Episode 386: The Greater Siren and the Anhinga

Thanks to Kai and Emily for their suggestions this week!

The greater siren [photo by Kevin Stohlgren, taken from this site]:

The anhinga [photo by Tim from Ithaca – Anhinga, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=15526948]:

An anhinga swimming [photo by Wknight94, CC BY-SA 3.0 <https://creativecommons.org/licenses/by-sa/3.0>, via Wikimedia Commons]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two animals, one suggested by Kai and the other suggested by Kai’s mom Emily. It’s so awesome to hear when families like to listen to the podcast together. This episode even includes a mystery animal I bet you’ve never heard of.

Let’s start with Kai’s suggestion, the greater siren. The greater siren is an amphibian, specifically a salamander, but it’s probably not the kind of salamander you’re thinking of. For one thing, it can grow over three feet long, or about a meter, which is pretty darn big for a salamander. It’s dark green or gray in color with tiny yellow or green speckles, and while it has short front legs, those are the only legs it has or needs. It also has external gills which it keeps throughout its life, unlike most salamanders who lose their external gills when they metamorphose into adults.

The greater siren lives primarily in Florida, but it’s also found in coastal wetlands throughout much of the southeastern United States. It’s mostly nocturnal and during the day it hides among water plants or under rocks, and will even burrow into the mud. At night it comes out to find food, which includes crayfish and other crustaceans, insects and spiders, little fish, other amphibians, snails, and even algae. It swallows its food whole, even snails and other mollusks. It poops out the shells and other undigestible pieces.

The grater siren’s body is long but thin, sort of like an eel, with a rounded tail that’s slightly flattened to help it swim. While it does spend its whole life in the water, it has small lungs that allow it to breathe air if it needs to. It can wriggle above ground for short distances if it needs to find a new pond or river, and sometimes it will sun itself on shore. In drought conditions when its water dries up, the greater siren will burrow into the mud and secrete mucus that mixes with dead skin cells to form a sort of cocoon. The cocoon covers everything but the siren’s mouth, so it can still breathe. Then it enters a state of torpor called aestivation, and it can stay in its mud cocoon for a long time, possibly as much as five years, and still be fine once the water returns. It does lose a lot of its body fat and its gills wither away, but it regenerates them quickly once it has water, and will gain weight quickly too once it has food.

In early spring, the female siren lays her eggs in shallow water. The male fertilizes them and takes care of them for the next two months, when they hatch into little bitty sirens that go off on their own right away.

The greater siren has tiny eyes and probably doesn’t see very well. It has a good sense of smell instead, and it can also sense movement and vibrations around it with its lateral line system. This is an organ found in many fish and a lot of larval amphibians, although the greater siren retains it throughout its life. It allows the animal to sense the movement of water in extremely fine detail. The greater siren can probably also sense electrical impulses, which is something that all animals generate when they use their muscles.

If there’s a greater siren, you may be thinking, there must be a lesser siren too. There is, and it’s very similar to the greater siren, just not as big. It only grows about two feet long at most, or 61 cm.

Kai mentioned that the greater siren looks a lot like the axolotl, a critically endangered salamander found only in Mexico. I checked to see if the two salamanders were closely related and was actually surprised to find that they’re not. They’re both salamanders and therefore share the same order, but that’s all. The greater siren and its close relations do share one important trait with the axolotl, though, which is neotony. Neotony is when an adult organism retains juvenile traits, which in the case of the salamander means it retains gills and lives underwater as an adult.

Next, Emily wanted to learn more about a bird called the anhinga. It’s sometimes called the snakebird because it has a long, serpentine neck. But before we learn about the anhinga, let’s learn about a mystery animal from Kentucky. I promise this will make sense in a minute.

In 1993 a man named Barton Nunnelly and his wife were sitting in their back yard in Stanley County, Kentucky. It was a nice day and their house was close to the Ohio River, so as they often did they just relaxed and watched the river. On this particular day, they both noticed a strange animal in the water. It was snake-like with a bill similar to a duck’s, but it obviously wasn’t a duck. It swam with its head and neck above the water, but its body was never visible. It frequently sank into the water, then surfaced elsewhere. The couple watched the animal for half an hour before it disappeared downstream.

For most people, that sighting would just be an interesting story to tell at parties, but Barton Nunnelly was a cryptozoologist. That’s someone who likes to investigate mystery animals, and while it’s a great word, it’s not an official branch of science. Zoologists, biologists, and other scientists study mystery animals all the time as part of their jobs. Nunnelly investigated—and in fact still does investigate, since he’s alive and well—mystery animals that are a lot more mystery than animal, like Bigfoot. He wrote about his sighting of what he thought might be a young freshwater sea serpent in his book Mysterious Kentucky.

Now, with Nunnelly’s sighting in mind, let’s return to the anhinga and learn a little more about this unusual bird. It can grow almost three feet in length, or about 90 cm, with a nearly four-foot wingspan, or 115 cm. A lot of its body length is due to the long neck. The male is black all over with a white tail-tip, while the female looks similar but has a brown head and neck. It looks similar to the double-crested cormorant, a close relation, but it has a longer, sharper bill. It lives throughout much of South and Central America, and is also common around the Gulf of Mexico and parts of the southeastern United States. In North America it usually stays near the coast or around wetlands, but sometimes it’s found farther inland, especially along rivers.

The most interesting feature of the anhinga is the way it hunts. It has big webbed feet and swims extremely well, and it hunts fish, frogs, and other small animals underwater. Unlike other water birds, which have water-repellent oils coating their feathers, as soon as the anhinga gets in the water, its feathers get all wet. This causes it to lose buoyancy and sink, but that’s just fine with the anhinga. It also has dense bones compared to most birds, which helps it stay underwater. The bird swims underwater until it gets close to a fish or other prey animal. Then it stabs the animal with its sharp bill, before bringing it above water to swallow. Often it will swim with its body completely submerged but its head and neck sticking up out of the water.

One interesting fact about the anhinga is that it has no nostrils. It can only breathe through its mouth. It can hold its breath underwater for about four minutes and during that time can travel quite a distance, up to about 100 yards, or 90 meters, completely underwater. In addition to fish and frogs, it will eat crayfish, crabs, insects, water snakes, and lots of other small animals. After it’s done hunting, or if it wants a rest, it will stand in the sun with its wings spread in order to dry its feathers. Cormorants do this too for the same reason.

Now, think back to Barton Nunnelly’s sighting of a duck-billed water serpent. It sounds to me an awful lot like Nunnelly saw an anhinga hunting in the river. It’s a rare visitor that far inland, but not unheard of. Naturally, not everyone knows every single bird in the world, but I feel like if you’re going to write a book about mystery animals, you should do a little research first. But maybe that’s just me.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 275: The Axolotl, the Hellbender, and Friends

This week it’s Zoe and Dillon’s episode! They wanted to learn about some really interesting salamanders, including the axolotl and the hellbender!

A big birthday shout-out to Heather R. too. The very happiest of birthdays to you!

Further reading:

Mexico City’s endangered axolotl has found fame—is that enough to save it?

How Do Salamanders Breathe?

Most wild axolotls are brown:

Most captive-bred axolotls are leucistic:

The hellbender doesn’t have external gills as an adult:

The red eft, the juvenile stage of the red-spotted newt:

Adult mudpuppies have external gills just like axolotls do:

Show transcript:

Welcome to Strange Animals Podcast. We’re your cohosts, Zoe and Dillon. And I’m your third cohost, Kate Shaw.

This week we have Zoe and Dillon’s episode, and they want to learn about the axolotl, the hellbender, and some other salamanders. It’ll be the greatest amphibian episode ever!

But first, we have a birthday shout-out! Happy birthday to Heather R.! I hope the weather is perfect for your birthday and you get to go out and appreciate it.

So, let’s start with the axolotl, because everyone loves it! “Axolotl” isn’t the way it’s pronounced in its native country of Mexico, since it comes from the name of an Aztec god of fire and lightning, but it’s the common pronunciation in English so I’m going to stick with that one. In addition to Zoe and Dillon, at least one other listener has suggested we cover the axolotl. That would be Rosy, and I apologize to anyone else who suggested it but whose name didn’t make it onto the suggestions list.

Way back in episode 104, about tiger salamanders, we learned that the tiger salamander is closely related to the axolotl. But the two species look very different most of the time because the axolotl exhibits a trait called neoteny. In most salamanders, the egg hatches into a larval salamander that lives in water, which means it has external gills so it can breathe underwater. It grows and ultimately metamorphoses into a juvenile salamander that spends most of its time on land, so it loses its external gills in the metamorphosis. Eventually it takes on its adult coloration and pattern. But the axolotl doesn’t metamorphose. Even when it matures, it still looks kind of like a big larva, complete with external gills, and it lives underwater its whole life.

Very rarely, an axolotl metamorphoses into an adult form, at which point it looks a whole lot like a tiger salamander. This generally happens if the individual is exposed to excess iodine in its diet, and metamorphosing like this may actually lead to the axolotl’s death. Axolotls exhibit neoteny because it gives them an advantage in their natural range, so even though it seems strange to us compared to all those other salamanders, it’s what the axolotl is supposed to do.

The axolotl’s natural range is very specific. Originally it lived in two large, cold lakes in the Valley of Mexico. This is where Mexico City is and it’s been a hub of civilization for thousands of years. A million people lived there in 1521 when the Spanish invaded and destroyed the Aztec Empire with introduced diseases and war. The axolotl was an important food of the Aztecs and the civilizations that preceded them, and if you’ve only ever seen pictures of axolotls you may wonder why. Salamanders are usually small, but a full-grown axolotl can grow up to 18 inches long, or 45 cm, although most are about half that length.

Also if you’ve only ever seen pictures of axolotls you may think they’re all white or pink. That’s actually rare in the wild. Most wild axolotls are brown, greenish-brown, or gray, often with lighter speckles. They can even change color somewhat to blend in with their surroundings better.

It’s captive axolotls that are so often white or pink, or sometimes other colors or patterns. That’s because they’re bred for the pet trade and for medical research, because not only are they cute and relatively easy to keep in captivity, they have some amazing abilities. Their ability to regenerate lost and injured body parts is remarkable even for amphibians, but, interestingly, axolotls that have been induced to metamorphose have much less regeneration ability. Researchers study axolotls to learn more about how regeneration works, how vertebrates evolved various aspects of anatomy, how genetics of coloration work, and much more. They’re so common in laboratory studies that you’d think there’s no way they could be endangered—but they are. Some conservationists think there may be as few as 50 individuals left in the wild.

The main problem is habitat loss. One lake where the axolotl was once found is completely gone, drained to control flooding and provide more land for people to use. The other lake isn’t so much a lake anymore as a series of canals in Mexico City, and they’re polluted and home to introduced species of fish that eat axolotl eggs. Even though part of their range was designated as a nature reserve in 1993, that hasn’t done much to stop the pollutants or invasive fish.

Not only that, the captive-bred axolotls are so different from their wild cousins that some people think they should be considered a different species. You couldn’t take a pet axolotl and dump it into a lake and expect it to live. Conservation efforts in Mexico are focusing on a captive breeding program of axolotls caught in the wild. Since the salamander’s native range isn’t healthy right now, the group is trying to establish temporary homes in university ponds prepared just for that purpose. So far the project is a success.

At the same time, conservationists and just regular people who like axolotls are working hard to get its native habitat cleaned up. This includes educating people about the axolotl, and helping people set up small farms that use traditional methods that don’t require fertilizer or insecticides that run off into the water. These farms are called chinampas and are made up of artificial islands with canals around them. The islands actually help filter pollutants from the surrounding water, and the canals are ideal for axolotls to live in. The farmers also install screens with filters to keep invasive fish out and clean up the water even more, and some of the captive-bred wild axolotls have been introduced to these canals successfully.

Even though the axolotl has external gills to collect oxygen from the water, it has lungs too. It will sometimes gulp air from the surface, but most of the time it gets all the oxygen it needs from its gills. It eats small animals like worms, insects, and even small fish, but while it does have tiny teeth, they’re actually vestigial. The axolotl doesn’t chew its food but instead sucks its prey whole right down into its stomach.

We talked about the hellbender briefly in episode 14, but that was five years ago. In fact, it was exactly five years ago. Episode 14 was released on May 8, 2017, and this episode is being released on May 9, 2022. I swear I did not plan it that way but it’s pretty neat.

The hellbender has a restricted range too, although it’s not as restricted as the axolotl’s. It lives in parts of the eastern United States, especially in the Appalachian Mountains and the Ozarks. It can grow nearly 30 inches long, or 74 cm, and is heavy for its size, up to 5.5 lbs, or 2.5 kg. This is the fifth heaviest amphibian alive today in the whole world! It needs clean, shallow, fast-moving streams with lots of rocks, because it spends almost all its life in the water hiding among rocks. But the rocks are important for another reason too. As water rushes over and around rocks, it splashes around and absorbs more oxygen. Well-oxygenated water helps the hellbender breathe, which is even more complicated than it sounds.

Like other salamanders, the hellbender hatches from eggs laid in the water and at first are just big tadpoles with external gills. They metamorphose in stages until they’re full grown at almost two years old, at which point they lose their gills, although they may retain a nonfunctioning gill slit. The adult hellbender has large lungs, but it doesn’t use them for breathing. They’re just for buoyancy. The hellbender absorbs oxygen from the water through its skin, which is why it needs well-oxygenated water flowing quickly across it all the time. To increase its surface area and help it absorb that much more oxygen, its skin is loose and has folds along the sides.

The hellbender is flattened in shape, which helps it hide under rocks and helps keep it from being swept away by currents when it’s moving around in the water. It’s brown with black speckles on its back. It mostly eats crawdads, also called crayfish, but it will eat small fish and amphibians, tadpoles, the eggs of frogs and fish, and in fact it will also eat the eggs of other hellbenders. Occasionally a hellbender will eat a smaller hellbender too. It’s a solitary animal except during breeding season, and even then, once the female has laid her eggs in a nest the male makes and the male fertilizes them, the pair don’t spend any time together. The male actually chases the female away. Then he spends the next few months guarding the eggs and making sure they get enough oxygen by waving his tail and skin folds over them.

The hellbender doesn’t have very good eyesight, although it has a good sense of smell. It’s very territorial and seldom leaves the small stretch of water where it lives and hunts. Very occasionally it will leave the water and walk around on land. Most of the time it walks around underwater, though, instead of swimming. Its toes have rough pads that help it walk even on slippery rocks. During the day, though, it usually hides under its home rock. Its skin contains light-sensitive cells, which are mostly concentrated in its tail. This means that it can actually sense how much light is shining on its body even if its head is hidden under a rock. The reason its tail has more light-sensing cells is because its tail is more likely to be sticking out from under its rock. Since a lot of animals eat the hellbender, it needs to be fully hidden by its rock during the day.

Some people think the hellbender is poisonous or venomous, but it’s actually completely harmless unless you are a very small aquatic animal.

Because salamanders, like other amphibians, have to keep their skin moist, they’re vulnerable to water pollution. Any pollutants in the water are liable to be absorbed into the salamander’s body, which can make it sick. Habitat loss, disease, and invasive species are also major causes of declines in salamander species.

Salamanders have been around for at least 180 million years. Amphibians in general probably developed from lobe-finned fish around 360 million years ago. A study published in 2020 examined 3D scans of skulls from 148 species of salamander to compare minute differences and learn more about how they evolved. Animals that undergo metamorphosis, including salamanders, have very different skulls from animals that don’t, since different parts of the skull develop in stages independently of other parts. The study found that while salamanders have always been metamorphic, different life cycles have evolved separately at least eleven times.

One of the things Zoe asked in particular was whether salamanders actually breathe through their nostrils. It depends on the species. Salamanders are definitely complicated when it comes to breathing. Like many amphibians, the salamander doesn’t have special muscles to move air in and out of its lungs the way mammals do. Instead, it moves air in and out by gular pumping, also called buccal pumping.

A salamander lowers the floor of its mouth, expanding the throat, which pulls air into the throat by way of the nostrils. Then the salamander closes its nostrils and raises the floor of its throat. This causes the air to enter the lungs. It does the same process in reverse to breathe out. That’s why salamanders and other amphibians appear to be gulping all the time. That’s how they breathe.

Complicated as this sounds, the salamander doesn’t have to concentrate to do it any more than we have to concentrate to breathe. Also, even if it mostly gets oxygen through its lungs, all salamanders appear to be able to absorb a certain amount of oxygen through the skin too.

Zoe and Dillon were especially interested in salamanders that live in their part of the world, which is the state of Pennsylvania in the eastern United States. In addition to the hellbender, there are several dozen salamander species known from Pennsylvania, and probably quite a few that haven’t been discovered yet. This includes the red-spotted newt, which lives in forests in muddy or wet areas. It grows up to about 5 inches long, or 13 cm, and eats insects, worms, frog eggs and tadpoles, and other small animals.

As an adult, the red-spotted newt is greenish-brown, often with a row of red spots outlined with black along its sides and tiny black dots all over, and a yellow or orange belly. The adult mostly lives in the water, but during the juvenile stage it mostly lives on land and can travel widely, especially after rain. It also looks very different during the juvenile stage, with a bright orangey-red body and spots outlined with black, which is why it’s often called a red eft. An eft is a juvenile salamander. The bright red coloring may tell you not to eat the red eft, because it’s poisonous! Its skin contains toxins that make it taste bad and can make a potential predator sick.

Another salamander common throughout Pennsylvania is the spotted salamander, which can grow almost 10 inches long, or 24 cm. It’s a big, strong salamander that’s black or gray with big yellow or orangey spots all over. As a juvenile it looks very similar, although smaller, but with tiny spots or no spots.

Finally, to wrap around to where we started, another large species of salamander that lives in parts of western Pennsylvania, and other nearby areas, is the mudpuppy. It looks a lot like a juvenile hellbender but isn’t as big, with the largest measured adult growing just over 17 inches long, or almost 44 cm. Like the axolotl, the mudpuppy exhibits neoteny. It lives in lakes, ponds, and streams and retains its gills throughout its life. Its gills are large and reddish in color. If a mudpuppy lives in your pond or backyard stream, you can be sure the water is clean because its gills are very sensitive to pollutants.

The mudpuppy spends most of its time under rocks and walking along the bottom of the lakebed or streambed, looking for food. It’s gray, black, or reddish-brown, sometimes with speckles or spots. It has a lot of tiny teeth where you’d expect to find teeth, and more teeth on the roof of its mouth where you would not typically expect to find teeth. It needs all these teeth because it eats slippery food like small fish, worms, and frogs, along with insects and other small animals.

Even though the mudpuppy has all those teeth, it’s harmless to humans and just wants to be left alone, but that’s pretty much the case for all salamanders. And some people.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 260: Danger! Newts!

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Enzo for suggesting this week’s topic, newts from least dangerous to most dangerous!

Further reading:

One snake’s prey is another’s poison

The Corsican brook salamander is not toxic (photo by Paola Mazzei, from iNaturalist):

The smooth newt is a little bit toxic (photo by Fred Holmes and taken from this site) – this is a male during breeding season:

The Hong Kong warty newt has an orange-spotted belly and is toxic:

The chonky Spanish ribbed newt will stab you with its own toxin-covered bones (photo by Eduardo José Rodríguez Rodríguez, taken from this site):

Yeah maybe don’t touch the Japanese fire belly newt if you don’t need to:

Warning! Do not eat the California newt:

The safest newt to handle is this toy newt. I really want one:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s topic is a suggestion from Enzo, who wants to learn about newts “from least dangerous to most dangerous.” There are at least 60 species of newt known with more being discovered every year, but I’ll do my best to hit the highlights.

A newt is a type of salamander, specifically a semi-aquatic salamander in the subfamily Pleurodelinae. All newts are salamanders but not all salamanders are newts. Newts live throughout much of the northern hemisphere, including northern Africa and the Middle East, Eurasia, and North America.

Female newts lay their eggs in freshwater, usually attaching them to vegetation or in little crevices in rocks. A few weeks later, the eggs hatch into larvae with external gills. The larvae are called tadpoles like frog larvae, and they mostly eat algae and tiny insects. They metamorphose over several months just like frogs do when they develop from tadpoles, but where frogs develop their hind legs first, newt tadpoles develop front legs first. The newt tadpole finally absorbs its gills and grows lungs instead, at which point it emerges from the water as an immature newt called an eft. Efts are juvenile newts and live exclusively on land, although like other amphibians they have to keep their skin damp so you’ll usually find them in leaf litter and under rotting logs. Efts that live in North America return to the water when they become full adults, but most newts in other parts of the world stay on land the rest of their lives except during breeding season. Efts and adult newts eat worms, insects and insect larvae, slugs, frog tadpoles, and any other small animals they can catch.

The Corsican brook salamander is a type of newt that lives on the island of Corsica in the Mediterranean Sea. It grows about five inches long at most, or 13 cm, and is brown or olive-green, sometimes with a mottled pattern of orange or red on its back. It’s an exception to the rule that newts outside of North America usually live their adult lives on land. Not only does the Corsican brook salamander live in freshwater most of the time as an adult, it doesn’t even have working lungs. It spends most of its time in fast-moving streams and rivers in higher elevations, where it absorbs oxygen from the water through its skin.

As Enzo undoubtedly knows, many newts produce toxins. This is why it’s not a good idea to handle a newt, or any other amphibian for that matter, unless you’re absolutely certain it’s a species that’s not toxic. In most cases, a newt’s toxin won’t hurt you if it just touches your skin, but if it gets in a cut or if you have some of the toxin on your finger and then rub your eye or put your finger in your mouth, the toxin can make you really sick. Some newts are even deadly.

The Corsican brook salamander we just talked about is not toxic, so we’ll call it the least dangerous newt. The smooth newt, on the other hand, produces a relatively mild toxin. You’d have to actually eat a bunch of smooth newts to get sick from its toxins, and why are you eating newts at all? Stop that immediately and have a banana instead.

The smooth newt lives throughout much of Europe and parts of Asia. It grows just over 4 inches long, or 11 cm, and most of the time it’s brown with darker spots. The male also has a bright orange stripe on his belly. During breeding season, though, the male develops a wavy crest down his spine and brighter colors. Both males and females move into the water during breeding season, so both males and females develop tail fins on the top and bottom of their tails to help them swim.

The males of many newt species develop brighter colors and crests during breeding season to attract females. In the case of the Hong Kong warty newt, in breeding season the male develops a white stripe on his tail. He attracts the attention of females by wagging his tail in the water, where the white stripe shows up well even in dim light. The Hong Kong warty newt lives in Hong Kong and grows up to 6 inches long, or 15 cm. It’s brown with orange patches on its belly and its skin appears bumpy like the skin of an orange. If it feels threatened, it sometimes rolls onto its back and pretends to be dead, which not only may deter some predators, it shows off the bright orange markings on its belly. This signals to a potential predator that this newt is toxic, and another thing it does when it plays dead is secrete toxins from its skin. In other words, don’t bite this newt or touch it. It’s also a protected species in Hong Kong so you shouldn’t be trying to eat it anyway. Its eggs are toxic too.

Some newts deliver their toxins to potential predators in a way you might not expect. If an animal tries to bite the Spanish ribbed newt, it secretes toxins from special glands on its sides and then pushes the sharp points of its own ribs out through the tubercles where the poison glands are located. The pointed ribs become coated with toxins as they emerge and are sharp enough to stab a predator right in the mouth. The toxin causes severe pain when injected and can even cause death in small animals. The newt itself isn’t injured by this process, which it can do repeatedly whenever it needs to. Newts, like all amphibians, heal extremely quickly.

The Spanish ribbed newt lives in the southern Iberian Peninsula in Europe and Morocco in northern Africa. It’s larger than the newts we’ve talked about so far, growing up to a foot long, or 30 cm. It’s dark gray with rusty-red or orange spots on its sides, one spot per poison gland. It actually spends most of its adult life in the water and especially likes deep, quiet ponds and wells.

Finally, we’ve reached the most dangerous newt in the world. I’m nominating two newts for this honor because they both secrete the neurotoxin tetrodotoxin, which we’ve talked about before. It’s the same kind of toxin found in pufferfish and some frogs. The toxin can irritate your skin even if you only touch it, and if a little of the toxin gets into a scratch or cut, it can cause numbness, shortness of breath, and dizziness. If you accidentally swallow any of the toxin, you can die within six hours. There’s no antidote.

Our two most dangerous newts are the Japanese fire belly newt and the California newt. The Japanese fire belly newt grows about 5.5 inches long, or 14 cm, and lives in parts of Japan in ponds, lakes, and ditches. It has pebbly skin and is brown or black with red speckles, but its belly is bright orange or red. The California newt has slightly bumpy gray or gray-brown skin on its back but a bright orange or yellow belly. It can grow up to 8 inches long, or 20 cm. It lives in parts of California, especially near the coast and in the southern Sierra Nevada Mountains.

The reason the California newt has such a potent toxin is that its main predator, the common garter snake, has a great resistance to the toxin. Only the most toxic newts are more likely to survive if a garter snake grabs it, and only the most resistant snakes are more likely to survive eating it. It’s a predator-prey arms race that’s been going on for at least 40 million years, resulting in a newt that is boss fight level toxic to most predators but just barely ahead of the game when it comes to garter snakes. It’s likely that something similar has occurred with the Japanese fire belly newt.

If you live in the areas where these toxic newts also live, be especially careful with your pets. Keep your dog on a leash so you can be sure it doesn’t try to bite or play with one of these newts. Some people actually keep the Japanese fire belly newt as a pet, but obviously if you do this you need to be extremely careful, especially if you have pets or small children. Maybe you should get a toy newt instead.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 104: Tiger Salamanders

Thanks to Connor who suggested this week’s topic, tiger salamanders! Not only do we learn all about the Eastern tiger salamander and the banded tiger salamander, we also learn where asbestos comes from AND IT’S NOT EVEN LIKE I GOT OFF TOPIC, I SWEAR

The Eastern tiger salamander:

The barred tiger salamander:

A baby tiger salamander:

A CANNIBAL BABY TIGER SALAMANDER:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’ll learn about an animal suggested by listener Connor that’s been waiting on the ideas list for way too long. Thanks, Connor! Sorry it took me so long to get to your suggestion!

So, Connor suggested that we cover “tiger salamanders’ cannibalism and how salamanders were once believed to be fire-related.” That sentence gives us a lot to unpack.

First let’s find out what a tiger salamander is. It gets its name because it’s stripey, or at least has blotches that can look sort of like stripes. It may be yellow and black or green and black. It grows up to 14 inches long, or 36 cm, which is pretty darn big for a salamander. Smaller tiger salamanders mostly eat insects and worms, but the bigger ones will naturally eat bigger prey, including frogs.

Like all salamanders, the tiger salamander is an amphibian. That means it’s cold-blooded with a low metabolic rate, with delicate skin that needs to stay damp. Like other salamanders, it doesn’t have claws, it does have a tail, and its body is long compared to its short legs. Basically a salamander usually looks like a wet lizard. But salamanders actually have more in common with frogs than with lizards, since frogs are also amphibians.

While the tiger salamander can swim just fine, it spends most of its adult life on land. It catches insects by shooting its sticky tongue at them just like frogs do. And just like a frog, the tiger salamander’s eyes protrude like bumps on its head, and it retracts its eyeballs when it swallows to help force the food down its throat. This is fascinating, but you might want to take a moment to be glad you don’t have to do this every time you swallow a bite of food.

The tiger salamander, like most other amphibians, secretes mucus that helps its skin stay moist and tastes nasty to predators. The tiger salamander doesn’t appear to actually be toxic, though. It mostly lives in burrows it digs near water, and while it’s common throughout much of eastern North America, it’s not seen very often because it’s shy and because it prefers ponds in higher elevations such as mountains.

A female lays her eggs on the leaves of water plants in ponds or other standing water. The eggs hatch into larvae which have external gills and a fin that runs down its back and tail to help it swim. At first the larva looks a little bit like a tadpole, but it grows legs soon after hatching. As a larva, it eats aquatic insects and tiny freshwater crustaceans like amphipods. How soon it metamorphoses into an adult salamander depends on where it lives. Tiger salamanders that live in more northerly areas where summer is short will metamorphose quickly. Tiger salamanders that live in warmer climates stay larvae longer. And in areas where the water is better suited to gathering food than the land is, the larvae may not fully metamorphose at all and will live in the water their whole lives. The term for a fully adult salamander that still retains its external gills and lives in the water is neotene, and it’s pretty common in salamanders of various species.

The tiger salamander is actually closely related to the axolotl, more properly pronounced ash-alotl. I learned that from the Varmints! podcast. Most axolotls are neotenic. On the rare occasion that an axolotl metamorphoses into its adult form, it actually looks a lot like a tiger salamander.

Unfortunately, the tiger salamander carries diseases that can kill frogs, reptiles, fish, and even other amphibians, even though the tiger salamander is usually not affected. The tiger salamander is also a popular pet, but since many pet tiger salamanders were caught in the wild, be careful that you’re not introducing diseases that might kill your other amphibians, reptile, or fish pets. While the tiger salamander is doing just fine in the wild and isn’t protected, it’s always better to buy pets from people who bred the salamanders and can guarantee they’re disease free. Likewise, if you’re someone who likes to fish, don’t use tiger salamander larvae as bait. Researchers think this is the main way the diseases carried by tiger salamanders spread.

So all this information about tiger salamanders is interesting, but it’s also pretty normal for salamanders. What does Connor mean by cannibalism in tiger salamanders?

The tiger salamander we’ve just learned about is actually called the Eastern tiger salamander. Until recently the barred tiger salamander was considered a subspecies of the Eastern tiger salamander, although now it’s considered a separate species. It looks and acts pretty much just like the Eastern tiger salamander but it lives in the western areas of North America. The main difference between the two species is that the barred tiger salamander is not quite as big, and it isn’t as common. The adults are illegal to sell in most American states, although it’s legal to keep them as pets.

But there is one main difference about the barred tiger salamander, and it’s something that only happens in some populations, usually ones in dry areas where ponds are more likely to dry up and larvae need to metamorphose quickly as a result. A few weeks after they hatch, some of the larvae develop large teeth and wider heads. Then they start eating other tiger salamander larvae. Researchers have found that a cannibal tiger salamander won’t eat tiger salamanders it’s related to, and the hypothesis is that it recognizes the scent of its brothers and sisters.

Researchers think most tiger salamanders don’t become cannibals because doing so increases the risk that it will be affected by the diseases tiger salamanders carry. By eating salamanders that are competing for the same resources its siblings need to grow up quickly, the cannibal salamanders help their siblings and may sacrifice themselves by risking disease as a result.

Forget what I said about being glad you don’t have to retract your eyeballs every time you swallow. Just be glad you’re not a tiger salamander at all.

Connor also mentioned the old belief that salamanders lived in fire. How the heck did that belief come about? Salamanders are wet little amphibians that mostly live in water.

It’s been a belief for literally thousands of years. It’s mentioned in the Talmud, in Pliny the Elder’s writings, and in bestiaries. Where did it start?

The main hypothesis is that because some salamanders hibernate in rotting logs, the only time most people would see a salamander would be when they tossed firewood into a fire. The salamander, rudely awakened from its winter home, would slither out of the fire, protected from the heat for a very brief time by its damp skin. There’s actually a species of salamander common throughout Europe called the fire salamander. So that sounds plausible. Older legends refer to the salamander actually being able to put fires out with its cold body or breath. Since salamanders are cold-blooded and damp, they do feel cold to the touch even on relatively warm days.

One traditional writer thought all this was pish-posh, though. Marco Polo himself, who traveled widely in Asia starting in 1271, wrote, “Everybody must be aware that it can be no animal’s nature to live in fire.” He was right, of course. Nothing lives in fire. But by the time Marco Polo lived, there was a certain amount of confusion regarding a type of cloth that was fire-resistant. It was called salamander wool and was supposed to be woven from hairs harvested from salamanders—which is a real trick, considering only mammals have hair.

Marco Polo met a man from Turkey who procured the fibers that were called salamander wool. But they didn’t come from an animal at all. He had to dig for them. I’ll quote from a translation of Marco Polo’s writing:

“He said that the way they got them was by digging in that mountain till they found a certain vein. The substance of this vein was then taken and crushed, and when so treated it divides as it were into fibres of wool, which they set forth to dry. When dry, these fibres were pounded in a great copper mortar, and then washed, so as to remove all the earth and to leave only the fibres like fibres of wool. These were then spun, and made into napkins. When first made these napkins are not very white, but by putting them into the fire for a while they come out as white as snow. And so again whenever they become dirty they are bleached by being put in the fire.

“Now this, and nought else, is the truth about the Salamander, and the people of the country all say the same. Any other account of the matter is fabulous nonsense.”

This actually sounds even more confusing than fire salamanders. What the heck is this cloth, what are those fibers, are they really fireproof, and if so, why hasn’t anyone these days heard of it?

Well, we have, we just don’t realize it. That stuff is called asbestos.

I always thought asbestos was a modern material, but it’s natural, a type of silicate mineral that’s been mined for well over 4,000 years. It’s actually any of six different types of mineral that grow in fibrous crystals. Just like Marco Polo reported, after pounding and cleaning, you’re left with fibers that really are fire, heat, and electricity resistant. As a result, it became more and more common in the late 19th century when it was used in building insulation, electrical insulation, and even mixed with concrete. And just as Marco Polo reported, it was still spun into thread and woven into fabric that was often made into items used around the house, like hot pads for picking up pans from the oven, ironing board covers, and even artificial snow used for Christmas decorations.

Of course, we know now that breathing in bits of silica is really, really bad for the lungs. The dangers of working with asbestos had already started to be known as early as 1899, when asbestos miners started having lung problems and dying young. The more asbestos was studied, the more dangerous doctors realized it was—but since it was so useful, and the effects of asbestos damage on the lungs usually took years and years to manifest, businesses continued to ignore the warnings. Asbestos was even used in cigarette filters during the 1950s, as if smoking wasn’t already bad enough.

These days, most uses of asbestos have been banned around the world, but if you’ve seen those TV commercials asking if you or someone you know suffers from mesothelioma, and you might be entitled to compensation, that’s a disease caused by breathing in asbestos dust. Some industries still use asbestos.

It sounds like asbestos being called salamander wool was named not because people literally thought they were made from hairs harvested from salamanders but because asbestos cloth resisted fire and heat the way salamanders were supposed to. These days chefs use a really hot grill called a salamander to sear meats and other foods, which is named after the folkloric animal, but no one believes it has anything to do with real salamanders. At least, I hope not. Then again, there are pictures of salamanders in medieval bestiaries showing salamanders with hair, which argues that at least some people really truly believed that asbestos came from salamanders.

Because tiger salamanders are large and not endangered, they’re good subjects for study. Researchers have learned some surprising things by studying the behavior and physiology of tiger salamanders. For instance, salamanders in general have legs that haven’t changed that much from those of the first four-legged animals, or tetrapods. Researchers study the way tiger salamanders walk to learn more about how early tetrapods evolved. And yes, this research did involve filming tiger salamanders walking on a tiny treadmill.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 027: Creatures of the Deeps

This week is our six-month anniversary! To celebrate, we’ll learn about some of the creatures that live at the bottom of the Mariana Trench’s deepest section, Challenger Deep, as well as other animals who live in deep caves on land. We also learn what I will and will not do for a million dollars (hint: I will not implode in a bathysphere).

A xenophyophore IN THE GRIP OF A ROBOT

A snailfish from five miles down in the Mariana trench:

The Hades centipede. It’s not as big as it looks, honest.

The tiny but marvelous olm.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

For this week’s episode, we’re going to find out what lives in the deepest, darkest places of the earth—places humans have barely glimpsed. We’re not just talking deep sea, we’re talking the abyssal depths.

Like onions and parfaits, the earth is made up of many layers. The core of the earth is a ball of nickel and iron surrounded by more nickel and iron. The outer core is molten metal, but the inner core, even though it’s even hotter than the outer core—as hot as the surface of the sun—has gone through the other side of liquid and is solid again. Surrounding the core, the earth’s mantle is a thick layer of rocks and minerals some 1900 miles deep, and on top of that is the crust of the earth, which doesn’t actually sound very appealing but that’s where we live and we know it’s really pretty, with trees and oceans and stuff on top of it. The upper part of the mantle is broken up into tectonic plates, which move around very slowly as the molten metals and rocks beneath them swirl around and get pushed up through cracks in the mantle.

Under the oceans, the crust of the earth is only around 3 miles thick. And in a few places, there are crevices that actually break entirely through the crust into the mantle below. The deepest crack in the sea floor is the Mariana Trench in the western Pacific. At its deepest part, a narrow valley called Challenger Deep, the crack extends seven miles into the earth.

The pressure at that depth is immense, over 1,000 times that at sea level. Animals down there can’t have calcium carbonate shells because the pressure dissolves the mineral. It’s almost completely dark except for bioluminescent animals, and the water is very cold, just above freezing.

The trench is crescent shaped and sits roughly between Japan to the north and Papua New Guinea to the south, and the Philippines to the west. It’s caused by the huge Pacific plate, which is pushing its way underneath the smaller Mariana plate, a process called subduction. But near that activity, another small plate, the Caroline plate, is subducting beneath the Pacific plate. Subduction around the edges of the Pacific plate is the source of the earthquakes, tsunamis, and active volcanos known as the Ring of Fire. Some researchers think there’s a more complicated reason for Mariana Trench and other especially deep trenches nearby, though. There seems to be a tear in the Caroline plate, which is deforming the Pacific Plate above it.

Challenger Deep is such a deep part of the ocean that we’ve barely seen any of it. The first expedition that got all the way down was in 1960, when the bathyscape Trieste reached the bottom of Challenger Deep. This wasn’t an unmanned probe, either. There were two guys in that thing, Jacque Piccard and Don Walsh, almost ten years before the moon landing, on a trip that was nearly as dangerous. They could see out through one tiny thick window with a light outside. The trip down took almost five hours, and when they were nearly at the bottom, one of the outer window panes cracked. They stayed on the bottom only about 20 minutes before releasing the weights and rising back to the surface.

The next expedition didn’t take place until 1995 and it was unmanned. The Kaiko could collect samples as well as record what was around it, and it made repeated descents into Challenger Deep until it was lost at sea in 2003. But it not only filmed and collected lots of fascinating deep-sea creatures, it also located a couple of wrecks and some new hydrothermal vents in shallower areas.

Another unmanned expedition, this one using a remotely operated vehicle called the Nereus, was designed specifically to explore Challenger Deep. It made its first descent in 2009, but in 2014 it imploded while diving in the Kermadec Trench off New Zealand. It imploded. It imploded. This thing that was built to withstand immense pressures imploded.

In 2012, rich movie-maker James Cameron reached the bottom of the Mariana Trench in the Deepsea Challenger. He spent nearly three hours on the bottom. Admittedly this was before the Nereus imploded but you could not get me into a bathysphere if you paid me a million dollars okay well maybe a million but I wouldn’t do it for a thousand. Maybe ten thousand. Anyway, the Deepsea Challenger is currently undergoing repairs after being damaged in a fire that broke out while it was being transported in a truck, which is just the most ridiculous thing to happen it’s almost sad. But it’s still better than imploding.

In addition to these expeditions, tethered cameras and microphones have been dropped into the trench over the years too. So what’s down there that deep? What have these expeditions found?

The first expedition didn’t see much, as it happens. As the bathyscape settled into the ooze at the bottom of the trench, sediment swirled up and just hung in the water around them, unmoving. The guys had to have been bitterly disappointed. But they did report seeing a foot-long flatfish and some shrimp, although the flatfish was more likely a sea cucumber.

There’s actually a lot of life down there in the depths, including amphipods a foot long, sea cucumbers, jellyfish, various kinds of worms, and bacterial mats that look like carpets. Mostly, though, there are Xenophyophores. They make big delicate shells on the ocean bottom, called tests, made from glued-together sand grains, minerals like lead and uranium, and anything else they can find, including their own poops. We don’t know a lot about them although they’re common in the deep sea all over the world. While they’re unicellular, they also appear to have multiple nuclei.

For the most part, organisms living at the bottom of the Challenger Deep are small, no more than a few inches long. This makes sense considering the immense water pressure and the nutrient-poor environment. There aren’t any fish living that deep, either. In 2014 a new species of snailfish was spotted swimming about five miles below the surface, a new record; it was white with broad fins and an eel-like tail. Snailfish are shaped sort of like tadpoles and depending on species, can be as small as two inches long or as long as two and a half feet. A shoal of Hadal snailfish were seen at nearly that depth in 2008 in the Japan Trench.

While there are a number of trenches in the Pacific, there aren’t very many deeps like Mariana Trench’s Challenger Deep—at least, not that we know of. The Sirena Deep was only discovered in 1997. It’s not far from Challenger Deep and is not much shallower. There are other deeps and trenches in the Pacific too. But like Challenger Deep, there aren’t any big animals found in the abyssal depths, although the other deeps haven’t been explored as much yet.

In 2016 and early 2017, NOAA, the U.S. Coast Guard, and Oregon State University dropped a titanium-encased ceramic hydrophone into Challenger Deep. To their surprise, it was noisy as heck down there. The hydrophone picked up the sounds of earthquakes, a typhoon passing over, ships, and whalesong—including the call of a whale researchers can’t identify. They think it’s a type of minke whale, but no one knows yet if it’s a known species we just haven’t heard before or a species completely new to science. For now the call is referred to as the biotwang, and this is what it sounds like.

[biotwang whale call]

But what about animals that live in deep places that aren’t underwater? It’s actually harder to explore land fissures than ocean trenches. Cave systems are hard to navigate, frequently extremely dangerous, and we don’t always know how deep the big ones go. The deepest cave in the world is Krubera Cave, also called Voronya Cave, in Georgia—and I mean the country of Georgia, not the American state. Georgia is a small country on the black sea between Turkey and Russia. So far it’s been measured as a mile and a third deep, but it’s certainly not fully explored. Cave divers keep pushing the explored depth farther and farther, although I do hope they’re careful.

We’ve found some interesting animals living far beneath the earth in caves. The deepest living animal ever found is a primitive insect called a springtail, which lives in Krubera cave and which was discovered in 2010. It’s pale, with no wings, six legs, long antennae, and no eyes. There are a whole lot of springtail species, from snow fleas to those tee-tiny gray bouncy bugs that live around the sink in my bathroom no matter how carefully I clean. All springtails like damp places, so it makes sense that Krubera cave has four different species including the deepest living one. They eat fungi and decomposing organic matter of all kinds. Other creatures new to science have been discovered in Krubera cave, including a new cave beetle and a transparent fish.

A new species of centipede was described in 2015 after it was discovered three-fourths of a mile deep in three different caves in Croatia. It’s called the Hades centipede. It has long antennae, leg claws, and a poisonous bite, but it’s only about an inch long so don’t panic. Also it lives its entire life in the depths of Croatian caves so you’re probably safe. There are only two centipedes that live exclusively in caves and the other one is named after Persephone, Hades’ bride. It was discovered in 1999.

A cave salamander called an olm, which in local folklore was once considered a baby dragon, was recently discovered 370 feet below ground in a subterranean lake, also in Croatia. It’s a fully aquatic salamander that only grows a few inches long. Its body is pale with pink gills. It has eyes, but they’re not fully developed and as it grows, they become covered with layers of skin. It can sense light but can’t otherwise see, but it does have well-developed electroreceptor skills, hearing, smell, and can also sense magnetic fields. It eats snails, insects, and small crustaceans and has very few natural predators.

In 1952 researchers created an artificial riverbed in a cave in France that recreates the olm’s natural habitat as closely as possible. The olms are fed and protected but not otherwise interacted with by humans. There are now over 400 olms in the cave, which is a good thing because in the wild, olms are increasingly threatened by pollution, habitat loss, and unscrupulous collectors who sell them on the pet trade black market.

Olms live a long, long time—probably 100 years or longer. Some individuals in the artificial riverbed are 60 years old and show no signs of old age. Researchers aren’t sure why the olm lives so long. We don’t really know a whole lot about the olm in general, really. They and the caves where they live are protected in Croatia.

There are a few places in the world where people have drilled down into the earth, usually by geologists checking for pockets of gas or water before mining operations start. In several South African gold mines, researchers found four new species of tiny bacteria-eating worms, called nematodes, living in water in boreholes a mile or more deep. After carefully checking to make sure the nematodes hadn’t been introduced into the water from mining operations, the researchers theorized the nematodes already lived in the rocks but that the boreholes created a perfect environment for them. Nematodes are well-known extremophiles, living everywhere from hot springs to the bellies of whales. They can withstand drought, freezing, and other extreme conditions by reverting to what’s called the dauer stage, where they basically put themselves in suspended animation until conditions improve.

The boreholes also turned up some other interesting creatures, including flatworms, segmented worms, and a type of crustacean. They’re all impossibly tiny, nearly microscopic.

If you go any deeper, though, the only living creatures you’ll find are bacteria and other microbes. In a way, though, that’s reassuring. The last thing we want to find when we’re poking around in the world’s deepest cracks is something huge that wants to eat us.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!

Episode 014: Giant Salamanders

In episode 14, we discuss the big three of giant salamanders–and some possible mystery relatives.

The Chinese giant salamander. An orange one. Enormous. Mostly harmless. Just wants to eat a snail.

The Japanese giant salamander:

The HELLBENDER reverb reverb reverb

The Pacific giant salamander. Not as giant but has an angry:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re looking at giant salamanders. Yup.

Salamanders are amphibians. Think “wet lizards” or “skinny frogs with tails.” A lot of people think snakes are slimy, but they’re not. Snakes are reptiles and their scales are satiny smooth and dry. Amphibians don’t have scales and they do have slimy skin, which they need to keep moist.

Some salamanders are completely aquatic but most live at least part of their lives on land, usually in wet areas. When I was a kid, I used to like turning over rocks in the creek behind our house, because frequently I’d find a salamander underneath. I wouldn’t catch it, just look at it, which is what you should do if you find a salamander—partly because it’s not good to disturb a wild animal that’s just trying to live its life, and partly because salamanders secrete toxins through their skins. The toxins won’t kill you, but if you get any in your eyes or mouth you could be in for some unpleasant symptoms.

There are two species of salamander known to be venomous, in a way, but they don’t inject venom with special fangs. When the sharp-ribbed salamander is attacked, it pushes its pointed ribs through tubercules along its sides. The tubercules secrete toxins that coat the rib points, which then pierce right through the salamander’s skin and into its attacker.

There are hundreds of salamander species throughout the world, some of them tiny, most of them a few inches long [about 5 or 6 cm], but there are three that are much bigger than that. The biggest is the Chinese giant salamander. The biggest ever found was just shy of six feet long [two meters]. Six feet long! The closely related Japanese giant salamander is almost as big, some five feet long [1.5 meters].

There’s a third giant salamander right here in the southeastern United States where I live, and while at two and a half feet long [76 cm] it’s not nearly as long as its cousins, it has a much better name. The Chinese giant salamander’s local name is infant fish, because some of the sounds it makes remind people of babies crying, which is creepy as heck. The Japanese giant salamander is called the giant pepper fish, because when it’s disturbed it secretes a whitish mucus that smells like pepper. But the North American giant salamander? We call that thing the H E L L B E N D E R.

I did try to find audio of the Chinese giant salamander crying. I had no luck, which is probably a good thing actually, because it’s a distress call. I did find this awesome audio of a Pacific giant salamander. Despite the name giant in its name, it’s not very big compared to the other giants, only about a foot long at most [30 cm], but it does have a cute vocalization.

[Pacific giant salamander call]

(He’s so mad.)

The Chinese and Japanese giant salamanders are so closely related that they readily interbreed. We know that because some fool decided to introduce some Chinese salamanders into streams in Japan. Hellbenders are not as closely related to the Asian salamanders.

All three of the giant salamanders are endangered, mostly due to habitat loss and pollution. They like clean, swift-moving mountain streams with rocks of just the right size—not too big, not too small. But the Chinese salamanders are also considered a delicacy, so they’ve been overhunted as well. Poaching is a major issue, ironically to stock salamander farms. The adults breed readily in captivity, but farmers haven’t had much success getting captive-born individuals to breed, so they continue to capture adults from the wild.

Giant salamanders are fully aquatic, although they can and do get out of the water occasionally for short periods. All three have thick folds of skin along their sides, which increases their surface area, and that’s important because they breathe through their skins. Larval giant salamanders have gills, but when they mature they lose those gills. The hellbender may retain a gill slit but it no longer functions.

While giant salamanders do have a single lung, they don’t use it to breathe. They use it for buoyancy. They like fast-moving water because it’s well oxygenated. A salamander will also rock gently to increase the amount of water moving over its skin, and male salamanders will wave fresh water over their eggs. Males dig and defend the nests. In Japan, they’re called den-masters.

Giant salamanders are flattish in shape with broad bodies and wide heads. Their feet have stubby little toes. They eat fish, snails, crawdads, worms, insects, small mammals, snakes, frogs—basically anything they can catch. They snap up prey fast, sucking it in my creating a vacuum when they open their huge mouths. They range in color from slate gray to black to brownish with dapples. Occasionally an orangish or pink individual is discovered.

All the giant salamanders have poor eyesight, but they have a good sense of smell. In addition, the Chinese and Japanese giant salamanders have sensory cells along the sides of their bodies that detect vibrations in the water. The hellbender doesn’t have that kind of sensory cells as far as I’ve been able to find out, but it does have light sensitive cells on its body, especially the tail. This lets it know when its tail is safely hidden, rather than sticking out from under a rock.

Larval hellbenders look a lot like another large salamander in the area, called the mudpuppy or water dog. The mudpuppy can grow a bit over a foot in length [31 cm], but it retains its gills throughout its life. Don’t be fooled by fake hellbenders.

So those are the three giant salamanders in the world, but there are rumors of other giants in the streams and rivers of California. In the 1920s, an attorney named Frank L. Griffith, who was hunting in the area, spotted five salamanders in a lake in the Trinity Alps in northern California. The salamanders ranged in size between five and nine feet long [1.5 and 2.7 m]. He hooked one with a line, but he wasn’t strong enough to land it and it escaped. In the 1940s, animal handler Vern Harden claimed he’d seen eight-foot [2.4 m] salamanders in Hubbard Lake.

Thomas L. Rodgers, a biologist at Chico State College, conducted four expeditions to the Trinity Alps in 1948 in search of the giant. The expeditions didn’t find anything bigger than foot-long [30 cm] Pacific giant salamanders, but Rodgers suggested that the Trinity Alps giant might be a subspecies of the Pacific giant that grows to an enormous size, or might be a cryptobranchid like the eastern hellbender or the Asian giant salamanders.

In 1951, herpetologist George S. Myers published a paper about his own sighting. He said that in 1939 he was contacted by a commercial fisherman who had dredged up a two and a half foot [76 m] salamander in a catfish net from the Sacramento River. Myers described the salamander as dark brown with dull yellow spots, and said that it resembled the Chinese and Japanese giant salamanders but appeared to be a different species.

In 1960, Bigfoot hunter Tom Slick convinced an expedition looking for Bigfoot to hunt for the salamander too, with no luck. Also in 1960, Tom Rogers mounted another expedition, this time with some zoology professors and ten interested laymen. Again, they only found the foot-long Pacific giant salamander.

Rodgers decided he was wrong about the existence of a new giant salamander, and in 1962 denounced the previous sightings as misidentifications and hoaxes. More recently, a 1997 expedition led by Japanese-American writer Kyle Mizokami likewise came up with no sightings.

It’s not out of the realm of possibility that a giant salamander lives in the Trinity Alps and just hasn’t been found. It’s the right climate with the right conditions. And new salamanders are occasionally discovered in the United States. In 2009, a new species of lungless salamander was discovered in the Appalachian foothills. Yeah, that’s near where I live!

But that one is barely an inch long [2.5 cm]. It should be a little easier to spot a salamander longer than a grown man is tall, not to mention that two of the Trinity Alps giant salamander sightings report salamanders in lakes. If they’re cryptobranchids, they need running water to survive—streams or shallow rivers.

And as for the third sightings, the one where George Myers actually got a first-hand look at a giant salamander caught in the Sacramento River, there’s more to the story. Tom Rogers, the biologist who led five different expeditions to search for the salamander, also saw the Sacramento specimen. The fisherman had managed to keep it alive in his bathtub. Rogers identified it as a Chinese giant salamander, and in fact it turned out to be a lost pet named Benny that had escaped while being taken to Stockton Harbor by steamer.

If these were the only sightings of giant salamanders in North America that aren’t hellbenders, it wouldn’t be looking good for them. But we’re definitely not done. In his blog, zoologist Karl Shuker reports hearing from a woman who sighted a huge salamander in Redwood Park in Arcata, California in 2005. She described it as several feet long [1 meter] with a rounded head instead of flat like known giant salamanders, no skin folds along its sides, and reddish markings. She spotted it walking on land after a rain. Shuker suggests she might have seen an unusually large coastal giant salamander, which can reach almost a foot and a half in length [45 cm] and which she said her salamander resembled in many respects. Remember that Pacific giant salamander sound I played earlier? The coastal giant salamander is a type of Pacific giant salamander.

California isn’t the only state with a mystery giant salamander, though. Three other states have interesting reports, and all of them are pink.

Pink salamanders actually aren’t all that uncommon. Alibinism in salamanders is well known and not rare, and they frequently look pink due to blood vessels visible through their unpigmented skin.

In the early 1960s, biology student Mary Lou Richardson was bowhunting along Florida’s St. Johns River with her father and a friend. All three saw an animal the size of a donkey with a big flat head and a small neck. Other tourists saw the animal that same day, and local fishermen were familiar with it going back to 1955. It’s not clear from the description if the animal was a salamander or something else.

Then, on May 10, 1975, five people on a fishing trip on the St. Johns River saw a weird pink animal’s head and neck on the water. It was only 20 feet [6 m] from their boat and watched them for about eight seconds before diving again. One witness, Dorothy Abram, described it as having a head the size of a human’s with small horns like a snail’s. Another witness, Brenda Langley, also noted it had “this little jagged thing going down its back.” Presumably she meant serrations of some kind. The party also said the animal had large dark eyes and gills or gill-like flaps on either side of its head.

In Ohio, the first white settlers near Scippo Creek, called Catlick Creek Valley at the time, discovered what they called giant pink lizards living in the area. They were three to seven feet long [1 to 2.1 m] and lived in and around water. They also had moose-like horns, pretty big ones apparently. But after a drought followed by a devastating wildfire, by 1820 the pink lizards seemed to have died out.

And in South Carolina around 1928, nature writer Herbert Sass and his wife were boating on Goose Creek near Charleston when Sass saw something big under the water. He lifted it with an oar and although it almost immediately slipped back into the water, they were able to get a good look. Their description sounds a lot like a hellbender or other giant salamander, in this case as thick around as a man’s thigh and five or six feet long [1.5 to 2 m]. It was salmon pink and orange.

The St. Johns River monster might have been a manatee. The area where it was spotted is a manatee refuge and manatees have been responsible for other mystery animal sightings in the past. Then again, manatees don’t have snail horns, serrated backs, or gills, and known giant salamanders don’t either. It’s important to note too that in the 1975 sighting of the monster, dubbed Pinky because of course it was, witnesses described it as being dinosaur-like and said the skin appeared to be stretched so tightly over its head that the shape of the bones were visible. That doesn’t sound like either a manatee or a salamander, more like a reptile of some kind.

The Ohio and South Carolina sightings are much more interesting in regards to giant salamander sightings. Ohio is historically part of the hellbender’s range, and a population of hellbenders have recently been reintroduced there. Shuker suggests the horns described on the so-called pink lizards might actually have been branching external gills seen underwater. Most species of salamander lose their gills after they grow out of their larval stage, but not all, including mudpuppies. Mudpuppies aren’t as big as hellbenders, but that doesn’t mean there wasn’t once a variety that grew much larger.

South Carolina is also part of the hellbender’s range, and Sass’s pink and orange animal might very well have been an exceptional large specimen. Sass himself called it a hellbender.

Even if none of these mystery salamanders are ever discovered, or if they turn out to be known animals, we still have hellbenders around, and the Chinese and Japanese giant salamanders too. The best thing we can do is keep their habitats as pristine as possible, since salamanders need clean streams to thrive. Next time you go hiking, pick up any trash you find and pack it out with you. The salamanders will thank you.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes for as little as one dollar a month.

Thanks for listening!