Episode 331: Ompax, the Mystery Fish

This week we have a mystery fish from Australia, the ompax!

Main source consulted:

Whitley, G. P. (1933). Ompax spatuloides Castelnau, a Mythical Australian Fish. The American Naturalist, 67(713), 563–567. http://www.jstor.org/stable/2456813

The fateful Ompax drawing:

The freshwater longtom (picture by Barry Hutchins):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

For the Patreon episode this month, we had a bird mystery from Queensland, Australia. While I was researching it I came across this mystery fish, also from Queensland.

In 1872, a man named Karl Staiger visited the town of Gayndah as part of his job. He was a chemist, but he also had an interest in nature and years later he worked for the Queensland Museum. One morning in Gayndah he went to breakfast and was served a strange-looking fish—so strange-looking that he asked what it was. He was told it was a very rare fish found in the nearby Burnett River.

Staiger was interested enough that he asked the road inspector, presumably one of his coworkers, to draw the fish for him. But the drawing wasn’t made until after Staiger ate the fish. It was his breakfast and he was hungry and, as he wrote later, he didn’t know he should have at least saved the head for study. Presumably he also didn’t want his breakfast to get cold while the drawing was being made.

The road inspector was a careful artist although he wasn’t a naturalist himself, so he did what he could to draw the fish accurately from the remains of Staiger’s meal. According to the drawing, the fish had a long, flattened rostrum that looked a little like a very long, thin duckbill, big scales on its body, and a fin that went all the way around the edges of the tail starting about halfway down the back, which appeared to be connected dorsal, caudal, and ventral fins. Its pectoral fins were small, and its eyes were also small and near the top of its head. The fish was brown in color and about 18 inches long, or 46 cm.

Staiger eventually wrote to a French naturalist and sent him the drawing. The French naturalist has about 500 names and titles, usually shortened to something like Francis de Laporte de Castelnau. I’m going to call him Francis because obviously I can’t pronounce any of those names properly.

Francis saw at a glance that the fish was unlike anything he’d ever seen before. He suspected it didn’t just deserve its own genus but its own family. Staiger had reported what he’d been told, that the fish was known from a particular part of the Burnett River, and he’d also mentioned that it lived in the same area as another strange fish, the Australian lungfish.

The Australian lungfish had only been described a few years before, in 1870, and it’s a very big fish. It can grow up to 5 feet long, or 1.5 meters, and is greenish in color. It has big overlapping scales on its body and four strong fins that look more like flippers than ordinary fish fins, which it uses to stand and walk on the bottom of the river. Its tail comes to a single rounded point and it has tooth plates instead of regular teeth, which it uses to crush the small animals it eats. It also has a single lung in addition to gills, and like other lungfish it comes to the surface every so often to replace the air in its lung. When it’s especially active it will breathe at the surface more often. The ability to breathe air allows it to survive in water with low oxygen.

Francis noted that there were some similarities between the new fish and the Australian lungfish, but he thought it was more likely to be related to the alligator gar of North America. It had the same type of scales as the alligator gar. He also noted that its duckbill rostrum resembled the rostrum of the American paddlefish, which is similarly shaped but even longer than the new fish’s, but that the rest of the new fish was very different from the paddlefish.

Francis described the new fish in 1879 and gave it the name Ompax spatuloides, but as early as 1881 some fish experts wondered if the original drawing was misleading. They pointed out that the fish wasn’t drawn by someone with a knowledge of fish and that it had already been cooked and eaten, so the details might be completely wrong.

As it happens, the details were completely wrong, but not in a way anyone expected.

There’s actually some confusion as to whether the drawing of the fish was made before or after Staiger ate it, but it doesn’t actually matter after all. In 1930, an article in the Sydney Bulletin claimed that Ompax was a hoax to fool Staiger, made up of a lungfish head, a mullet body, and an eel tail.

The 1930 article isn’t available online, but one published in 1933 is, and it quotes the 1930 article. The 1933 article appears in a periodical called The American Naturalist and discusses the history of Ompax from start to finish, which is where most of our information comes from. The article finishes by pointing out that the Ompax’s head can’t have been made from a lungfish head unless a platypus bill or something like that was added, and suggests that the head might actually have been that of a fish of the family Belonidae. These are commonly called needlefish because they have long thin rostrums lined with teeth.

Needlefish are long, slender fish that resemble gars, although gars are native to North America and mostly live in freshwater. Needlefish live throughout much of the world’s oceans although some do live in brackish or freshwater. The needlefish swims near the surface of the water and will leap out of the water at high speed to jump obstacles like floating logs or boats. Since needlefish rostrums really do have a sharp point like a needle, it sometimes badly injures or even kills people who are fishing in boats by accidentally stabbing them.

One species, the freshwater longtom, is not only found in Australian rivers, it’s found in Queensland and occasionally even in the Burnett River. Its rostrum is the right size and shape to be the Ompax’s rostrum, while the platypus’s so-called duckbill is much too large to match the drawing. The freshwater longtom can grow almost three feet long, or about 85 cm, but is usually much smaller than that.

Like most needlefish, the freshwater longtom eats small fish, insects, and crustaceans. Also like other needlefish, it has no stomach. It swallows its prey whole and instead of the food going into its stomach, it just goes directly into its intestines, which excrete an enzyme called trypsin that breaks down proteins so they can be absorbed. This isn’t as efficient as stomach acids, but it also takes less energy to digest food this way.

The freshwater longtom’s dorsal and anal fins are long but fairly low and set well back on its body. Its pectoral fins are very small. While it does have an ordinary-looking tail fin, this might easily appear different after being cooked. And the longtom is edible, although it has a lot of thin bones that make it difficult to eat. Its bones are also green in color, which can be offputting to some people. Some needlefish also have greenish meat.

Staiger didn’t recount any details about the edibility and taste and texture of the fish he ate, so we don’t know if he actually ate a mullet that had a needlefish head and an eel tail stuck to it. The sea mullet and the sand mullet are both common fish around Australia and considered excellent eating fish. But if there really was that much of an eel’s tail stuck onto the fish’s body, you’d think Staiger would have noticed the difference in meat texture. The eels found in Australia are edible and considered a delicacy, but they wouldn’t look or taste the same as the rest of the fish.

The only reason we know the Ompax fish was a hoax is because of the 1930 article written by someone who called himself Waranbini. Waranbini’s article was published 58 years after the fish was served to Staiger for his breakfast.

I think the only hoax here was the 1930 article. I think Waranbini, whoever he was, looked at the picture, thought, “That looks like someone stuck three different types of animal together,” and wrote his article.

I think Staiger was actually served a freshwater longtom, and I think the people who served it to him were sincere that it was a rare fish. It is rare in the Burnett River. Staiger wasn’t an ichthyologist, nor was the man who drew the fish. They did the best they could, and Francis did the best he could to decipher from Staiger’s notes and the drawing what the fish was.

So from this we can learn three important things: Don’t use a drawing of a cooked and possibly mostly eaten fish to describe a new species, don’t assume people in the olden days were stupid, and don’t trust anonymous newspaper articles with no sources listed.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 212: The River of Giants

Thanks to Pranav for his suggestion! Let’s find out what the river of giants was and what lived there!

Further reading:

King of the River of Giants

Spinosaurus was a swimming dinosaur and it swam in the River of Giants:

A modern bichir, distant relation to the extinct giants that lived in the River of Giants:

Not actually a pancake crocodile:

A model of Aegisuchus and some modern humans:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

A while back, Pranav suggested we do an episode about the river of giants in the Sahara. I had no idea what that was, but it sounded interesting and I put it on the list. I noticed it recently and looked it up, and oh my gosh. It’s amazing! It’s also from a part of the world where it’s really hot, as a break for those of us in the northern hemisphere who are sick of all this cold weather. I hope everyone affected by the recent winter storms is warm and safe or can get that way soon.

The Sahara is a desert in northern Africa, famous for its harsh climate. Pictures of the Sahara show its huge sand dunes that stretch to the horizon. This wasn’t always the case, though. Only about 5,500 years ago, it was a savanna with at least one lake. Lots of animals lived there and some people too. Before that, around 11,000 years ago, it was full of forests, rivers, lakes, and grasslands. Before that, it was desert again. Before that, it was forests and grasslands again. Before that, desert.

The Sahara goes through periodic changes that last around 20,000 years where it’s sometimes wet, sometimes dry, caused by small differences in the Earth’s tilt which changes the direction of the yearly monsoon rains. When the rains reach the Sahara, it becomes green and welcoming. When it doesn’t, it’s a desert. Don’t worry, we only have 15,000 more years to wait until it’s nice to live in again.

This wet-dry-wet pattern has been repeated for somewhere between 7 and 11 million years, possibly longer. Some 100 million years ago, though, the continents were still in the process of breaking up from the supercontinent Gondwana. Africa and South America were still close together, having only separated around 150 million years ago. The northern part of Africa was only a little north of the equator and still mostly attached to what is now Eurasia.

Near the border of what is now Morocco and Algeria, a huge river flowed through lush countryside. The river was home to giant animals, including some dinosaurs. Their fossilized remains are preserved in a rock formation called the Kem Kem beds, which run for at least 155 miles, or 250 km. A team of paleontologists led by Nizar Ibrahim have been working for years to recover fossils there despite the intense heat. The temperature can reach 125 degrees Fahrenheit there, or 52 Celsius, and it’s remote and difficult to navigate.

For a long time researchers were confused that there were so many fossils of large carnivores associated with the river, more than would be present in an ordinary ecosystem. Now they’ve determined that while it looks like the fossils were deposited at roughly the same time from the same parts of the river, they’re actually from animals that lived sometimes millions of years apart and in much different habitats. Bones or even fossils from one area were sometimes exposed and washed into the river along with newly dead river animals. This gives the impression that the river was swarming with every kind of huge predator, but it was probably not quite so dramatic most of the time.

Then again, there were some really fearsome animals living in and around the river in the late Cretaceous. One of the biggest was spinosaurus, which we talked about in episode 170. Spinosaurus could grow more than 50 feet long, or 15 m, and possibly almost 60 feet long, or 18 m. It’s the only dinosaur known that was aquatic, and we only know it was aquatic because of the fossils found in the Kem Kem beds in the last few years.

Another dinosaur that lived around the river is Deltadromeus, with one incomplete specimen found so far. We don’t have its skull, but we know it had long, slender hind legs that suggests it could run fast. It grew an estimated 26 feet long, or 8 meters, including a really long tail. At the moment, scientists aren’t sure what kind of dinosaur Deltadromeus was and what it was related to. Some paleontologists think it was closely related to a theropod dinosaur called Gualicho, which lived in what is now northern Patagonia in South America. Remember that when these dinosaurs were still alive, the land masses we now call Africa and South America had been right in the middle of a supercontinent for hundreds of millions of years, and only started separating around 150 million years ago. Gualicho looked a lot like a pocket-sized Tyrannosaurus rex. It grew up to 23 feet long, or 7 meters, and had teeny arms. Deltadromeus’s arms are more in proportion to the rest of its body, though.

Some of the biggest dinosaurs found in the Kem Kem beds are the shark-toothed dinosaurs, Carcharodontosaurus, nearly as big as Spinosaurus and probably much heavier. It grew up to 40 or 45 feet long, or 12 to almost 14 meters, and probably stood about 12 feet tall, or 3 ½ meters. It had massive teeth that were flattened with serrations along the edges like steak knives. The teeth were some eight inches long, or 20 cm.

Researchers think that Carcharodontosaurus used it massive teeth to inflict huge wounds on its prey, possibly by ambushing it. The prey would run away but Carcharodontosaurus could take its time catching up, following the blood trail and waiting until its prey was too weak from blood loss to fight back. This is different from other big theropod carnivores like T. rex, which had conical teeth to crush bone.

Dinosaurs weren’t the only big animals that lived in and around the River of Giants, of course. Lots of pterosaur fossils have been found around the river, including one species with an estimated wingspan of as much as 23 feet, or 7 meters. There were turtles large and small, a few lizards, early snakes, frogs and salamanders, and of course fish. Oh my goodness, were there fish.

The river was a large one, possibly similar to the Amazon River. In the rainy season, the Amazon can be 30 miles wide, or 48 km, and even in the dry season it’s still two to six miles wide, or 3 to 9 km. The Amazon is home to enormous fish like the arapaima, which can grow up to 10 feet long, or 3 m. Spinosaurus lived in the River of Giants, and that 50-foot swimming dinosaur was eating something. You better bet there were big fish.

The problem is that most of the fish fossils are incomplete, so paleontologists have to estimate how big the fish was. There were lungfish that might have been six and a half feet long, or 2 meters, a type of freshwater coelacanth that could grow 13 feet long, or 4 meters, and a type of primitive polypterid fish that might have been as big as the modern arapaima. Polypterids are still around today, although they only grow a little over three feet long these days, or 100 cm. It’s a long, thin fish with a pair of lungs as well as gills, and like the lungfish it uses its lungs to breathe air when the water where it lives is low in oxygen. It also has a row of small dorsal fins that make its back look like it has little spikes all the way down. It’s a pretty neat-looking fish, in fact. They’re called bichirs and reedfish and still live in parts of Africa, including the Nile River.

There were even sharks in the river of giants, including a type of mackerel shark although we don’t know how big it grew since all we have of it are some teeth. Another was a type of hybodont shark with no modern descendants, although again, we don’t know how big it was.

The biggest fish that lived in the River of Giants, at least that we know of so far, is a type of ray that looked like a sawfish. It’s called Onchopristis numidus and it could probably grow over 26 feet long, or 8 meters. Its snout, or rostrum, was elongated and spiked on both sides with sharp denticles. It was probably also packed with electroreceptors that allowed it to detect prey even in murky water. When it sensed prey, it would whip its head back and forth, hacking the animal to death with the sharp denticles and possibly even cutting it into pieces. Modern sawfish hunt this way, and although Onchopristis isn’t very closely related to sawfish, it looked so similar due to convergent evolution that it probably had very similar habits.

The modern sawfish mostly swallows its prey whole after injuring or killing it with its rostrum, although it will sometimes eat surprisingly large fish for its size, up to a quarter of its own length. A 26-foot long Onchopristis could probably eat fish over five feet long, or 1.5 meters. It wouldn’t have attacked animals much larger than that, though. It wasn’t eating fully grown Spinosauruses, let’s put it that way, although it might have eaten a baby spinosaurus from time to time. Spinosaurus might have eaten Onchopristis, though, although it would have to be pretty fast to avoid getting injured.

But there was one other type of animal in the River of Giants that could have tangled with a fully grown spinosaurus and come out on top. The river was full of various types of crocodylomorphs, some small, some large, some lightly built, some robust. Kemkemia, for instance, might have grown up to 16 feet long, or 5 meters, but it was lightly built. Laganosuchus might have grown 20 feet long, or 6 meters, but while it was robust, it wasn’t very strong or fast. It’s sometimes called the pancake crocodile because its jaws were long, wide, and flattened like long pancakes. Unlike most pancakes, though, its jaws were lined with lots and lots of small teeth that fit together so closely that when it closed its mouth, the teeth formed a cage that not even the tiniest fish could escape. Researchers think it lay on the bottom of the river with its jaws open, and when a fish swam too close, it snapped it jaws closed and gulped down the fish. But obviously, the pancake crocodile did not worry spinosaurus in the least.

Aegisuchus, on the other hand, was simply enormous. We don’t know exactly how big it is and estimates vary widely, but it probably grew nearly 50 feet long, or 15 meters. It might have been much longer, possibly up to 72 feet long, or 22 meters. It’s sometimes called the shield crocodile because of the shape of its skull.

We don’t have a complete specimen of the shield crocodile, just part of one skull, but that skull is weird. It has a circular raised portion called a boss made of rough bone, and the bone around it shows channels for a number of blood vessels. This is unique among all the crocodilians known, living and extinct, and researchers aren’t sure what it means. One suggestion is that the boss was covered with a sheath that was brightly colored during the mating season, or maybe its shape alone attracted a mate. Modern crocodilians raise their heads up out of the water during mating displays.

The shield crocodile had a flattened head other than this boss, and its eyes may have pointed upward instead of forward. If so, it might have rested on the bottom of the river, looking upward to spot anything that passed overhead. Then again, it might have floated just under the surface of the water near shore, looking up to spot any dinosaurs or other land animals that came down to drink. Watch out, dinosaur! There’s a crocodilian!

Could the shield crocodile really have taken down a fully grown spinosaurus, though? If it was built like modern crocodiles, yes. Spinosaurus was a dinosaur, and dinosaurs had to breathe air. If the shield crocodile hunted like modern crocs, it was some form of ambush predator that could kill large animals by drowning them. You’ve probably seen nature shows where a croc bursts up out of the water, grabs a zebra or something by the nose, and drags it into the water, quick as a blink. The croc can hold its breath for up to an hour, while most land animals have to breathe within a few minutes or die. The shield crocodile and spinosaurus also lived at the same time so undoubtedly would have encountered each other.

Then again, there’s a possibility that the shield crocodile wasn’t actually very fearsome, no matter how big it was. It might have been more lightly built with lots of short teeth like the pancake crocodile’s to trap fish in its broad, flattened snout. Until we have more fossils of Aegisuchus, we can only guess.

Fortunately, palaeontologists are still exploring the Kem Kem beds for more fossils from the river of giants. Hopefully one day soon they’ll find more shield crocodile bones and can answer that all-important question of who would win in a fight, a giant crocodile or a giant swimming dinosaur?

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way and get twice-monthly bonus episodes as well as stickers and things.

Thanks for listening!

Episode 055: Lungfish and the Buru

Let’s learn about the LUNGFISH, which deserves capital letters because they’re fascinating and this episode took so flipping long to research! Mysteries abound!

The lovely marbled lungfish from Africa:

The South American lungfish:

The Australian lungfish CHECK OUT THOSE GAMS:

Another Australian lungfish:

Further Reading:

The Hunt for the Buru by Ralph Izzard

Show Transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s episode is about the lungfish, and I’m going in depth about some mystery lungfish later in the episode. So don’t give up on me if you think freshwater fish are boring.

Lungfish are unusual since they are fish but have lungs and can breathe air. Some fish species can get by for a short time gulping air into a modified swim bladder when water is oxygen poor, but the lungfish has real actual lungs that are more mammal-like than anything found in other fish. The ancestors of lungfish, which developed during the Devonian period nearly 400 million years ago, may have been the ancestors of modern amphibians, reptiles, birds, and mammals. This is still a controversial finding, but a 2017 molecular phylogenetic study identified lungfish as the closest living relatives of land animals.

Africa has four species of lungfish, from the smallest, the gilled African lungfish that only grows around 17 inches long, or about 44 cm, to the largest, the marbled lungfish, which can grow more than six and a half feet long, or two meters. They all resemble eels, with long bodies and four thin, almost thread-like fins. They mostly eat crustaceans, molluscs, and insect larvae. The adults have small gills but breathe air through their lungs exclusively.

The South American lungfish is in a separate family from the African lungfishes, but it’s very similar in most respects. It can grow over four feet long, or 125 cm, and looks like an eel at first glance. Its fins are thread-like and not very long, and while it has small gills, they’re nonfunctional in adults. It mostly eats snails and shrimp, and like the African lungfishes, its teeth are fused into tooth plates that crush the shells of its prey easily.

Baby South American and African lungfish have external gills like newts but look more like tadpoles. After a couple of months they develop the ability to breathe air.

The African and South American lungfishes live in swamps and shallow river basins, and during the dry season, the water of their homes may dry up completely. At the onset of the dry season, the lungfish burrows a foot or two deep into the mud, or 30 to 60 centimeters, and lines the burrow with mucus to keep its body from drying out. Then it curls up in the bottom of the hole and lowers its metabolism, and stays there for months until the rains return and soak its dried mud home. This is called aestivation, and it’s related to hibernation except that it usually happens in warm weather instead of cold.

The Australian lungfish, also called the Queensland lungfish, lives in Australia and retains many features that are considered primitive compared to other lungfish species. It’s so different from the other lungfish species it’s even in a different order. Let’s learn about just how different it is and why that’s important.

In 1869 a farmer visiting the Sydney Museum asked why there were no specimens displayed of a big olive-green fish from some nearby rivers. The curator, Gerard Krefft, had no idea what the guy was talking about. No problem, the guy said, or probably no worries, he’d just get his cousin to send the museum a few. Not long after, a barrel full of salted greenish fish that looked like big fat eels arrived and Krefft set about examining them.

When he saw the teeth, he practically fainted. He’d seen those teeth before—in fossils several hundred million years old. No one even knew what fish those teeth came from. And here they were again in fish that had been pulled from a local river only days before.

The Australian lungfish doesn’t have ordinary teeth, it has four tooth plates or combs that resemble regular teeth that have fused together. Its skull is also very different from all other fish, possibly because of its feeding style. It crushes its prey with its tooth combs, so its skull has to be able to withstand a lot of pressure from the force of its own bite. Other lungfish species share this trait to some degree, but with modifications that appear more recent.

The Australian lungfish lives in slow-moving rivers and deep ponds and hunts using electroreception. Larger ones mostly eat snails and crustaceans, while smaller ones also eat insect larvae and occasionally small fish. It can grow up to about five feet long, or 150 cm. Its body is covered with large overlapping scales, and its four fins look more like flippers or paddles. Its tail comes to a single rounded point. In short, it looks superficially like a coelacanth, which is not a big surprise because it’s related to the coelacanth. While the Australian lungfish doesn’t actually get out of the water and walk on its fins, it does stand on them and sometimes walks around on them underwater.

Unlike the other lungfishes, the Australian lungfish has only a single lung instead of a pair. Most of the time it breathes through its gills, but at night when it’s active, or during spawning season or other times when it needs more oxygen, it surfaces periodically to breathe. When it does so, it makes a distinctive gasping sound. During droughts when its pond or river grows shallow, an Australian lungfish can survive when other fish can’t. As long as its gills remain moist, it can survive by breathing air through its lung. But unlike other lungfish, it doesn’t aestivate in mud.

The Australian lungfish hasn’t changed appreciably for the last 100 million years. The only real change it exhibits from its ancestors 300 million years ago is that it’s not as big, since they grew some 13 feet long, or 4 meters. Lungfish used to be widespread fish that lived in freshwater back when the world’s continents were smushed together in one supercontinent called Pangaea, some 335 million years ago. When Pangaea began to break up into smaller continents about 175 million years ago, various species of lungfish remained in different parts of the world. Now we’ve only got six species left…maybe.

A lot of mysterious eel-like fish or fish-like lizard stories might refer to lungfish. Some of the mystery animals are probably extinct, whatever they were, but some might still be around. All known lungfish were only discovered by science within the last 150 years or so, and it’s quite possible more are lurking quietly in remote swamps and rivers.

That brings me to a mystery that may or may not have anything to do with the lungfish. Occasionally when I’m researching a topic for an episode, I come across something interesting that doesn’t really belong in that episode but which isn’t enough on its own for a full episode. I sometimes spin those into bonus episodes for our Patreon subscribers. That happened recently with our Brantevik eel episode, where some blue river eels took me down a research rabbit hole that had nothing to do with eels. But a mystery animal I only covered in passing in that bonus episode suddenly has new meaning for this one.

The mystery animal is the indus worm, sometimes called the scolex. We don’t know what it was, if anything. It might have been a fable that got repeated and exaggerated over the centuries. It might have been something more akin to disinformation. It might have been both.

We have the story from multiple ancient sources, back to Ctesius’s original account in the fourth century BCE. The story goes that the river Indus, which flows through modern-day China, India, and Pakistan, contained a white worm of enormous size. It was supposed to be around 7 cubits long, or 10 ½ feet, or just over three meters, but it was so big around that a ten-year-old could barely encircle it with their arms, and that’s a straight-up quote from Ctesius only not in ancient Greek. In other words, it was a big fat eel-like creature over ten feet long, white in color. Moreover, it had weird teeth. Ctesias didn’t mention the teeth, but a few hundred years later Aelian said that it had two teeth, square and about eighteen inches long, or 45 cm, which it used to catch and crush animals that it caught at night.

This is an interesting detail that points to an animal with teeth something like a lungfish. But the indus worm was also supposed to drag animals into the water when they came to the edge to drink, which sounds like a crocodile—but the ancient Greeks were familiar with crocodiles and this clearly wasn’t one. The word crocodile comes directly from Greek, in fact. But there’s one more important detail about the indus worm that changes everything.

The indus worm was supposed to be useless except for the oil it produced. Now, all animal fat produces flammable oil, but it has to be rendered first. The indus worm was full of just plain oil. According to the ancient accounts, after an indus worm was killed—not an easy thing to do, apparently, as it required dozens of men with spears and clubs to subdue—it was hung up over a vessel, and the oil allowed to drip into the vessel from the body for a full month. One indus worm would produce about 2 ½ quarts, or almost five liters of oil. The oil was so flammable that only the king of India was allowed to own it, and he used it to level cities. Not only that, but the flame it produced couldn’t be put out unless it was smothered with mud.

This sounds like a petroleum-based flame. It might even refer to Greek fire, a deadly weapon of the ancient world. We don’t know what Greek fire was made of, but it wasn’t an animal-based oil. It could be that rulers who knew the secret of producing unquenchable flame obfuscated the knowledge by telling people the oil came from a vicious animal only found in one distant river. If so, it’s possible that the indus worm wasn’t based on a real animal at all.

I can just hear the conversation that started it all. “Hey, where do you get that oil that sticks to people and burns them up even after they jump in the water?” “Oh, um, it’s really hard to get. Yeah, totally hard. You know those little white worms that sometimes get in figs? Picture one of those that’s like, ten feet long, and it only lives in one river in India…”

Anyway, we have no way of knowing whether the indus worm was a real animal. It actually sounds kind of plausible, though, especially if you assume some of the stories are either exaggerated or confused with other animals. The Indus is a really long river with a lot of unique animal species. It’s possible there was once a lungfish that grew ten feet long and had flattened tooth plates like those of South American and African lungfishes.

Then again, there is another possibility. The rare Indus river dolphin grows to about eight and a half feet long, or 2 ½ meters. I’m probably going to do an entire episode on freshwater dolphins eventually so I won’t go into too much detail about it today, but while young dolphins have pointed teeth, when the dolphin matures its teeth develop into square, flat disks. But the dolphin isn’t white, it’s brown, and no one could look at a dolphin and call it a worm.

But there are other reports of mystery fish in Asia that may be lungfish. This is where I had to stop research for this episode until I ordered, received, and read a book called The Hunt for the Buru by Ralph Izzard. If in doubt, go back to the primary sources whenever possible. Izzard was a foreign correspondent for the London Daily Mail, and in 1948 he and a photographer accompanied explorer Charles Stonor on an expedition to find what they thought might be a living dinosaur or some other reptile. But while many cryptozoologists today think the buru might be a type of monitor lizard, zoologist Karl Shuker suggests the details given in the book sound more like a type of lungfish.

Accounts of the buru were collected in an anthropological study of the Apa Tani tribe in 1945 and ’46. The Apa Tani live in a large valley in northeastern India, in the foothills of the Himalayas, and were an insular people who at the time rarely traveled away from their valley. They’re characterized in The Hunt for the Buru as intelligent and practical, but not especially creative. They have no system of reading or writing, produce no art, and are efficient and knowledgeable rice farmers. The relevant parts of the study are reproduced in The Hunt for the Buru, and I’m happy to report that this was a genuine scholarly study, not a bunch of enthusiastic amateurs asking leading questions. The buru information was only collected incidentally as part of the tribe’s history and traditions, but I suspect mostly because the anthropologists found it interesting. A quick look online for more modern information about the Apa Tani point to them being really nice people. They have a festival celebrating friendship every spring that lasts an entire month. These days they’re much more mainstream but still continue their traditional practices of farming.

According to the Apa Tani, their ancestors migrated to the valley along two rivers, and accounts of their migration match up with actual places with a high degree of accuracy even though the migration took place many centuries ago. In other words, these are people with a detailed oral history, and that’s important when we come to their accounts of the buru.

When they reached the valley, it was largely flooded with a swamp and lake. In the lake was an animal they called the buru. It wasn’t an aggressive animal. It lived in deep water but occasionally came to the surface, stuck its head above water, and made a noise translated as a hoarse bellow. Occasionally a buru would nose through the mud in shallower water, and frequently waved its head from side to side. It didn’t eat fish and was described as living on mud. It was about 4 meters long, or a bit over 13 feet, and was dark blue blotched with white, with a white belly. I’ll go into more details of its appearance in a few minutes.

The Apa Tani drained much of the swamp and lake to create more farmland for rice paddies, and on four occasions, a buru was trapped in a pool of deeper water. The Apa Tani killed the burus trapped this way and buried their bodies, and the location of the buried burus are still known. The Apa Tani reported that there were no more burus in the valley.

In 1947, Charles Stonor was traveling near the Apa Tani’s valley and asked a member of a different tribe if he’d ever heard of the buru. Stonor apparently was both a trained zoologist and had at least some background in anthropology, according to Izzard. To Stonor’s surprise, the man said he not only knew about the buru, but said it lived in a swamp not too far away, called Rilo. Naturally Stonor decided to visit, and when he spoke to the nearby villagers, they said the buru did indeed live in the swamp.

Stonor recorded their accounts of the animal. It lives underwater and only comes to the surface briefly—“every now and again they come up above the surface. When one of them comes up there is a great disturbance and splashing, and the beast comes straight up out of the water, stays for a few moments only, and then disappears down again.” The buru were described as black and white, with a head as large as a bison’s but with a longer snout, and with a pair of small backwards-pointing horns. The buru was only seen in summer, when the swamp floods and becomes a lake. But no one in the Rilo village had ever seen a buru up close.

In early 1948 Izzard heard about the buru from a friend, and approached Stonor to ask if he wanted to undertake a small expedition to look for it. Stonor agreed, and in April 1948 the expedition headed out on the search.

They… didn’t find any burus. Spoiler alert: after months of careful daily watches of the swamp, they decided the buru had possibly once lived in the valley, but was now extinct, and since it had never been an animal the villagers paid much attention to, no one had realized it was gone. This sounds absurd until you realize that the village had only been settled about a decade before. Many trees had been felled, which increased erosion so that the swamp had silted up considerably and was no longer very deep even at full flood. It’s possible that the burus had died due to these changing conditions, especially if they hadn’t been very numerous to start with.

The expedition returned to civilization only to find that rumors of the buru hunt had leaked, and the papers were full of reports of a 90-foot “dinotherium” sighted in the jungle.

I find it interesting that Izzard rejected the idea that the buru was a lungfish, because, he writes, “no known fish would expose itself above water, for no practical purpose, for such a length of time.” Presumably Izzard didn’t realize that lungfish actually use their lungs to breathe air, and that they must surface briefly to do so.

So was the buru reported in the Rilo swamp the same buru that had once lived in the Apa Tani valley? Probably not. Izzard notes that while the two valleys are relatively close to each other, he does point out that they were completely separated by a ridge of mountains. Even if both burus were the same kind of animal, they were probably different subspecies at the very least considering how long the two populations must have been separated.

Let’s return to the Apa Tani buru, since the reports gathered from the mid-1940s anthropological study are clear and detailed compared to the Rilo buru reports.

The Apa Tani buru had limbs, but while some reports called them short legs that somewhat resembled mole forelegs with claws used for digging, one old man stubbornly refused to describe them as legs. The anthropologists found this confusing because they assumed he was talking about a reptile. I’ll quote from the relevant sections of the report. The old man was named Tamar.

“ ‘The buru was long: it had a long tail with flanges on the sides: they lay along it when resting, but were pushed out sideways when the beast was moving: it could twist its tail round and catch anything with it.’ The flanges were demonstrated by holding a piece of paper against a stick. We use the word ‘flange’ for want of a better expression. Tamar described them as pieces fastened on the sides of the tail. …

Q What sort of legs did it have?

A ‘It had no legs: the body was like a snake.’ Tamar then described and demonstrated that the tail flanges were grouped in two pairs, were about 50 cm long, and were as thick as a man’s arm: he added they were used in burrowing. We got the impression that he was trying to convey the meaning that they were appendages, but not limbs in the true sense of the word.”

I wonder if he was trying to explain, through an interpreter, something he himself probably didn’t fully understand, lobed fins. The Australian lungfish’s lobed fins do look like stubby legs with a frill around them that could be taken to be claws.

Tamar also described the buru as a snake-like creature. He said its head was like a snake’s with a long snout and that it had three hard plates on its head that helped it burrow into the mud. And like the other reports, he said it ate mud, not fish or animals.

This sounds a lot like a lungfish, which eats crustaceans and snails it digs out of the mud. Admittedly Tamar also said it had a forked tongue, which is not a lungfish trait. Many cryptozoologists think this forked tongue points to a type of monitor lizard, but while some monitor lizard species do spend a lot of time in the water, notably the widespread Asian monitor lizard, the buru is described as being exclusively aquatic. Monitor lizards also are very lizardy, with large, strong legs. And monitor lizards don’t stay in the mud when a swamp dries up.

To me, all this paints a picture of a large lungfish, blue and white in color, with lobed fins like an Australian lungfish and probably working gills as well as a lung or pair of lungs. It may have aestivated in the mud like African and South American lungfish during the dry season, and during the rainy season when it was spawning, it might have needed to breathe at the surface like the Australian lungfish to give it more oxygen than its gills could manage on their own.

Hopefully someone’s out there looking for burus in other remote swamps of Asia. I can’t do it myself. I’m busy.

There are brief anecdotal reports of possible new species of lungfish in Asia, Africa, and South America, although with very little to go on. But I wouldn’t be one bit surprised if someone discovered another lungfish species in a hard-to-reach swamp one of these days. Those 400-million-year-old fish are survivors.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!