Episode 402: The Hoop Snake and Friends

Thanks to Nora and Richard from NC this week as we learn about some scary-sounding reptiles, including the hoop snake!

Further reading:

The Story of How the Giant “Terror Skink” Was Presumed Extinct, Then Rediscovered

San Diego’s Rattlesnakes and What To Do When They’re on Your Property

Snake that cartwheels away from predators described for the first time

Giant new snake species identified in the Amazon

The terror skink, AKA Bocourt’s terrific skink [photo by DECOURT Théo – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=116258516]:

The hoop snake according to folklore:

The sidewinder rattlesnake [photo taken from this article]:

The dwarf reed snake [photo by Evan Quah, from page linked above]:

The green anaconda [photo by MKAMPIS – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=62039578]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As monster month continues, we’re going to look at some weird and kind of scary, or at least scary-sounding, snakes and lizards. Thanks to Nora and Richard from NC for their suggestions this week!

We’ll start with the terror skink, whose name should inspire terror, but it’s also called Bocourt’s terrific skink, which is a name that should inspire joy. Which is it, terror or joy? I suppose it depends on your mood and how you feel about lizards in general. All skinks are lizards but not all lizards are skinks, by the way.

The terror or possibly terrific skink lives on two tiny islets, which are miniature islands. These islets are themselves off the coast of an island called the Isle of Pines, but in French, which I cannot pronounce. The Isle of Pines is only 8 miles wide and 9 miles long, or 13 by 15 km, and is itself off the coast of the bigger island of New Caledonia. All these islands lie east of Australia. Technically the islets where the skink lives are off the coast of another islet that is itself off the coast of the Isle of Pines, which is off the coast of New Caledonia, but where exactly it lives is kept a secret by the scientists studying it.

The skink was described in 1876 but only known from a single specimen captured on New Caledonia around 1870, and after that it wasn’t seen again and was presumed extinct. Colonists and explorers brought rats and other invasive animals to the New Caledonian islands, which together with habitat loss have caused many other native species to go extinct.

But in December 2003, a scientific expedition studying sea snakes around the New Caledonian islands caught a big lizard no one recognized. Once the expedition members realized it was a terror skink, alive and well, they took lots of pictures and videos of it and then released it back into the wild. Since then, more specimens have been discovered during four different expeditions, but only on the islets, not on any of the bigger islands. It’s so critically endangered that its location has to be kept secret, because if someone captures some of the lizards to sell on the illegal pet market, the species could easily be driven to extinction.

The terror skink is gray-brown with darker stripes, a long tail, and a slightly downturned mouth that makes it look grumpy. It grows about 20 inches long, or 50 cm, including its tail. This is really big for a skink, so technically it’s a giant skink.

It gets the name terror skink from its size and from its teeth, which are large and curved like fangs. It mainly eats one particular species of land crab, which is why its jaws are so strong and its teeth are so sharp, so it can bite through the crab’s exoskeleton.

Another lizard with a spooky name that has been presumed extinct is the gray ghost lizard, suggested by Richard from NC. It’s more properly called the giant Tongan ground skink, and it’s native to some more South Pacific islands—specifically, the Tongan Islands. These islands are even farther east from Australia than the New Caledonian islands, and are actually closer to New Zealand than to Australia, although they’re not really very close to either.

The giant Tongan ground skink was described in 1839 from two specimens collected in the late 1820s on Tongatapu Island. They’re the only two specimens known and the lizard is considered extinct, especially considering that these days, the island is almost completed deforested and rats, dogs, and cats have been introduced to it, which has driven many species to extinction.

But after the terror skink was rediscovered, scientists started to wonder if the gray ghost might still be around. It was called the gray ghost because it was so hard to see, since it was dark gray in color. The native Tongan people considered it a good omen if someone saw one, since it was so rare.

A paper published in early 2024 suggests that the gray ghost might be living on some smaller islands where forests still remain, and also suggested that it might be nocturnal and a burrowing skink. That would explain why it was so rarely seen by the people who lived on its island when it was still alive.

We know basically nothing about the gray ghost. Hopefully an expedition to the smaller Tongan islands will rediscover it so we can learn more about it and protect it.

Richard from NC also suggested we talk about the hoop snake, an animal of folklore. I remember reading about it as a kid in a book about American folklore animals, most of which were clearly jokey and not meant to seem real. The hoop snake sounded more realistic.

The hoop snake was supposed to be a long, slender snake that slithered around normally most of the time, but when it needed to move faster, it would grab the end of its tail in its mouth and roll like a wheel, or a hoop. Some versions of the story had the snake rolling along with the tip of its tail pointed forward, and since the tail was supposed to be sharp and venomous, it would roll after you so fast that when its tail stabbed you, you’d drop dead. The only way to escape would be to jump behind a tree. The tail would stab the tree instead and you could run away while the hoop snake was trying to unstick its tail. The venom in its tail was supposed to be so deadly that the tree would turn black and die. Other versions of the story said you had to jump through the snake’s hoop to confuse it, which would allow you to get away safely.

All this is weird, to say the least, but some snakes do have ways of traveling that are unusual. The sidewinder, for instance, is a real species of rattlesnake from the southwestern United States and northwestern Mexico. It grows around 2 ½ feet long, or 80 cm, and has pointy scales, called keeled scales, including a pair above its eyes that make it look like it has little horns. Since it’s a type of rattlesnake, it has a rattle that it can shake to make a loud warning noise. It’s mostly brown in color, or sometimes pinkish, yellowish, or even whitish, with darker stripes or blotches down its back. Its coloration helps camouflage it against the ground, and it will actually change color slightly depending on the temperature. This is something other rattlesnakes can do too.

The sidewinder lives in desert conditions where it has to travel through loose sand, and the sand is also extremely hot. While the snake can travel normally when it wants to, it sidewinds to move quickly over loose sand or very hot sand that might burn it. It lifts most of its body up so that it’s only touching the ground in two places, then undulates its body so that the sections touching the ground constantly move. That way no part of its body has to stay in contact with hot sand for more than a split second. It travels in a path that runs diagonal to the direction its body is pointing. That sounds complicated, but it’s easy for the snake. It’s not even the only snake that can travel by sidewinding. Other desert-living snakes travel across hot sand by sidewinding, including several species from Africa, but just about any snake can do it if they need to. It allows a snake to travel over surfaces that are too slippery for its belly scales to get a grip.

The story of the hoop snake might be based on garbled reports of sidewinders, but it might just be a completely invented animal. The hoop snake story is found in other parts of the world too, especially Australia, although it dates back to at least the late 18th century in the United States.

No snake in the world has the anatomy to allow it to roll like a hoop without hurting itself. But there is one other snake that does something very similar, called cartwheeling. It’s the dwarf reed snake that lives in Malaysia and other parts of southeast Asia. Reed snakes aren’t very well known to science, so this cartwheeling activity wasn’t documented scientifically until recently, with the study published in 2023. Reed snakes are nocturnal and spend most of the daytime hiding under rocks or logs, or buried in dead leaves or sand, so they’re not seen very often by people. The dwarf reed snake is slender and only grows about 10 inches long, or 25 cm.

Some small snakes can jump short distances by pushing their tails against the ground. The dwarf reed snake does something similar, but more complicated. It pushes off with its tail, with its body curved in a sort of S shape. It lands on its head and rolls over completely, head to tail, and then pushes off the ground again with its tail. It can move extremely fast in this way to get away from predators, but it takes a whole lot of energy. But when it’s moving downhill, with gravity on its side, it can continue to cartwheel longer.

Cartwheeling isn’t something the snake does often, and it’s rare that a human would ever observe it. But just like sidewinding, some scientists think cartwheeling might be a motion that more snakes can do if they really need to. Maybe that’s where the hoop snake legend started.

Let’s finish with a suggestion from Nora, who wanted to learn more about the green anaconda. That’s a scary snake for sure, because it happens to be the biggest snake alive today, and almost the longest, as far as we know.

The green anaconda lives throughout much of South America, although not in Patagonia because like most reptiles, it needs warm weather to function. It’s a beautiful olive green with black blotches, and it’s a big, bulky snake. It spends a lot of time in the water, which helps it stay cool in hot weather and helps support its weight comfortably, and its eyes are near the top of its head so it can watch for prey while it’s mostly submerged.

The anaconda is a member of the boa family and is a constrictor. It’s not venomous, but you really don’t want a hug from a hungry anaconda. Its body is bulky because it’s incredibly strong, and once it starts to contract its muscles, whatever it’s constricting has only minutes left to live. It can kill animals as large as caimans, which are a type of crocodile, tapirs, capybaras, deer, and even jaguars. For the most part, though, an anaconda doesn’t want to bother with prey that could potentially hurt it, so it will stick with smaller animals that are still big enough to make it worth the effort. And yes, it is possible that an anaconda in the wild could kill and eat a human, but there’s no reliable evidence that it’s ever happened.

It’s hard to know exactly how long and how heavy an anaconda can get. There are lots of stories of 30-foot, or 9-meter snakes, but that seems to be a wild exaggeration. Snakes are stretchy, and a healthy live snake doesn’t really want to stretch out straight to be measured. A dead snake is even stretchier than a live snake. A shed snakeskin is the stretchiest of all, and usually has stretched out quite a bit when the snake was shedding. A good estimate is that a big female anaconda can grow about 20 feet long, or 6 meters, and can weigh around 250 lbs, or 114 kg. Males are smaller on average, and a wild snake will weigh less than one kept in captivity.

There are definitely larger individual anacondas, especially considering that reptiles continue to grow throughout their lives, but they’re probably not that much longer. This is only a little shorter than the reticulated python, which can definitely grow up to 23 feet long, or 7 meters.

One important detail about the size of the green anaconda is that the biggest snakes live in the Amazon rainforest–but the Amazon rainforest is really hard for humans to navigate safely and most anacondas killed or kept in captivity lived in other parts of South America. So there might easily be anacondas in the rainforest that are much bigger than the ones scientists have been able to measure so far.

In February of 2024, a journal article was published about a 2022 National Geographic nature documentary and scientific expedition to the Amazon basin to find a rumored population of extra-large anacondas. The expedition was led by hunters from the Waorani people, who consider the snakes sacred, and the hunters and their chief were credited as co-authors of the paper, as they should be since they provided so much information.

The scientists were able to examine several fully grown anacondas and take tiny tissue and blood samples to test later. They were astounded at the size of the snakes they found, including one that measured 20 and a half feet long, or 6.3 meters. The hunters reported seeing snakes that they estimated as over 24 feet long, or 7.5 meters, that might have weighed as much as 500 pounds, or 226 kg.

Beyond mere size, though, is something very interesting, which the scientists learned when they got home and ran genetic tests. The anacondas are actually quite different genetically from other anacondas known to science, that live farther south. They described the snake as a new species, which they refer to as the northern green anaconda, but it has actually resulted in a lot of controversy. Some scientists agree that the northern green anaconda is a separate species, others think it’s only a subspecies of the green anaconda, while others think the genetic differences are minor and separating the northern green anaconda from other anacondas isn’t justified by the evidence.

Obviously scientists need to follow up and learn more about the anacondas, but one thing is clear. There are some really, really big snakes out there in the Amazon.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 391: Welcome to Snake Island

Follow the enamel pin Kickstarter here!

Let’s learn about some snakes this week! Thanks to Eilee, BlueTheChickenWing, and Richard from NC for their suggestions.

Further Reading:

Snake Island’s Venomous Vipers Find a New Home in Sao Paulo

‘Rarest Snake’ in the U.S. Hatches at Tennessee Zoo

The golden lancehead [picture from first article linked above]:

The Martinique lancehead/fer-de-lance:

The Louisiana pine snake, and a pine cone:

Show Transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

After today, the next four weeks will be all about invertebrates, or animals without a backbone, because it’s almost Invertebrate August! But this week let’s learn about some animals that are basically nothing but backbones, snakes! Thanks to Eilee, BlueTheChickenWing, and Richard from NC for their suggestions!

Also, if you like enamel pins even slightly as much as I do, I’m starting a Kickstarter in a few weeks to make some more. These will be bigger than the ones I made a few years ago and will include an aye-aye. Where else are you going to get an aye-aye enamel pin? There’s a link in the show notes if you want to sign up for an email reminder when the campaign goes live in mid-August. https://www.kickstarter.com/projects/kateshaw/familiar-friends-enamel-pins

Anyway, let’s start with Snake Island, suggested by Eilee. Snake Island is off the coast of Brazil in South America, and it’s quite small, only about 106 acres total, or 43 hectares. It’s hilly and a little over half of it is covered with a temperate rainforest, while the rest is grassy or just bare rocks. No one lives there these days and it’s a protected area that only scientists are allowed to visit, with the exception of members of the Brazilian navy who occasionally stop by to maintain the lighthouse that keeps ships from smashing into the rocky coast. Lots of birds live on the island or visit there, but other than that it’s mostly just snakes.

Specifically, the critically endangered golden lancehead pit viper lives on Snake Island and nowhere else in the world. It can grow nearly four feet long, or 118 cm, and is pale gold or golden-brown in color with darker splotches. It’s also incredibly venomous—but no one has ever been bitten by one as far as we know. If somehow you were bitten by one, it probably wouldn’t be a pleasant situation but you also probably wouldn’t die. That’s mainly because the golden lancehead’s venom is adapted to kill birds and reptiles, not mammals. And that’s because there are no mammals living on Snake Island.

The golden lancehead spends most of its time in trees or bushes, hunting for birds. It mainly eats two particular species of small bird that live on the island, although it will also eat other birds, lizards, and invertebrates like insects. Some reports say it will even eat smaller golden lanceheads. There’s another snake that lives on the island, Sauvage’s snail-eater, and the golden lancehead might occasionally snack on one of those. The snail-eater is also present on mainland Brazil and isn’t venomous. You can probably guess that it mainly eats snails. It’s small and thin, lives in trees, and is brownish-yellow with darker stripes and splotches.

The issue with Snake Island and its snakes is that there isn’t that much land available for the snakes to live on, and the forest has been damaged by human activity. Big chunks of forest were cleared by fire when people decided to try growing bananas on the island, which didn’t work very well. No one lives there now, but poachers do occasionally visit the island to catch snakes for the illegal wildlife trade. The golden lancehead is starting to show signs of inbreeding and disease as a result. As if that wasn’t bad enough, because the island is so close to the coast of Brazil, and mainland Brazil has its own problems with deforestation, fewer birds are migrating through the area every year. That means fewer birds stop at Snake Island and the snakes have less to eat.

Some reports claim that the island is so overrun by snakes that you’d encounter one with every step if you visited, but that’s not actually true. The snakes don’t live everywhere, and they spend almost all their time in trees. Recent studies estimate that around 2,000 to 4,000 snakes live on the island, which sounds like a lot until you remember that these are the only golden lanceheads in the whole world! Fortunately, rumors that anyone who sets foot on the island is at risk of being bitten and dying horribly from the golden lancehead’s venom keep a lot of people away. A captive breeding program in São Paulo, Brazil is also working to help the snakes.

The golden lancehead is a type of pit viper, closely related to other pit vipers found in Brazil. Its ancestors were trapped on the island when ocean levels rose at the end of the Pleistocene, around 11,000 years ago, and it’s been evolving separately ever since. Species in the genus Bothrops are also called fer-de-lance snakes, and that brings us to our next suggestion from BlueTheChickenWing.

BlueThe ChickenWing left us a nice review a while back and made two suggestions, one of which is the fer-de-lance. Fer-de-lance is a French term meaning spearhead, or lancehead, as in golden lancehead. The golden lancehead belongs to the genus Bothrops, pit vipers that are found throughout much of Central and South America as well as some Caribbean islands. We’re only going to talk about one other species of fer-de-lance this week, though, Bothrops lanceolatus, also called the Martinique lancehead. It too lives on an island, in this case the Caribbean island of Martinique.

The Martinique lancehead can grow up to 5 feet long, or 1.5 meters, with unverified reports of individuals twice that length. It’s light brown with darker speckles and a paler belly. It lives in forested areas and spends most of its time hidden, waiting for an animal to happen by. Then it strikes! It eats pretty much anything it can catch, including frogs and rats, bats and birds, rabbits, lizards, other snakes, and even large insects. Its venom isn’t as potent as the golden lancehead’s but it’s still dangerous to humans, and unlike the golden lancehead, it can and does occasionally bite people.

The Martinique lancehead is endangered due to habitat loss and poaching. People are naturally afraid of the snake and will kill it when they can, when all it wants is to be left alone to eat animals like rats and other snakes that people don’t want around either. Hospitals in Martinique keep antivenin in stock to treat the 20 or 30 people who are bitten by a fer-de-lance every year. Most people are fine after receiving treatment, but those who can’t get to the hospital in time or who try to treat the bite at home sometimes die.

The Martinique lancehead gives birth to live young, as is the case for other fer-de-lance snakes. The eggs remain inside the mother until the babies hatch, at which point the mother delivers them and they slither away to live on their own.

Speaking of snakes having babies, let’s finish with a suggestion by Richard from NC, who sent me an article that was only published literally two days ago as this episode goes live. This is not about a snake that lives on an island, but it’s so interesting I wanted to include it. It’s about the Louisiana pine snake, which is not venomous, but which is one of the rarest snakes in North America.

The pine snake is a type of constrictor, and like other constrictors it can grow quite large. The largest individual ever reliably measured was over 5 and a half feet long, or 1.8 meters. It’s tan or yellowish in color with a darker brown pattern.

It lives in open pine forests and grasslands in parts of western Louisiana and east Texas, but even when it wasn’t so rare, hardly anyone ever saw one because it spends most of its time underground. It’s specialized to eat a little rodent called Baird’s pocket gopher, and when it’s not actually hunting the gopher, it hangs out in the gopher’s old burrows to stay cool and safe. In winter it hibernates in a gopher burrow, and there’s nothing the gopher can do about that.

Baird’s pocket gopher looks a little bit like a small guinea pig because of its large head, tiny ears and eyes, chunky body, and short legs. It has long claws that help it dig rapidly in the sandy ground it prefers. While the Louisiana pine snake mostly eats the gophers, it will also eat other small animals like frogs, rabbits, and bird eggs when it finds them. The snake is threatened by habitat loss, especially the problem of roads being built through its habitat. A lot of snakes are killed by cars while trying to cross the road. Since the snake usually only lays a few eggs a year, rarely more than five, it’s hard for populations to grow.

Fortunately, the Memphis Zoo in Tennessee is headquarters for a careful captive breeding program of the pine snake. And a few days ago, a baby snake hatched and is doing great! Hopefully more will hatch soon. The babies will be cared for until they’re big enough to be safe from most predators, and then they’ll be released into the wild. So far around 300 captive-born snakes have been released into the wild, increasing the Louisiana pine snake’s chance for long-term survival.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 377: The Giant-est Snake Ever

Thanks to Max for suggesting Titanoboa!

Further reading:

Largest known madtsoiid snake from warm Eocene period of India suggests intercontinental Gondwana dispersal

This Nearly 50-Foot Snake Was One of the Largest to Slither on Earth

Meet Vasuki indicus, the ‘crocodile’ that was a 50ft snake

Titanoboa had really big bones compared to its modern relatives:

Vasuki had big bones too:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Almost exactly two years ago now, Max emailed to suggest we talk about titanoboa. The problem was that we had covered titanoboa in episode 197, and even though there’s always something new to learn about an animal, in this case since titanoboa is extinct there wasn’t much more I could share until new studies were published about it. But as the years passed I felt worse and worse that Max was waiting so long. A lot of listeners have to wait a long time for their suggested episode, and I always feel bad. But still there were no new studies about titanoboa!

Why am I telling you all this? Because we’re finally going to talk about titanoboa today, even though by now Max is probably old and gray with great-grandkids. But we’re only going to talk about titanoboa to compare it to another extinct snake. That’s right. Paleontologists have discovered fossils of a snake that was even longer than titanoboa!

Let’s start with Titanoboa, because it’s now been a really long time since episode 197 and all I remember about it is that it’s extinct and was way bigger than any snake alive today. Its discovery is such a good story that I’m going to include it too.

In 1994, a geologist named Henry Garcia found an unusual-looking fossil in Colombia in South America, in an area that had been strip-mined for coal. Fifty-eight million years ago the region was a hot, swampy, tropical forest along the edge of a shallow sea.

Garcia thought he’d found a piece of fossilized tree. The coal company in charge of the mine displayed it in their office along with other fossils. There it sat until 2003, when palaeontologists arranged an expedition to the mine to look for fossil plants. A researcher named Scott Wing was invited to join the team, and while he was there he poked around among the fossils displayed by the mining company. The second he saw the so-called petrified branch he knew it wasn’t a plant. He sent photos to a colleague who said it looked like the jawbone of a land animal, probably something new to science.

In 2007, the fossil was sent for study, labeled as a crocodile bone. But the palaeontologists who examined the fossil in person immediately realized it wasn’t from a crocodile. It was a snake vertebra—but so enormous that they couldn’t believe their eyes. They immediately arranged an expedition to look for more of them, and they found them!

Palaeontologists have found fossilized remains from around 30 individual snakes, including young ones. The adult size is estimated to be 42 feet, or 13 meters. The largest living snakes are anacondas and reticulated pythons, with no verified measurements longer than about 23 feet long, or 7 meters. Titanoboa was probably twice that length.

Because titanoboa was so bulky and heavy, it would be more comfortable in the water where it could stay cool and have its weight supported. It lived in an area where the land was swampy with lots of huge rivers. Those rivers were full of gigantic fish and other animals, including a type of lungfish that grew nearly ten feet long, or 3 meters. Studies of titanoboa’s skull and teeth indicate that it probably mostly ate fish.

So if titanoboa was so huge that until literally a few days ago as this episode goes live, we thought it was the biggest snake that had ever existed, how big was this newly discovered snake? It’s called Vasuki indicus and while it wasn’t that much bigger than titanoboa, estimates so far suggest it could grow almost 50 feet long, or over 15 meters. It’s named after a giant serpent king called Vasuki from Hindu folklore, who symbolizes strength and prosperity.

Vasuki indicus was discovered in a mine in India in 2005. The original discovery consisted of 27 vertebrae, including some that were still articulated. That means they remained in place after the rest of the body decayed and were preserved that way, which helps palaeontologists better estimate the snake’s true size.

Like titanoboa, the fossils were misidentified at first. They were labeled as a known giant crocodile and set aside in the discoverer’s lab for decades. In 2022, paleontologist Debajit Datta joined the lab, and one of the things he wanted to study were these giant crocodile fossils. He started preparing them for study by removing the rock matrix from around them, and almost immediately realized they belonged to a snake, not a crocodile.

The fossils have been dated to about 47 million years ago in what is now India, in Asia. Titanoboa lived about 58 million years ago in what is now Colombia, in South America. The two snakes are related, although not closely, and this helps scientists determine how snakes spread across the world as the continents moved into their current positions.

Both snakes lived in what were then very similar habitats, a tropical, swampy area near the coast. The researchers think Vasuki spent most of its time on land, unlike titanoboa. It wasn’t as bulky as titanoboa and could probably maneuver on land a lot more easily.

Until titanoboa was described in 2009, a snake called Gigantophis was thought to be the largest snake that ever lived. It lived around 40 million years ago in what is now the northern Sahara desert and could grow over 35 feet long, or almost 11 meters. It turns out that Vasuki was closely related to gigantophis.

As it stands now, until more fossils are found and more studies are conducted and published, Vasuki is estimated to be slightly longer than titanoboa at maximum, making it the longest snake known, but titanoboa is still estimated to be the heaviest snake known. So they both win the largest snake award, but the real winner is us.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 355: Tiny Owls

This week we learn about two tiny owls! Thanks to Elizabeth and Alexandra for their suggestions!

Further reading:

Burrowing Owl

Elf Owl

The burrowing owl is tiny but fierce [photo by Christopher Lindsey, taken from page linked above]:

The elf owl is also tiny but fierce [photo by Matthew Grube, taken from page linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two tiny owls. Thanks to Elizabeth and Alexandra for their owl suggestions!

The burrowing owl is native to the Americas, especially the western part of North America, and most of Central and South America. It prefers grasslands and other open areas. It’s a small owl, not much bigger than the average songbird. It’s mostly brown with lighter underparts that are barred with a brown pattern.

You can tell a lot about an owl by the color of its eyes. In general, an owl with dark eyes is most active at night, an owl with orange or red eyes is likely to be most active at dawn and dusk, and an owl with yellow eyes is often active in the day. That’s not a hard and fast rule, but it can help you make a good guess about an owl’s behavior. The burrowing owl has yellow eyes, and it is indeed active in the day. The term for daytime activity is diurnal.

In past episodes I’ve said that owls have long legs that are usually hidden by feathers. In the case of the burrowing owl, its long legs are in plain sight because it spends a lot of the time running around on the ground. It will sometimes chase prey on foot, but other times it will perch on a fence post, tree branch, or some other high place to watch for a small animal to pass by. Then it will swoop down to grab it just like any other owl. It eats mice and other small rodents, lizards, small snakes, frogs, large insects and other invertebrates like scorpions and caterpillars, and birds. It especially likes termites and grasshoppers. Females are more likely to hunt during the daytime, while males are more likely to hunt at night or at dawn and dusk. Sometimes the burrowing owl will eat fruit and seeds too. When the burrowing owl has more food than it can eat, it will store some in underground larders.

The burrowing owl gets its name because it builds a nest in a burrow in the ground, often in burrows dug by other animals like prairie dogs and skunks. Some subspecies of burrowing owl will dig its own burrow, and all subspecies will enlarge an existing burrow until it’s happy with the size. It uses its beak to dig and kicks the dirt out with its feet. Both the male and female will work on the burrow together. Once it’s the right size and shape, the owl will bring in dried grass and other materials to line the burrow. One of its favorite materials is dried animal dung, especially from cattle. The dung releases moisture inside the burrow, making it more comfortable, and attracts insects that the owls eat. Win-win! It will also scatter animal dung around the entrance of its burrow and will sometimes also collect trash like bottle caps and pieces of foil to decorate the entrance.

The female lays her eggs in the burrow and spends most of her time incubating the eggs, only going outside briefly to stretch her legs. The male stands guard at the entrance to the burrow or nearby except when he’s out hunting. He brings food back for the female.

When the eggs hatch, both parents take care of the babies. At first the chicks stay in the burrow, but as they grow older they come out to play outside and start learning how to fly. Since burrowing owls usually nest in small colonies, there’s always an adult watching for danger somewhere nearby.

Most birds abandon their nests after their chicks are grown. The burrowing owl often uses its burrow year-round, although populations that migrate will usually make a new burrow when they return to their summer range. The burrow gives the owls a place to nap during the hottest part of the day, and it’s also a good place to hide if a predator approaches. Rattlesnakes also use burrows for the same purposes, and when a burrowing owl runs from a predator and hides in its burrow, it will mimic the rattling and hissing of an angry rattlesnake. A lot of times that’s enough to make a predator think twice about digging up the burrow.

This is what a burrowing owl sounds like when it’s not imitating an angry rattlesnake:

[burrowing owl call]

The burrowing owl is increasingly threatened by habitat loss and introduced predators likes cats and dogs. Luckily it’s an adaptive bird and is happy to use artificial burrows in protected areas. It’s a useful bird to have around since it eats a lot of insects, prairie dogs, and other animals that are considered pests by humans. Plus it’s an incredibly cute bird. I mean, it’s a tiny owl with long legs! How could you not find that cute?

Small as it is, the burrowing owl isn’t the smallest owl known. The elf owl is even smaller, about the size of a sparrow. It’s only about 5 inches tall, or 13 cm, with a wingspan of only 9 inches, or 22 cm. It lives in parts of the southwestern United States during the summer and parts of Mexico during the winter.

The elf owl is nocturnal like most other owls, and this is where our guideline of owl eye color breaks down, because the elf owl has yellow eyes. Its feathers are mostly gray or grayish-brown with white streaks. When it’s sitting on a twig, it kind of looks like a dead leaf or a broken-off branch.

It mostly eats insects, but it also likes scorpions, spiders, and centipedes. Occasionally it eats small reptiles or mammals. When it catches a scorpion, it removes the stinger before eating the scorpion, but it doesn’t seem to be hurt by actually being stung. It’s a fast, acrobatic flyer and catches insects on the wing, but it also hunts for insects on the ground and has long legs like the burrowing owl.

The elf owl nests in holes made by woodpeckers in trees or cacti, and the male brings the female food while she keeps the eggs warm. After the babies hatch, the male brings them food too and also continues to feed the female for another couple of weeks, until she starts to hunt again. The male will also catch a tiny snake called the western threadsnake, which looks a lot like an earthworm and only grows a foot long at most, or 30 cm, and is usually much smaller than that. It lives underground most of the time and while it has eyes, they don’t work except to sense light and dark. It eats insects, especially termites and ants. When an elf owl catches one of these little snakes, it doesn’t eat it. Instead, it brings the snake back to the nest and lets it go. The snake eats all the insects it can find, including parasites that might hurt the baby owls. Then again, sometimes the nest is inhabited by tree ants that do the same thing, cleaning up all the parasites and scraps of leftover food while not bothering the owls.

If a predator grabs an elf owl, or a scientist nets and handles one, the owl pretends to be dead. A lot of times this will cause the predator to relax its jaw muscles, which often allows the owl to wiggle free and fly away. The scientists are a little more careful about relaxing their hands, but when a scientist handles an elf owl, it’s usually to do a quick examination and maybe put a leg band on for identification purposes, and then they let the owl go again anyway.

This is what an elf owl sounds like:

[elf owl call]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 269: Gila Monsters, Basilisks, and Sand Boas, oh my!

Thanks to Zachary, Enzo, and Oran for their suggestions this week! Let’s learn about some interesting reptiles!

Happy birthday to Vale! Have a fantastic birthday!!

The magnificent Gila monster:

The Gila monster’s tongue is forked, but not like a snake’s:

The remarkable green basilisk (photo by Ryan Chermel, found at this site):

A striped basilisk has a racing stripe:

I took this photo of a basilisk myself! That’s why it’s a terrible photo! The basilisk is sitting on a branch just above the water, its long tail hanging down:

The desert sand boa:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about three weird and interesting reptiles, with suggestions from Zachary, Enzo, and Oran, including a possible solution to a mystery animal we’ve talked about before!

But first, we have a birthday shoutout! A very happy birthday to Vale! You should probably get anything you want on your birthday, you know? Want a puppy? Sure, it’s your birthday! Want 12 puppies? Okay, birthday! Want to take your 12 puppies on a roadtrip in a fancy racecar? Birthday!

Our first suggestion is from Enzo and Zachary, who both wrote me at different times suggesting an episode about the Gila monster. How I haven’t already covered an animal that has monster right there in its name, I just don’t know.

The Gila monster is a lizard that lives in parts of southwestern North America, in both the United States and Mexico. It can grow up to two feet long, or 60 cm, including its tail. It’s a chonky, slow-moving lizard with osteoderms embedded in its skin that look like little pearls. Only its belly doesn’t have osteoderms. This gives it a beaded appearance, and in fact the four other species in its genus are called beaded lizards. Its tongue is dark blue-black and forks at the tip, but not like a snake’s tongue. It’s more like a long lizard tongue that’s divided at the very end.

The Gila monster varies in color with an attractive pattern of light-colored blotches on a darker background. The background color is dark brown or black, while the lighter color varies from individual to individual, from pink to yellow to orange to red. You may remember what it means when an animal has bright markings that make it stand out. It warns other animals away. That’s right: the Gila monster is venomous!

The Gila monster has modified salivary glands in its lower jaw that contain toxins. Its lower teeth have grooves, and when the lizard needs to inject venom, the venom flows upward through the grooves by capillary force. Since it mostly eats eggs and small animals, scientists think it only uses its venom as a defense. Its venom is surprisingly toxic, although its bite isn’t deadly to healthy adult humans. It is incredibly painful, though. Some people think the Gila monster can spit venom like some species of cobra can, but while this isn’t the case, one thing the Gila monster does do is bite and hold on. It can be really hard to get it to let go.

The fossilized remains of a Gila monster relative were discovered in 2007 in Germany, dating to 47 million years ago. The fossils are well preserved and the lizard’s teeth already show evidence of venom canals. The Gila monster is related to monitor lizards, although not closely, and for a long time people thought it was almost the only venomous reptile in the world. These days we know that a whole lot of lizards produce venom, including the Komodo dragon, which is a type of huge monitor lizard.

In 2005, a drug based on a protein found in Gila monster venom was approved for use in humans. It helps manage type 2 diabetes, and while the drug itself is synthetic and not an exact match for the toxin protein, if researchers hadn’t started by studying the toxin, they wouldn’t have come up with the drug.

The Gila monster lives in dry areas with lots of brush and rocks where it can hide. It spends most of its time in a burrow or rock shelter where it’s cooler and the air is relatively moist, and only comes out when it’s hungry or after rain. It eats small animals of various kinds, including insects, frogs, small snakes, mice, and birds, and it will also eat carrion. It especially likes eggs and isn’t picky if the eggs are from birds, snakes, tortoises, or other reptiles. It has a keen sense of smell that helps it find food. During spring and early summer, males wrestle each other to compete for the attention of females. The female lays her eggs in a shallow hole and covers them over with dirt, and the warmth of the sun incubates them.

The Gila monster is increasingly threatened by habitat loss. Moving a Gila monster from a yard or pasture and taking it somewhere else actually doesn’t do any good, because the lizard will just make its way back to its original territory. This is hard on the lizard, because it requires a lot of energy and exposes it to predators and other dangers like cars. It’s better to let it stay where it is. It eats animals like mice and snakes that you probably would rather not have in your yard anyway, and as long as you don’t bother it, it won’t bother you. Also, it’s really pretty.

Next, Oran wants to learn more about the basilisk lizard. We talked about it very briefly in episode 252 and I actually saw two of them in Belize, so they definitely deserve more attention.

The basilisk lives in rainforests from southern Mexico to northern South America. There are four species, and a big male can grow up to three feet long, or 92 cm, including his long tail. The basilisk’s tail is extremely long, in fact—up to 70% of its total length.

Both male and female basilisks have a crest on the back of the head. The male also has a serrated crest on his back and another on his tail that make him look a little bit like a tiny Dimetrodon.

The basilisk is famous for its ability to run across water on its hind legs. The toes on its large hind feet have fringes of skin that give the foot more surface area and trap air bubbles, which is important since its feet plunge down into the water almost as deep as the leg is long. Without the air trapped under its toe fringes, it wouldn’t be running, it would be swimming. It can run about 5 feet per second, or 1.5 meters per second, for about three seconds, depending on its weight. It uses its long tail for balance while it runs.

When a predator chases a basilisk, it rears up on its hind legs and runs toward the nearest water, and when it comes to the water it just keeps on running. The larger and heavier the basilisk is, the sooner it will sink, but it’s also a very good swimmer. If it’s still being pursued in the water, it will swim to the nearest tree and climb it, because it also happens to be a really good climber.

The basilisk can also close its nostrils to keep water and sand out, which is useful because it sometimes burrows into sand to hide. It can also stay underwater for as long as 20 minutes, according to some reports. It will eat pretty much anything it can find, including insects, eggs, small animals like fish and snakes, and plant material, including flowers. It mostly eats insects, though.

Fossil remains of a lizard discovered in Wyoming in 2015 may be an ancestor to modern basilisks. It lived 48 million years ago and probably spent most of its time in trees. It had a bony ridge over its eyes that shaded its eyes from the sun and also made it look angry all the time. It grew about two feet long, or 61 cm., and may have already developed the ability to run on its hind legs. We don’t know if it could run on water, though.

Finally, Zachary also suggested the sand boa. Sand boas are non-venomous snakes that are mostly nocturnal. During the day the sand boa burrows deep enough into sand and dirt that it reaches a cool, relatively moist place to rest. At night it comes out and hunts small animals like rodents. If it feels threatened, it will dig its way into loose soil to hide. It’s a constrictor snake like its giant cousin Boa constrictor, but it’s much smaller and isn’t aggressive toward humans.

Zachary thinks that the sand boa might actually be the animal behind sightings of the Mongolian death worm. We’ve talked about the Mongolian death worm in a few episodes, most recently in episode 156.

The Mongolian death worm was first mentioned in English in a 1926 book about paleontology, but it’s been a legend in Mongolia for a long time. It’s supposed to look like a giant sausage or a cow’s intestine, reddish in color and said to be up to 5 feet long, or 1.5 meters. It mostly lives underground in the western or southern Gobi Desert, but in June and July it surfaces after rain. Anyone who touches the worm is supposed to die painfully, although no one’s sure how exactly it kills people. Some suggestions are that it emits an electric shock or that it spits venom.

Mongolia is in central Asia and is a huge but sparsely populated country. At least one species of sand boa lives in Mongolia, although it’s rare. This is Eryx miliaris, the desert sand boa. Females can grow up to 4 feet long, or 1.2 meters, while males are usually less than half that length. Until recently it was thought to be two separate species, and sometimes you’ll see it called E. tataricus, but that’s now an invalid name.

The desert sand boa is a strong, thick snake with a blunt tail and a head that’s similarly blunt. In other words, like the Mongolian death worm it can be hard to tell at a glance which end is which. Its eyes are small and not very noticeable, just like the death worm. It’s mostly brown in color with some darker and lighter markings, although its pattern can be quite variable. Some individuals have rusty red markings on the neck.

It prefers dry grasslands and will hide in rodent burrows. When it feels threatened, it will coil its tail up and may pretend to bite, but like other sand boas it’s not venomous and is harmless to humans.

At first glance, the desert sand boa doesn’t seem like a very good match with the Mongolian death worm. But in 1983, a group of scientists went searching for the death worm in the Gobi. They were led by a Bulgarian zoologist named Yuri Konstantinovich Gorelov, who had been the primary caretaker of a nature preserve in Mongolia for decades and was familiar with the local animals. The group visited an old herder who had once killed a death worm, and in one of those weird coincidences, while they were talking to the herder, two boys rushed in to say they’d seen a death worm on a nearby hill.

Naturally, Gorelov hurried to the top of the hill, where he found a rodent burrow. Remember that this guy knew every animal that lived in the area, so he had a good idea of what he’d find in the burrow. He stuck his hand into it, which made the boys run off in terror, and pulled out a good-sized sand boa. He draped it around his neck and sauntered back to show it to the old herder, who said that yes, this was exactly the same kind of animal he’d killed years before.

That doesn’t mean every sighting of a death worm is necessarily a sand boa. I know I’ve said this a million times, but people see what they expect to see. The death worm is a creature of folklore, whether or not it’s based on a real animal. If you hear the story of a dangerous animal that looks like a big reddish worm with no eyes and a head and tail that are hard to distinguish, and you then see a big snake with reddish markings, tiny eyes, and a head and tail that are hard to distinguish, naturally you’ll assume it’s a death worm.

At least some sightings of the death worm are actually sightings of a sand boa. But some death worm sightings might be due to a different type of snake or lizard, or some other animal—maybe even something completely new to science. That’s why it’s important to keep an open mind, even if you’re pretty sure the animal in question is a sand boa. Also, maybe don’t put your bare hand in a rodent burrow.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 262: Animals Discovered in 2021

It’s the second annual discoveries episode! Lots of animals new to science were described in 2021 so let’s find out about some of them.

Further reading:

First description of a new octopus species without using a scalpel

Marine Biologists Discover New Species of Octopus

Bleating or screaming? Two new, very loud, frog species described in eastern Australia

Meet the freaky fanged frog from the Philippines

New alpine moth solves a 180-year-old mystery

Meet the latest member of Hokie Nation, a newly discovered millipede that lives at Virginia Tech

Fourteen new species of shrew found on Indonesian island

New beautiful, dragon-like species of lizard discovered in the Tropical Andes

Newly discovered whale species—introducing Ramari’s beaked whale (Mesoplodon eueu)!

Scientists describe a new Himalayan snake species found via Instagram

The emperor dumbo octopus (deceased):

The star octopus:

New frog just dropped (that’s actually the robust bleating tree frog, already known):

The slender bleating tree frog:

The screaming tree frog:

The Mindoro fanged frog:

Some frogs do have lil bitty fangs:

The hidden Alpine moth, mystery solver:

The Hokie twisted-claw millipede:

One of 14 new species of shrew:

The snake picture that led to a discovery:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This episode marks our 5th year anniversary! I also finally got the ebook download codes sent to everyone who backed the Kickstarter at that level. The paperback and hardback books will hopefully be ready for me to order by the end of February and I can get them mailed out to backers as soon as humanly possible. Then I’ll focus on the audiobook! A few Kickstarter backers still haven’t responded to the survey, either with their mailing address for a physical book or for names and birthdays for the birthday shout-outs, so if that’s you, please get that information to me!

Anyway, happy birthday to Strange Animals Podcast and let’s learn about some animals new to science in 2021!

It’s easy to think that with all the animals already known, and all the people in the world, surely there aren’t very many new animals that haven’t been discovered yet. But the world is a really big place and parts of it, especially the oceans, have hardly been explored by scientists.

It can be confusing to talk about when an animal was discovered because there are multiple parts to a scientific discovery. The first part is actually finding an animal that the field scientists think might be new to science. Then they have to study the animal and compare it to known animals to determine whether it can be considered a new species or subspecies. Then they ultimately need to publish an official scientific description and give the new animal a scientific name. This process often takes years.

That’s what happened with the emperor dumbo octopus, which was first discovered in 2016. Only one individual was captured by a deep-sea rover and unfortunately it didn’t survive being brought to the surface. Instead of dissecting the body to study the internal organs, because it’s so rare, the research team decided to make a detailed 3D scan of the octopus’s body instead and see if that gave them enough information.

They approached a German medical center that specializes in brain and neurological issues, who agreed to make a scan of the octopus. It turned out that the scan was so detailed and clear that it actually worked better than dissection, plus it was non-invasive so the preserved octopus body is still intact and can be studied by other scientists. Not only that, the scan is available online for other scientists to study without them having to travel to Germany.

The emperor dumbo octopus grows around a foot long, or 30 cm, and has large fins on the sides of its mantle that look like elephant ears. There are 45 species of dumbo octopus known and obviously, more are still being discovered. They’re all deep-sea octopuses. This one was found near the sea floor almost 2.5 miles below the surface, or 4,000 meters. It was described in April of 2021 as Grimpoteuthis imperator.

Oh, and here’s a small correction from the octopus episode from a few years ago. When I was talking about different ways of pluralizing the word octopus, I mispronounced the word octopodes. It’s oc-TOP-uh-deez, not oc-tuh-podes.

Another octopus discovered in 2021 is called the star octopus that has a mantle length up to 7 inches long, or 18 cm. It lives off the southwestern coast of Australia in shallow water and is very common. It’s even caught by a local sustainable fishery. The problem is that it looks very similar to another common octopus, the gloomy octopus. The main difference is that the gloomy octopus is mostly gray or brown with rusty-red on its arms, while the star octopus is more of a yellowy-brown in color. Since individual octopuses show a lot of variation in coloration and pattern, no one noticed the difference until a recent genetic study of gloomy octopuses. The star octopus was described in November 2021 as Octopus djinda, where “djinda” is the word for star in the Nyoongar language of the area.

A study of the bleating tree frog in eastern Australia also led to a new discovery. The bleating tree frog is an incredibly loud little frog, but an analysis of sound recordings revealed that not all the calls were from the same type of frog. In fact, in addition to the bleating tree frog, there are two other really loud frog species in the same area. They look very similar but genetically they’re separate species. The two new species were described in November 2021 as the screaming tree frog and the slender bleating tree frog.

This is what the slender bleating tree frog sounds like:

[frog call]

This is what the screaming tree frog sounds like:

[another frog call]

Another newly discovered frog hiding in plain sight is the Mindoro fanged frog, found on Mindoro Island in the Philippines. It looks identical to the Acanth’s fanged frog on another island but its mating call is slightly different. That prompted scientists to use both acoustic tests of its calls and genetic tests of both frogs to determine that they are indeed separate species.

Lots of insects were discovered last year too. One of those, the hidden alpine moth, ended up solving a 180-year-old scientific mystery that no one even realized was a mystery.

The moth was actually discovered in the 1990s by researchers who were pretty sure it was a new species. It’s a diurnal moth, meaning it’s active during the day, and it lives throughout parts of the Alps. Its wingspan is up to 16mm and it’s mostly brown and silver.

Before they could describe it as a new species and give it a scientific name, the scientists had to make absolutely sure it hadn’t already been named. There are around 5,000 species of moth known to science that live in the Alps, many of them rare. The researchers narrowed it down finally to six little-known species, any one of which might turn out to be the same moth as the one they’d found.

Then they had to find specimens of those six species collected by earlier scientists, which meant hunting through the collections of different museums throughout Europe. Museums never have all their items on display at any given time. There’s always a lot of stuff in storage waiting for further study, and the larger a museum, the more stuff in storage it has. Finding one specific little moth can be difficult.

Finally, though, the scientists got all six of the other moth species together. When they sat down to examine and compare them to their new moth, they got a real surprise.

All six moths were actually the same species of moth, Dichrorampha alpestrana, described in 1843. They’d all been misidentified as new species and given new names over the last century and a half. But the new moth was different and at long last, in July 2021, it was named Dichrorampha velata. And those other six species were stricken from the record! Denied!

You don’t necessarily need to travel to remote places to find an animal new to science. A professor of taxonomy at Virginia Tech, a college in the eastern United States, turned over a rock by the campus’s duck pond and discovered a new species of millipede. It’s about three quarters of an inch long, or 2 cm, and is mostly a dark maroon in color. It’s called the Hokie twisted-claw millipede.

Meanwhile, on the other side of the world on the island of Sulawesi, a team of scientists discovered FOURTEEN different species of shrew, all described in one paper at the end of December 2021. Fourteen! It’s the largest number of new mammals described at the same time since 1931. The inventory of shrews living on Sulawesi took about a decade so it’s not like they found them all at once, but it was still confusing trying to figure out what animal belonged to a known species and what animal might belong to a new species. Sulawesi already had 7 known species of shrew and now it has 21 in all.

Shrews are small mammals that mostly eat insects and are most closely related to moles and hedgehogs. Once you add the 14 new species, there are 461 known species of shrew living in the world, and odds are good there are more just waiting to be discovered. Probably not on Sulawesi, though. I think they got them all this time.

In South America, researchers in central Peru found a new species of wood lizard that they were finally able to describe in September 2021 after extensive field studies. It’s called the Feiruz wood lizard and it lives in the tropical Andes in forested areas near the Huallaga River. It’s related to iguanas and has a spiny crest down its neck and the upper part of its back. The females are usually a soft brown or green but males are brighter and vary in color from green to orangey-brown to gray, and males also have spots on their sides.

The Feiruz wood lizard’s habitat is fragmented and increasingly threatened by development, although some of the lizards do live in a national park. Researchers have also found a lot of other animals and plants new to science in the area, so hopefully it can be protected soon.

So far, all the animals we’ve talked about have been small. What about big animals? Well, in October 2021 a new whale was described. Is that big enough for you? It’s not even the same new whale we talked about in last year’s discoveries episode.

The new whale is called Mesoplodon eueu, or Ramari’s beaked whale. It’s been known about for a while but scientists thought it was a population of True’s beaked whale that lives in the Indian Ocean instead of the Atlantic.

When a dead whale washed ashore on the South Island of New Zealand in 2011, it was initially identified as a True’s beaked whale. A Mātauranga Māori whale expert named Ramari Stewart wasn’t so sure, though. She thought it looked different than a True’s beaked whale. She got together with marine biologist Emma Carroll to study the whale and compare it to True’s beaked whale, which took a while since we don’t actually know very much about True’s beaked whale either.

The end result, though, is that the new whale is indeed a new species. It grows around 18 feet long, or 5.5 meters, and probably lives in the open ocean where it dives deeply to find food.

We could go on and on because so many animals were discovered last year, but let’s finish with a fun one from India. In June of 2020, a graduate student named Virender Bhardwaj was stuck at home during lockdowns. He was able to go on walks, so he took pictures of interesting things he saw and posted them online. One day he posted a picture of a common local snake called the kukri snake.

A herpetologist at India’s National Centre for Biological Sciences noticed the picture and immediately suspected it wasn’t a known species of kukri snake. He contacted Bhardwaj to see where he’d found the snake, and by the end of the month Bhardwaj had managed to catch two of them. Genetic analysis was delayed because of the lockdowns, but they described it in December of 2021 as the Churah Valley kukri snake.

The new snake is stripey and grows over a foot long, or 30 cm. It probably mostly eats eggs.

It just goes to show, no matter where you live, you might be the one to find a new species of animal. Learn all you can about your local animals so that if you see one that doesn’t quite match what you expect, you can take pictures and contact an expert. Maybe next year I’ll be talking about your discovery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 242: Snakes with Nose Horns

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Check out our Kickstarter pre-launch page!!

Thanks to Max for suggesting the rhinoceros viper! We’ll learn about that one and several other snakes with nose horns this week.

The rhino viper, AKA the butterfly viper because of its beautiful colors and pattern:

The rhino viper has nose horns (photo by Balázs Buzás):

The West African Gaboon viper (Bitis rhinoceros), AKA the other rhino viper:

The rhinoceros snake, AKA the Vietnamese longnose snake (photo taken by me! That’s why it’s kind of blurry!):

The nose-horned viper is a beautiful snake:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Just a reminder about our Kickstarter for the Strange Animals Podcast book! Check the show notes for a link if you want to look at the preliminary cover and maybe bookmark the page for when we go live in just two weeks!!

This week we’ll learn about the rhino viper, which was suggested by Max, who at the time was almost eight years old but that was so long ago I bet Max is eight now or maybe nine or ten. Maybe thirty.

The rhinoceros viper lives in forests in parts of western and central Africa, and can grow three and a half feet long, or 107 cm. It’s a heavy chonk of a snake but it’s beautifully colored, with big triangular blotches and smaller markings of red, yellow, black, and blue or green. If you look at one on a white background it stands out, but on the forest floor where it lives, with dead leaves and plants all around, it blends right in. It has rough scales that make it look bristly, called keeled scales. The rhino viper’s scales are so strongly keeled that they can cut your hand if you pet it. It’s not a good idea to pet wild snakes anyway.

The rhino viper’s scientific name is Bitis nasicornis. At first I thought it was pronounced like “bite us,” which I thought was hilarious, and I was disappointed to find that it’s pronounced “bit-us,” although that’s actually funny too. Actually it’s pronounced “bit-is.” It’s spelled B-I-T-I-S. Nasicornis means nose horn, and it definitely has horns on its nose. It has a pair of horns, in fact, side by side, and they stick up and slightly forward. Some rhino vipers even have three nose horns. They’re not true horns, though. Instead they’re made of modified scales. They’re bendy like scales too.

The rhino viper mostly eats rodents but will also eat frogs, birds, and other small animals if it can catch them. It’s an ambush hunter, meaning it hides among fallen leaves and waits for an animal to come too close. Most of the time it moves slowly, but when it strikes, it does so very quickly, in less than a quarter of a second. It has relatively mild venom, although some other Bitis species have venom that’s deadly to humans.

The rhino viper spends most of its time on the ground, but it can climb trees if it wants to. The end of its blunt tail is even partially prehensile, meaning it can curl around branches to help it hang on. This is the closest thing to a hand that snakes have. It can also swim well.

Sometimes the rhino viper is called the butterfly viper because of its colorful markings, and to stop people from confusing it with another closely related snake called Bitis rhinoceros. Rhinoceros also means nose-horn, by the way. B. rhinoceros is also called the West African Gaboon viper because it lives in West Africa. It looks similar to the other rhino viper with a similar pattern but in more neutral tones of brown and tan. It’s sort of a more sophisticated-looking rhino viper. It also has a pair of nose horns but they’re smaller and generally point up and slightly back.

All snakes in the genus Bitis have a threat display that has earned them the name puff adder, although that’s also the name of a specific species, Bitis arietans, that’s extremely venomous. Some people call the various species of hognose snake found in North America puff adders too because of its behavior when it feels threatened. The hognose snake flattens its neck and raises its head so that it looks like a cobra, all the while hissing in a way that sounds like it’s puffing air in and out. Snakes in the genus Bitis have a similarly impressive display. It appears to inflate and deflate as it hisses loudly, as though you’re being warned away by a bicycle tire innertube with keeled scales and nose horns. This is what it sounds like when a puff adder puffs and hisses:

[snake hissing sounds]

Vipers of all kinds are members of the family Viperidae, which includes a whole lot of venomous snakes from many parts of the world. Vipers have fangs that are so long, they’re actually hinged so they can fit in the mouth. Each fang is attached to a small bone that can rotate forward and back to extend and refold the fangs. Most of the time the viper’s fangs are folded down along the sides of the mouth, protected by a sheath of skin. When it’s ready to bite, either in defense or to kill prey, the viper extends its fangs, but because the fangs are delicate and easily broken, the snake waits to extend its fangs until the last possible moment.

The fangs are also hollow and are connected to venom glands located behind the eyes. That’s why so many vipers have triangular heads, because the venom glands take up extra space at the back of the head. The venom glands are equipped with tiny muscles that the snake contracts to send venom flowing through the fangs and into the bite wound, and it can control how much venom it injects, if any.

Vipers in the genus Bitis have especially long fangs with powerful bites, so that many animals die from the bite itself and not the venom. The reason that snakes inject venom into small prey that it could easily kill and swallow without venom is that the venom begins the digestion process. Most snakes don’t actually have very efficient digestive systems, so by having venom that not only kills its prey but starts digesting it before the snake even swallows it, vipers can extract more nutrients from their food.

The rhino viper and the other rhino viper aren’t the only snakes with nose horns. The rhinoceros snake isn’t a viper but it does have a nose horn—in this case just one nose horn, which grows from the tip of the nose and points straight forward. It’s also called the rhinoceros ratsnake or the Vietnamese longnose snake. It lives in rainforests in northern Vietnam and southern China and spends almost all of its time in trees. Adults are a lovely pale green or blue-green. It can grow over five feet long, or 1.6 m, and is a slender, active snake that mostly eats rodents and other small animals.

Another snake with a nose horn is the nose-horned viper. This one lives in parts of southern Europe and the Middle East, and it’s also called the sand viper. Since lots of vipers live in sandy areas but not all vipers have nose horns, I don’t know how you could possibly look at this snake and decide to call it a sand viper and not a nose-horned viper. Also, it doesn’t live in the sand. It likes rocky areas and can sometimes be found in old stone walls where it has lots of crevices to hide in. It eats small animals, including rodents, lizards and other snakes, large insects like centipedes, and the occasional bird.

The nose-horned viper can grow over three feet long, or about a meter. Individuals can be gray-brown, reddish-brown, coppery-red, dark red, or pale brown, and it has a darker zigzag pattern. Like most vipers it’s a chonky, fairly slow-moving snake. Its nose horn points upward in some subspecies, forward in others.

That brings us to the big question: what are these nose horns used for? Why do these snakes have nose horns at all?

The answer is: we don’t know. They’re soft and bendy, made of scales, so they can’t be used as weapons, not that a four-foot-long snake with massive fangs and deadly venom needs to poke at predators with a little nose horn. They’re probably just for display, but only the snake knows for sure.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 237: Geckos and Other Arboreal Reptiles

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Riley, Richard, and Aiden and Aiden’s unnamed friend for suggestions this week! We’re going to learn about some geckos and other reptiles that live in trees. Thanks also to Llewelly for a small correction about lions. Also, I mispronounced Strophurus–it should be more like Stroff-YOUR-us but I’m too lazy to fix it.

Further reading:

Cancer Clues Found in Gene behind ‘Lemon Frost’ Gecko Color

A chameleon’s feets:

A rare healthy lemon frost domestic leopard gecko (photo taken from article linked above):

An ordinary leopard gecko:

I don’t remember what kind of gecko this is (golden spiny-tailed?) but I love it:

A crested gecko looking surprised:

The green iguana:

A black mamba. Watch out!

Flying snake alert!

The draco lizard with its “wings” extended (male) and the draco lizard with its “wings” folded (female):

A parachute gecko showing how it works:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some reptiles, specifically reptiles that live in trees. This is a suggestion from Riley, who wanted to hear about arboreal reptiles in general and the crested gecko in particular. Thanks also to my brother Richard, who suggested the dragon-tailed gecko. An anonymous reviewer also suggested the leopard gecko so we’ll learn about that one too. Specifically, the anonymous reviewer said “me and my friend Aiden suggest either red foxes or leopard geckos.” We actually covered the red fox in episode 138, about city animals, and in episode 106, about domestication, but we’ve only mentioned the leopard gecko briefly way back in episode 20.

Arboreal animals have some traits in common, whether they’re reptiles or mammals or something else. In general, an animal that spends most of its time in trees is small and lightweight, either has long legs or very short legs, may have a long tail to help it balance, and may also have various adaptations to its feet to help it maneuver through branches.

This is the case with the chameleon, which is arboreal and has weird feet. Its feet look more like mittens. The feet are called zygodactylous, which means it has two toes pointing forward and two pointing backwards. A lot of birds have feet like this too. Chameleons have other adaptations for arboreal life, like prehensile tails that can twine around a twig to help it keep its balance. The chameleon really deserves its own episode some day, so let’s move on to learn about some geckos.

The biggest gecko known grows up to two feet long, or 60 cm, but most are much smaller. There are more than 1,800 species known and they’re all really interesting and honestly, adorable. They’re mostly nocturnal and eat small animals like insects. About 60% of all gecko species have toe pads that allow them to walk up walls and windows and even across ceilings.

Like many other lizards, most geckos species can drop their tail if a predator attacks. The tail thrashes around on its own for several minutes, distracting the predator so the gecko can escape. The gecko later regrows a little stumpy tail, but it can’t drop it a second time. Many species of gecko store fat in the tail, so it needs that tail. A genus of gecko called the fish-scaled gecko, which lives on Madagascar and nearby islands, has big scales that come loose easily if an animal tries to bite it or if a scientist tries to capture it. The predator gets a mouthful of scales while the gecko runs off. The scales grow back eventually and can be lost again.

Scientists are always interested in animals that can regenerate parts of the body, to learn how that works. A study published in 2017 identified the type of cells that allow the gecko to regrow the part of its spinal cord that’s lost with its tail. In 2018, the same team published their discovery that geckos renew brain cells. This is amazing, since humans and many other animals are born with all the brain cells they’ll ever have, and if something happens to injure the brain, the damage can’t be repaired. Maybe one day people will be able to heal their brains just like the gecko does.

Most species of gecko don’t have eyelids. Instead, the gecko has a protective scale over its eyeball. To remove dust and other debris from the scale, the gecko licks its eyes.

The leopard gecko grows about 11 inches long, or almost 28 cm, and is one of the species that doesn’t have toe pads. That makes it easier to keep in captivity, since it’s less likely to climb out of its terrarium. It’s a handsome lizard that’s yellowish or orangey in color with black spots, but baby leopard geckos actually have black stripes. It’s native to parts of the Middle East and south Asia where it’s mostly hot and dry, and in the wild it spends its day in a burrow and only comes out at night to hunt.

The leopard gecko has been kept as a pet for so long that some people consider it the first truly domesticated lizard. It’s easy to take care of and is usually comfortable around people. Breeders select for brighter colors than are found in wild geckos, including various color and pattern morphs.

One color variety of domestic leopard gecko is called the lemon frost morph, an especially attractive coloration. It’s a pastel yellow with white underneath and brown or black speckles that form broad bands over the lizard’s back. It’s really pretty and when the trait cropped up unexpectedly around 2015, its owner started breeding for the color. Lemon frost babies were rare and incredibly expensive, with people paying up to $2,000 for a single gecko.

Unfortunately, people soon learned that lemon frost geckos were prone to a type of rare skin cancer that affects the iridophores, which are pigment-producing cells. Up to 80% of all lemon frost morphs develop the cancer. Geneticists have discovered that the color morph is due to a single mutation in a single gene, but that the change in that gene also makes the gecko susceptible to cancer. Scientists are now trying to figure out more about how it works in hopes of learning how to prevent skin cancer in humans.

The dragon-tailed gecko is one name for the golden spiny-tailed gecko, one of twenty species in the genus Strophurus. All Strophurus geckos are from Australia and they all spend most of their lives in trees and shrubs. Unlike other geckos, Strophurus geckos don’t drop their tails when threatened. Instead, they have a unique way of deterring predators. A Strophurus gecko can squirt an incredibly smelly liquid from tiny pores in its tail. If it feels threatened, instead of dropping its tail, it will raise its tail up and wave it back and forth as a warning. It also opens its mouth to reveal a bright yellow or blue lining, which alerts the potential predator that this is not a lizard it wants to mess with. If that doesn’t scare the predator away, it will squirt liquid at its face. The liquid is sticky and smells horrible, and if it gets in an animal’s eyes it can cause eye irritation.

Strophurus geckos grow up to 5 inches long, or 13 cm, and species may look very different from each other. Some are drab and spiny, some are smooth and brighter in color. The dragon-tailed gecko has a broad reddish or golden stripe down the top of its tail.

The crested gecko is native to a collection of remote Pacific islands called New Caledonia. It can grow more than 10 inches long, or 25 cm. It has tiny spines above its eyes that look like eyelashes and more spines in two rows down its back, like a tiny dragon. It can be brown, reddish, orange, yellow, or gray, with various colored spots, which has made it a popular pet. These days all pet crested geckos were bred in captivity, since it’s now protected in the wild.

The crested gecko spends most of its time in trees, and not only does it have adhesive toe pads, it also has tiny claws. Most geckos don’t have claws. It can drop its tail like other geckos, but it doesn’t grow back. This doesn’t seem to bother the gecko, though.

The crested gecko was discovered by science in 1866, but wasn’t seen after that in so long that people thought it was extinct. Then it was rediscovered in 1994, so hurrah for the crested gecko!

Let’s move on from geckos to some other arboreal reptiles. A lot of reptiles live mostly in trees, and not all of them are small. The green iguana, for instance. It’s native to southern Mexico into parts of South America but has been introduced in many other places in the Americas, where it’s often considered an invasive species. In warm weather it lives in trees, although it will climb down to the ground in cool, rainy weather, and it can grow up to six and a half feet long, or 2m.

Although the iguana can be really long, most of its length is tail. It has an incredibly long tail for its size. It’s not that heavy, either, with the biggest green iguana ever weighed only a little more than 20 lbs, or 9.1 kg. Most are much lighter. It has long legs and long toes with claws, which makes it a good climber. It uses its tail to balance. It’s usually a drab olive-green or brown in color, although babies are brighter green with reddish spots and some adults are more orange in color. The tail is patterned with broad stripes. It has spines along its back and down its chin, and males develop a large dewlap that hangs down under the neck.

Although the iguana looks like a small dragon, it eats leaves, flowers, fruit, and other plant material, although it will also sometimes eat a grasshopper or snail and even bird eggs every so often. Many people keep green iguanas as pets, but they can be hard to keep healthy in captivity.

Another big reptile that lives in trees is the black mamba, a snake that lives in parts of Africa. It’s a slender snake that can be black in color, but that’s actually rare. The name black mamba comes from the inside of the snake’s mouth, which is black. When it feels threatened, it will raise its head high and open its mouth as a threat display. It can even flatten its neck to look like a hood like some cobras do. You really don’t want to see this threat display, because the black mamba’s venom is deadly and it’s an aggressive snake. Without treatment and antivenin, someone who is bitten can die within 45 minutes.

The mamba’s body can be gray, gray-green, brown, or brownish-yellow. It can grow nearly 15 feet long, or 4.5 meters, which makes it the second-longest venomous snake in the world, after the king cobra that we talked about in our Q&A episode last week.

The black mamba mostly lives in open forests and savannas, and it’s equally at home on the ground and in trees. It hides in termite mounds or in holes in trees at night, then comes out in the morning to warm up in the sunshine. Then it goes hunting, usually for small animals like rodents but also for larger ones like the rock hyrax. The rock hyrax can grow almost two feet long, or 50 cm, and looks kind of like a big rodent even though it’s not a rodent. It’s actually most closely related to the elephant. The black mamba will sneak up on a hyrax, bite it quickly, and then just wait until it dies to swallow it whole. The mamba also hunts birds and bats, which is why it spends so much time in the trees.

Some reptiles are so well adapted to living in trees that they can glide from tree to tree, like the flying snakes we talked about in episode 56. Flying snakes live in southeast Asia, and of course they can’t really fly. A flying snake has ridged scales on its belly that help it climb trees, and when it wants to move from one tree to another, it can flatten its body by flaring its ribs. This gives it more surface area to catch air, like a long skinny Frisbee. It’s been measured as gliding as far as 100 meters, or 109 yards, which is just a little longer than an American football field.

The largest species of flying snake, the golden tree snake, can grow over four feet long, or 1.3 meters. It’s striped black, gold, and yellow although some may be green and black. It eats small animals it finds in trees, including frogs, birds, bats, and lizards. It’s venomous, but its venom is weak and not dangerous to humans.

Many lizards can glide too, including the draco lizard. The draco lizard is common throughout much of southeast Asia and spends almost its whole life in trees, eating insects like ants and termites. It’s a small, slender lizard that only grows about 8 inches long at most, or 20 cm, and that includes its very long tail. Many gliding animals, like the flying squirrel, have gliding membranes called patagia that stretch from the front legs to the back legs, but the draco lizard is different. It has greatly elongated ribs that it can extend like wings, and the skin between the ribs acts as a patagium. This skin is usually yellow or brown so that the lizard looks like a falling leaf when it’s gliding.

The male draco also has a brightly colored dewlap under its chin that it can extend to attract a mate. When a female is ready to lay her eggs, she climbs down from her tree, finds some soil that’s soft enough for her to stick her head into to make a little hole, and then lays her eggs in the hole and covers them with dirt to hide them.

The draco lizard is beautiful and looks like a tiny dragon, and I want one to live in my garden and every time I go out to water my plants or pull weeds, I want it to fly down and ride around on my shoulder.

To bring us full circle, some geckos can also glide using thin membranes of skin around their body, legs, tail, and toes that act as patagia. They’re called parachute geckos, which is just perfect.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

BONUS Q&A Episode!

It’s our bonus question and answer episode, which turned out to be ridiculously long but hopefully interesting!

Further listening/watching:

The Axolotl Song

~~~Buy my books!~~~

Whiskers used to have two eyes and a nose. In the background, Dracula (left) and Poe (right):

Black squirrel!

King cobra!

Pufferfish, puffed:

Dog nose:

Show transcript:

Welcome to the bonus Q&A episode of Strange Animals Podcast! I’m your host, Kate Shaw, and this is a little extra episode where I answer listener questions. So let’s jump right into it.

To start us off, Simon and Thia wanted to know how I first became interested in animals. I really don’t know! When I was little, I didn’t want to play with dolls, I wanted to play with my stuffed animals. I actually have a toy cat named Whiskers who I’ve had since I was four. Whiskers is older than all my teeth! I especially loved horses as a kid and since my family couldn’t afford to buy me a horse, I took riding lessons and read everything I could find about horses, fiction and nonfiction. All that reading about horses led to reading about other animals, and the more I read, the more interested I became in animals of all kinds.

Next, Melissa of the awesome podcast Bewilderbeasts asked, “What was the fact or episode that really slapped you out of left field, like, ‘I didn’t see that coming AT ALL’?”

OH MY GOSH, how many times has that happened to me? The most astounding fact I can think of isn’t actually about an animal at all but about trees. While I was researching the Temnospondyl episode, which had a related Patreon episode that ran at about the same time, I came across the fact that when trees first developed, nothing could break down the tough compound called lignin that hardens a tree’s cells to make wood and bark. When a tree died, its trunk just stayed where it fell forever, and this happened for at least 50 million years and possibly 100 million years. 100 million years of tree trunks just lying all over the ground! You wouldn’t be able to walk anywhere! You’d have to climb over hundreds of millions of fallen tree trunks, although naturally as the years passed the older ones would get buried deeper and deeper in the earth. But there would always be more!

This blew my mind, and later I came back to it, determined to do more research and make sure it was accurate. I did a whole lot of research, because it just didn’t seem possible, and that information ended up in episode 214.

As for an animal that blew my mind, I still have trouble believing ice worms are real. They’re worms that live in snow and ice! We covered them last August in episode 185 and I’m still reeling.

Next, Llewelly asks what my favorite extinct animal is, or animals. Why would you make me choose? This is so hard. Okay, fine, I’ll narrow it down to hoofed Pleistocene megafauna like the giant deer and elasmotherium and so many other animals with weird horns and ossicones and things like that. What really gets me is that they lived so recently! Many of them only died out 11,000 years ago, and some were probably around much more recently in a few isolated areas. It also really reminds me to appreciate the megafauna that’s still around. We live at the same time as giraffes!

Next, Richard E. asked, “Does your job involve the study of animals and/or is the pod something that you really wanted to do?” Tracie also asked what my background is, if I’m a professor or zookeeper or something similar. Helenka also asked my background and how I got interested in strange animals.

I’m kind of embarrassed that I never have pointed out that I’m not an animal expert, to steal a phrase from the awesome podcast Varmints! I actually work as a test proctor, AKA invigilator, in a large community college, so my work doesn’t have anything to do with animals. My background is in elementary education although I didn’t teach long. Basically I got my K-8 teaching certification and M.Ed., did some substitute teaching afterwards, and ended up getting my current job instead of taking a teaching position. I still love teaching, so when I decided I wanted to start a podcast, I knew it would be nonfiction. My undergraduate degree is in English literature, and I took so many history courses that I minored in history almost by accident, so I’m really good at research and can write an essay about any topic in the world in very little time. I didn’t know it when I was in college, which was long before podcasts existed anyway, but I have the perfect background for creating a nonfiction podcast.

Liesbet has three questions about the podcast: what inspired me to start it, what motivates me to keep going without missing any episodes, and what I enjoy most about it. I’m so pleased that someone noticed I’ve never missed a single episode! Not that it would be the end of the world if I did, of course, but if I did, I’d feel bad thinking about people who were looking forward to listening to the new episode and were disappointed when there wasn’t one.

Here is the raw, honest truth about why I started Strange Animals Podcast. It was several things combined and the whole story is kind of dumb. First, my friend Kevin makes a great pop culture podcast called The Flopcast, and after I’d listened to it for a while I thought, “Hey, that sounds like fun. I think I’ll start a podcast.” About the same time, I was listening to a back episode of a podcast I will not name, and it gave some misinformation about the Irish elk, specifically the outdated theory that it went extinct because its antlers were too big. I mentioned that in episode 4 and how I kept thinking about it and got kind of angry that a large, influential podcast hadn’t bothered to do enough research about an animal that lots of people are interested in. I decided I could do better and that my podcast would be about animals. Also at the same time, I was trying to find a good podcast about mystery animals that was well researched and didn’t skate off into speculation too much. I couldn’t find one that satisfied me, so I had to make one myself.

I wasn’t exactly sure what my focus would be when I first started the podcast. You can kind of tell when you listen to the first six months or so of the podcast that I was trying out new things and figuring out what worked best and what I liked best. I’m still figuring that out, for that matter.

It’s hard to decide what I like best about making the podcast. I like the whole process, except maybe not the frustrating parts of recording and editing. I think my favorite part has to be when I uncover information I find really exciting. I get to share that information with everyone who listens! It’s fantastic!

Next, let’s get into some questions about animals.

Pranav asked if I would explain how poisons work, which is a great question and also just a tiny bit alarming. No one eat anything Pranav cooks for you unless he’s eating some too. Actually, of course, he’s just wanting to learn more about poisonous animals, and I’ll talk about venomous animals too.

A poisonous animal contains toxins somewhere in its body, like the hooded pitohui bird that we talked about in episode 222 that has poisonous feathers. The poison stops other animals from trying to eat it. In the case of the hooded pitohui, its poison causes your skin to burn when you touch it, so an animal that tries to bite it will have a burning mouth. If it actually eats any of the poison, the animal can die. Many amphibians secrete toxins through their skin, like the poison dart frog, and many other animals concentrate toxins in their muscles or internal organs.

A venomous animal has toxins that it can inject into a wound to hurt or kill another animal. Some snakes can inject venom with special fangs, but some amphibians have pointed ribs that are sharp enough to stab a potential predator. The ribs will project through the amphibian’s sides through tiny spots that are filled with toxins. The toxins coat the points of the ribs, and if the predator tries to bite down, it gets those toxins stabbed right into its mouth. Some fish have spines that are coated in toxins, and of course many insects, arachnids, and other invertebrates have stingers that inject toxins.

Generally, a poisonous animal absorbs toxins from a food it eats, often a toxic insect, and instead of getting sick, it uses those toxins to protect it from predators. A venomous animal usually produces its own toxins in its body, especially animals that use venom to kill or disable prey. It costs energy for the animal to make venom, and it doesn’t want to waste it. That’s why snakes will sometimes give what are called dry bites in self-defense, where it bites but doesn’t inject any venom. It’s hoping that the pain of the bite itself will make a potential predator retreat without the snake needing to use venom.

Different toxins have different effects, naturally, and animals produce so many different kinds of toxins that we could talk about it all day and not even cover them all. Instead, let’s quickly discuss two animals, one venomous and one poisonous.

Our venomous example is the king cobra. It can grow over 18 feet long, or 5.5 meters, and lives in southern Asia. It mostly eats other snakes and some lizards. Its venom contains numerous toxins that do different horrible things. The neurotoxins in its venom affect the central nervous system, which can cause all sorts of issues like dizziness, pain, blurred vision, sleepiness, and even paralysis. Other toxins in the venom are called cardiotoxic because they affect the heart, making it weak so that circulation of blood slows down. If a king cobra bites you and injects venom, you can die within 30 minutes as the venom basically just shuts your body down, one process at a time. If your heart stops or your diaphragm becomes paralyzed so you can’t breathe, that’s it for you. Fortunately, in ordinary situations the king cobra is shy and avoids people, so if you don’t bother it, it won’t bite you.

Our poisonous example is the pufferfish. Some species of pufferfish are incredibly poisonous. You may have heard about fugu, which is considered a delicacy even though it’s so poisonous that in Japan and some other countries, chefs have to be specially trained and licensed to prepare the fish to eat. The part of the fish that’s considered tastiest is also the part that’s most poisonous, the liver. It contains tetrodotoxin, which is a neurotoxin that stops your nerves from sending the tiny electrical signals that allow them to move. If you’re poisoned with tetrodotoxin, you start to feel dizzy and sick, then you start having difficulty speaking and moving, then you have trouble breathing, and then, ultimately, you’re paralyzed and can’t breathe, at which point you die. Since the toxin doesn’t affect your brain, you remain completely aware of what’s happening to you but there’s nothing you can do about it. There’s no antidote. Fortunately, you have the option of not eating fugu. Also, it turns out that the pufferfish’s poison comes from a type of bacteria, so fish raised in careful conditions in captivity aren’t poisonous.

Most poisonous and venomous animals are harmless to humans!

Next, Connor wrote and said, “I recently moved to Michigan from West Virginia and noticed a lot of black squirrels around. Are they a different species/sub-species or just melanistic individuals?”

I looked into this and sure enough, Michigan and other areas around the Great Lakes are known for a large population of black squirrels. I’ve never seen a black squirrel but now that I’ve looked at pictures of them, they are awesome and I wish I had some in my yard.

The eastern gray squirrel is the most common species of squirrel in eastern North America, and a black morph of that species and other squirrel species is not that unusual. The color difference is due to a small mutation in the gene that controls how much pigment the squirrel’s fur contains. Connor is right that the coloration is due to melanistic individuals.

But that doesn’t explain why there are so many black squirrels in Michigan and surrounding areas. No one’s completely sure why that is. In other animals, including the gray wolf and the leopard, melanistic individuals are more common in areas where there’s thick vegetation that blocks a lot of sunlight. A dark-colored wolf or leopard is better camouflaged in the shadows, which allows it to sneak up on prey. But the squirrel isn’t a predator, and black squirrels don’t seem to be any more common in heavily forested areas compared to more park-like areas.

One suggestion is that black squirrels find it easier to stay warm in cold weather, because dark fur absorbs more heat than gray fur. This actually does seem to have some basis in fact. Black squirrels are much more common in northern areas, including parts of Canada where the eastern gray squirrel ordinarily doesn’t live. Black squirrels are correspondingly rare in more southern areas where winters are mild, which explains why I’ve never seen one. Then again, the fox squirrel is also common in eastern North America, often living in the same areas where eastern gray squirrels live, and they also have a black morph, but black fox squirrels mostly live in the southeast. So it’s a mystery.

Black squirrels are the same as ordinary colored squirrels. They just look different. That reminds me that I have an episode about squirrels planned for some time later this year, especially unusual squirrels.

Next, Anna has a question about dogs. She says, “We have a dog named Sadie, who is a beagle mix. She is much more aware of the sounds and smells around us and often howls and barks at things that we can’t see. How do dogs have such a strong sense of smell and good hearing?”

The wild ancestors of dogs were wolves. Wolves are generally nocturnal, and as a result, dogs have sensitive hearing and smell to find prey when it’s dark. A dog can hear in the ultrasonic range, which refers to sounds higher than human hearing. Humans can hear sounds up to 20,000 hertz, while dogs can hear sounds up to 50,000 hertz. A dog also has a lot of muscles in its ears that allow it to turn its outer ear to find sounds. While some dog breeds have lapped-over ears, wolves and many dog breeds have pricked-up ears that act as little satellite dishes to gather up as many sounds as possible. If you cup your hands behind your ears, you can get a sense of how this helps. A dog also has a relatively large ear canal, which is the inside part of the ear. A large ear canal allows more sound vibrations in. Cats actually have even better hearing than dogs, but cats don’t have nearly the same ability to smell.

A dog’s sense of smell is incredible. Humans have about six million olfactory receptors in our noses. That sounds like a lot, but a dog has over 200 million olfactory receptors! It can also process all those smells incredibly well in its brain, so that with training a dog can detect unbelievably faint smells. That’s why dogs are used to sniff out dangerous items like bombs and illegal drugs, or find people who are buried in rubble after an earthquake or other disaster, or track down people who are lost. Dogs can even learn to detect the smell of some diseases, including cancer, malaria, and tuberculosis.

A dog’s nose is much different from a human nose. If you have a dog, or can borrow a friend’s dog, sit down and take a look at their nose. Ha ha, the dog just licked you in the face! That’s hilarious! The dog’s nose has nostrils in the front but if you look carefully, you’ll see that the nostril openings continue along the sides of its nose, in a little slit. There’s also a little fold of tissue inside the nose. The tissue separates the air into two streams. One stream goes into the lungs, but the other gets circulated into the nose to come in contact with all those olfactory receptors. Then, when the dog breathes out, the air goes out the side slits instead of out the main nostrils, so it doesn’t push any odors out of the nose. A dog’s nose works best when it’s damp, which is why a healthy dog has a wet nose.

When you hear a sound, you can usually tell which direction it’s coming from by turning your head, because the sound will be slightly louder in one ear than the other and your brain can make sense of this difference. Dogs can tell which direction a smell is coming from because its brain can tell which nostril is picking up more of the smell.

A dog’s sense of smell is so acute, and so important to the animal, that a dog that loses its vision can often do just fine. It can smell its way around. Naturally, some dog breeds have a better sense of smell than others, and some individuals are better at smelling than others too.

Don’t feel bad about your sense of smell, though. Humans may not be as good at smelling as dogs are, but we can train ourselves to be more sensitive to faint odors. The next time you take a walk, pay attention to what you’re smelling and I bet you’ll notice a lot more scents than you realize.

Next, Helenka also wanted to know about my writing. Thank you so much for asking! Now I can plug my books and also tell you how the strange animals podcast book is coming along!

I mostly write fantasy fiction. I have a steampunk adventure book available called Skytown, and a related collection of short stories about the same characters from the book, which is called Skyway. Sometimes I get the titles confused because they’re really similar, but Skytown is called that because there’s a city in the book that can only be reached by air, which in this fantasy world is mostly airships. The main characters are two young women named Jo and Lizzy, friends who are airship pirates. It’s a lot of fun, and the short story collection actually tells how Jo and Lizzy met and what they did together right up to the start of the novel. If that sounds interesting, I’d love it if you could pick up a copy of one or both books. They’re published by small independent publishers, who don’t make a lot of money and have trouble getting books into physical stores. There’s a link in the show notes.

Okay, so now I get to tell you all about the Strange Animals Podcast book! I’ve been working on it all year and it’s getting really close to being done. The title is Beyond Bigfoot and Nessie: Lesser-Known Mystery Animals from Around the World, and most of the material is taken directly from mystery animal episodes from the last four-plus years, BUT I’ve made sure to update the chapters as much as possible and I’ve added some new chapters.

I’ve decided to self-publish the book, so I’m planning a Kickstarter to cover the costs of hiring a cover artist and things like that. I’d like to run the Kickstarter in October, which would give me time to get it published hopefully in time for the holidays in case people want to order copies to give as gifts. We’ll see how that goes, though. There’s a ton of work that goes into running a successful Kickstarter, and although I don’t need a whole lot of funding for the book, it still worries me that maybe no one will be interested and it won’t meet its funding goal and I’ll have to pay for everything out of pocket. I’m already kind of broke this year from paying about $5,000 to the emergency vet to save my cat Poe’s life, but honestly, if the choice is between having Poe running around and playing or self-publishing a book, I will choose Poe every single time.

Anyway, one way or another I’ll make sure the Beyond Bigfoot and Nessie book is available to buy before the podcast’s fifth year anniversary in February 2022!

Finally, this wasn’t sent in as a question but I thought it would be a nice way to finish off the episode. In a really nice review, a listener who I think is named Meg said “I think she’s southern like me but not sure.” Yes, I am southern, although I don’t have much of an accent. I was born in Georgia and grew up in East Tennessee, where I live now.

Thanks to everyone who sent in questions! We’ll probably have another Q&A episode eventually, maybe next year, so feel free to send me your questions! I think I got everyone’s questions answered this time, but if I missed yours, definitely let me know. The best way to get in touch with me is through email, strangeanimalspodcast@gmail.com.

To finish us off, Richard from NC wanted me to play the Axolotl song. I won’t play the whole thing, because it’s kind of long, but here’s a clip and there’s a link in the show notes. It’s by an animator and musician called Joel Veitch. I’ve had this song stuck in my head ever since Richard sent me the link, so now you will too. Also, I promise I’ll make a whole episode about the axolotl soon.

Thanks for listening!

Episode 236: Updates 4 and a Mystery Snake!

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

It’s our fourth annual updates and corrections episode! I’ve already had to make a correction to this episode!

Further reading:

Cassowary, a rare emu-like bird, attacks and kills Florida man, officials say

The dog Bunny’s Facebook page

3D printed replicas reveal swimming capabilities of ancient cephalopods

Enormous ancient fish discovered by accident

A rare observation of a vampire bat adopting an unrelated pup

Pandemic paleo: A wayward skull, at-home fossil analyses, a first for Antarctic amphibians

Neanderthals and Homo sapiens used identical Nubian technology

Entire genome from Pestera Muierii 1 sequenced

Animal Species Named from Photos

Cryptophidion, named from photos:

The sunbeam snake showing off that iridescence:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

 

It’s our fourth annual updates and corrections episode, and to keep it especially interesting we’ll also learn about a mystery snake. Make sure to check the show notes for lots of links if you want to learn more about these updates.

 

First, we have a small correction from episode 222. G emailed with a link about a Florida man who was killed by a cassowary in 2019, so cassowaries continue to be dangerous.

 

We also have a correction from episode 188, about the hyena. I called hyenas canids at one point, and although they resemble canids like dogs and wolves, they’re not canids at all. In fact, they’re more closely related to cats than dogs. Thanks to Bal for the correction!

 

In response to the talking animals episode, Merike told about a dog who uses computer buttons to communicate. The dog is called Bunny and she’s completely adorable. I’ll link to her facebook page. I have my doubts that she’s actually communicating the way it looks like she is. She’s obviously a clever dog but I don’t think she understands the English language so well that she can choose verbs like “is” from her list of words. I think she’s probably mostly taking unconscious cues from her owner. But I would be happy to be proven wrong.

 

Following up from our recent deep-sea squid episode, a team of paleontologists studying ancient cephalopods 3-D printed some replicas of what the animals would have looked like while alive. Then they took the models into a swimming pool and other water sources to study how their shells affected the way they could move through the water. They discovered that a type of cephalopod with a straight shell, called an orthocone, probably mostly moved up and down in the water to find food and could have moved extremely fast in an upward or downward direction. A type of cephalopod with a spiral shaped shell, called a torticone, also spun slightly as it moved around. The same team has previously worked with 3-D models of ammonoids, which we talked about in episode 86. The models don’t just look like the living animals, they have the same center of balance and other details, worked out mathematically.

 

Speaking of ancient animals, a collector in London bought a fossil found in Morocco thinking it was part of a pterodactyl skull. When the collector asked a palaeontologist to identify it, it turned out to be a fossilized coelacanth lung. The collector donated the fossil for further study, and the palaeontologist, David Martill, worked with a Brazilian coelacanth expert, Paulo Brito, to examine the fossil.

 

The fossil dates to the Cretaceous, about 66 million years ago, and is bigger than any coelacanth lung ever found. Modern coelacanths grow a little over six feet long at most, or 2 meters, but the estimated length of this Coelacanth is some 16 ½ feet, or 5 meters. The fossil is being donated to a university in Morocco.

 

We talked about vampire bats way back in episode 11, and I love bats and especially vampire bats so I try to keep an eye on new findings about them. Everyone thinks vampire bats are scary and creepy, but they’re actually social, friendly animals who don’t mean to spread rabies and other diseases to the animals they bite. It just happens.

 

Vampire bats live in colonies and researchers have long known that if a female dies, her close relations will often take care of her surviving baby. Now we have evidence that at least sometimes, the adoptive mother isn’t necessarily related to the birth mother. It’s from a recently published article based on a study done in 2019.

 

A team researching how unrelated vampire bats form social bonds captured 23 common vampire bats from three different colonies and put them together in a new roost where their interactions could be recorded by surveillance cameras. One particular pair of females, nicknamed Lilith and BD, became good friends. They groomed each other frequently and shared food. If you remember from episode 11, vampire bats share food by regurgitating some of the blood they drank earlier so the other bat can lap it up. Since vampire bats can starve to death in only a few nights if they can’t find blood, having friends who will share food is important.

 

During the study, Lilith gave birth to a baby, but shortly afterwards she started getting sick. She had trouble getting enough food and couldn’t groom or take care of her baby as well as a mother bat should. Her friend BD helped out, grooming the baby, sharing food with Lilith, and eventually even nursing the baby when Lilith got too sick to produce milk. After Lilith died, BD adopted the baby as though it was her own. By the time the study ended, BD was still caring for the baby bat.

 

We talked about spiders in the Antarctic in episode 221, and mentioned that Antarctica hasn’t always been a frozen wasteland of ice and snow. In a new study of fossils found in Antarctica, published in May of 2021, the first Antarctic amphibian skull has been identified. It lived in the early Triassic, not long after the end-Permian mass extinction 252 million years ago. It’s been named Micropholis stowi and is a new species of temnospondyl that was previously only known from South Africa. The skull, along with other fossils from four individuals, was discovered in the Transantarctic Mountains in 2017 and 2018, and the research team studied them from home during the 2020 pandemic lockdowns.

 

In news about humans and our extinct close relations, a new finding shows that Neanderthals and humans used the same type of tools. Researchers studied a child’s tooth and some stone tools, all found in a cave in the mountains of Palestine, and determined that the tooth was from a Neanderthal child, not a human. The tooth was discovered in 1928 but was in a private collection until recently, so no one had been able to study it before now. The tools are a specific type developed in Africa that have only been found associated with humans before. Not only that, but until this finding, there was no evidence that Neandertals ever lived so far south.

 

The child is estimated to have been about nine or ten years old, which is the age when you’re likely to lose a baby tooth as your adult teeth start growing in. I like to think about the child sitting next to their Mom or Dad, who were either creating new tools or using ones they’d already made to do something like cut up food for that evening’s dinner. Maybe the child was supposed to be helping, and they were, but they had a loose tooth and kept giving it a twist now and then, trying to get it to come out. Then, finally, out it popped and bounced onto the cave floor, where it was lost for the next 60,000 years.

 

Researchers have just announced that they’ve sequenced the genetic profile of a woman who lived in what is now Romania about 35,000 years ago. Judging from her skull shape and what is known about ancient humans in Europe, the team had assumed she would be rather restricted in her genetic diversity but that she would show more Neanderthal ancestry than modern humans have. Instead, they were surprised to find that the woman had much more genetic diversity than modern humans but no more Neanderthal genes than most human populations have these days.

 

This was a surprise because modern humans whose prehistoric ancestors migrated out of Africa show much less genetic diversity than modern humans whose ancestors stayed in Africa until modern times. Researchers have always thought there was a genetic bottleneck at some point during or not long after groups of humans migrated out of Africa around 80,000 years ago. Lots of suggestions have been made about what might have caused the bottleneck, including disease, natural disaster, or just the general hardship of living somewhere where humans had never lived before. A genetic bottleneck happens when a limited number of individuals survive long enough to reproduce—in other words, in this case, if so many people die before they have children that there are hardly any children left to grow up and have children of their own. To show in the general population as it does, the bottleneck has to be widespread.

 

Now researchers think the genetic bottleneck happened much later than 80,000 years ago, probably during the last ice age. Humans living in Europe and Asia, where the ice age was severe, would have had trouble finding food and staying warm.

 

I’m getting close to finishing the Strange Animals Podcast book, which I’ll talk about a little more in our Q&A episode later this week. It’s a collection of the best mystery animals we’ve covered on the podcast, along with some new mystery animals, and I’m working hard to update my research. If you remember back in episode 83, about mystery big cats, we discussed the Barbary lion, which was thought to be an extinct subspecies of lion that might not actually be extinct. Well, when I looked into it to see if any new information had turned up, I found more than I expected. I rewrote those paragraphs from episode 83 and I’ll read them here as an update:

 

Lions live mostly in Africa these days, but were once common throughout southern Asia and even parts of southern Europe. There even used to be a species called the American lion, which once lived throughout North and South America. It only went extinct around 11,000 years ago. The American lion is the largest species of lion ever known, about a quarter larger than modern African lions. It probably stood almost 4 feet tall at the shoulder, or 1.2 meters. Rock art and pieces of skin preserved in South American caves indicate that its coat was reddish instead of golden. It lived in open grasslands like modern lions and even in cold areas.

 

Much more recently, the Barbary lion lived in northern Africa until it was hunted to extinction in the area. The Barbary lion was the one that battled gladiators in ancient Rome and was hunted by pharaohs in ancient Egypt. It was a big lion with a dark mane, and was thought to be a separate subspecies of lion until genetic analysis revealed in 2006 that it wasn’t actually different from Panthera leo leo.

 

The last wild Barbary lion was sighted in 1956, but the forest where it was seen was destroyed two years later. The lions in a few zoos, especially in Ethiopia and Morocco, are descended from Barbary lions kept in royal menageries for centuries.

 

Lions are well known to live on the savanna despite the term king of the jungle, but they do occasionally live in open forests and sometimes in actual jungles. In 2012 a lioness was spotted in a protected rainforest in Ethiopia, and locals say the lions pass through the reserve every year during the dry season. That rainforest is also one of the few places left in the world where wild coffee plants grow. So, you know, extra reason to keep it as safe as possible.

 

Finally, we’ll finish with a mystery snake. In 1968, during the Vietnam War, the United States Naval Medical Research Unit discovered a small snake in central Vietnam. It was unusual enough that they decided to save it for snake experts to look at later, but things don’t always go to plan during wartime. The specimen disappeared somewhere along the line. Fortunately, there were photographs.

 

The photos eventually made their way to some biologists, and in 1994 a paper describing the snake as a new species was published by Wallach and Jones. They based their description on the photos, which were good enough that they could determine details like the number of scales on the head and jaw. They named it Cryptophidion annamense and suggested it was a burrowing snake based on its characteristics.

 

Other biologists thought Cryptophidion wasn’t a new species of snake at all. In 1996 a pair of scientists published a paper arguing that it was just a sunbeam snake. The sunbeam snake is native to Southeast Asia, including Vietnam, and can grow over 4 feet long, or 1.3 meters. It’s chocolate-brown or purplish-brown but has iridescent scales that give it a rainbow sheen in sunshine. It’s a constricting snake, meaning it squeezes the breath out of its prey to kill it, but it only eats small animals like frogs, mice, and other snakes. It’s nocturnal and spends a lot of its time burrowing in mud to find food.

 

Wallach and Jones, along with other scientists, argued that there were too many differences between the sunbeam snake and Cryptophidion for them to be the same species. But without a physical specimen to examine, no one can say for sure if the snake is new to science or not. If you live in or near Vietnam and find snakes interesting, you might be the one to solve this mystery.

 

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

 

Thanks for listening!