the eastern coast of northern South America, the Amazonian manatee that lives exclusively in fresh water in the Amazon basin, and the West African manatee that lives in brackish and fresh water. Sometimes the West Indian manatee will also move into river systems to find food.

Back in episode 153 we talked about the Florida manatee, which is a subspecies of West Indian manatee. In the winter it mostly lives around Florida but in summer many individuals travel widely. It’s sometimes found as far north as Massachusetts along the Atlantic coast, and as far west as Texas in the Gulf of Mexico, but despite its size, the manatee doesn’t have a lot of blubber or fat to keep it warm. The farther away it travels from warm water, the more likely it is to die of cold.

In the 1970s there were only a few hundred Florida manatees alive and it nearly went extinct. It was listed as an endangered species and after a lot of effort by a lot of different conservation groups, it’s now only considered threatened, but it’s still vulnerable to habitat loss, injuries from boats, and getting tangled in fishing gear and drowning. Occasionally a crocodile will eat a young manatee, but for the most part it’s so big, and lives in such shallow water, that most predators won’t bother it. It basically only has to worry about humans, and unfortunately humans still cause a lot of manatee deaths every year with boats.

A lot of times, a manatee that’s hit by a boat is only injured. There are several rehabilitation centers in the United States, where an injured manatee can be treated by veterinarians until it’s healed and can be reintroduced into the wild.

One other detail that makes the manatee similar to the elephant is its flippers, which is probably not what you expected me to say. Most manatees have toenails on their flippers that closely resemble the nails on elephant feet. The exception is the Amazonian manatee that doesn’t have toenails at all.

A lot of the food the Amazonian manatee eats actually floats on the surface of the rivers where it lives, and it will also eat fruit that drops into the water. Because the Amazon basin is subject to a dry season where there’s not a lot of food, the manatee eats a lot when it can to build up fat reserves for later. During the dry season, it usually moves to the biggest lakes in the area as the rivers and shallower lakes dry up or get too shallow for the manatee to swim in. Since the manatee has a low metabolic rate, it can live off its fat reserves until the dry season is over.

One interesting thing about the manatee is that it only has six vertebrae in its neck. Almost all other mammals have seven, even giraffes. The exception is the two-toed sloth, which also has six, and the three-toed sloth, which has a varying number of neck vertebrae, up to nine in some species!

Pranav also wanted to learn about sloths, so let’s talk about them next. All sloths are native to Central and South America. The sloths living today live in forests, especially rainforests, and spend almost all their time in trees.

A sloth makes the manatee look like a speed demon. It spends most of its time hanging from its long claws beneath branches, eating leaves and other plant material, but when it does move, it does so extremely slowly. This helps it stay camouflaged from predators, because its fur contains algae that makes it look green, so a barely-moving green-furred sloth hanging from a tree just looks like a bunch of leaves. It does move from one tree to another to find fresh leaves, and once a week it climbs down from its tree to defecate and urinate on the ground. Yes, it only relieves itself once a week.

The sloth’s digestive tract is also extremely slow, which allows it to extract as much nutrition as possible from each leaf. It takes about a month for a sloth to fully digest one mouthful of food.

The three-toed sloth is about the size of a large cat while the two-toed sloth is slightly larger, maybe the size of a small to medium-sized dog. The two-toed sloth is nocturnal while the three-toed sloth is mostly diurnal. Even though they look and act very similar, the two types of sloth are not very closely related. Both have long curved claws and strong pulling muscles, although their pushing muscles are weak. This is why a sloth can’t walk like other animals; the muscles that would allow it to do so aren’t strong enough to support its own weight. And yet, it can hang from a branch and walk along it for as long as it needs to. I don’t think I could hang from a branch by my fingers for five minutes without having to let go.

Surprisingly, the sloth can also swim quite well, which allows it to find new trees even if there are streams or rivers in the way. But a few million years ago, a different type of sloth lived off the coast of western South America and did a whole lot of swimming. In fact, later species of Thalassocnus were probably fully marine mammals.

We talked about Thalassocnus briefly way back in episode 22. It was related to the giant ground sloths that were themselves related to the living three-toed sloths. The earliest Thalassocnus fossils are of semi-aquatic animals that grazed in shallow water. Fossils from more recent species show increasing adaptations to deeper water, including increased weight of the skeleton to help it stay underwater instead of bobbing up to the surface.

Thalassocnus eventually evolved a stiff, partially fused spine, which reflects the unusual way it moved around underwater. Instead of swimming the way a whale does, or even the way a dog or person does, it moved more like a hippopotamus. Hippos sort of bounce along underwater, using their feet to push off from the bottom. Thalassocnus probably did this too and used its long tail to help it maneuver.

Thalassocnus was a lot bigger than modern sloths. Even the smallest known species were the size of a big human, and the biggest species grew up to 11 feet long, or 3.3 meters. That biggest species was the one that lived most recently, up to about 1.5 million years ago, and researchers think it was fully aquatic. Its nostrils were on the top of its snout and it had prehensile lips to help it find plants underwater. Some researchers even think it could have had a short trunk something like a tapir. It had seven neck vertebrae, as in most other mammals.

There’s still a lot we don’t know about Thalassocnus, but because we have fossils of five different species that lived at different times, scientists are able to determine a lot about how it developed from a mostly terrestrial animal to a mostly or fully marine animal. The youngest species had smaller, weaker legs than the earlier ones, which suggests it didn’t use its legs to walk on land. It probably lived a lot like modern manatees, finding sea grasses and other plants on the sea floor in shallow water, but not able to swim very fast.

One last thing about the manatee is that it spends about half of its time asleep, and it sleeps underwater. It comes up for a breath every 15 minutes or so. Modern sloths sleep a lot too, around 15 hours a day. Chill sleepy friends.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 328: Giant Ants

Thanks to Richard from NC for suggesting Titanomyrma!

Further reading:

‘Giant’ ant fossil raises questions about ancient Arctic migrations

A fossilized queen Titanomyrma ant with a rufous hummingbird (stuffed) for scale:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Richard from North Carolina, who sent me an article about an extinct giant ant called Titanomyrma. This episode is short, but I think you’ll find it interesting.

We’ve talked about ants in previous episodes, most recently episode 185. Most ant colonies consist of a single queen ant who lays all the eggs for her colony, seasonally hatched males with wings who fly off as soon as they’re grown, and worker ants. The worker ants are all female but don’t lay eggs. Army ants have another caste, the soldier ant, which are much larger than the worker ants and have big heads and strong, sharp mandibles. In many species of ant, the worker ants are further divided into castes that are specialized for specific tasks.

The biggest species of ant alive today is probably the giant Amazonian ant. The workers can grow over 1.2 inches long, or more than 3 cm, which is huge for an ant. It lives in South America in small colonies, usually containing less than 100 workers, and unlike most ants it doesn’t have a queen. Instead, one of the workers mates with a male and lays eggs for the colony. The giant Amazonian ant can sting and its sting contains venom that causes intense pain for up to two days. Fortunately, you will probably never encounter these giant ants, and even if you do they’re not very aggressive.

Another contender for the biggest species of ant alive today is the Dorylus genus of army ants, also called driver ants, which we talked about in episode 185. It lives in Africa in colonies that have millions of members, and the queen is the largest ant known. A queen army ant can measure 2.4 inches long, or 63 millimeters, but worker ants are much smaller.

Around 50 million years ago, giant ants related to modern driver ants lived in both Europe and North America. The genus is Titanomyrma and three species are known so far, found in Germany, England, Canada, and the American states of Tennessee and Wyoming.

The Wyoming ant fossil was discovered years ago and donated to the Denver Museum of Nature and Science, where it was stored in a drawer and forgotten about. In 2011 a curator found it and showed it to a paleoentomologist named Bruce Archibald. Dr. Archibald recognized it immediately as a fossilized queen ant even though it was the size of a hummingbird. He also realized it was very similar to a type of giant ant that once lived in Germany.

The German discovery was the first Titanomyrma species discovered, and it’s also the biggest known so far. The queen Titanomyrma gigantea grew up to 2.8 inches long, or 7 centimeters. Males grew up to 1.2 inches long, or 3 cm. The fossilized queen ants found have wings, with a wingspan of over 6 inches, or 16 cm. The other two known species are generally smaller, although still pretty darn big for ants.While they’re not that much bigger than the living Dorylus queens, most of the size of a queen Dorylus ant comes from her enlarged abdomen. Titanomyrma ants were just plain big all over.

Titanomyrma didn’t have a stinger, so it’s possible it used its mandibles to inflict bites, the way modern army ants do. It might also have sprayed formic acid at potential predators, as some ants do today.

The biggest ants alive today all live in tropical areas, so researchers thought Titanomyrma probably did too. During the Eocene, the world was overall quite warm and parts of Europe were tropical. The northern hemisphere supercontinent Laurasia was in the process of breaking up, but Europe and North America were still connected by the Arctic. Even though the Arctic was a lot warmer 50 million years ago than it is now, it was still too cold for a tropical ant. If Titanomyrma couldn’t survive in cold weather, how did it spread from one continent to another when it had to go through the Arctic?

There were warming periods during the Eocene that lasted a few hundred thousand years at a time, so researchers thought the ants probably migrated through the Arctic while it was warmer than usual. Then, in early 2023, a fossilized Titanomyrma queen ant was discovered in Canada. Because the rock it was preserved in has been distorted over the years, we can’t be certain how big the ant actually was. What we do know, though, is that the ant lived in a mountainous area that could get quite chilly, very different from the tropical climate scientists thought the giant ants needed.

As a result of the new finding, researchers are reconsidering whether the giant ants that lived 50 million years ago were really all that similar to modern giant ants. Just because the biggest ants alive today require tropical climates doesn’t mean that ancient giant ants did.

Hopefully more giant ant fossils will turn up soon, so we can learn more about where they lived, how they lived, and precisely how big they could get.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 327: The Humble Marmot

Thanks to Dean for suggesting this week’s topic, the marmot!

Thanks also to Al-Ka-Lines Studio for the beautiful bat pin! You should definitely visit their online shop, because all their jewelry is hand-made by the two of them.

Further reading:

The secret to longevity? Ask a yellow-bellied marmot

The yellow-bellied marmot doing a sit [By Inklein, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2675916]:

A groundhog keeping an eye out for danger:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to have a short little episode about a short little animal suggested by Dean, although I don’t know if Dean is short and/or little. Probably not. The name Dean makes me think of a tall person, probably someone who plays sports and can run really fast, so basically completely unlike a marmot. Dean suggested the marmot, specifically the yellow-bellied marmot.

Before we get started, two quick notes. First, thanks so much to Kathi and Alex of Al-Ka-Lines Studio for the gorgeous bat pin! They make hand-crafted leather jewelry and while they usually sell wholesale to shops, I checked with Kathi to see if it was okay to link to their shop and they said that yes, they sometimes sell to individuals too. I’ve put a link in the show notes in case you’re interested in seeing what they have for sale. They recently started listening to the podcast in order from the first episode and so far they’re not sick of my voice yet.

Second, I’ll be at Furry Weekend Atlanta this coming weekend, assuming you’re listening to this episode when it comes out on May 8, 2023. If you’re going to be there too, let me know and we can meet up. I went to way too many conventions last year so this one and Dragon Con at the end of August are the only ones I have planned this year, and I’m not on any programming on either. I just plan to look at people’s amazing costumes and attend interesting panels and have fun dancing in the evenings. Also, I’ll probably eat a lot of pizza.

Now, on to the marmots!

If you live in North America, you may have seen a marmot without realizing it. I didn’t realize that the groundhogs that are pretty common where I live in the eastern United States are a type of marmot. Similarly, if you live in the western part of North America, especially in mountainous areas, you may have seen the yellow-bellied marmot. Other species of marmot live in Asia, Europe, and other parts of North America. One interesting thing is that the groundhog of eastern North America is actually more closely related to the marmots of Europe and Asia than it is to the other North American marmot species.

Marmots are big rodents related to squirrels, and in fact they’re considered a type of ground squirrel along with the closely related chipmunks and prairie dogs. They dig burrows and mostly eat plant material, and can grow quite large. The largest species is probably the Olympic marmot that only lives in the state of Washington in the Pacific Northwest of North America, which can weigh up to 18 lbs, or 8 kg. That’s its summer weight, though, when it’s had time to eat lots of food. All marmots hibernate and during that time they survive on the fat reserves they build up in warm weather. Basically all marmots are about the size of a cat, but they’re big chonks with short legs, short tails, little round ears, and a blunt muzzle. Its thick fur makes it look even larger than it really is.

The yellow-bellied marmot mostly lives in higher elevations and, like all marmots, it’s well adapted to cold weather. It’s a social animal that lives in small colonies and spends most of its time underground when it’s not out finding food. It’s mostly brown with yellowish markings underneath and a spot of white between its eyes. It usually digs its burrow among rocks and can have multiple burrows in its territory, so if it spots a predator it doesn’t have far to run to get safely underground. It digs an especially deep burrow to hibernate in, sometimes as much as 23 feet deep, or 7 meters. Since it spends as much as eight months hibernating every year, it needs to stay comfortable. It lines its sleeping chamber with dried leaves and even digs a little side burrow that acts as a latrine.

In a study released in March of 2022, a team of scientists studying yellow-bellied marmots discovered that when it hibernates, an adult marmot’s body basically stops aging. The marmot exhibits true hibernation where its body temperature drops almost to the air temperature and its breathing and heart rate slow dramatically. It will hibernate for a week or two, wake up slightly for about a day so it can stretch and rearrange itself more comfortably, and then will go back into hibernation for another few weeks. This goes on for almost three-quarters of the year and during that time, the yellow-bellied marmot doesn’t eat or drink anything. It just lives off its fat reserves, and because its metabolic rate is so low it hardly uses any energy on any given day, only burning about a gram of fat. A small paperclip weighs about a gram, to give you a comparison. As a side effect, the marmot basically only ages during the summer when it’s active. The scientists think this may be the case for all animals that hibernate.

Like other marmots, the yellow-bellied marmot starts its mating season as soon as it emerges from hibernation around May. Males may have several mates and they all live together with him. Females give birth to around four babies during the summer, which like kittens and puppies are born without fur and with their eyes still sealed shut. They stay in the mother’s nesting burrow for the next six weeks, at which point they can see and have grown fur, so they can go outside with their mother. The babies stay with their mother for up to two years.

Most marmot species are social like the yellow-bellied marmot, but the groundhog is different. It’s mostly solitary, although it’s still part of a complex social network of all the groundhogs in a particular area, and sometimes it will share a burrow with other groundhogs. It also prefers lower elevations while most marmots prefer high elevations. It lives throughout most of the eastern United States and throughout much of Canada.

Because the marmot is a relatively big, common animal, it’s an important food source for many animals. Bears will sniff out marmot burrows and dig them open, and badgers, foxes, coyotes, and mountain lions eat lots of marmots in North America. In Europe and Asia, marmots are frequently eaten by foxes, wolves, snow leopards, and hawks. People will eat them too. In parts of Mongolia where marmots are common, it’s been a food source for thousands of years, traditionally prepared on special occasions by putting hot stones into the dead animal’s body cavity and letting the heat cook the meat slowly. But the marmot can carry diseases that humans can catch, including the plague, so these days a dead goat is often used instead of a marmot.

After I learned this, I naturally got distracted and started reading about other traditional Mongolian foods, and now I suddenly remember that I haven’t eaten anything today but trail mix and toast. So I’ll leave you with a final marmot fact. When a marmot sees a predator, it will whistle to warn other marmots, and the whistle sounds like this:

[marmot whistle]

Now I’m going to go make myself dinner. But it won’t be marmot.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 326: The Harpy Eagle and Friends

Thanks to Eva and Anbo for suggesting the harpy eagle!

Further reading:

Crested Eagle Feeding a Post-Fledged Young Harpy Eagle

Harpy eagle with a food [By http://www.birdphotos.com – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=3785263]:

The harpy eagle has great big feet and talons:

The harpy eagle with its feather crown raised [photo by Eric Kilby]:

The New Guinea harpy eagle looks similar to its South American cousin [By gailhampshire from Cradley, Malvern, U.K – New Guinea Harpy Eagle. Harpyopsis novaeguineae, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=86187611]:

Ruppell’s griffon vulture:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’ve been talking about a lot of mammals lately, so let’s have an episode about birds. Anbo suggested the harpy eagle not too long ago, and a much longer time ago Eva suggested the harpy eagle and other raptors.

The word raptor can be confusing because it refers to a type of small theropod dinosaur as well as a type of bird. When referring to a bird, the term raptor includes eagles, hawks, vultures, owls, and other birds of prey. And that includes the harpy eagle.

The harpy eagle lives throughout much of Central and South America, although not as far south as Patagonia. It has a wingspan up to about seven feet across, or over 2 meters, and like other raptors, females are larger than males. This isn’t an especially big wingspan for an eagle, but that’s because the harpy eagle hunts in forests and needs short, broad wings that allow it to maneuver through branches.

The harpy eagle is a beautiful bird. It has a light gray head and darker gray or black body, and is white underneath with delicate black stripes on its leg feathers, with broader stripes on its tail and wings. It has a black ring around its neck, huge yellow feet with enormous talons, and a black bill. Each talon, which is the term for a raptor’s claws, can be over 5 inches long, or 13 cm, while its feet in general are bigger than a grown man’s hand, even if the man has especially big hands.

Most striking of all is the harpy eagle’s crest, also sometimes referred to as a crown. The crown is made of long, rounded feathers and most of the time they don’t show very much. When a harpy eagle is alarmed, it raises the feather crown and poofs out the feathers on its face, which makes its head look bigger and sort of owl-shaped.

The harpy eagle mostly lives in lowland rainforests. It mates for life and doesn’t have babies every year. Every two or three years a harpy eagle pair will build a huge nest out of sticks in the top of the tallest tree they can find. The female lays two eggs, which the parents care for together. The female spends most of her time incubating the eggs while the male brings her food, although he will also take a turn incubating while she goes out to stretch her wings and do a bit of hunting herself. When the first egg hatches, the parents bring the baby lots of food and give it lots of attention–but they ignore the other egg at that point, which usually doesn’t hatch as a result. A harpy eagle chick is all white at first, and although it can fly at around 6 months old, its parents will keep feeding it for almost another year.

The harpy eagle is increasingly threatened due to habitat loss and poaching. Because it’s such a big bird, many people shoot it because they think it’s dangerous to livestock or children. But it mostly eats monkeys, sloths, kinkajous and coatis, iguanas, and other medium-sized animals. It’s rare that it attacks livestock since it mostly hunts within the tree canopy for arboreal animals. If your lambs and chickens are sitting on tree branches, you already have a bigger problem than harpy eagles eating them.

A captive breeding program has been started in various zoos around the world, while conservationists work to protect the harpy eagle’s natural habitat so that individuals can be released back into the wild.

We don’t actually know all that much about the harpy eagle, but we know even less about its close relation, the New Guinea harpy eagle. It resembles the harpy eagle but instead of being mostly gray and white, it’s mostly brown and cream in color. It has longer legs and tail but is smaller overall than the harpy eagle, with a wingspan closer to 5 feet across, or 1.5 meters. It has a smaller crest than the harpy eagle too.

Like its South American cousin, the New Guinea harpy eagle hunts in forests, especially rainforests, and spends most of its time perched in a tree, watching for small animals to happen by. Sometimes it will shake a branch to startle any animals in the area to run or fly away, at which point the eagle flies after them. It will even climb around in a tree and poke around in any potential hiding places it finds. It eats tree kangaroos, possums, and other small to medium-sized mammals, but it also eats a lot of birds and reptiles.

While it’s closely related to the harpy eagle, the New Guinea harpy eagle is placed in a different genus. This is also the case for another closely related bird, the crested eagle, which lives in parts of South America. It’s a little smaller than the harpy eagle of South America, with a wingspan of not quite 6 feet across, or 1.8 meters, with a black mask marking over its eyes and a black spot on its crest. Other than that it’s mostly gray.

The two species look enough alike that sometimes people confuse the crested eagle for a young harpy eagle where their ranges overlap. But in at least one documented case, the birds seemingly got confused too.

In early 2004, a team of scientists observing a harpy eagle nest noticed something odd. The nest had one baby in it that was about a month old when the scientists first observed it, and they noticed a crested eagle perched nearby. Every time the scientists visited the nest, the crested eagle seemed to be nearby, although the harpy eagle parents were also around and seemed just fine. The scientists observed the crested eagle adding branches to the nest and even bringing food to the harpy eagle baby. This continued for almost a year. The baby actively solicited food from the crested eagle and happily ate what it brought. At the same time, the harpy eagle parents allowed the crested eagle to approach, although generally the crested eagle didn’t come very close when the harpy eagle parents were around.

The scientists published a short paper about these observations in 2006, including a few hypotheses about the crested eagle’s behavior. They suggested that the crested eagle might have lost her own chick and transferred her maternal instincts to another eagle chick nearby, or she might have just been responding to the eagle chick’s requests for food. She might even have wanted to use that tree for her own nest, but when the bigger, stronger harpy eagles moved in, she abandoned her nest but hung around. A male crested eagle wasn’t observed, so it’s also possible she had lost her mate.

Sometimes different species of raptor do feed each other’s nestlings, although we don’t know why. It also occasionally happens with other types of birds, often male birds whose own nests are still being incubated by the female or by birds whose nest is very close to another nest with babies in it.

Another raptor that hunts animals that live in trees is the crane hawk, also from South America. It lives in forests that are near water and usually hunts by sitting in a tree and watching for potential prey. A lot of the time, though, it hunts like the New Guinea harpy eagle, climbing around in a tree and poking through any nooks and crannies to find animals that are hiding. In the case of the crane hawk, though, it actually has double-jointed legs that allow it to reach a foot into a little hole in a tree to grab prey. Most birds don’t have legs that are flexible enough to allow this behavior. The crane hawk eats a lot of nestling birds, bats, frogs, and other small animals that hide in tree cavities, including some larger invertebrates like cicadas and snails. The only other raptor known to both hunt like this and have double-jointed legs is a genus of African harrier-hawks that aren’t related to the crane hawk. Yes, it’s convergent evolution, at it again!

Let’s get out of the trees now and finish with another raptor Eva suggested. We talked about Ruppell’s griffon vulture in episode 159, but only very briefly.

Ruppell’s griffon vulture is a critically endangered vulture that lives in parts of central and eastern Africa. Unlike the raptors we’ve talked about so far in this episode, it spends a lot of its time soaring at high elevations, so it has really big wings. Its wingspan is as much as 8 and a half feet across, or 2.6 meters. It’s mostly brown and black and like other vultures, it doesn’t have feathers on its head, just a little bit of thin fluff. It will travel enormous distances to find the dead animals it eats, sometimes following herds of migrating animals to scavenge individuals that die of injury or illness. It doesn’t just eat the yummy soft parts of a carcass, it will also eat bones and even the hide of a dead animal. It has a long neck that helps it get to the best bits of its food, uh, from the inside of the carcass. It sometimes even climbs completely inside the rib cage of a dead animal to more easily get every scrap of food.

The way vultures eat is gross, which makes it fun for me to talk about, but vultures are incredibly important. They actually help stop the spread of diseases like rabies and anthrax by eating animals that died of the diseases. The vulture’s digestive tract is so effective that it kills off any viruses that caused the animals to die.

Ruppell’s vulture mates for life. It nests in cliffs, with hundreds of vulture pairs nesting very close together. The female lays one egg, and both parents take care of the baby when it hatches. Even after it can fly, the parents take care of their chick for almost a year while it learns how to find food on its own. Most vultures have relatively weak feet since they don’t use them to catch prey like other raptors, but Ruppell’s vulture has strong feet to help it perch on the cliffs where it nests.

Ruppell’s griffon vulture is one of the highest-flying birds known. It’s been recorded flying as high as 37,000 feet, or 11,300 meters, and we know it was flying at 37,000 feet because unfortunately it was sucked into a jet engine and killed. There’s so little oxygen at that height that a human would pass out pretty much instantly, but the vulture’s blood contains a variant type of hemoglobin that’s more efficient at carrying oxygen than ordinary hemoglobin.

As if all that weren’t enough for one bird, Ruppell’s vulture can also live to be 50 years old. That’s pretty good for an animal that mostly eats rotting and diseased meat.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 325: The Burrunjor

We have merch available again!

Thanks to Will for suggesting this week’s topic, the burrunjor!

Muttaburrasaurus had a big nose [picture by Matt Martyniuk (Dinoguy2) – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3909643]:

The “rock art” that Rex Gilroy “found”:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Recently, Will suggested we learn about an Australian cryptid called the burrunjor. As it happens, this is a short chapter in my book Beyond Bigfoot & Nessie: Lesser-Known Mystery Animals from Around the World, which is available to buy if you haven’t already. I’ve updated it a little from the chapter, so even if you have the book I think you’ll find this a fun episode.

Dinosaurs once lived in what is now Australia, just as they lived throughout the rest of the world. Similar to the southwestern United States reports of little living dinosaurs that we talked about in episode 252, some people in northern Australia report seeing living dinosaurs running around on their hind legs—but these dinosaurs aren’t so little.

The burrunjor, as it’s called, is often described as looking like a Tyrannosaurus rex. Mostly, though, people don’t actually see it. Instead, they hear roaring or bellowing and later see the tracks of a large, three-toed animal that was walking on its hind legs.

One Australian dinosaur that people mention when trying to solve the mystery of the burrunjor is Muttaburrasaurus. It was an ornithopod that grew up to 26 feet long, or 8 meters. It walked on its hind legs and had a big bump on the top of its muzzle that made its head shape unusual. No one’s sure what the bump was for, but some scientists speculate it might have been a resonant chamber so the animal could produce loud calls to attract a mate. Other scientists think it might have just been for display. Or, of course, it might have been both—or something else entirely. None of the Australian dinosaur sightings mention a big bump on the dinosaur’s nose. Muttaburrasaurus also had four toes on its hind feet, not three, and it disappeared from the fossil record about 103 million years ago. It also probably ate plants, not meat.

Another suggestion is that the burrunjor is a megaraptorid that survived from the late Cretaceous. These dinosaurs looked like theropods but with longer, more robust arms. Most scientists these days group them with the theropods. Most of the known specimens are from what is now South America, but two species are known from Australia, Australovenator and Rapator.

Australovenator is estimated as growing up to 20 feet long, or 6 meters, and probably stood about the same height as a tall human. It was a fast runner and relatively lightly built. It disappeared from the fossil record around 95 million years ago, not that we have very many bones in the first place. We only know Rapator from a single bone dated to 96 million years ago. It was probably related to Australovenator, although some paleontologists think Australovenator and Rapator are the same dinosaur. Either way, it’s doubtful that any of these animals survived the extinction event that killed off all the other non-avian dinosaurs.

“Burrunjor” is supposed to be a word used by ancient Aboriginal people to describe a monstrous lizard that eats kangaroos. But in actuality, Burrunjor is the name of a trickster demigod in the local Arnhem Aboriginal tradition and has nothing to do with reptiles or monsters. The Aboriginal rock art supposedly depicting a dinosaur-like creature doesn’t resemble other rock art in the region and isn’t recognized by researchers or Aboriginal people as being authentic.

All accounts of the burrunjor trace back to a single source, an Australian paranormal writer named Rex Gilroy. Gilroy was the one who “discovered” the rock art of a supposed dinosaur and none of the sightings he reports appear in local newspapers. The first mention of the word burrunjor referring to a monster appears in 1995, when Gilroy’s book Mysterious Australia was first published. According to Gilroy, the most recent burrunjor sighting is from 1985, when a family driving to Roper River reported seeing a feather-covered dinosaur that was 20 feet long, or 6 meters. But again, that report doesn’t appear in the newspapers, just in Gilroy’s books.

Gilroy’s burrunjor is probably a hoax, but there is a big lizard in Australia that sometimes stands on its hind legs. Monitor lizards live throughout Australia and are often called goannas. The largest Australian species can grow over 8 feet long, or 2.5 meters. All monitor lizards, including the Komodo dragon that lives in Indonesia, can stand on their hind legs. The lizard does this to get a better look at the surrounding area. It uses its tail as a prop to keep it stable and can’t actually walk on its hind legs, but an 8-foot lizard standing on its hind legs might look like a dinosaur from a distance.

An even bigger monitor lizard, called Megalania, lived in Australia until at least 50,000 years ago and maybe much more recently. It’s possible that Aboriginal Australians lived alongside it, although there’s no evidence for this either way. (Unless you count the evidence that that would be really really cool.)

Megalania is considered the largest terrestrial lizard known. Dinosaurs weren’t lizards and crocodilians aren’t either, but monitor lizards are. We don’t have any complete fossils of Megalania but its total length, including its tail, is estimated to be as much as 23 feet long, or 7 meters. This is more than twice the length of the Komodo dragon, the largest lizard alive today and a close relation. Like the Komodo dragon, Megalania was probably venomous.

As for Rex Gilroy, he recently passed away at the age of 79 and his books about the burrunjor are out of print. Rest in peace, burrunjor man.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 324: The Tenrec and Adalatherium

We have merch available again!

Thanks to Eva and Leo for suggesting the tenrec!

Further reading:

Marooned on Mesozoic Madagascar

Introduction to Adalatherium hui

The lowland streaked tenrec:

The hedgehog tenrec rolls up just like an actual hedgehog [photo by Rod Waddington, CC BY-SA 2.0, via Wikimedia Commons]:

Actual hedgehog, not a tenrec:

Lesser hedgehog tenrec REALLY looks like an actual hedgehog [By Wilfried Berns www.Tierdoku.com – Transferred from de.wikipedia to Commons.Orig. source: eigene Fotografie, CC BY-SA 2.0 de, https://commons.wikimedia.org/w/index.php?curid=2242515]:

Adalatherium:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about a weird little animal suggested by both Eva and Leo, the tenrec of Madagascar. While we’re at it, we’re going to learn about another little animal found on Madagascar a long time ago that’s one of the weirdest mammals ever discovered.

Before we get started, though, someone sent me a book! If your name is Jennifer or someone named Jennifer mailed this book to me for you, thank you! The book is called The Last Flight of the Scarlet Macaw: One Woman’s Fight to Save the World’s Most Beautiful Bird by Bruce Bercott. Thank you so much! I did not know when I started this podcast over six years ago that one of the benefits of doing an animal podcast is sometimes people send you books about animals, which is the best thing in the world. There’s no note so I thought I’d give you a shout-out on the podcast.

As we learned in episode 318, about 88 million years ago, the island of Madagascar broke off from every other landmass in the world, specifically the supercontinent Gondwana. The continent we now call Africa separated from Gondwana even earlier, around 165 million years ago. Madagascar is the fourth largest island in the world and even though it’s relatively close to Africa these days, many of its animals and plants are much different from those in Africa and other parts of the world because they’ve been evolving separately for 88 million years.

But at various times in the past, some animals from Africa were able to reach Madagascar. We’re still not completely sure how this happened. Madagascar is 250 miles away from Africa, or 400 kilometers, and these days the prevailing ocean currents push floating debris away from the island. In the past, though, the currents might have been different and some animals could have arrived on floating debris washed out to sea during storms. During times when the ocean levels were overall lower, islands that are underwater now might have been above the surface and allowed animals to travel from island to island until they reached Madagascar.

Sometime between 25 and 40 million years ago, a semiaquatic mammal reached Madagascar in enough numbers that it was able to establish itself on the island. It was related to the ancestors of a semiaquatic mammal called the otter-shrew, even though it’s neither an otter nor a shrew. The otter-shrew lives in parts of Africa and is pretty weird on its own, but we’ll save it for another episode one day. The otter-shrew’s relative did so well in its new home of Madagascar that over the millions of generations since, it developed into dozens of species. We now call these animals tenrecs.

It’s hard to describe the tenrec because the various species are often very different in appearance. There are some things that are basically the same for all species, though. First, the tenrec has a low body temperature, although it varies from species to species and also varies depending on time of year. That’s because some species of tenrec go into torpor when it’s cold, or sometimes full hibernation. During torpor the animal’s body temperature drops even more than usual. The common tenrec hibernates up to nine months out of the year.

Second, the tenrec has a cloaca, which is really unusual in placental mammals. Birds, reptiles, and amphibians have a cloaca, which is a single opening used for excretion and often for giving birth or laying eggs too. Most mammals have separate openings for different uses.

Third, all tenrecs are pretty small with only a little short tail. The biggest is only a little over a foot long at most, or 39 cm, and most are much smaller.

Leo specifically likes the streaked tenrec, so let’s learn about it to give us a better idea of what tenrecs are like in general. There are two species of streaked tenrec and while they live in different parts of Madagascar, they mostly live in tropical rainforests. They’re considered a type of spiny tenrec because they have quills all over like a tiny porcupine or a brightly colored hedgehog. The highland streaked tenrec is black and white, while the lowland streaked tenrec is black and yellow.

The streaked tenrec’s bright coloration gives a warning to potential predators that it is pointy. If a predator doesn’t figure it out, the tenrec will raise its quills and shake them to make a little rattling sound. If that doesn’t stop the predator and it tries to bite the tenrec, the quills can detach and will lodge in the predator’s mouth. That generally gets the point across. (haha, point)

The lowland streaked tenrec also communicates by rubbing its quills together to make ultrasonic sounds. This method of sound production is called stridulation and the streaked tenrec is the only mammal known to make sound this way. It has special muscles at the base of its quills that help it move the quills to make sounds. Stridulation is mostly found in insects, including crickets.

Like most tenrecs, the streaked tenrec has a long, thin snout and short legs. It spends a lot of its time digging for earthworms and other invertebrates, and it also eats fruit. It lives in family groups that sleep in shallow burrows. Also, it’s super cute. Just don’t lick it.

Another tenrec with spines is the hedgehog tenrec, which looks and acts incredibly like a hedgehog even though it’s not related. That’s yet another example of convergent evolution. The lesser hedgehog tenrec and the greater hedgehog tenrec, which by the way belong to different genera, are nocturnal animals that live in open forests, savannas, and people’s gardens in Madagascar. During the day it stays hidden in dead leaves or brush, or in a hollow of a tree trunk, and at night it comes out to find insects and other small animals to eat. If it feels threatened, it will roll up into a ball to protect its belly while turning itself into a very pointy mouthful. Its spines don’t come loose the way the streaked tenrec’s do, but they’re sharp. Sometimes a hedgehog tenrec will back up quickly toward a potential predator. If it backs into the predator’s nose, suddenly the predator discovers it’s not all that hungry and its nose hurts and it’s just going to leave.

Many species of tenrec resemble shrews. They’re smaller than a mouse, which they otherwise resemble except that they have a long nose and short tail, and they don’t have quills. Most tenrecs have 6 or 8 babies at a time, but some have more. The common tenrec can have up to 32 babies at a time. It has 29 teats! That’s the most teats known in any mammal.

All this is amazing, but while I was researching the tenrec I learned about an even weirder animal that lived on Madagascar at the end of the Cretaceous. That animal wasn’t a dinosaur, though. It was a mammal.

It was discovered by a team of paleontologists in 1999, but they didn’t actually know they’d discovered it. They thought the piece of rock only contained a small crocodyliform. When preparation of the specimen started in 2002, the scientist working on it received an incredible surprise. In addition to fossil remains of both an adult and a baby crocodyliform, there was an almost complete, articulated skeleton of a weird mammal. All three animals may have been buried suddenly by debris carried by a flash flood, which is why they’re so well preserved.

Most mammals that lived alongside dinosaurs were really small, maybe the size of rats at most, but Adalatherium was about the size of a cat. It may have actually grown larger than a cat, because the only specimen we have is an individual that wasn’t fully grown. It was built sort of like a little badger, with a broad body, short legs, short tail, and short snout.

Adalatherium is a member of a group of mammals called Gondwanatheria, which arose in the southern hemisphere around the time that the supercontinent Gondwana was breaking apart. We only have a few fossils of these animals so paleontologists still don’t know how they’re related, but Adalatherium is a big deal because it’s so detailed and almost the whole skeleton is preserved. Paleontologists have known for a long time that these Gondwanatheria were probably not related to modern mammals, but until Adalatherium was discovered no one realized just how weird these animals were.

If you could go back in time to look at Adalatherium when it was alive, you might not think it was all that weird. Also, you’d be a little distracted because dinosaurs would probably be trying to eat you. Most of the weird details probably weren’t visible, but they’re very obvious to scientists studying the fossilized bones. For instance, Adalatherium had a lot of vertebrae in its backbone, more than other mammals—at least 30 total thoracic and lumbar vertebrae. Humans have 17 total and cats have 20, to give you a comparison with modern mammals.

Adalatherium also had weird legs, with its front legs not really seeming to match its rear legs. Its front legs are longer with a strong shoulder, while its rear legs are short and bowed. Paleontologists think it might have been a burrowing animal, which would explain why its rear legs are strangely shaped compared to its front legs, but it could probably run pretty fast too. It also had unusual double grooves on its anklebones.

Another weird thing about Adalatherium was its skull. The parts of the skull that made up the nasal cavity had lots of little holes in it, called foramina, for nerves and blood vessels to pass through. This isn’t unusual in itself, but Adalatherium had more foramina than any other mammal ever examined, living or extinct. One of the foramen was on top of the snout and doesn’t match up with anything seen in any other mammal. Adalatherium probably had a whole lot of very sensitive whiskers, but for all we know, all the foramina were for some other sensory structure, one that was unlike any found in modern mammals.

Adalatherium lived at the end of the Cretaceous, and it’s possible it went extinct along with the non-avian dinosaurs. Gondwanatheria in general all went extinct by around 43 million years ago and as far as we know, no living descendants are still around. But we know very little about these interesting mammals. Hopefully more fossils of Gondwanatheria in general, and Adalatherium in particular, will turn up soon so we can learn more.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 323: The Kinkajou

Thanks to Lincoln for suggesting this week’s subject, the kinkajou!

Further reading:

Early Primates Groomed with Claws

Not actually a monkey:

Not actually a bear [photo taken from this site]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about an animal suggested by Lincoln. It’s the kinkajou, an adorable but weird little animal from Central and South America.

In episode 302 we talked about the coatimundi and the olingo, and both those animals are closely related to the kinkajou. So is the raccoon. But the kinkajou is the only member of its own genus that probably started evolving separately from its closest relations around 22 million years ago.

When the kinkajou was first described scientifically in the late 18th century, it was considered to be a type of lemur, which is a primate. At first glance, the kinkajou really does look like a primate in many ways. It’s arboreal, meaning it lives in trees, and it has a long prehensile tail. Its head is rounded with a short snout, and its large eyes are forward-pointing. Its ears are also low on the sides of its head. All these features resemble features common in primates, but the kinkajou isn’t related to primates at all. Eventually biologists figured it out and it was reclassified.

You can tell the kinkajou isn’t a primate if you know what to look for. It has fur on the bottoms of its feet, while primates always have bare skin on the bottoms of our feet and hands. Its fingers also all have long claws, whereas all primates have fingernails. The only exception is what’s called a toilet claw that some primates retain, including lemurs, where one toe has a claw instead of a nail that the animal uses to groom its fur. But no modern primates have claws on all their digits.

The kinkajou is covered with thick, plush fur that keeps it warm in cold weather. Some populations live in high elevations where it can get cold at night, and since it’s a nocturnal animal it needs to stay warm while it’s out looking for food. It’s yellowish-brown in color but some of its hairs are tipped with darker brown. Even though the darker hairs are mixed in with the lighter ones and the kinkajou doesn’t actually have a pattern of darker spots, the dark hairs absorb more light than the lighter hairs and can make it look spotted in low light. This helps it blend in with the dappled shade in the trees where it lives.

The kinkajou and its close relations make up the family Procyonidae, which is classified in the order Carnivora. Carnivora means “meat-eaters,” but Procyonids are all omnivores that don’t eat a lot of meat. The kinkajou mostly eats fruit, and its favorite fruit is the fig. It also eats other plant parts, insects, and honey, but it mostly just wants lots of yummy ripe figs. (Same.)

The kinkajou lives in family groups, typically one female and her young offspring, a dominant male, and a subordinate male. During the day the family members sleep in a tree hollow or in a tangle of branches that give them plenty of shade. When it starts getting dark, the kinkajous wake up and go out looking for food. Sometimes the family forages together but more often they split up and forage on their own. When there’s a lot of food available in one place, like a bunch of fig trees, a whole lot of kinkajous may gather to eat and play together.

Because it spends just about all its life in the treetops, the kinkajou is well adapted to arboreal life. It can turn its hind feet around backwards to help it climb headfirst down a tree trunk, which is another trait it shares with the raccoon. Other animals have evolved the same ability, though, even ones that aren’t closely related to the kinkajou.

The kinkajou’s prehensile tail is strong and thick, and it often hangs from its tail to eat. It’s not a very large or heavy animal, only 10 lbs in weight at the most, or 4.6 kg, and usually less than half that. Because it’s only about the size of a cat, it can climb onto thin branches to pick fruit. It also has an extremely flexible spine, so flexible that it can twist its head and shoulders 180 degrees from its pelvis.

A female kinkajou usually only has one baby at a time, sometimes two. She mostly takes care of the baby herself, although occasionally its dads will play with the baby or help it collect fruit. The baby stays with the family even after it’s able to care for itself, until it grows old enough that it leaves to find its own territory. The kinkajou can live a long time, 30 or 40 years, partly because it doesn’t have very many predators in its treetop habitat.

One other interesting detail about the kinkajou is its tongue. It has a surprisingly long tongue that it can stick far out of its mouth to lick up insects like ants. It also likes nectar and honey, so its long tongue helps it gather both. The kinkajou is sometimes called the honey bear since it likes honey and its fur is the color of honey, but it’s not related to bears any more than it’s related to primates.

One local name for the kinkajou translates to “bear-monkey,” and that’s honestly probably the best name for it–as long as we can remember that it’s not a bear and not a monkey!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 322: The Javelina and Other Peccaries

Thanks to Oceana and Leo for suggesting this week’s episode about the javelina! We’ll even learn about a mystery peccary too.

Further reading:

New Species of Peccary–Pig-Like Animal–Discovered in Amazon Region

A javelina, also called the collared peccary [By Wing-Chi Poon – Own work by uploader; at Cottonwood Campground, Big Bend National Park, Texas, USA, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4394434]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion by Oceana and Leo, the javelina! It’s an animal native to the Americas, also called the collared peccary. We’re going to learn about it and its close relations, including a mystery animal.

The javelina is in the family Tayassuidae, called the New World pigs. The rest of the world’s pigs, including the warthog and the babirusa and the domestic pig, belong to the family Suidae. While the two families are related, the ancestors of the New World pigs, or peccaries, split off from the ancestors of other pigs around 40 million years ago and they’ve been evolving separately for all that time.

Peccaries live throughout almost all of Central and South America up to southwestern North America and some of the Caribbean islands. All peccaries look like little hairy pigs, including a flat-ended pig snout that it uses to root in the ground, small eyes, short tusks, slender legs with cloven hooves, and a thin little tail. It’s relatively small compared to domestic pigs, about the size of a big dog at most, and is covered with a thick coat of bristly hair. When it’s angry or frightened, it can raise the bristles along its back to make it look larger. It also has scent glands that give off a pungent smell, which is how members of the same herd recognize each other, since peccaries have poor eyesight.

Peccaries mostly eat plant material, but they’re omnivores and will eat meat when they find it, from insects and grubs to frogs and even carrion. Because they root around in the ground and leaf litter, they stir up nutrients in a way that benefits other animals and the environment in general. In the case of the javelina, also called the collared peccary, musk hog, or skunk pig, it’s sometimes considered a pest since it will root up people’s flowerbeds and gardens. But the javelina doesn’t know the difference between a garden and a not-garden. It just wants to find some tasty grubs and roots.

Peccaries are social animals that usually live in small herds. The white-lipped peccary is widespread in the forests of Central and South America, and sometimes lives in herds of 300 animals or more, even as many as 2,000 according to some reports. It requires an enormous range as a result, and travels a lot of the day to find new areas to forage. It’s threatened by habitat loss, mostly deforestation. Like other peccaries, it smells sort of skunky and can be aggressive if threatened. It eats a lot of fruit in addition to other plant material, and because it has stronger jaws than the javelina, it can eat seeds and nuts that the javelina can’t, so the two species can coexist in the same environment without competing for the same food sources.

Until 1972, the Chacoan peccary was only known from some fossils found in 1930. Not only did scientists think it was extinct, they thought it had been extinct for a long time. But in the early 1970s, rumors about a new peccary species started to circulate. A team of biologists followed up with locals and discovered the peccary living in a small area of South America called Chaco. Surprise! New peccary just dropped.

The Chacoan peccary, also known as the tagua, looks a lot like a javelina although it doesn’t have a dew claw on its hind feet. It has a tough snout and brown and gray bristles, with white on its shoulders and around its mouth. It lives in small bands of around a dozen individuals that roam across a large range, eating tough vegetation that other animals wouldn’t even consider food—cacti, for instance. A peccary will roll a cactus around on the ground with its snout and hooves, rubbing the spines off so it can eat it. If that doesn’t work, it will pull the spines out with its teeth. Cacti contain acids that other animals can’t digest, but the Chacoan peccary has specialized kidneys that are adapted to break down those acids.

The Chacoan peccary is endangered due to hunting, habitat loss, and disease. The area where it lives is being rapidly deforested to make way for huge cattle ranches. This is bad enough, but when ranchers move in, they want roads to get to their land more easily, and once the roads are in place, not only can more hunters get to the area, but more peccaries are killed by traffic. It’s estimated that only about 3,000 Chacoan peccaries are alive today. The government of Paraguay is trying to reduce the impact of habitat loss by protecting key areas of forest, and breeding populations are kept in a number of zoos across the world.

There are only three living species of peccary known: the javelina, the white-lipped peccary, and the Chacoan peccary. But there may be a fourth, the giant peccary.

In 2000, a Dutch biologist named Marc van Roosmalen was researching animals in Brazil, and as part of his studies he talked to some local hunters. They showed him the hides of three big peccaries, but they looked different from the ordinary javelinas that lived in the area. Van Roosmalen had already spotted some javelinas that he’d thought seemed too big to be ordinary javelinas, so when he saw the hides he started wondering if there were two peccary species in that part of the Amazon region.

He returned in 2003 with a German filmmaker, who got video footage of a group of these mystery peccaries. They even found a skull. Van Roosmalen described the giant peccary as a new species in 2007, but not everyone agreed it was a new species.

The giant peccary is larger than the javelina but otherwise looks and acts very much like it. Since the javelina is common pretty much everywhere that peccaries are found, and can show a lot of variation in size and appearance, many scientists think the giant peccary is just a population of unusually large javelinas.

The giant peccary reportedly lives in pairs or small family groups instead of herds. The local people have a different name for it to differentiate it from the javelina, a name which means “the big javelina that lives in pairs.” But while a genetic study of the skull found in 2003 determined that the giant peccary diverged from all other peccary species around a million years ago, later analysis is less conclusive.

As of 2011, the giant peccary is in a sort of scientific limbo, waiting for more evidence and further studies to determine whether it’s actually a new species or just a bunch of big javelinas. Let’s hope we learn more about it soon and can clear up the mystery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 321: Archaeopteryx

We have merch available again!

Thanks to Eilee for suggesting this week’s topic, Archaeopteryx!

Further reading:

Dinosaur feather study debunked

Archaeopteryx fossil provides insights into the origin of flight

An Archaeopteryx fossil [By H. Raab (User: Vesta) – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8066320]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’ve had a lot of mammal episodes lately, so this week let’s learn about a reptile…uh, a bird. Not quite a bird, not exactly a reptile. That’s right, it’s an episode about archaeopteryx, a suggestion by Eilee!

A quick note before we start to say that I finally got around to setting up merch again if you want to order a t-shirt or water bottle or whatever with the podcast’s logo on it. I’m using Redbubble this time because they have a lot more items available than our previous vendor. There’s a link in the show notes.

We also have new stickers and those are free, so if you want one, just drop me an email and let me know what your mailing address is. The new sticker is a drawing of a capybara made by me. Anyway, on to the archaeopteryx!

The first archaeopteryx fossils were discovered in Germany in 1861. Before the first skeleton of an archaeopteryx was discovered, though, a single feather impression was found in a limestone quarry that has produced a lot of spectacularly well-preserved fossils. When the full specimen turned up later that same year, palaeontologists decided the feather came from the same animal.

That decision has been questioned repeatedly over the years. A study conducted with laser imaging determined that the single feather was different from the feathers of other archaeopteryx specimens. Results of that study were published in 2019, but in October of 2020 results of a study conducted with a specialized electron microscope determined that the feather did come from an archaeopteryx. The 2020 study also found that the feather was black.

Archaeopteryx lived around 150 million years ago in what is now Europe. It was about the size of a crow but while it looked a lot like a bird, it also looked a lot like a little dinosaur. It had small teeth and a long lizard-like tail. Of the twelve Archaeopteryx fossils found so far, all but one have feather impressions that indicate it had flight feathers on its arms, or rather wings, but at least one specimen also had flight feathers on its legs, which are sometimes referred to as hind wings. These hind wings would have helped it maneuver through branches even though its front wings were limited in their range of motion. It was probably a slow flyer that ate whatever small animals it could catch.

The wing feathers of archaeopteryx were very similar to those of modern birds, and a study published in late 2020 discovered another similarity. Birds molt their feathers and replace them the same way mammals shed hairs and regrow them, but it’s a little trickier for birds. A bird that loses too many feathers from its wings can’t fly until new feathers grow in. Modern birds solve this issue by molting only one pair of wing feathers at a time, and once the replacement grows in, the next pair is shed. The study examined fossilized archaeopteryx wings using a process called laser-stimulated fluorescence imaging, which can reveal details that aren’t otherwise visible. It discovered feather sheaths hidden under what would have been the skin of the wings, ready to grow new feathers. The feather sheaths were the same on both wings and resembled the molting pattern seen in modern falcons.

Archaeopteryx also had feathers on the rest of its body, but they aren’t well preserved so paleontologists can’t determine too much about them. They might have been more fluffy than sleek, like the soft downy feathers in young modern birds, or it might be that the fluffy feathers just happened to be the ones that were most preserved.

Palaeontologists study archaeopteryx because it gives us so much information about how birds evolved from dinosaurs. Archaeopteryx was still very much a dinosaur even though it looked superficially like a bird. Microscopic examination of the fossilized cells and blood vessels inside its bones show that it actually grew very slowly. Modern birds grow extremely quickly when they’re young. One scientist pointed out that when you watch a flock of pigeons, you can’t really tell which ones are fully grown and which ones are still quite young, because baby pigeons grow to an adult size so quickly. Dinosaurs grew to their adult size much more slowly, even the small carnivorous dinosaurs that were ancestral to modern birds. The study determined that Archaeopteryx would probably have taken almost three years to grow to its adult size.

The Archaeopteryx fossil called “specimen number eight” was determined to be a different species from the others, in a study published in 2018. It’s about half a million years younger than the other known specimens and has characteristics found in modern birds that the others don’t have. Its adaptations would have made it a better, more efficient flyer. The differences weren’t noticed before because it’s not a very good specimen and many of the bones are damaged and still embedded in the rock where they can’t be seen. The study used a process called synchrotron microtomography to basically take a 3D scan of the fossil and its rock matrix so scientists can study the scan without breaking the rock open and destroying parts of the fossil.

At the time that archaeopteryx lived, the sea levels were much higher than they are now and Europe was mostly a series of large islands in a shallow sea. The part of Europe that’s now Germany was subtropical but fairly dry, without much rain. All the archaeopteryx specimens have been found in limestone that was once mud at the bottom of a placid lagoon, protected from ocean currents and waves by small islands covered with shrubby vegetation. Archaeopteryx probably lived on these small islands, and while we don’t know how it behaved, many paleontologists think it may have hunted both by running on its long hind legs and by flying, just like a lot of birds do today. We have fossilized remains of little lizards and insects that would have made good meals for a hungry archaeopteryx.

What we do know is that sometimes an archaeopteryx had a very bad day and ended up drowning in the lagoon. On rare occasions, the body floated around until it decomposed enough that it sank into the mud at the bottom. Over millions of years, this mud turned into fine-grained limestone that preserved the fossil archaeopteryx remains in incredible detail.

For a long time, people thought archaeopteryx was a so-called missing link between dinosaurs and birds, and that it was the first bird. We now know that isn’t true. There were other bird-like dinosaurs that could fly before archaeopteryx evolved, although archaeopteryx was a very early flying avian dinosaur.

More importantly, we now know that birds are basically very derived dinosaurs. Dinosaurs had so many features we associate with birds, and birds still have so many features we associate with dinosaurs, that it’s hard to decide whether an animal like archaeopteryx was a bird-like dinosaur or a dinosaur-like bird. I guess it was sort of both.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!