Episode 070: Mystery Birds

This week we’ll learn about birds that are mysterious in one way or another. If you need more bird knowledge, check out the awesome Casual Birder Podcast, especially this week’s episode with a guest spot by me about indigo buntings!

Lots of pictures for this one, hoo boy.

The Nechisar nightjar wing. It’s all we’ve got:

Junkin’s warbler, a mystery bird whose identity was solved by SCIENCE:

The lovely blue-eyed ground dove:

The two tapestries depicting a mystery bird:

Close-ups of the mystery bird from the tapestries:

A black grouse, that may have inspired the tapestry birds:

A wandering albatross, which has the largest wingspan of any living bird known and will CURSE YOU:

The bee hummingbird, smallest living bird known, will only give tiny curses if it’s really mad:

An olive-backed sunbird:

A hermit hawkmoth, not even kidding that this thing looks and acts like a hummingbird:

The cahow, or Bermuda petrel:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

On the same day this episode is released, the Casual Birder Podcast is releasing an episode about finches with a contribution from me. If you haven’t tried the Casual Birder Podcast, it’s a great show about birds and birding that I highly recommend. It’s 100% family friendly, the host’s voice is pleasant and calming, and it’s often funny and always interesting. I’ve got a link in the show notes, so head on over and try the finch episode, where you can hear me dropping some knowledge about the indigo bunting. And for any new listeners who came here from the Casual Birder Podcast, welcome! We’ve got a great episode this week about birds that are associated with a mystery in one way or another.

We’ll start in Ethiopia, specifically the Nechisar National Park in the Great Rift Valley. In 1990, a team of researchers was surveying a remote section of grassland in the park to see what animals lived there. One of the things they found was a dead bird, not in the field but on a dirt road, where it had been killed by a car. It was a type of nightjar, but the bird experts associated with the survey didn’t recognize it. The problem was, though, that the bird was pretty mangled and rotten. Only one wing was intact, so they took that wing back with them to the Natural History Museum in London and described a new species of nightjar from it. It’s called the Nechisar Nightjar, described in 1995 and named Caprimulgus solala. ‘Solala’ means “only a wing.”

But no one who knows about birds has ever conclusively seen a living Nechisar Nightjar: not an ornithologist or zoologist, not a bird watcher, not a local with more than casual knowledge of birds, no one. In 2009 a group of birders visited the park specifically to search for the nightjar, and caught a brief video of one flying away. But nightjars are night birds, so the video was shot at night with one of the birders holding a light, and as a result it’s not exactly great video quality. So while conservationists hold out hope that the bird isn’t actually super-rare, just lives in a hard to reach area, we still don’t know for sure.

At least we have the wing so we know the Nechisar nightjar actually exists. The wing has dark brown feathers with a pale wing panel. The birders who might have seen the nightjar in 2009 said its body was reddish-brown and it had white tail corners. Another bird, called the double-banded pheasant, is known only from a single feather found in 1871. We don’t even know where the feather came from, since it was found in a shipment of feathers sent to London to be used as hat decorations. Researchers today think it is probably just an aberrant feather taken from the well-known great argus pheasant, which lives in Borneo, Sumatra, and other islands in southeast Asia.

Next we’ll visit New York state and a mystery warbler whose identity was solved by science. In 2006, bird bander David Junkin caught a warbler in his mist net that he and his wife Sandy couldn’t identify. It had an olive green back, was bright yellow underneath, and had a gray head with a white throat and bright white eye ring, almost spectacles. The Junkins had to let the bird go, and it became known as Junkin’s warbler informally as birders and ornithologists tried to figure out what the bird was from the pictures the Junkins posted online. Then, fortunately, the following year the same individual bird blundered into the Junkin’s mist net. This time they plucked two of its tail feathers and sent them for DNA testing at Cornell. It turns out that the mystery warbler was a hybrid of a male mourning warbler and a female Kentucky warbler.

Various types of warblers do interbreed fairly frequently, and some hybrids have been mistakenly named as species of their own in the past. As if warblers weren’t already ridiculously hard to identify. Researchers think that in the case of Junkin’s warbler, its mother may have ended up outside of her usual summer range after migrating, found no Kentucky warbler males to pair with, and so took a closely-related male mourning warbler as a mate. Sometimes you have to settle, you know? At least their kid was pretty darn adorable.

When a rare bird vanishes, after years with no sightings, conservationists have to declare it extinct. But sometimes a bird thought extinct turns out to not be extinct at all. These are sometimes known as Lazarus species.

It happened with the blue-eyed ground dove, a pretty but modest dove that once lived throughout South America. It was declared critically endangered and probably extinct and hadn’t been seen in almost 75 years when, in June of 2015, ornithologist Rafael Bessa heard a call that he knew wasn’t the ruddy ground-dove common in Brazil. He recorded the call and managed to get some photographs of the dove he heard. Sure enough, it was a blue-eyed ground dove, not extinct after all.

Of course, exciting as this is, the doves aren’t out of danger. Their habitat is threatened and they only survive in a few small, widely-separated pockets of wilderness. But conservation efforts are in place now that we know the dove is still around. It’s a lovely bird, chestnut with dark blue spots on its wings and matching dark blue eyes. This is what a blue-eyed ground dove sounds like:

[dove call]

Now let’s fly to Paris, where I am visiting this August and I’m very excited. In this case, our bird is depicted in two 500-year-old tapestries at the Cluny Museum of the Middle Ages, part of a series collectively called “The Lady and the Unicorn.” The tapestries show a lot of animals and birds, including our mystery bird. It’s black with a white breast and white markings on the underwings, a long tail with a lyre-shaped fork at the end, and large feet. But no one’s sure what kind of bird it is.

The best guess is that it may be a depiction of a black grouse, rendered by artists who had never actually seen one of the birds. The black grouse is a large game bird common throughout parts of western Europe and Asia. The male is black with white wing bars and undertail coverts, and red wattles. The tail is long and lyre-shaped, and when the wings are open, they show white underneath. But even if the bird in the tapestries is a black grouse, it’s still a mystery why the artist included the bird in the tapestries instead of a more well-known bird or a completely fanciful one.

Next up is a bird that’s not a mystery so much as mysterious. It has an entire epic poem written about it, The Rime of the Ancient Mariner by Samuel Taylor Coleridge, written in the early 19th century.

The wandering albatross and the closely related southern royal albatross have the largest wingspan of any bird living today, 11 ½ feet across, or 3.5 meters. Both are mostly white as adults, with black markings on the wings and pinkish bills and legs. They look like gigantic seagulls.

The albatross has such an amazing wingspan, and is such an efficient flyer, that it can fly for weeks without stopping, covering more than 6,000 miles during that time, or 10,000 km, and use barely more energy than if it had stayed at home and napped. It eats fish, squid, and other small sea creatures, and will dive for food or just grab it out of the water as the bird skims near the surface. The albatross will pretty much eat anything it can find, including carrion, and it can gorge itself with as much as 25% of its own body weight in food. But when it’s that full, it’s too heavy to fly, so it may float on the water’s surface for a few hours while it digests. Its digestive system is as acidic as a vulture’s so it can digest its food quickly.

Pairs mate for life, can live over sixty years, and produce one chick every two years, gathering in colonies on a few remote islands to nest. It mostly lives in the southern hemisphere below the Antarctic, around South America and Australia. Distance means nothing to the albatross.

The albatross frequently follows ships around, especially fishing boats that might throw fish guts and heads overboard. Some sailors believed the albatross was a bird of good omen or contained the soul of a dead sailor, so if you killed one you’d be cursed. That’s what the Rime of the Ancient Mariner is all about. Other sailors believed that if you killed an albatross, you could use its hollow wing bones to make pipe stems, so they did, and presumably they were cursed for the rest of their lives but they also had nifty pipe stems so I guess it’s a trade off.

The Rime of the Ancient Mariner frankly is a terrible poem. I was an English major; you can trust my judgment. It has some good lines, though, and you probably know some of them even if you’ve never read the poem. It’s where “As idle as a painted ship / upon a painted ocean” comes from, and “Water, water, everywhere / Nor any drop to drink.” In the poem, a sailor kills an albatross. He doesn’t say why. When the ship is immediately becalmed, the other sailors, who blame the first sailor for killing the lucky bird, hang the dead albatross around the bird-killer’s neck. If you’ve ever heard of someone having an albatross around their neck, that’s where it comes from, and it means something bad from their past is still affecting them.

From the bird with the biggest known wingspan, let’s examine a tiny, tiny bird next. This is a genuine mystery bird from Sumatra. In the late 1950s, Otto and Nina Irrgang were living in Sumatra and one day spotted a hummingbird only 1.5 inches long, or 3.8 cm. That’s even smaller than the smallest bird known, the bee hummingbird, which lives in Cuba and nearby islands and is no more than 2.4 inches long, or 6.1 cm. The Irrgangs saw the bird at close range when it hovered no more than a foot away. They said it was brown underneath with a striped yellow back.

But Sumatra is an Indonesian island in southeast Asia, and true hummingbirds live only in the Americas, from Alaska and Canada all the way to Tierra del Fuego, and in the Caribbean, which are islands in the Atlantic between North and South America. There are birds in Sumatra that resemble hummingbirds and fill the same ecological niche, called sunbirds. Sunbirds also live in Africa, Australia, and parts of Asia. They’re tiny, although on average a little larger than hummingbirds, eat nectar and occasionally small insects, and males often have jewel-like iridescent feathers. But they can’t hover for very long and usually perch while they gather nectar from flowers. While their bills are long and slender, they are more curved than hummingbirds’ needle-like bills.

Eighteen species of sunbird and its close relative, the spiderhunters, live in Sumatra. But none have a striped yellow back with brown belly as described by the Irrgangs, and all are much larger than the reported length of 1.5 inches. The couples’ son, Mike Irrgang, has reported that his parents may have not included the bird’s tail in their estimated measurement, and that he thinks it was the same size as a “bee bird.” It’s not clear what he means by bee bird. There are birds called bee-eaters throughout Europe, Asia, and Africa that eat bees, but they’re much larger than sunbirds. He probably meant the bee hummingbird.

But there is another possibility. While the Irrgangs were adamant that they saw a bird, not an insect, there is a moth that might fit the description. It’s called the hermit hummingbird hawkmoth and it lives on Sumatra, as well as many other parts of Asia. It eats nectar and is most active at dawn and dusk, and it hovers like a hummingbird. Its body is mostly gray and brown, with yellow bands on the hind wings and the abdomen. It can grow almost two inches long, or 5 cm, with a wingspan a bit wider than its body is long.

In other words, it’s a moth that acts and in some respects looks like a hummingbird, and is just a shade smaller than the world’s smallest hummingbird, and its color and markings roughly match what the Irrgangs report. Other hummingbird hawk moths live throughout Europe and Asia, and are sometimes mistaken for birds. In North America we have hummingbird moths that look and act similar, and I have seen them in my garden in the evenings and mistaken them for hummingbirds. Sometimes I see an actual hummingbird and mistake it for a bee at first, incidentally, because it just doesn’t seem possible that a bird could be so small.

Then again, Sumatra is home to many, many birds and animals that are rare, threatened, and possibly have gone extinct since the 1950s without ever being officially studied and described. It’s possible there was once a tiny sunbird that resembled a hummingbird even more than the sunbirds and hawkmoths of Sumatra we know about. If so, let’s hope that one day, some lucky birder or ornithologist discovers it alive and well.

Finally, let’s finish with another seabird. The Bermuda petrel, also called the cahow, was a grey-brown bird that nested on various small islands in Bermuda. The Spanish visited the islands in the early 16th century, and while they didn’t settle there, they killed and ate as many cahows as they could catch along with their eggs. They also turned pigs loose on the islands so they’d have food waiting for them whenever they came back wanting bacon. Before then, approximately half a million cahows lived on the islands, but what the sailors and their rats didn’t eat, the pigs did.

The British colonized some of these islands in 1612, which were uninhabited by humans—for good reason, it turned out. The colonists kept dying of starvation. In 1614, rats ate up what little food the colonists had, so the colony evacuated to Cooper’s Island to get away from the rats and hopefully find something edible. There they found the cahow, which had moved to Cooper’s Island and a few nearby small islands to get away from the pigs. By 1620 the colonists had eaten them all. Every single bird. That was the end of the cahow…except that it wasn’t.

In 1951 Louis S. Mowbray, son of the Bermuda Aquarium director of the same name, got a few of his friends together to survey the rocky islets of the area. They were looking specifically for cahows, since reports of dead birds and even occasional live ones still trickled in. Mowbray’s father had even been given a live one which he kept as a pet, so Mowbray knew it was living somewhere.

Sure enough, they found it on four tiny islets. So how did it survive for over 300 years without anyone finding and eating them?

The cahow, it turns out, nests in burrows and a young bird stays in its burrow until it’s old enough to fly. Then, like the albatross, it soars for thousands of miles without landing anywhere but on the water’s surface for the first few years of its life, until it returns to Bermuda in November to nest. It lays one egg a year and mates for life. It arrives at night, courts its mate at night, and digs burrows in sheltered, hidden areas.

One of the people who helped Mowbray find the cahow was David Wingate, who at the time was just a kid. He later attended Cornell University, and after he graduated with a degree in zoology, he returned to Bermuda in 1958 and started his life’s work: saving the cahow and its environment.

He moved to Nonsuch Island, which had been more or less destroyed by colonists and their animals over the centuries. It’s only 14 acres in size, or 5.7 hectares, and is close to Cooper’s Island. Wingate dug up invasive plants, killed invasive animals, and planted native trees and shrubs. He even dug burrows for cahows that had special entrances to keep out the white-tailed tropicbird, which kills cahow chicks. He fought to keep developers from moving onto the island to build homes, fought the military that wanted to use the island for chemical testing. And finally, Nonsuch Island was declared a wildlife sanctuary.

The cahow’s population has grown from only 18 nesting pairs in 1951 to 105 in 2013. It is now the national bird of Bermuda. Wingate retired in 2000, but the conservation work he started continues on Nonsuch Island and other islands too. So if anyone tells you that one person can’t make a difference in the world, just tell them about how David Wingate saved Nonsuch Island, the cahow, and hundreds of other bird, animal, and plant species native to Bermuda. You can do anything if you’re willing to work hard enough.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 069: The Cambrian Explosion

This week let’s find out a little something about the Cambrian explosion, where the relatively simple and tiny life on earth suddenly proliferated and grew much larger…and definitely stranger.

The Burgess shale area: beautiful AND full of fascinating fossils:

Anomalocaris, pre-we-figured-out-what-these-things-are:

What anomalocaris probably actually looked like, plus a couple of the “headless shrimp” fossils:

More “headless shrimp” fossils because for some reason I find them hilarious:

Marrella. Tiny, weird, looks sort of like those creepy house centipedes that freak me out so much, but with horns:

Hallucigenia, long-time mystery fossil:

What hallucingenia probably looked like, maybe:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s topic is one I’ve been fascinated by for years but I’ve never read much about it: the Cambrian explosion. That refers to the explosion of life forms in the Cambrian period, which started about 540 million years ago. That was long before the dinosaurs, long before fish, basically long before almost all life on earth that wasn’t simple squidgy things living in warm, shallow seas.

To learn about the Cambrian explosion, let’s go back even farther first and learn about the first life on earth.

Obviously, the more recently an animal lived, the more likely we are to find fossils and other remains: footprints in fossilized mud, gastroliths and coproliths, and so forth. The farther back we go, the fewer remains we have. The earth is continually changing, with mountains rising up and continents moving around, volcanoes erupting, old mountains being worn down by wind and weather. That’s good for the earth and therefore for life in general, since nutrients are cycled through the ecosystem and habitats are continually renewed. But it’s bad when paleontologists are trying to find out what lived a billion years ago, because most of those rocks are gone, either weathered into sand long ago, melted into magma, or buried under the ocean or otherwise out of our reach.

The Earth formed about 4.5 billion years ago, oceans formed 4.4 billion years ago, and the oldest rocks we can find are about 4 billion years old. The first life on earth, single-celled organisms, dates back to about 3.8 billion years ago, maybe earlier. By 3.5 billion years ago, complex single-celled microorganisms had evolved—we know because we’ve found eleven microscopic fossils in rocks from western Australia. Researchers have concluded that the fossils belonged to five different taxonomical groups, which means that by 3.5 billion years ago, life was already well established and diverse.

By 2.5 billion years ago, the earth had continents roughly the same size as the ones today, although not anything like the same shapes or in the same places. Land also didn’t have dirt on it, just sand and bare rock, since dirt is largely decomposed organic matter and nothing was living or dying on the land yet. Not long after, 2.45 billion years ago, oxygen started to make up a large part of the earth’s atmosphere. That’s right, before then we literally could not have breathed the air. I mean, we could have, but we would die of suffocation because the air contained only trace amounts of oxygen. While having oxygen in the air sounds great to us now, the single-celled organisms living then couldn’t process it and died off—probably the greatest extinction event in the earth’s history. Only organisms that were able to evolve quickly enough to use oxygen survived and thrived.

One particular type of microorganism dating back 2.3 billion years, sulfur bacteria, again known from ancient rocks from western Australia, is still around. Modern sulfur bacteria live in the deep sea off the coast of Chile, and they literally have not needed to change at all in 2.3 billion years. That’s what you call success.

The earliest multicellular organisms date to around 2.1 billion years ago, or at least those are the oldest fossils we’ve found. Algae and fungi evolved soon after. The earliest animal fossils date from about 580 million years ago and include small jellyfish and sea anemones, but all the oldest fossils we’ve found are of specialized animals so they probably arose much earlier. At about the same time, fossils of more complex shelled animals start appearing in the fossil record, animals which may have been the ancestors of arthropods, echinoderms, and mollusks. We also have fossils of burrows made in the sea floor, although we don’t know what kind of animal made them—some kind of wormy creature, but none have been found, just their burrows. Clearly a lot was going on back then, but it was all on a small scale: tiny worms, colonies of bacterial mats, and shelled animals measured in millimeters.

Then came the Cambrian explosion, starting about 540 million years ago, where diverse and often bizarre-looking animals suddenly appear in the fossil record, proliferating at a rate unheard-of in the previous eras. We’re not completely sure why, but it was probably a combination of factors, possibly including increased oxygen levels, the development of an ozone layer in earth’s atmosphere that protects cells from lethal UV radiation, an increase of calcium in ocean water, and many other factors, large and small. As animals grew larger and more diverse, more species could exploit more ecological niches; and when all the available niches were occupied, competition grew even more fierce, leading to even bigger and more specialized animals.

The first Cambrian fossils found were those of trilobites, first described in 1698 but not recognized as extinct fossil animals until the 18th century. By the 19th century so many forms of trilobite were known that geologists used them to help date rock strata. While trilobites had probably been around before the Cambrian, during the Cambrian they evolved exoskeletons and became much larger and more common.

You’ve probably heard of the Burgess shale, and you’ve probably heard of it because of the book Wonderful Life, published in 1989 by paleontologist Stephen Jay Gould. The book is out of date now, but when it was new it caused a lot of popular interest in the Cambrian explosion in general and the Burgess shale fossils in particular.

Shale, if you’re not familiar with the term, is a type of sedimentary rock formed from mud containing a lot of clay, generally mud from slow-moving water, floodplains, and quiet lagoons. It’s common, generally gray in color, and splits into flat pieces that you can draw on with other pieces of shale like a chalkboard. People sometimes confuse shale with slate, but slate is actually shale that’s been hardened by pressure and heat within the earth into a metamorphic rock. Because shale is formed from fine particles instead of sand, it can preserve fossils in incredible detail, although usually flattened.

So the Burgess shale is a large deposit of shale some 30 miles across, or 50 km, and 520 feet thick, or 160 meters. The area was once the bottom of a shallow sea next to a limestone cliff, around 505 million years ago, right in the middle of the Cambrian period. When the Rocky Mountains were created by tectonic forces around 75 million years ago, the Burgess shale was lifted 8000 feet above sea level, or 2500 meters. It’s in Canada, specifically Mount Stephen in Yoho National Park in British Columbia, and it’s properly called the Stephen Formation.

In the late 19th century a construction worker found some fossils in the loose shale weathered out of the formation. A geologist working for the Geological Survey of Canada heard reports of the fossils and in 1886 visited the area. He found trilobites and told his supervisor. Eventually paleontologist Joseph Whiteaves took a look and collected some Burgess shale fossils he thought were headless shrimps. They weren’t, by the way. We’ll come back to them in a minute.

In a nearby section of the Stephen Formation, paleontologist Charles Doolittle Walcott set up a fossil quarry in 1910. He and his team worked the quarry intermittently for the next few decades, collecting more than 60,000 specimens. But he didn’t publish very much about his findings, and after his death no one was very interested in the Burgess shale until the 1960s and 70s, when a couple of paleontologists started poking through Walcott’s collection. Their findings are what Gould writes about in Wonderful Life. Since then, paleontologists have continued to find amazing fossils in the Stephen Formation, and research continues on Walcott’s collection.

Part of the reason Gould’s book was such a sensation, apart from the fact that he’s a great writer and fossils are just interesting, was that he suggested the Cambrian explosion was caused by an unknown event that forced new evolutionary mechanisms into play, leading to many animals that are completely unrelated to those living today. He and some of the paleontologists working on the Burgess shale animals in the 1970s thought many of them belonged to phyla unknown today. There are only 33 designated phyla, although they do get looked at and changed around occasionally as new information comes to light. Humans and all other mammals, as well as reptiles, birds, amphibians, and fish, belong to the Chordata phylum. Gould suggested that if the Burgess shale animals had continued to evolve instead of dying out, life on earth today might look radically different.

That brings us to Whiteaves’s headless shrimp. Its name is Anomalocaris, which means abnormal shrimp. If you’re familiar with shrimp—you know, the things you eat, especially with rice or grits and I am so hungry right now—you have probably seen a headless one. The heads are typically removed before shrimp are sold, even though the rest of the shrimp may be intact, including shell, legs, and those little finny bits on the tail. That’s more or less what the fossil Whiteaves found looked like, except that its legs weren’t jointed. It was a little over 3 inches long, or around 8.5 cm. Whiteaves described it as a type of crustacean in 1892.

But to find out what it really was, we have to look at a couple of other discoveries. Walcott discovered what he identified as a type of jellyfish, around two inches across, or 5 cm, a circular segmented creature with a hole in the middle that looks a lot like a fossilized pineapple ring. Walcott also found what he thought was a feeding appendage or tail of an arthropod called Sidneyia, but didn’t realize it was the same anomalocaris Whiteaves had described. And paleontologist Simon Conway Morris discovered another of Walcott’s pineapple ring jellyfish, preserved together with what he took to be a sponge.

Harry Whittington, a paleontologist working on the Burgess shale fauna in the late 20th century, finally realized all these fossils belonged together—not as a crustacean, a sponge, and a jellyfish, but as one large animal. The shrimp tail was its feeding appendage, of which it had a pair in the front of its head, and the unjointed legs were spines. The pineapple ring jellyfish was its round mouthpiece consisting of plates that it contracted to crush prey. The sponge was its lobed body, which was softer and didn’t preserve as well as its other pieces.

Whiteaves’s feeding appendage came from a larger species, Anomalocaris canadensis, which grew some three feet long, or about a meter. It probably ate soft-bodied animals. Peytoia nathorsti was much smaller and may have used its feeding appendages to filter tiny prey from the mud.

In the 1990s anomalocaris and its relatives were identified as stem arthropods, ancestors of or at least relations to modern arthropods like insects, crustaceans, and spiders, and not belonging to a new phylum at all. Another anomalocarid was found in rocks 100 million years younger than the Burgess shale, which means at least some of the strange Cambrian animals persisted well into the Devonian.

Another confusing animal is called Marrella, a common fossil in the Burgess shale. Walcott found the first one in 1909 and called it a lace crab, then decided it was a strange trilobite. It’s small, less than an inch long, or under 2 cm, and has long antennae and legs, and head appendages that sweep back into rear-facing spikes that may have protected its gills. It was probably a scavenger that lived on the bottom of the ocean, and we know some interesting things about it. We have one Marrella fossil that shows an individual partly moulted, so we know it moulted its exoskeleton periodically. We also have some specimens so well preserved that researchers have found a pattern on them that would have diffracted light. In other words, its exoskeleton was iridescent and colorful. Charles Whittington examined Marrella in 1971 and determined that it wasn’t a trilobite, wasn’t a crab or other crustacean, and wasn’t any kind of horseshoe crab. Instead, it’s a stem arthropod like anomalocaris.

Hallucigenia may be the most famous Burgess shale animal, although it’s also been found in fossil beds in other parts of the world. It was first described by Walcott as a polychaete worm. Simon Conway Morris redescribed it in 1977, pointed out that it definitely was not a worm, and gave it its own genus. But no one was really sure what it would have looked like when alive, how it would move around and eat, or what it might be related to. Fossils show a thin, flexible worm-like body with long spines sticking out along its length on one side, and flexible tentacles sticking out along its length on the other side. One end of the body is sort of bulbous and the other blunt, but it’s not clear which is the head and which is the tail. It’s small, only an inch or so long at most, or a few centimeters. Conway Morris thought the animal walked on its stiff spikey legs and the tentacles were for feeding, and that each tentacle might even end in a mouth. Other paleontologists suggested the fossil might be part of a bigger animal, the way Anomalocaris feeding appendages were initially thought to be separate animals.

But after more and better fossils were discovered in China, paleontologists in 1991 realized Hallucigenia had been reconstructed upside down and backwards by Conway Morris. The tentacles were paired legs and the stiff spines probably protected the animal from other things that wanted to swallow it. The bulbous end seems to be a head with two simple eyes and a round mouth, possibly with teeth. Its closest living relation is probably a caterpillar-like land animal called a velvet worm or lobopodian worm, although it’s not actually a worm.

Other Burgess shale animals include a bristle worm, an actual relative of modern shrimp, a relative of the horseshoe crab, something that may be related to modern mantis shrimp, a rare mollusk ancestor that was an active swimmer, and a fishlike animal with short tentacles on its tiny head that may have been a primitive chordate.

Most of the Burgess shale animals that have been studied are now classified as arthropod ancestors. But there are hundreds, if not thousands, of fossil species that paleontologists are still puzzling over, with more yet to be discovered in the Stephen Formation and elsewhere. It’s always possible that some animals that evolved during the Cambrian will surprise us as belonging to a completely new group of animals, and that we really will need to add a couple of phyla to the list.

Another exciting thing to remember is that because life on earth is common and arose relatively soon after the earth was formed, it’s almost 100% certain that some other planets also have life—maybe not planets in our own solar system, although we don’t know for sure yet, but astronomers have discovered lots of planets outside of our solar system. They estimate the Milky Way galaxy alone may contain 100 billion planets. In the past researchers have insisted that only planets similar to ours can support life, but that’s not the right approach. Only planets similar to ours can support life like ours. That’s because we evolved to fit our planet. Life on other planets naturally will evolve to fit those planets. Even here on earth we have extremophiles that survive in environments where most other organisms would be destroyed immediately. So next time you’re outside at night, look up at the stars and give them a little wave. Some curious creature might be standing on a planet’s surface untold light years away, staring into the sky and waving a greeting too.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 068: The Dingiso and the Hoan Kiem Turtle

It’s time to look at two more supposedly mysterious, supposedly identified animals off those “Ten Cryptozoological Animals That Have Been FOUND Please Click Please Click” articles.

First is the dingiso, or bondegezou, which is just about as adorable as an animal can get:

Next is the Hoan Kiem Turtle:

Dat FACE

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re revisiting those “top ten cryptozoological animals found to be real!” clickbait articles that pop up online sometimes. In episode 24 we looked at two animals frequently found on those lists, so let’s examine two more today.

We’ll start in Papua New Guinea, a country that gets mentioned a lot on this podcast. I was curious, so I looked it up and now I’ve learned some geography that I desperately needed to know. Papua New Guinea is a country in the eastern half of the island of New Guinea, just north of Australia. Only Greenland is a bigger island than New Guinea, so we’re not talking a dinky little islet like the ones where cartoon shipwreck survivors end up. New Guinea has a huge mountain range, rainforests, wetlands, savannahs, coral reefs, and pretty much everything else an animal could want. More species live on New Guinea than in all of Australia. More species live on New Guinea than in all of the United States. More species live on New Guinea than in Australia and the United States combined. So it’s not surprising that new species are found there all the time.

People live on the island too, of course, and have for at least 40,000 years, probably much longer. People have lived on the island for so long, in fact, that something like 1,000 different languages are spoken there among the various tribes. The first animal we’re going to learn about today was known to the Moni tribe long before any scientists got wind of it.

The Moni people live in the remote mountainous rainforests of Papua New Guinea. I couldn’t find much information about the Moni except through Christian missionary sites, so as far as I can tell their culture was never studied before it started being influenced by outside groups. But one thing we do know is that the Moni are familiar with a black and white animal called the dingiso, or bondegezou, which holds the spirit of an ancestor. When one is encountered, it will sit up, whistle, and raise a paw in greeting.

No one outside of the Moni tribe paid any attention to this story until the 1980s, when someone sent a photograph of a dingiso to Tim Flannery, an Australian zoologist. He recognized it as a young tree kangaroo, but not one he was familiar with. In May of 1994 he led a wildlife survey expedition in the area and was able to examine a dead dingiso for himself. Sure enough, it was new to science.

The dingiso’s fur is black with white underparts and white markings on the face. Its fur is long and thick to keep it warm in the mountains, since it lives in high elevations just below the tree line. It’s about two and a half feet long, or 75 cm, not counting its tail, which doubles its length. Its face looks something like a bear’s.

Most of the information we have about the dingiso is based on what we know about other tree kangaroos, so may or may not be completely accurate. Females probably give birth to one baby at a time, which stays in its mother’s pouch while it grows. It eats leaves and fruit and lives both in trees and on the ground, although the Moni report that it spends most of its time on the ground.

The dingiso was formally described in 1995. In 2009, a BBC documentary spent eleven days searching for a dingiso with Moni tribesmen as their guides, and finally found and filmed one.

Naturally, the Moni don’t harm the dingiso, since you don’t hurt your ancestors. That has probably saved it from extinction, since the dingiso reproduces slowly and is a docile, harmless animal. Other tribes don’t have the same restriction, though, and hunt the dingiso for food. That and habitat loss due to mining and farming mean the dingiso is endangered. So little is known about it, and so few have ever been seen by scientists, that it could go extinct before we know much more about it than that it exists. But conservation organizations are working to protect it and other animals in New Guinea.

Oh, the whistling and waving activity the Moni describe is probably a threat display. But I like the Moni’s explanation better.

Our next cryptid supposedly identified is the Hoan Kiem Turtle from Vietnam. Specifically, it’s from the Hoan Kiem Lake in Hanoi. According to the story, in the early 15th century emperor Lê Lợi, a great hero who led Vietnam to independence from China, had a magical sword called Heaven’s Will. Depending on which version of the story you hear, the sword was either given to him by a god called the Dragon King, given to him by the Golden Turtle God, or was found in the lake by a fisherman and given to the emperor. One day not long after Vietnam had successfully won independence, the emperor was boating on the lake when a turtle surfaced, grabbed the sword, and disappeared with it into the lake. In other stories, the turtle surfaced and asked for the sword, and the emperor realized it was the Golden Turtle God. Hoan Kiem Lake means “Lake of the Returned Sword.”

The lake isn’t deep, only six and a half feet, or 2 m, at its deepest, and it only covers around 30 acres in the middle of a very large city. There doesn’t seem to be a metric equivalent of acre, but if hectares mean anything to you, 30 acres is a little over 12 hectares.

Softshelled turtles of enormous size have been known in the lake for a long time, specifically the Yangtze giant softshell turtle. It’s the biggest freshwater turtle known, and can measure over six feet long, or almost 2 meters. It lives in rivers and lakes in Vietnam and China and eats pretty much anything, from plants to frogs, fish, crustaceans, and snails. Its nostrils look like a tiny pig’s snout. It’s a shy turtle that doesn’t surface very often, and it’s also extremely rare, almost extinct. There may only be three or four specimens left in the world. Captive breeding has not been successful so far.

So why is the Hoan Kiem Turtle considered a cryptid? Why is it on those identified cryptid lists? Two reasons.

First of all, until its death in January of 2016, there was one in the Hoan Kiem Lake, and rumor had it that this was the same individual that had taken the emperor’s sword back in 1428. Turtles can live for a long time, but probably not for 600 years. But no one knew there was a turtle remaining in the lake after the last one was killed in 1967, not until 1998 when someone caught it on video. The turtle was captured in 2011 for treatment of some injuries, possibly caused by the lake’s pollution, then released, and lived for another five years before it was found dead in the lake.

Second, there’s some controversy regarding whether the Hoan Kiem Turtle is actually a Yangtze giant softshell turtle or a different species. Most researchers think it’s the same species. A few Vietnamese biologists think it’s not, but the DNA studies they cite to back up their claims haven’t been published formally and may not have been conducted correctly.

So while there are mysteries associated with the turtle, it’s not really accurate to call it a cryptid that’s been identified. But that doesn’t mean it’s not really interesting. I hope researchers find more of them in the wild that can be relocated to a safe area where they can breed successfully.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 067: More Sea Monsters

Finally, it’s the follow-up to our first sea monsters episode that sounds so terrible now that I know how to put a podcast together!

Here’s the published drawings of a strange animal seen from the HMS Daedalus:

Here’s Drummond’s sketch of what he saw:

Here’s a sketch of the HMS Plumper animal sighted:

And here’s a sei whale rostrum sticking up out of the water while it’s skim feeding:

Sei whales are neat and have gigantic mouths:

The rotten “sea serpent” that’s actually a decomposing baleen whale:

The Naden Harbour Carcass. It’s the black thing on the table with a white backdrop. It doesn’t look like much, but you probably wouldn’t look like much either after being eaten by a sperm whale:

Unexpected seal says “Hello, I am not a sea serpent, I am a stock photo”:

Hagelund’s sketch of the little animal he caught:

A pipefish with a lollipop tail and some drawings of pipefish:

The strange animal seen from the Valhalla:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Recently I listened to episode six, about sea monsters. It’s climbed to our third most popular episode and when I heard it again, oh man, I winced. I was still really new to podcasting then and that episode sounds like someone reading a book report out loud to the class. So it’s time to do a new sea monsters episode and explore more mysteries of the world’s oceans, hopefully with a lot more vocal expression.

On August 6, 1848, about 5 o’clock in the afternoon, the captain and some of the crew of HMS Daedalus saw something really big in the water. The ship was sailing between the Cape of Good Hope and St. Helena on the way back to England from the East Indies. It was an overcast day with a fresh wind, but nothing unusual. The midshipman noticed something in the water he couldn’t identify and told the officer of the watch, who happened to be walking the deck at the time with the captain. Most of the crew was at supper.

This is what the captain, Peter M’Quhae, described in his report when the ship arrived at Plymouth a few months later.

“On our attention being called to the object, it was discovered to be an enormous serpent, with head and shoulders kept about four feet constantly above the surface of the sea, and, as nearly as we could approximate, by comparing it with the length of what our main-topsail yard would show in the water, there was at the very least sixty feet of the animal à fleur d’eau [that means at the water’s surface], no portion of which was, to our perception, used in propelling it through the water, either by vertical or horizontal undulation. It passed rapidly, but so close under our lee quarter, that had it been a man of my acquaintance, I should easily have recognized his features with the naked eye; and it did not, either in approaching the ship or after it had passed in our wake, deviate in the slightest degree from its course to the S.W., which it held on at the pace of from twelve to fifteen miles per hour, apparently on some determined purpose.

“The diameter of the serpent was about fifteen or sixteen inches behind the head, which was, without any doubt, that of a snake; and it was never, during the twenty minutes that it continued in sight of our glasses, once below the surface of the water; its colour a dark brown, with yellowish white about the throat. It had no fins, but something like a mane of a horse, or rather a bunch of seaweed, washed about its back.”

The original Times article also mentioned large jagged teeth in a jaw so large that a man could have stood up inside the mouth, but this seems to be an addition by the article’s writer, not the captain or crew.

The officer of the watch, Lieutenant Edgar Drummond, also published an excerpt from his own journal about the sighting, which appeared in a journal called the Zoologist in December 1848. It reads, “In the 4 to 6 watch, at about five o’clock, we observed a most remarkable fish on our lee quarter, crossing the stern in a S.W. direction; the appearance of its head, which, with the back fin, was the only portion of the animal visible, was long, pointed, and flattened at the top, perhaps ten feet in length, the upper jaw projecting considerably; the fin was perhaps twenty feet in the rear of the head, and visible occasionally; the captain also asserted that he saw the tail, or another fin about the same distance behind it; the upper part of the head and shoulders appeared of a dark brown colour, and beneath the under jaw a brownish white. It pursued a steady undeviating course, keeping its head horizontal with the surface of the water, and in rather a raised position, disappearing occasionally beneath a wave for a very brief interval, and not apparently for purposes of respiration. It was going at the rate of perhaps from twelve to fourteen miles an hour, and when nearest, was perhaps one hundred yards distant. In fact it gave one quite the idea of a large snake or eel. No one in the ship has ever seen anything similar, so it is at least extraordinary. It was visible to the naked eye for five minutes, and with a glass for perhaps fifteen more. The weather was dark and squally at the time, with some sea running.”

To translate some of this into metric, 60 feet is a little more than 18 meters, the 15 inch diameter the captain reported of the neck just behind the head is about 38 cm, and the speed of 13 mph is almost 21 km per hour.

A lot of people wrote in to the Times to discuss the sighting and suggest solutions. One writer claimed the animal couldn’t be a snake or eel, since a side to side undulating motion would have been obvious as the animal propelled itself with its tail. Another said it had to have been a snake but the undulations were only in the tail, which was below the water. Yet another article suggested it was a monstrous seal or other pinniped. Captain M’Quhai took exception to that one and wrote back stressing that he was familiar with seals and this definitely had not been one. Other suggestions included a basking shark or some other unknown species of shark, a plesiosaur, or a giant piece of seaweed.

Other similar sightings are on record, including a very similar one from the very end of 1849 off the coast of Portugal. In that one, an officer on HMS Plumper reported seeing “a long black creature with a sharp head, moving slowly, I should think about two knots, through the water, in a north westerly direction, there being a fresh breeze at the time, and some sea on. I could not ascertain its exact length, but its back was about twenty feet if not more above water; and its head, as near as I could judge, from six to eight. I had not time to make a closer observation, as the ship was going six knots through the water, her head E. half S., and wind S.S.E. The creature moved across our wake towards a merchant barque on our lee-quarter, and on the port tack. I was in hopes she would have seen it also. The officers and men who saw it, and who have served in parts of the world adjacent to whale and seal fisheries, and have seen them in the water, declare they have neither seen nor heard of any creature bearing the slightest resemblance to the one we saw. There was something on its back that appeared like a mane, and, as it moved through the water, kept washing about, but before I could examine it more closely, it was too far astern.”

Illustrations of the Daedalus sea serpent, which M’Quhai approved, were published in the Times. But the original sketch made by Drummond in his journal the day he saw the animal gives us a much better idea of what it looked like and what it probably was. The sketch accompanying the Plumper sighting reinforces the solution. It’s probable that both sightings, and probably many others, were of a sei whale skim feeding.

The sei is a baleen whale that’s generally considered the fourth largest whale, with some individuals growing almost 65 feet long, or nearly 20 meters. Females are larger than males. It lives all over the world although it likes deep water that isn’t too cold or too hot. It’s a mottled dark grey. Its fins are relatively short and pointed, its dorsal fin is tall and fairly far back on the animal’s body. Its tail flukes aren’t usually visible. Its rostrum, or beak, is pointed and short baleen plates hang down from it. The sei whale’s baleen is unusually fine, with a fringe that is curly and white and looks something like wool.

Unlike some whales, it doesn’t dive very deeply or for very long, and it’s usually relatively solitary. It spends a lot of its time at or near the surface, frequently skim feeding to capture krill and other tiny food. It does this by cruising along with its mouth open, often swimming on its side. It has throat pleats that allow its huge mouth to expand and hold incredible amounts of water. The whale closes its mouth and raises its huge tongue, forcing the water out through its baleen plates. Whatever krill and fish are caught by the baleen, the whale swallows.

A lot of baleen whales skim feed occasionally, but the sei is something of a skim feeding specialist. And it has a narrow, pointed rostrum that often sticks up out of the water as it skim-feeds, with pale baleen hanging down. This might easily look like a long snakey animal with a small head held up out of the water, especially in poor viewing conditions when the people involved are convinced they’re looking at a sea serpent. The sei whale is a fast swimmer too, easily able to cruise at the speeds described by the Daedalus and Plumper crews.

It’s not a perfect match, of course. The sei whale’s dorsal fin is pretty distinctive and if seen properly would have immediately told the crew they were looking at a whale. No one reported seeing anything that could be considered a whale’s breath either, sometimes called a spout. Since whales exhale forcefully and almost empty their lungs when they do, the cloud of warm air expelled looks like steam and is a tell-tale sign of a whale. Whales also don’t have hair on their rostrum that could wash around like a mane on a sea serpent’s neck. So while it seems likely that the Daedalus and Plumper sightings were of sei or other baleen whales skim feeding, we can’t know for sure.

Incidentally, the sei whale wasn’t fully protected from whaling until 1986. Japan still hunts sei whales, supposedly for scientific purposes but no one’s really fooled. The whales they catch are sold for meat. In 2010, a restaurant in Los Angeles closed after being caught serving sei whale meat. The sei whale is still endangered but if people would stop killing it maybe it would be doing better. Whalers reported that when harpooned, sei whales would cry audibly, which apparently disturbed the whalers. Maybe if your job involves making animals cry you should go back to school and get a degree in nursing or teaching or something else that will make the world a better place, not worse.

Another whale is responsible for a mystery carcass washed up in the Philippines in 2017. The carcass looks like a dragon-like sea monster, but that’s due to decomposition. It’s actually a baleen whale, probably a gray whale, that had apparently been floating around for a while, getting nastier and more nibbled on every day.

Speaking of nasty, nibbled-on dead things, and whaling, in 1937 a sperm whale brought to Naden Harbor Whaling Station on a small Canadian island for processing turned out to have something so extraordinary in its stomach that the whalers took pictures of it. It was about ten feet long, or three meters, with a head said to be horselike or camel-like in shape with a drooping nose. Its body was long and thin, and it had short pectoral flippers and a single fluke or spade-shaped end on its tail. Its skin was either smooth or furry depending on which witness you believe, and there were signs it may have had baleen or gill rakers.

The carcass wasn’t kept, but pieces of it were reportedly sent to the British Columbia Provincial Museum, whose museum director suggested it might be a fetal baleen whale. Locals thought it might be a young cadborosaurus, a sea serpent occasionally sighted off the coast of British Columbia. It gets its name from Cadboro Bay, and is usually called Caddy. Caddy is generally described as 5 to 15 meters long, or 16 to almost 50 feet long, with a horse-like or camel-like head, big eyes, and a tail with horizontal flukes like a whale’s. Some witnesses say it has brown fur and horns or ears of some kind.

In 1992, a retired museum researcher named Ed Bousfield found three photos of the Naden Harbor carcass, long believed lost. This sparked up lots of debate, naturally, and lots of suggestions as to what the animal might be—a basking shark, a sea lion or other pinniped, an eel, an oarfish, and many others.

The problem, of course, is that the pictures aren’t very clear, we don’t have the actual body to examine, and the carcass had spent some time in the belly of a sperm whale so was in the process of being digested. But the whalers who found it had never seen anything like it before.

In 1968, a man called William Hagelund was yachting with his family when he heard splashing and saw a strange creature in the water. It was small, only about 16 inches long, or 40 cm, so he lowered a dinghy and caught it in a net. It had what appeared to be armored plates on its back, its flippers were odd-shaped, its snout was elongated but widened at the end, and it had a downy yellow fuzz or fur underneath. Hagelund put it in a bucket but it was so frantic to get out that he worried it would die. He made a drawing of it and released it.

Hagelund thought he’d caught a baby Caddy. But he didn’t share his story until twenty years later, when he wrote a book called Whalers No More.

But while Hagelund’s creature probably wasn’t a baby Caddy, it might have been something almost as strange. The pipefish is a fish related to the seahorse, and it resembles a seahorse that has straightened out. Some species have prehensile tails, some have little paddles at the end of their tails. Some are stripey. Like seahorses, the pipefish male has a brood pouch where he broods the female’s fertilized eggs. Not only does he protect the eggs, he supplies them with nutrients from his body while they grow. Because the female can lay more eggs than the male can hold in his brood pouch, females of some species of pipefish will have more than one mate. Pipefish rarely grow longer than around 16 inches, or 40 cm and have armored plating. The yellow fuzz Hagelund reported might have been algae.

It’s probable that at least some Caddy sightings are of moose swimming to or from one of the many small islands in the area. Moose will also dive to reach aquatic plants. Other Caddy sightings are probably of the Northern sea lion or Northern elephant seal, both of which are common in the area for at least part of the year.

Pinnipeds, in fact, may be the biggest factor to consider in any sea serpent or sea monster sightings. I learned this interesting fact after doing the research for the previous sea monster episode, but pinnipeds will stand vertically in the water to look around above the surface, and a big elephant seal can raise its head over three feet, or one meter, out of the water. If you’re in a boat and a big head and neck pops up out of the water nearby, your first thought is not going to be, “Oh, that’s an unexpected seal.” It’s going to be, “THIS GIANT ANIMAL IS GOING TO EAT ME.”

But that doesn’t mean there aren’t definite sea monsters out there. Far from it. On December 7, 1905, two naturalists spotted an animal they couldn’t recognize off the coast of Brazil.

The pair were Michael Nicholl and Edmund Meade-Waldo, part of a research team on the Valhalla. The ship was about 15 miles, or 24 km, from the mouth of the Parahiba River. At 10:15 a.m. Nicoll spotted a dorsal fin above the water that he didn’t recognize, about 100 yards away, or 91 meters. He asked Meade-Waldo to take a look, and he couldn’t identify the fish either. The fin was roughly rectangular, close to two feet high and six feet long, or 61 cm and 1.8 meters, and dark brown with an edge Meade-Waldo described as crinkled.

Meade-Waldo was looking at the fin through his binoculars when a head and long neck emerged from the water in front of the fin. He estimated it as 7 or 8 feet high, or over 2 meters, with a brown, turtle-like head. The animal moved its neck from side to side. They watched it until it was out of sight as the ship sailed away, but early the next morning, around 2 am, three crew members spotted what they thought was the same animal swimming underwater.

Nicholl and Meade-Waldo published their report in 1906. We still have no idea what they saw.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 066: TYRANNOSAURUS REX

Thanks to Damian, who suggested T. rex as a topic! Let’s learn all about the T. rex and especially the most famous and controversial specimen ever found, Sue.

A T. rex:

Sue, also a T. rex:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Our topic this week is a suggestion from Damian, who wants to hear about the one, the only, the tyrant lizard king with massive everything except arms, Tyrannosaurus rex. Aw yeah

You probably know a lot about T. rex without realizing it. It’s THE dinosaur, the one people think of first when you say dinosaur. But a lot of popular knowledge about the T. rex is actually out of date, so let’s find out what’s really going on with that big toothy theropod.

First of all, T. rex did not live in the Jurassic period. It lived much later, in the late Cretaceous, around 66 million years ago. But I guess Late Cretaceous Park doesn’t have quite the same ring to it. It was one of the last non-avian dinosaurs, dying off in the Cretaceous-Paleogene extinction. It lived in what is now western North America, with close relatives in many other parts of the world.

T. rex was a big animal, no doubt about it. The biggest individual we know of, called Sue, stood around 12 feet tall, or a little over 3 ½ meters at the hips. The weight of its massive head was balanced by its long tail. Nose to tail it was around 40 feet long, or about 12 meters. Plenty of other dinosaurs were bigger than T. rex, but T. rex was the biggest land predator we know of.

While T. rex had long legs, its arms are famously teeny, only about three feet long, or one meter. That’s barely longer than an adult human’s arm. But recent research shows that the arms weren’t weak. The bones were strong and so were the muscles, although the arm had a limited range of motion and only two toes. Many researchers think T rex used its arms to hold onto struggling prey.

Since all we have are fossils, we don’t really know what T. rex looked like beyond its bones and muscles, which we know about from study of muscle attachment sites on the bones. Some researchers think it probably had at least some feathers, since we have feather impressions from some of T rex’s close relations. Baby T rex might have had feathers and shed them as it grew up, or it might have had feathers its whole life. We have fossilized skin impressions from a specimen found in 2002 that show scales on the tail, neck, and hip, so many researchers suggest that T rex only had feathers on its head and back, possibly for decoration or protection from the elements. Closely related species show feather impressions over all of the body, so we know T rex’s cousins were feathered.

We also know that T rex had large flat scales on its snout with patches of keratin in the middle, which probably contained sensory bundles. These same patches are present in crocodilians, which help crocs move their eggs and babies without harming them, and help them sense the temperature of their nests.

In 2016, researchers discovered that T rex’s teeth contained enamel. This makes the teeth harder, but enamel has to stay damp. That means T rex probably had lips and its teeth wouldn’t have been visible except when the mouth was open. If that sounds weird, most reptiles have lips. Crocodilians don’t, so some of their teeth show when their mouths are closed, but they also live in the water so don’t have to worry about dry mouth.

Just to be clear, reptile lips aren’t big kissy lips. They’re just skin that allows the teeth to be completely enclosed within the mouth when the jaws are closed, keeping the mouth from drying out.

In 2005, paleontologist Mary Schweitzer found soft tissue in the femur, or thigh bone, of a 68 million year old T rex. The tissue contained blood vessels and a substance called medullary bone, which is only present in female birds right before they lay eggs. Medullary bone helps the bird’s body make shells for her eggs. Since then, researchers have found soft tissue within bones of two more T rexes and a hadrosaur. They’re not yet sure how the soft tissue was preserved. The blood vessels resemble those of ostriches more than they resemble crocodilian blood vessels.

For a long time scientists thought that dinosaurs like T rex stood upright with the tail acting as a prop. You know, sort of like Barney. This was recognized as wrong by around the 1970s, but paleontologists are still figuring out the details about how T rex moved around. For instance, we still don’t know if T rex could run. Many researchers now think it probably could, although it might not have been able to run faster than around 25 mph, or 40 km/h. That’s about the speed of a human sprinter. Some of T rex’s bones are hollow to reduce weight, and its feet show adaptations to withstand stresses. But we don’t know for sure, and studies continue using ever more sophisticated mathematical models.

We also don’t know if T rex was warmblooded like birds, or cold-blooded like reptiles. Considering its close relationship to birds, many researchers think it was warm-blooded, properly called endothermic. An endothermic animal can regulate its body temperature internally regardless of the air temperature.

T rex had excellent vision and sense of smell. It could hear very well too, especially low-frequency sounds. It had a massively strong bite, probably the strongest bite force of any land animal. Its bite could crush bone. It would have been a deadly hunter but probably also scavenged, either by stealing kills from other predators or eating anything dead it came across.

We have fossils that show damage from T rex bites, including to other T rexes. It’s possible T rexes fought, either over food or mates, or that bigger T rexes sometimes ate smaller ones. All T rex remains show damage, though, since the life of a predator is a tough one, and the bigger the animals you hunt, the more damage you’re going to take.

So that’s a lot of up-to-date information about Tyrannosaurus rex, or as up-to-date as I could find. Lots of paleontologists are studying T rex, so more information gets published all the time. While I was researching, though, I kept running across interesting details about the specimen nicknamed Sue.

Sue was discovered in August 1990 in South Dakota, on the Cheyenne River Indian Reservation, by paleontologist Sue Hendrickson. It was the last day of the dig and in fact the group was about to head home with a bunch of Edmontosaurus fossils when they noticed their truck had a flat tire. While the tire was getting changed, Sue Hendrickson took the opportunity to poke around for any last-minute fossils. She spotted some loose bones that had weathered out of a cliff, and saw bigger bones sticking out of the cliff above her, so she took the loose bones back to the dig supervisor and president of the Black Hills Institute, Peter Larson. Larson recognized them as T rex bones and immediately decided they weren’t going to leave that day after all.

It was a good decision, because once the bones were excavated, it turned out to be not only the biggest T rex skeleton ever discovered, but the most complete, and in excellent condition.

The group took the fossils back to the Black Hills Institute to clean and prepare them, and that should have been that. But unfortunately, T rex remains are worth a lot of money and that caused issues almost immediately.

The Black Hills Institute had gotten permission to excavate Sue the dinosaur, and had paid the landowner $5,000. The land was owned by Maurice Williams, a member of the Sioux tribe, and since his land was also part of the Sioux reservation, the tribe said the fossils belonged to the tribe, not just Williams.

It’s easy to think of Williams as greedy, but the situation was far more complicated than it sounds. Peter Larson’s group weren’t just in it for the science. They were commercial bone hunters, which means they would have sold the T rex fossil after it was prepared and kept all the money. They had already started taking offers for the sale when Williams sued. Not only that, Williams’s land was held in trust by the government, which meant Larson was supposed to get permission from not just Maurice Williams but the Department of the Interior to excavate fossils on the land, and he hadn’t even asked.

It was a lengthy, complicated trial. Even the FBI had to get involved. They and the South Dakota National Guard seized the fossils and kept them in storage until the trial ended. Peter Larson was charged with fossil theft—not of Sue the T rex, but of other fossils that didn’t have anything to do with Williams. He was found guilty of theft of fossils from public land and lying on customs documents about fossil deals in Peru and Japan, and spent 18 months in jail.

The court decided that Maurice Williams did own the fossils. Williams contacted the auction house Sotheby’s to sell them.

The paleontological community panicked at this, because when I say T rex fossils are worth a lot of money, I don’t mean it’s just scientists who fight each other to buy them. I mean rich people want them for private collections. Fossils in private collections are usually never studied, so they’re nothing more than decorations and don’t add anything to our collective knowledge of creatures that lived in the past. There’s nothing wrong with owning fossils of common animals, of course, but when it’s an important find like this one, it needs to be prepared properly, studied by experts all over the world, and put on public display.

So the Chicago Field Museum of Natural History scrambled to find funding to bid on the T rex. They asked lots of companies and individuals to donate, and those companies and individuals stepped up—companies like McDonald’s and Walt Disney Parks, so good for them.

The auction was held in October 1997. The starting bid was $500,000. At the time, the top amount paid for a fossil had been around $600,000, but Sotheby’s expected this sale to top one million. We don’t know who bid because Sotheby’s keeps this information a secret, but we do know that the Smithsonian had been prepared to spend 2 ½ million.

The auction only lasted eight minutes and the Field Museum won. It paid $8.3 million dollars for Sue the T rex, of which 7.6 million went to Williams. Disney was given a replica of Sue’s skeleton for display and McDonald’s was given two replicas.

It’s great that Sue was bought by an institution that has made the fossil available for study and put it on permanent display to the public. But because the auction went for so much, and was so well publicized, it had some negative repercussions. For a few years after the auction, all fossil auctions were much higher than before, stretching museum budgets to the limits. It is now much harder for paleontologists to get permission to dig on private property, and people started stealing fossils from dig sites, thinking they might get rich.

Williams was fined for selling dinosaur bones without a business license. He died in 2011 at the age of 85and I couldn’t find out what he did with the money he received from the auction, but apparently he kept it in his family and did not donate any to his tribe. While the Cheyenne River tribe’s policy is to leave fossils undisturbed, the nearby Standing Rock Reservation has its own paleontology department and museum. The group visits local schools to give presentations on dinosaurs found in the area.

In 2002 Larson and his then-wife, Kristin Donnan, published a book called Rex Appeal, and in 2014 made a documentary from the book called Dinosaur 13. Critics have pointed out that both book and film tell a one-sided story, painting Larson as an innocent who was wronged by the system and ignoring Williams’s point of view entirely.

It sounds like Williams was actually kind of a jerk. But it also sounds like Larson was kind of a jerk. People get weird when a lot of money is on the line, and at least Larson truly loves paleontology and has contributed a lot to the field—you know, when he’s not selling fossils to private collectors.

As for Sue the T rex, we don’t actually know if the dinosaur was male or female, but it usually gets referred to as a she because it’s named after Sue Hendrickson, the discoverer. Sue the T rex has been studied extensively so we know a lot about her. She was 28 years old when she died and had arthritis in her tail, had recovered from some serious injuries including broken ribs and a torn tendon in her right arm, and her skull shows pathology that might have killed her. Some researchers think Sue died from a parasitic infection from eating diseased meat. Modern birds sometimes contract what may be the same parasite, which causes swelling of the throat that ultimately starves the bird to death.

A few months ago as of this recording, in February of 2018, Sue was dismantled and removed temporarily from display so that some missing small bones can be added to the skeleton and adjustments made to her posture. She will then be moved to her own room in the Field Museum in 2019. Sue also has her own Twitter account, @SUEtheTrex. It’s actually pretty funny. I just followed it.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

 

Episode 065: Animals that eat ants

We’re not looking at just any old insectivores in this episode, we’re looking at the big three of ant-eating mammals: the giant anteater, the aardvark, and the pangolin!

A giant anteater and baby:

Teeny anteater mouth alert! Also long tongue:

An aardvark walking with style:

An aardvark. Look at that tongue! And those claws!

An Indian pangolin. Please do not eat:

A pangolin ball. Please do not kick:

Save the Pangolins organization

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about the anteater, the aardvark, and the pangolin, all of them specialized eaters of ants. Are they related? How do we tell them apart?

The anteater is a South and Central American animal related to sloths and, more distantly, armadillos. The aardvark is an African animal related to several rodent-like animals including the golden mole, which is not a mole, and the elephant shrew, which is neither an elephant nor a shrew. Although, as it happens, the elephant shrew is actually related to the elephant. So is the aardvark, although these connections are pretty darn distant. The pangolin is an Asian and African animal that’s not very closely related to anything.

Let’s start with the giant anteater.

The giant anteater can grow over seven feet long if you include the tail, or more than 2 meters. It’s brown and gray with markings that look like go-faster stripes. Its head is small and elongated. You know how a cartoon character can cram its head into a bottle and its head stays bottle-shaped? It kind of looks like the giant anteater did that. Its snout is shaped like a tube, with nostrils and a tiny mouth at the end. It can’t open its jaws very far. It has a short upright mane along its spine all the way down its back, which blends with its bushy tail. Its tail is so awesomely furry that when an anteater sleeps, it covers its body with its tail like a blanket.

Anteaters eat ants, although they also love termites and will eat other small insects and insect larvae. The giant anteater uses its massive front claws to dig into anthills. Then it flicks its tongue really fast, catching insects with a combination of tiny hooklets on the tongue and sticky saliva. An anteater’s tongue is over two feet long, or 60 cm, so long that when the anteater isn’t actually eating, the tongue rolls up at the back of its skull. The base of its tongue is attached not to its throat but to its sternum, also called the breastbone.

A feeding anteater eats as many insects as it can catch in a minute or two, then moves on to find a new anthill. It does this to avoid as many stings and bites as possible. To conserve energy, the anteater’s body temperature is low to start with and drops when the animal is asleep.

The anteater doesn’t have teeth. It crushes insects against the top of its mouth before swallowing them, and its stomach acts like a bird’s crop. The anteater may deliberately eat sand or grit the way birds do to help pulverize the insects it’s eaten. Its eyesight isn’t very good so it hunts mostly by scent.

The giant anteater knuckle-walks on its forepaws because its front claws are so big. When it feels threatened, it will rear up on its hind legs and spread its forelegs so it can slash with its claws. Anteaters can kill jaguars and other predators, including humans. Occasionally anteaters will fight over territory, especially males. Sometimes during a fight, one anteater will climb on the other one and ride it around, which probably really annoys the anteater that’s being ridden.

The female anteater has one baby at a time, which rides on its mother’s back until it’s big enough to keep up with her on its own. Its markings blend with its mother’s so predators don’t notice it.

So that’s the giant anteater. Now let’s look at the aardvark.

The aardvark is about the same size as the anteater and also eats ants, termites, and other insects. It has a long head, but unlike the anteater, it does have teeth. The incisors and canines it’s born with fall out when it’s an adult, and it never regrows them, but it does retain its cheek teeth. The teeth are small and grow constantly throughout the aardvark’s life, since they wear down quickly due to the lack of enamel.

The aardvark isn’t super furry like the anteater. Its body is shaped something like a pig with a long tail, and it has sparse hair and long ears, whereas the giant anteater has small ears. It’s mostly nocturnal and sleeps during the day in its burrow, where it’s cooler. While it doesn’t have huge claws on its forefeet, it does have tough hoof-like nails that it uses to break apart termite nests and dig burrows. Its skin is thick and it can run and dig quickly to escape predators. It can also swim well.

The aardvark has a good sense of smell and hearing, but its eyesight isn’t all that great. Its snout is more piglike than the anteater’s, with large nostrils protected by hair. Its tongue isn’t as long as the anteater’s, only about a foot long, or 30 cm.

In addition to ants and termites, the aardvark eats one other thing, a fruit called the aardvark cucumber. It’s an actual cucumber, a round fruit about the size of a small child’s fist, but the fruit grows underground. It has a water-resistant skin that keeps it from rotting while it waits for months for an aardvark to dig it up and eat it. The aardvark is the only animal that spreads the aardvark cucumber’s seeds. Researchers think the reason aardvarks have teeth at all is to eat these cucumbers, and that it eats the cucumbers because of their high water content. The seeds travel through the aardvark’s digestive system, and since the aardvark buries its poop like a cat, the cucumber seeds are all ready to sprout.

Female aardvarks have one baby at a time, which stays in the burrow until it’s old enough to follow its mother around. The aardvark ranges widely while it searches for insects, and if it encounters a predator it may dig a burrow to hide in. It can dig a burrow the length of its body in only about five minutes. Sometimes it will dig a temporary burrow to rest in. Empty aardvark burrows make great homes for other animals, from warthogs to various bird species. Even a type of bat roosts in old aardvark burrows.

So that’s the aardvark. Now let’s learn about the pangolin.

At first glance, the pangolin looks nothing like its ant-eating friends from other lands. It’s a mammal, but it’s covered in scales except for its belly and face. Sometimes it’s called the scaly anteater, in fact. Its sharp-edged, overlapping scales are made of keratin. When it’s threatened, it rolls up in a ball with its tail over its face.

The pangolin’s body shape is very similar to the giant anteater’s and the aardvark’s. There are a number of species in three genera of the family Manidae, but we’ll look at just one today, the Indian pangolin. It lives in India and surrounding areas and is about four feet long, or 120 cm, including the tail. It has a humped back like an aardvark, small ears like a giant anteater, and like both those animals its legs are relatively short. Its muzzle is long with a nose pad at the end, it has a long sticky tongue, and it has no teeth. It’s nocturnal and lives in burrows, and it uses its big front claws to dig into termite mounds and ant colonies. Like the others, it has poor vision but a good sense of smell.

It’s mostly solitary and gives birth to one baby at a time, or rarely twins. The baby rides on its mother’s tail, and if she has to roll up to protect herself, she holds her baby against her belly and rolls up around it. Newborn pangolins have soft scales.

There used to be an enormous species of pangolin in Asia, whose remains have been found in Java, India, and other places. The bones date to around 45,000 years ago but we don’t have enough remains to get a good idea of when the giant Asian pangolin actually went extinct. It was probably around eight feet long including the tail, or almost 2.5 meters. People native to an island called Rintja in Indonesia tell stories about the veo, a scaly animal ten feet long, or three meters, that sounds exactly like a giant pangolin. So it’s possible that these giant pangolins didn’t die out until humans encountered them.

Unfortunately for the pangolin, its scales make it sought after by humans for decoration. People also eat them. In some countries, like Vietnam and China, pangolin meat is an extremely expensive delicacy, which means poachers can get a lot of money for them. Habitat loss is also making it tough for the pangolin. All species of pangolin in Asia are endangered or critically endangered, while all species of pangolins in Africa are vulnerable. Pangolins also don’t do well in captivity so it’s hard for zoos to help them.

Pangolins just walk to trundle around eating ants. Why are people so mean?

I’ll put a link in the show notes to the Save Pangolins organization if you want to contribute. All sales of cute pangolin merch from their store also goes toward helping stop pangolin poaching and smuggling.

Scientists used to think that anteaters, aardvarks, and pangolins were closely related since they share so many similarities. Instead, they show convergent evolution, where they inhabit a similar ecological niche and therefore evolve to look similar. You know what the pangolin is most closely related to? Carnivores, including cats and dogs and bears.

So it’s probably safe to assume at this point that if you want to eat mostly ants and termites, you need a long thin snout, a super-long sticky tongue, and big claws for digging. Personally, I would rather have pizza.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 064: Updates and the Nandi Bear

It’s update week! I call myself out for some mistakes, then catch us all up on new information about topics we’ve covered in the past. Then we’ll learn about the Nandi bear, a mystery animal that is probably not actually a bear.

Check out Finn and Lila’s Natural History and Horse Podcast on Podbean!

Check out the Zeng This! pop culture podcast while you’re at it!

A new species of Bird of Paradise:

Buša cattle:

Further reading/watching:

http://www.sci-news.com/biology/vogelkop-superb-bird-of-paradise-05924.html

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to dig into some updates to previous episodes! Don’t worry, it’ll be interesting. We’re also going to look at a mystery animal we haven’t examined before.

First, though, a big shout-out to Sir Finn Hayes, a long-time listener who has started his own podcast! It’s called Finn’s Natural History, although now I see it’s been renamed Finn and Lila’s Natural History and Horse Podcast, and you can find it on Podbean. I’ll put a link in the show notes. The great thing is, Finn is just ten years old but he and his younger sister Lila are already dropping knowledge on us about animals and plants and other things they find interesting. So give their podcast a listen because I bet you’ll like it as much as I do.

Before we get into the updates, let me call myself out on a few glaring mistakes in past episodes. In episode four, I called my own podcast by the wrong name. Instead of Strange Animals, I said Strange Beasties, which is my Twitter handle. In episode 29, I said Loch Ness was 50 miles above sea level instead of 50 feet, a pretty big difference. In episode 15 I called Zenger of the Zeng This! podcast Zengus, which is just unforgiveable because I really like that podcast and you’d think I could remember the cohost’s name. There’s a link to the Zeng This! podcast in the show notes. It’s a family-friendly, cheerful show about comics, movies, video games, and lots of other fun pop culture stuff.

If you ever hear me state something in the podcast that you know isn’t true, definitely let me know. I’ll look into it and issue a correction when appropriate. As they say on the Varmints Podcast, I am not an animal expert. I do my best, but sometimes I get things wrong. For instance, in episode 60, I said sirenians like dugongs and manatees have tails in place of hind legs like seals do, but sirenian tails actually developed from tails, not hind legs. Pinniped tails developed from hind legs and have flipper-like feet.

Anyway, here are some updates to topics we’ve covered in past episodes. It isn’t all-inclusive, mostly just stuff I’ve stumbled across while researching other animals.

In episode 47 about strange horses, I talked a lot about Przewalski’s horse. I was really hoping never to have to attempt that pronunciation again, but here we are. A new phylogenetic study published in February of 2018 determined that Przewalski’s horse isn’t a truly wild horse. Its ancestors were wild, but Przewalski’s horse is essentially a feral domestic horse. Its ancestors were probably domesticated around 5,500 years ago by the Botai people who lived in what is now northern Kazakhstan. The Przewalski’s horse we have now is a descendant of those domestic horses that escaped back into the wild long after its ancestors had died out. That doesn’t mean it’s not an important animal anymore, though. It’s been wild much longer than mustangs and other feral horses and tells us a lot about how truly wild horse ancestors looked and acted. Not only that, its wild ancestor is probably a different species or subspecies of the European wild horse, which was the ancestor of most other domestic horses. The next step for the team of researchers that conducted this study is figuring out more about the ancestors of domestic horses.

The mystery cattle episode also has an update. I didn’t mention Buša cattle in that episode, but I just learned something interesting about it. The Buša is a rare breed of domestic cow that developed in southeastern Europe. It’s a small, hardy animal well adapted to mountainous terrain, and it turns out that it’s the most genetically diverse breed of cattle out of sixty studied. The research team is working to help conserve the breed so that that genetic diversity isn’t lost.

Right after episode 61, where we talked about birds of paradise, researchers announced a new species of bird of paradise! The bird was already known to scientists, but they thought it was just a subspecies of the Superb Bird-of-Paradise. But new video footage of a unique mating dance helped researchers determine that this wasn’t just a subspecies, it was different enough to be its own species. It’s called the Vogelkop Superb Bird of Paradise, and the Superb Bird of Paradise is now called the Greater Superb Bird of Paradise to help differentiate the two species. I’ll put a link in the show notes to an article that has the video embedded if you want to watch it. It’s pretty neat.

In episode 25 we learned about Neandertals, and I said we didn’t have much evidence of them being especially creative by human standards. That was the case when I did my research last summer, but things have definitely changed. In February 2018 archaeologists studying cave paintings in Spain announced that paintings in at least three caves were made by Neandertals and not humans. The paintings have been dated to over 64,000 years old, which is 20,000 years before humans showed up in the area. The precise dating is due to a new and much more accurate dating technique called the uranium-thorium method, which measures the tiny deposits that build up on the paintings. So Neandertals might have been a lot more creative than we’ve assumed. Researchers are now looking at other cave art and artefacts like jewelry and sculptures to consider whether some might also have been made by Neandertals.

New studies about human migration out of Africa have also been published since our humans episode. Human fossils and stone tools found in what is now a desert in Saudi Arabia have been dated to 90,000 years ago, when the area was lush grassland surrounding a lake. Until this finding, researchers thought humans had not settled the area until many thousands of years later.

I think it was episode 27, Creatures of the Deeps, where I mentioned the South Java Deep Sea Biodiversity Expedition. Well, in only two weeks that expedition discovered more than a dozen new species of crustacean, including a crab with red eyes and fuzzy spines, collected over 12,000 animals to study, and learned a whole lot about what’s down there.

One thing I forgot to mention in episode 11 is that the vampire bat’s fangs stay sharp because they lack enamel. Enamel is a thin but very hard mineral coating found on the teeth of most mammals. It protects the teeth and makes them stronger. But vampire bats don’t chew hard foods like bones or seeds, and not having enamel means that their teeth are softer. I tried to find out more about this, like whether the bat does something specific to keep its teeth sharp, like filing them with tiny tooth files, but didn’t have any luck. On the other hand, I did learn that baby bats are born bottom-first instead of head-first, because this keeps their wings from getting tangled in the birthing canal.

Many thanks to Simon, who has sent me links to several excellent articles I would have missed otherwise. One is about the controversy about sea sponges and comb jellies, and which one was the ancestor of all other animals. We covered the topic in episode 41. Mere weeks after that episode went live, a new study suggests that sponges win the fight. Hurrah for sponges!

Simon also sent me an article about the platypus, which we learned about in episode 45. There’s a lot of weirdness about the platypus, so it shouldn’t be too surprising that platypus milk contains a unique protein so potently antibacterial that it could lead to the development of powerful new antibiotics. Researchers think the antibacterial properties are present in platypus milk because as you may remember, monotremes don’t have teats, just milk patches, and the babies lick the milk up. That means the milk is exposed to bacteria from the environment, so the protein helps keep platypus babies from getting sick.

Simon also suggests that in our mystery bears episode, I forgot a very important one, the Nandi bear! So this sounds like the perfect time to learn about the Nandi bear.

I had heard of the Nandi bear, but I had it confused with the drop bear, an Australian urban myth that’s used primarily to tease tourists and small children. But the Nandi bear is a story from Africa, and it might be based on a real animal.

It has a number of names in Africa and sightings have come from various parts of the continent, but especially Kenya, where it’s frequently called the chemosit. There are lots of stories about what it looks like and how it acts. Generally, it’s supposed to be a ferocious nocturnal animal that sometimes attacks humans on moonless nights, especially children. Some stories say it eats the person’s brain and leaves the rest of the body. That’s creepy. Also, just going to point this out, it’s extremely unlikely. Its shaggy coat is supposed to be dark brown, reddish, or black, and sometimes it will stand on its hind legs. When it’s standing on all four legs, it’s between three and six feet tall, or one to almost two meters. Its head is said to be bear-like in shape. Sometimes it’s described as looking like a hyena, sometimes as a baboon, sometimes as a bear-like animal. Its front legs are often described as powerful.

The first known sighting by someone who actually wrote down their account is from the Journal of the East Africa and Uganda Natural History Society, published in 1912. I have a copy and I’m just going to read you the pertinent information. The account is by Geoffrey Williams. The Nandi expedition Williams mentions took place in 1905 and 1906, and while it sounds like it was just a bunch of people exploring, it was actually a military action by the British colonial rulers who killed over 1,100 members of the Nandi tribe in East Africa after they basically said, hey, stop taking our land and resources and people. During the campaign, livestock belonging to the Nandi were killed or stolen, villages and food stores burned, and the people who weren’t killed were forced to live on reservations. Anyway, here’s what Geoffrey Williams had to say about the Nandi bear, which suddenly doesn’t seem quite so important than it did before I learned all that:

“Several years ago I was travelling with a cousin on the Uasingishu just after the Nandi expedition, and, of course, long before there was any settlement up there. We had been camped on the edge of the Escarpment near the Mataye and were marching towards the Sirgoit Rock when we saw the beast. There was a thick mist, and my cousin and I were walking on ahead of the safari with one boy when, just as we drew near to the slopes of the hill, the mist cleared away suddenly and my cousin called out ‘What is that?’ Looking in the direction to which he pointed I saw a large animal sitting up on its haunches not more than 30 yards away. Its attidue was just that of a bear at the ‘Zoo’ asking for buns, and I should say it must have been nearly 5 feet high. It is extremely hard to estimate height in a case of this kind; but it seemed to both of us that it was very nearly, if not quite, as tall as we were. Before we had time to do anything it dropped forward and shambled away towards the Sirgoit with what my cousin always describes as a sort of sideways canter. The grass had all been burnt off some weeks earlier and so the animal was clearly visible.

“I snatched my rifle and took a snapshot at it as it was disappearing among the rocks, and, though I missed it, it stopped and turned its head round to look at us. It is in this position that I see it most clearly in my mind’s eye. In size it was, I should say, larger than the bear that lives in the pit at the ‘Zoo’ and it was quite as heavily built. The fore quarters were very thickly furred, as were all four legs, but the hind quarters were comparatively speaking smooth or bare. This distinction was very definite indeed and was the first thing that struck us both. The head was long and pointed and exactly like that of a bear, as indeed was the whole animal. I have not a very clear recollection of the ears beyond the fact that they were small, and the tail, if any, was very small and practically unnoticeable. The colour was dark and left us both with the impression that it was more or less of a brindle, like a wildebeeste, but this may have been the effect of light.”

A couple of years later, in the same journal, a man saddled with the name Blayney Percival wrote about the Nandi bear. He said, “The stories vary to a very large extent, but the following points seem to agree. The animal is of fairly large size, it stands on its hind legs at times, is nocturnal, very fierce, kills man or animals.” Percival thought the differing stories referred to different animals, known or unknown. He wrote, “An example of a weird animal was the beast described to me in the Sotik country; the name I forget, but the description was very similar to that of the chimiset. Fair size—my pointer dog being given as about its size; stood on hind legs; was very savage. Careful inquiries and a picture of the ratel settled the matter, then out came the information that it was light on the back and dark below, points that would have settled it at once.” The ratel, of course, is the honey badger.

In 1958, cryptozoologist Bernard Heuvelmans wrote in his seminal work On the Track of Unknown Animals that the Nandi bear was probably based on more than one animal. Like Percival, he thought the different accounts were just too different. He thought at least some sightings were of honey badgers, while some were probably hyenas.

So if at least some accounts of the Nandi bear are of an unknown animal, what kind of animal might it be? Is it a bear? Do bears even live in Africa?

Africa has no bears now, but bear fossils at least three million years old have been found in South Africa and Ethiopia. Agriotherium africanum probably went extinct due to increased competition when big cats evolved to be fast, efficient hunters.

So it’s not likely that the Nandi bear is an actual bear. It’s also not likely it’s an ape of some kind, since apes are universally diurnal and the Nandi bear is described as nocturnal. Cryptozoologists have suggested all sorts of animals as a possible solution, but this episode is already getting kind of long so I’m not going to go into all of them. I’m just going to offer my own suggestion, which I have yet to see anywhere else, probably because it’s a bit farfetched. But hey, you never know.

The family of carnivores called Amphicyonidae are extinct now, as far as we know, but they lived throughout much of the world until about two million years ago. They’re known as bear-dogs and were originally thought to be related to bears, but are now considered more closely related to canids, possibly even the ancestors of canids. They are similar but not related to the dog-bears, Hemicyoninae, which are related to bears but which went extinct about 5 million years ago. Someone needs to sort out this bear-dog/dog-bear naming confusion.

Anyway, Amphicyonids lived in Africa, although we don’t have a whole lot of their fossils. The most recent Amphicyonid fossils we have date to about five million years ago and are of dog-sized animals that ate meat and lived in what are now Ethiopia and Kenya. Generally, Amphicyonids were doglike in overall shape but with a heavier bear-like build. They probably had plantigrade feet like bears rather than running on relatively small dog-like paws—basically, canids walk on their toes while bears walk on flat feet like humans. They were probably solitary animals and some researchers think they went extinct mainly because they couldn’t adapt to a changing environment and therefore different prey species, and couldn’t compete with smarter, faster pack hunting carnivores.

Maybe a species of Amphicyonid persisted in parts of Africa until recently, rarely seen but definitely feared for its ferocity. Probably not, because five million years is a long time to squeak by in an area with plenty of well-established carnivores. But maybe.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 063: The Hammerhead Worm and the Ichthyosaur

This week we’re learning about the hammerhead worm and the ichthyosaur, two animals that really could hardly be more different from each other. Thanks to Tania for the hammerhead worm suggestion! They are so beautifully disgusting!

Make sure to check out the podcast Animals to the Max this week (and always), for an interview with yours truly. Listen to me babble semi-coherently about cryptozoology and animals real and maybe not real!

Here are hammerhead worms of various species. Feast your eyes on their majesty!

An ichthyosaur:

More ichthyosaurs. Just call me DJ Mixosaurus:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re looking at a couple of animals that have nothing in common. But first, a big thank you to the podcast Animals to the Max. The host, Corbin Maxey, interviewed me recently and the interview should be released the same day this episode goes live. If you don’t already subscribe to Animals to the Max, naturally I recommend it, and you can download the new episode and listen to me babble about cryptozoology, my favorite cryptids, and what animal I’d choose if I could bring back one extinct species. There’s a link to the podcast in the show notes, although it should be available through whatever app you use for podcast listening.

This week’s first topic is a suggestion from Tania, who suggested hammerheaded animals. We’ve covered hammerhead sharks before way back in episode 15, but Tania also suggested hammerhead worms. I’d never heard of that one before, so I looked it up. I’ve now been staring at pictures of hammerhead worms in utter fascination and horror for the last ten minutes, so let’s learn about them.

There are dozens of hammerhead worm species. They’re a type of planarian, our old friend from the regenerating animals episode, and like those freshwater planarians, many hammerhead worms show regenerative abilities. They’re sometimes called land planarians. Most are about the size of an average earthworm or big slug, with some being skinny like a worm while others are thicker, like a slug, but some species can grow a foot long or more. Unlike earthworms, and sort of like slugs, a hammerhead worm has a flattened belly called a creeping sole. Some hammerhead worms are brown, some are black, some have yellow spots, and some have stripes running the length of their bodies. Hmm, it seems like I’m forgetting a detail in their appearance. …oh yeah. Their hammerheads! Another name for the hammerhead worm is the broadhead planarian, because the head is flattened into a head plate that sticks out like a fan or a hammerhead depending on the species.

The hammerhead worm’s head contains a lot of sensory organs, especially chemical receptors and some eye-like spots that probably can only sense light and dark. Researchers think the worms’ heads are shaped like they are to help the worm triangulate on prey the same way many animals can figure out where another animal is just by listening. That’s why most animals’ ears are relatively far apart, too.

One species of hammerhead worm, Bipalium nobile, can grow over three feet long, or one meter, although it’s as thin as an earthworm. It has a fan-shaped head and is yellowish-brown with darker stripes. It’s found in Japan, although since it wasn’t known there until the late 1970s, researchers think it was introduced from somewhere else. That’s the case for many hammerhead worms, in fact. They’re easily spread in potted plants, and since they can reproduce asexually, all you need is one for a species to spread and become invasive.

While hammerhead worms do sometimes reproduce by mating, with all worms able to both fertilize other worms and also lay eggs, when they reproduce without a mate it works like this. Every couple of weeks a hammerhead worm will stick its tail end to the ground firmly. Then it moves the rest of its body forward. Its body splits at the tail, breaking off a small piece. The piece can move and acts just like a new worm, which it is. It takes about a week to ten days for the new worm to grow a head. Meanwhile, the original worm is just fine and is busy growing another tail piece that will soon split off again into another worm.

One common hammerhead worm accidentally introduced to North America from Asia is frequently called the landchovy. It’s slug-like, tan or yellowish, with a thin brown stripe and a small fan-shaped head. It looks like a leech and if I saw one I would assume that I was about to die. But I would be safe, because hammerhead worms only eat invertebrates, mostly earthworms but also snails, slugs, and some insects.

When a hammerhead worm attacks its prey, say an earthworm, it hangs on to it with secretions that act like a sort of glue. The earthworm can’t get away no matter what it does. The hammerhead worm’s mouth isn’t on its head. It’s about halfway down its body. Once it’s stuck securely to the earthworm, the hammerhead worm secretes powerful enzymes from its mouth that start to digest the earthworm. Which, I should add, is still alive, at least for a little while. The enzymes turn the worm into goo pretty quickly, which the hammerhead worm slurps up. The hammerhead worm’s mouth is also the same orifice that it expels waste from. I’m just going to leave that little factoid right there and walk away.

Hammerhead worms haven’t been studied a whole lot, but some recent studies have found a potent neurotoxin in a couple of species. That could explain why hammerhead worms don’t have very many predators. Or many friends.

[gator sound]

Our next animal is a little bit bigger than the hammerhead worm, but probably didn’t have a hammerhead. We don’t know for sure because we don’t have a complete skeleton, just a partial jawbone. It’s the giant ichthyosaur, and its discovery is new. In May of 2016 a fossil enthusiast named Paul de la Salle came across five pieces of what he suspected was an ichthyosaur bone along the coast of Somerset, England. He sent pictures to a couple of marine reptile experts, who verified that it was indeed part of an ichthyosaur’s lower jawbone, called a surangular. They got together with de la Salle to study the fossil pieces, and after doing size comparisons with the largest known ichthyosaur, determined that this new ichthyosaur probably grew to around 85 feet long, or 26 meters.

So what is an ichthyosaur? Ichthyosaur means fish-lizard, which is a pretty good name because they are reptiles that adapted so well to life in the ocean that they came to resemble modern fish and dolphins. This doesn’t mean they’re related to either—they’re not. But if you’ve heard the phrase convergent evolution, this is a prime example. Convergent evolution describes how totally unrelated animals living in similar habitats often eventually evolve to look similar due to similar environmental pressures.

The first ichthyosaurs appear in the fossil record around 250 million years ago, with the last ones dated to about 90 million years ago. In 1811, a twelve-year-old English girl named Mary Anning took her little brother Joseph to the nearby seashore to look for fossils they could sell to make a little money, and they discovered the first ichthyosaur skeleton. That sounds pretty neat, but Mary’s story is so much more interesting than that. First of all, when Mary Anning was barely more than a year old, a neighbor was holding her and standing under a tree with two other women, when the tree was struck by lightning. The three women all died, but Mary survived. She had been considered a sickly child before that, but after the lightning strike she was healthy and grew up strong.

Mary’s family was poor, so anything she and her brother could do to make money helped. At the time, no one quite understood what fossils were, but people liked them and a nice-looking ammonite or other fossilized shell could bring quite a bit of money when sold as a curio. Mary’s father was a carpenter, but the whole family was involved in collecting fossils from the nearby cliffs at Lyme Regis in Dorset, where they lived, and selling them to tourists. After her father died, selling fossils was the only way the family could make money.

As Mary and her brother became more proficient at finding and preparing fossils, geologists became more and more interested. She made detailed drawings and notes of the fossils she found, and read as many scientific papers as she could get her hands on. At the time, women weren’t considered scholars and certainly not scientists, but Mary taught herself so much about fossils and anatomy that she literally knew more about ichthyosaurs than anyone else in the world.

When Mary was 27 years old, she opened her own shop, called Anning’s Fossil Depot. Fossil collectors and geologists from all over the world visited the shop, including King Frederick Augustus II of Saxony, who bought an ichthyosaur skeleton from her. Collecting fossils could be dangerous, though. In 1833 she almost died in a landslide. Her little dog Trey was just in front of her, and he was killed by the falling rocks. Probably Trey had not heard about the lightning incident or he wouldn’t have stuck so close to Mary.

Although Mary Anning was an expert, and every collection and museum in Europe contained fossil specimens she had found and prepared, she got almost no credit for her work. She was not happy about this, either. Her discoveries were claimed by others, just because they were men. Mary was the one who figured out that the common conical fossils known as bezoar stones were fossilized ichthyosaur poops, called coproliths. Her expertise wasn’t just with ichthyosaurs, either. She was also an expert on fossil sharks and fishes, pterosaurs, and plesiosaurs, and she discovered ink sacs in belemnite fossils. Her friends Anna Pinney and Elizabeth Philpot frequently accompanied Mary on collecting expeditions. I picture them frowning and kicking scientific butt.

Okay, back to ichthyosaurs. Ichthyosaurs were warm-blooded, meaning they could regulate their body temperature internally, without relying on outside sources of heat. They breathed air and gave birth to live babies the way dolphins and their relations do. They had front flippers and rear flippers along with a tail that resembled a shark’s except that the lower lobe was larger than the upper lobe. Some species had a dorsal fin too. They had huge eyes, which researchers think indicated they dived for prey. Many ichthyosaur bones show damage caused by decompression sickness, when an animal surfaces too quickly from a deep dive—called the bends by human scuba divers. Not only were their eyes huge, they were protected by a bony eye ring that would help the eyes retain their shape even under deep-sea pressures.

Ichthyosaurs had long jaws full of teeth, but different species ate different things. Many ate fish and cephalopods like squids, while other specialized in shellfish, and others ate larger animals. We have a good idea of what they ate because we have a lot of high quality fossils, so high quality that we can see the contents of the animals’ stomachs. We also have all those coproliths that paleontologists cut open to see what ichthyosaur poop contained.

Ichthyosaurs lived before plesiosaurs and weren’t related to them. Plesiosaurs are usually depicted with long skinny necks, but more recent reconstructions suggest their necks were actually thick, protected by muscles and fat. Ichthyosaurs appear to have been outcompeted by plesiosaurs once they began to evolve, but ichthyosaurs were already on the decline at that point, although we don’t know why.

Until very recently, the biggest known species of ichthyosaur was Shonisaurus sikanniensis, which grew to almost 70 feet long, or 21 meters. It was discovered by Elizabeth Nicholls, continuing Mary Anning’s legacy of kicking butt and finding ichthyosaurs, and described in 2004. But the new ichthyosaur just discovered was even bigger.

In the mid-19th century, some fragments of fossilized bones were found near the village of Aust in England. They were assumed to be dinosaur bones, but now researchers think they may have been from giant ichthyosaurs, maybe even ones bigger than the one whose jawbone was recently found.

As a comparison, the biggest animal ever known to have lived is the blue whale. It’s alive today. Every time I think about that, it blows my mind. A blue whale can grow almost 100 feet long, or 30 meters. Until very recently, researchers didn’t think any animal had ever approached its size. Even megalodon, the biggest shark known, topped out at about 60 feet, or 18 meters. If the estimated size of the giant ichthyosaur, 85 feet or 26 meters, is correct, it’s possible there were individuals that were bigger than the biggest blue whale, or it’s possible that the jawbone we have of the giant ichthyosaur was actually from an individual that was on the small side of average. Let’s hope we find more fossils soon so we can learn more about it.

Mary Anning would have been out there looking for more of its fossils, I know that.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 062: The Honey Badger and Its Horrible Friends

It’s badger week at Strange Animals Podcast, thanks to a suggestion by Richard E.! I knew the honey badger was something special, but I had no idea how special. And by “special” I mean “terrifying.”

Shout-out to Turn of Phrases podcast just because I love it so much. It’s a short, family friendly podcast that explains the weird idioms we say without thinking about them.

A honey badger. Look at that adorable snarl!

A wolverine and its TEETH:

An American badger:

A European badger:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’ve been getting a bunch of great topic suggestions and I’m falling behind on addressing them, so this week I was going to cover two or three suggestions in one big episode. I started with the honey badger, though, and soon I realized this animal and some of its close relations deserved an episode to themselves.

The honey badger was suggested by Richard, who has also sent lots of other great topic suggestions I’m working on. That’s not my brother Richard, it’s a different Richard. Hello to both of you.

The honey badger sounds like it should be a cuddly Pooh-bear kind of animal that gets its hand stuck in the honey jar and its friends have to help free it. In fact, the honey badger is a terrifyingly dangerous animal that’s related to other badgers, as well as to weasels, wolverines, and otters, although not closely. One interesting thing I just found out: the European badger is not all that closely related to the American badger. In fact, the American and European badgers are about as closely related to each other as they are to the honey badger. The European badger is more closely related to the wolverine than it is the American badger and the honey badger. We’ll look at all these animals this week.

The honey badger has short legs, a broad body, a flattish head with a stubby nose, small ears and eyes, a medium-length tail, and strong claws. That’s the same rough description of the wolverine and the European and American badgers too. Its fur is black with a broad pale gray or white stripe from the head down the back, although one subspecies of honey badger is all black. The honey badger lives in Africa, India, and Southwest Asia, and while it only stands around a foot high at the shoulder, or 28 cm, its ferocity means it basically has no predators. Its skin is so thick and tough that arrows, spears, and even machetes don’t do much damage. Even small-caliber bullets can’t fully penetrate its skin. Setting a pack of dogs on a honey badger just ends up with a lot of unhappy, or possibly dead, dogs, because in addition to being ridiculously thick, the honey badger’s skin is extremely loose. If an animal bites it, the honey badger can still twist around and attack with its massive front claws and teeth. Not only that, but the honey badger has more stamina than its attacker, guaranteed, and it will continue to fight tirelessly forever.

The honey badger eats meat, some plant material like berries and roots, and pretty much anything else it can get. Most of the animals a honey badger hunts are small, rodents and frogs and things like that. It can even bite through tortoise shells with its powerful jaws, and will kill and eat even the most venomous snakes since if it does get bitten, like the mongoose, it is naturally resistant to venom. It eats all of whatever it kills, even fur, bones, and feathers. Occasionally a honey badger will chase another animal away from its kill, including lions. Yeah, even lions don’t want to mess with the honey badger—although lions do sometimes kill honey badgers, usually when a honey badger attacks it.

The honey badger gets its name not from its sweet personality, because it’s actually an ornery animal that will attack anything that comes near its burrow, but because it raids beehives—not for its honey, but for bee larvae. Like bears, which can raid beehives without worrying too much about getting stung through its thick fur, the honey badger doesn’t usually have much problem with bee stings. But sometimes there are too many bees even for the honey badger, in which case it has a secret anti-bee weapon.

The honey badger has an anal pouch that holds secretions that are really, really stinky. Skunk stinky. It can turn the pouch inside out to release the stink, which may stun or calm the bees the way a beekeeper calms bees with smoke.

As if all this isn’t fearsome enough, the honey badger is also intelligent and shows occasional tool use, like moving a log to stand on to reach prey. It also digs extremely well. And it’s not a slow animal at all. In fact, it can be kind of frenetic like its weasel cousins. And when it attacks animals larger than itself, like lions, it goes for the scrotum.

Baby cheetahs are born with broad white stripes down their backs, and some researchers think that coloring mimics the honey badger’s coloring and helps keep potential predators away.

The honey badger is called the ratel in South Africa, because of the sound it makes. I tried really hard to find audio of a honey badger that wasn’t overlaid with music or people talking, without luck. The closest I have is a honey badger attacking a cobra, but mostly what you hear is the cobra hissing. The cobra is not having a good day. You can hear the honey badger chatter a little, but it just sounds like a couple of squeaks. Here it is, for what it’s worth.

[honey badger and cobra sounds]

The wolverine is another animal in the Mustelidae family, and like its cousin the honey badger, it has a reputation for being ferocious. It also has a way better name than the honey badger, with an X-Men character, a bunch of sports teams, and a Swedish metal band named after it. On the other hand, it’s also sometimes called a skunk bear or nasty cat because of its anal scent glands, which it uses to mark its territory. It mostly lives in Alaska and northern Canada, Siberia, and parts of Norway, Sweden, and Finland.

The wolverine is short and broad like the honey badger and is about the same size, or a bit larger, but it looks much more like a tiny bear. It’s light brown with darker brown or black legs, muzzle, tail, and back. It eats a lot of carrion, but it will also kill animals, from squirrels and mice all the way up to moose and caribou. It will also eat some plant material, like seeds and berries. The wolverine has a thick hide like the honey badger, but it’s not quite in the honey badger’s league. Bears and wolves will sometimes kill wolverines.

The wolverine lives in cold climates. Females dig dens in the snow to have their babies in late winter and early spring. Its fur is thick and water-repellent, and in old-timey times its fur was prized and used to line parkas and other clothing. Shout-out to the Turn of Phrases podcast for putting old-timey times into my everyday vocabulary. The wolverine also has a single tooth in the back of the jaw that sticks sideways into the mouth and helps it tear off meat from frozen carcasses. A wolverine will cache carcasses at the beginning of winter, which gives it food when the snow is deep and there’s not much else to eat.

The wolverine was once much more widespread, but as the last ice age ended about 12,000 years ago its range became more northerly. It’s also been trapped and killed for its fur and to stop it from killing livestock. But male wolverines in particular can range widely, and occasionally one strays farther south. In 2016 a tagged wolverine was tracked as it traveled more than 800 miles, or almost 1300 km, through Wyoming, Colorado, and North Dakota, where it was killed by a ranch-hand.

In 1992 and 1994 a pair of wolverines were seen repeatedly in parts of Wales and England, and a dead one was reported on the side of the road, apparently killed by a car. Only about a hundred wolverines are kept in zoos, and a zoo would notice if a couple of its wolverines disappeared. Wolverines don’t make good pets, to say the least, so they probably weren’t escaped pets. The general consensus is that they must have been escapees from a fur farm—but wolverines don’t do well in captivity and rarely breed successfully even in zoos. So where they came from is a mystery, and unfortunately no one thought to retrieve the body or even take a photograph so it could be positively IDed.

Lastly, we’ll look at the relatively mild-mannered European badger and American badger. They look very similar, but as I noted at the beginning of the episode, they’re not all that closely related. The badger has a wide body that’s mostly gray with short legs that are darker gray or black. The tail is not stubby but not especially long. The face is black with white markings. The European badger has a broad white stripe that runs from the tip of its nose to between its ears, and a white stripe on both cheeks. The American badger has a thin white stripe that starts farther back on the nose and runs over the top of the head and down the neck, and black and white striped cheeks. Both are strong diggers that live in burrows.

The American badger is found throughout western and central North America, from parts of Canada to northern Mexico. It eats a lot of mice, groundhogs, ground squirrels, prairie dogs, pocket gophers, and basically any little animal it can dig up from its burrows. It also eats lots of snakes, including rattlesnakes. Like its cousin the honey badger it likes to eat bee larvae and honey, and it will eat some plant material too. It also will eat skunks. Not many things want to eat skunks.

Occasionally a badger will team up with a coyote to hunt. That’s not scary at all. Badgers are aggressive, but certainly nowhere near as ferocious as a honey badger or even a wolverine. It’s a bit smaller than the honey badger and wolverine.

In 2017, a research team studying scavenging behaviors of various animals inadvertently learned a lot about the badger. The team had staked out calf carcasses and set up camera traps to document which animals came to eat the carcasses. One of the cameras recorded a badger burying a calf carcass deep enough that it would be safe from other scavengers and would remain cool underground for the badger to eat it later. It took the badger five days and a lot of work, but since the calf was considerably larger and heavier than the badger, it would have a lot of meat to snack on later in the winter. Another of the cameras caught a different badger attempting to bury another calf carcass, but that badger wasn’t successful. Researchers suspect this caching activity may be common among badgers, but no one knew about it because badgers are mostly nocturnal. While ranchers typically dislike badgers, burying large carcasses is beneficial to ranchers since it minimizes the spread of disease to cattle and other livestock.

The European badger is much more social than its American cousin, which is mostly solitary. It lives in groups in complex burrows called setts. A badger doesn’t just poop wherever it happens to be, it uses a latrine, and it may have more than one latrine in its territory just as it may have more than one sett. It also likes to change out the bedding material in its burrows, taking old bedding out and bringing in clean, fresh bedding. In winter, when good bedding material isn’t available, it may take its old bedding out on sunny days to air, then retrieve it later. It’s like this animal was invented to star in children’s storybooks. If you told me badgers routinely wear little flowered aprons and use tiny brooms to sweep their burrows, I wouldn’t bat an eye. Sometimes a red fox will live in part of a badger’s burrow, and I picture the fox wearing a neat tweed suit. He probably pays rent to the badger family.

The badger hibernates during the worst part of the winter, although when winters are mild, it may only sleep for part of the winter or not at all.

The European badger does eat meat, but it also eats a lot of plant material, especially fruit and grains, but also clover and even grass if it has to. It mostly eats earthworms, but will also catch insects, small mammals like mice, hedgehogs, and young rabbits, snails and slugs, and tortoises. It also likes bee and wasp larvae and will eat wasp nests, ignoring the stings it receives. Sometimes a badger will kill a lamb or break into a chicken coop and kill lots of chickens, but that’s rare and usually only happens when other food is scarce.

Unfortunately, the badger has a bad reputation in Great Britain as a carrier of bovine tuberculosis. It does carry the disease, but recent studies show that it doesn’t appear to infect cattle. Cattle catch TB from other cattle, not from badgers. Culling badgers to stop the spread of TB among cattle doesn’t help either the cattle or the badgers, since after a badger cull, other badgers move into the dead badgers’ former territory, bringing TB with them. It’s very difficult to eradicate a disease from a wild animal population, but it is completely possible to eradicate a disease from domestic animals. In Wales and Scotland, cattle tuberculosis is on the decline due to frequent testing for the disease, while in England, where the primary treatment for TB is to go out and kill a bunch of badgers, it’s on the rise. So leave the badgers alone. Mrs. Badger is busy busy washing linens and hanging them to dry on tiny clotheslines while Mr. Badger is repairing the white picket fence where he grows his prize-winning dahlias, and the Badger children are helping Auntie Badger make scones for Mr. Fox’s tea.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 061: The Qilin and the Phoenix

This week we’re going to find out some surprising possible inspirations for the qilin, sometimes called the kirin or the Chinese unicorn, and the phoenix! Strap in, kids. We’re going to do history!

A qilin:

A giraffe:

My beautiful art of tsaidamotherium, both subspecies, with their weird horns:

A saiga antelope

A takin:

A bird of paradise:

Another bird of paradise:

Further reading:

Dale Drinnon’s Frontiers of Zoology about the qilin

An online Bestiary. This is where I got the quotes from Herodotus.

The Book of Beasts, trans. T.H. White

The Lungfish, The Dodo and the Unicorn by Willy Ley

Extraordinary Animals Revisited by Karl P.N. Shuker

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two animals that most people consider mythological—but they might be based on real animals that are as extraordinary as the folktales surrounding them.

The first is the qilin, also called the kirin or some other close variation. These days it’s usually depicted with a pair of antlers like a deer, but in older legends and artwork it often only had one horn, so is sometimes called the Chinese unicorn. It can resemble a dragon with cloven hooves, or a bull-like or deer-like animal with scales or a scaly pattern on its body. In Japan it’s usually depicted with one horn that curves backwards from its forehead.

The qilin legend is thousands of years old, with the first references dating back to the 5th century BCE. It has traditionally been considered a gentle animal whose appearance foretold the birth or death of a great ruler, or if it appeared to a ruler, it foretold a long, peaceful reign. Supposedly it first appeared to the Emperor Fu Hsi 5000 years ago as he walked along the banks of the Yellow River. A single-horned animal emerged from the water and walked so daintily that its cloven hooves didn’t leave prints in the mud. A scroll on its back was miraculously not wet, and when Fu Hsi unrolled the scroll he saw a map of his kingdom and written characters that taught him written language.

In 1414, explorer Zheng He brought a giraffe to China for the first time and presented it to the emperor as a qilin. The emperor wasn’t fooled, but it was a good PR move to treat the animal as a qilin. But the qilin was never depicted with a long neck before then, and even after, long-necked qilins were rare in art and sculpture. On the other hand, the Japanese word for giraffe is kirin, so there was some overlap.

The qilin was supposed to be solitary and lived high in the mountains and in deep forests. It ate plants and was described in various ways, as having a deer’s body and a lion’s head, or a horse’s body with a dragon’s head, or some other combination. It always had cloven hooves.

In 398 BCE, so more than 2,400 years ago, Greek historian Ctesias wrote a book about India, including the animals found in that land. Ctesias had never actually visited India, although he had traveled to a lot of other countries. This is what he wrote about the animal we now know as the unicorn: “There are in India certain wild asses which are as large as horses, and larger. Their bodies are white, their heads dark red, and their eyes dark blue. They have a horn on the forehead which is about a foot and a half in length.” Then he talks about the horn for a few more sentences, especially its supposed ability to cure diseases and neutralize poisons. If you’re interested in this aspect of the unicorn legend, I go over it at length in episode five, about the unicorn.

Most researchers think Ctesias was talking about the rhinoceros. But maybe he was referring to another animal, one that possibly contributed to both the unicorn legend and also to the legend of the qilin.

Tsaidamotherium was a bovid that lived during the late Miocene, around half a million years ago. Its fossils have been found in Northwestern China. It was probably most closely related to the musk ox and was adapted for life in cold mountainous regions. It had a high nasal cavity, which would have helped warm air before it reached the lungs. Other bovids found in cold areas tend to have similar structures. The Saiga antelope has a bulbous-looking face due to its large nasal passages, as does the takin, both of which also live in and around the Himalayas. But both the saiga and the takin have a pair of clearly separated horns. The saiga’s horns are long and look like typical antelope horns, while the takin’s horns resemble those of a musk ox, curving to the sides in a sort of U shape.

The really striking thing about Tsaidamotherium is its horns, and no animal living today has horns even slightly like it. It had a pair, but only the right horn grew large. The left one was much smaller, so that from a distance it looked like it only had one large horn on its head. These are not slender unicorn horns, though. They’re not even bull-like cow horns. There are actually two species of Tsaidamotherium that we know of, and they had differently shaped horns. T. hedini had thick horns that grew upward from the head like cones. The other, T. brevirostrum, with fossilized remains only described in 2013, had the same mismatched horns but both were short and squat and probably bent forward. I’ll put a couple of drawings in the show notes to give you an idea.

There are hints that Tsaidamotherium may have survived well into the modern era, probably in isolated pockets in the Himalayan Mountains. Until the mid-19th century there were reports of animals matching T. hedini’s description in Tibet, although even there it was considered rare to the point of near-legend. The first fossilized remains of Tsaidamotherium weren’t discovered until the early 20th century, in 1932. One interesting note is that the larger horn of T. hedini would probably have resembled the conical Yeti skullcaps sometimes found in monasteries in the Himalayas, although that’s probably a coincidence.

The Tsaidamotherium as Qilin is a theory put forth by Dale Drinnon, and I’ll link to the relevant post in the show notes if you want to read more.

Like the unicorn legend, which in one form or another has spread throughout much of the world, the phoenix has a long and complicated history. The modern story is still very close to what people believed in the middle ages and even before. It’s a mythical bird that every so often, usually every 500 years, would burst into flame, burn to ashes, and be reborn from those ashes into a new phoenix. There is only ever one phoenix. It’s usually depicted as eagle-like but not an eagle, and is usually red or gold.

Medieval writers loved the phoenix, because its cycle of rebirth from its own dead body practically wrote itself as a strong allegory to the Christian idea of redemption and the resurrection of Jesus Christ. In T.H. White’s translation of a 12th century bestiary, The Book of Beasts, the phoenix was supposed to live in Arabia and its big event is described like this:

“When it notices that it is growing old, it builds itself a funeral pyre, after collecting some spice branches, and on this, turning its body toward the rays of the sun and flapping its wings, it sets fire to itself of its own accord until it burns itself up. Then verily, on the ninth day afterward, it rises from its own ashes!”

After drawing the parallel with Christian symbolism, the book repeats itself with more detail, it makes a coffin for itself of frankincense and myrrh and other spices, into which, its life being over, it enters and dies. From the liquid of its body a worm now emerges, and this gradually grows to maturity, until, in the appointed cycle of time, the Phoenix itself assumes the oarage of its wings, and there it is again in its previous species and form!”

Note that the second version of the story doesn’t mention fire. Instead of a fire, the phoenix builds itself a coffin from spices and dies inside it. Frankincense and myrrh are both plant resins used to make perfume and incense, by the way.

All this is interesting, but is the phoenix based on a real bird? People have been trying to figure that out for centuries. The problem is that the story is so old, so widespread, and so entrenched in popular culture that it’s hard to know what details point to real birds and what details are pure human imagination.

Some researchers even suggest that the phoenix might be based not on a bird at all, but a palm tree. In Greek the word phoenix also means palm tree. There are a lot of phoenix palms, including the kind that produce dates, and dates are delicious, so the tree may have been given a special status by associating it with the phoenix story. In ancient Egypt the symbol for the word benu was a stork-like bird that represented the sun but could also indicate a palm tree.

The word Phoeniceus was once a term for the color purple, so T.H. White thought the phoenix might be based on the purple heron, which he also thought might be the bird the Egyptians called benu. He suggested its rebirth story came about from its connection with the sun, which can be said to die every night and be reborn every morning.

Back in the 5th century BCE, the Greek historian Herodotus wrote about the phoenix in Egypt. He said, “The plumage is partly red, partly golden, while the general make and size are almost exactly that of the eagle. They tell a story of what this bird does, which does not seem to me to be credible: that he comes all the way from Arabia, and brings the parent bird, all plastered over with myrrh, to the temple of the Sun, and there buries the body. In order to bring him, they say, he first forms a ball of myrrh as big as he finds that he can carry; then he hollows out the ball, and puts his parent inside, after which he covers over the opening with fresh myrrh, and the ball is then exactly the same weight as the first; so he brings it to Egypt, plastered over as I have said, and deposits it in the temple of the Sun.”

This just sounds like a weird version of the phoenix story, about the phoenix making its own coffin out of myrrh and other spices. But there may be some strange truths hidden in the middle of this story and the others. It’s about the bird of paradise.

The bird of paradise is a real bird—or, rather, 42 species of real bird. You can go look them today in zoos and in their native homes in eastern Australia, Indonesia, and Papua New Guinea. They’re actually related to crows, although not closely, but they don’t look a thing like crows. Where crows are somber goth birds, the various birds of paradise are glorious in their coloring and plumage. Males of many species grow cascades of brightly-colored feathers during breeding season, which they display for the females in mating dances.

It was once thought that birds of paradise were unknown outside their home range until the early 16th century, when Magellan’s fleet limped back to Spain with a lot of exotic items, including the skins of some birds of paradise. The skins were apparently complete, except that they had no legs and appeared never to have had legs. Since almost nothing was known of the birds, people assumed they were so beautifully adapted to the air that they didn’t need legs, that the birds never landed.

It wasn’t until the 19th century that scientists actually saw living birds of paradise, complete with feet. It turns out that the natives of New Guinea were masters of preparing bird skins, removing the feathered skins from the body so skillfully that the bird appeared intact even though the legs had been removed.

Not only that, Australian researchers discovered during in-depth 1957 study of the bird of paradise skin trade, the natives of the region had been preparing birds for a long, long, long time—as far back as 1000 BCE. And they’d been trading them with seafarers who visited their islands long before Magellan was even born. The skins were prized for their beauty and transported all over, including to Phoenicia, a country famous for its purple dye. This is all starting to come together, isn’t it?

But it gets better. The bird of paradise skins were delicate, naturally, as were the long plumes still attached to the skins. To preserve them during voyages, they were packaged by the New Guinea natives like this: each skin was carefully wrapped in myrrh to make an egg-shaped parcel, and this was put in a larger parcel padded with burnt banana leaves.

Aromatic ashes containing an egg-shaped coffin made of myrrh, in which is the body of a glorious unknown bird? That sounds like a phoenix to me.

Like so many other legends, the phoenix is far more than just its original inspiration. Many birds probably inspired details of the story, just as many animals probably inspired stories of the qilin. Human imagination did the rest.

The legend of the phoenix and that of the qilin tell us as much about the people who have shared their stories for millennia than they tell us about any bird or animal. Humans are storytellers, no matter what culture and no matter how far back you look. After thousands of years, we’re still talking about the phoenix and the qilin, and we’ll continue to talk about them for thousands of years more. That’s an immortality worthy of the phoenix itself.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!