Episode 346: The Rhinoceros!

Thanks to Mia for suggesting the black rhino this week! We’ll also learn about other rhinos and their relations, including a mystery rhino.

Further reading:

Photos suggest rhino horns have shrunk over past century

The Blue Rhinoceros – In Quest of the Keitloa

A rhino with a very small third horn:

Some rhinos have really big second horns [photo by David Clode and taken from this site]:

The “blue rhinoceros,” or keitloa, as illustrated in the mid-19th century:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about an animal I can’t believe we haven’t covered before. Thanks to Mia for suggesting the rhinoceros, specifically the black rhino! We’ll also learn about a mystery rhino.

We’ve talked about elephants lots of times, hippos quite a few times, and giraffes a couple of times, but pretty much the only episodes where we discussed a rhinoceros were 5 and 256. Episode 256 was mostly about mammoths, although we talked very briefly about the woolly rhinoceros, while episode 5 was about the unicorn and didn’t actually specifically talk about the rhino. So after almost 350 episodes of this podcast, one of the most amazing animals alive is one we literally haven’t learned about! Let’s fix that now.

Most people are pretty familiar with what a rhinoceros looks like. Basically, it’s a big, heavy animal with relatively short legs, a big head that it carries low to the ground like a bison, and at least one horn that grows on its nose. It’s usually gray or gray-brown in color with very little hair, and its skin is tough. It eats plants.

The rhinoceros isn’t related to the elephant or the hippopotamus. It’s actually most closely related to the horse and the tapir, which are odd-toed ungulates. The rhino has three toes on each foot, with a little hoof-like nail covering the front of each toe, but the bottom of the rhino’s foot is a big pad similar to the bottom of an elephant’s foot.

The rhino’s nose horn isn’t technically a horn because it doesn’t have a bony core. It’s made of long fibers of keratin all stuck together, and keratin is the same protein that forms fingernails and hair. That makes it even weirder that some people think a rhinoceros horn is medicine. It’s literally the same protein as fingernails, and no one thinks of fingernails are medicine. The use of rhinoceros horn as medicine isn’t even all that old. Ancient people didn’t think it was medicine, but some modern people do, and they’ll pay a whole lot of money for part of a rhino horn to grind up and eat. Seriously, they might as well be eating ground-up fingernails. (That’s gross.)

Because rhino horns are so valuable, people will kill rhinos just to saw their horns off to sell. That’s the main reason why most species of rhino are so critically endangered, even though they’re protected animals. Sometimes conservationists will sedate a wild rhino and saw its horn off, so that poachers won’t bother to kill it. A 2022 study determined that the overall size of rhino horns has shrunk over the last century, probably for the same reason that many elephants now have overall smaller tusks. Poachers are more likely to kill animals with big horns, which means animals with smaller horns are more likely to survive long enough to breed.

The species of rhinoceros alive today are native to Africa and Asia, but it used to be an animal found throughout Eurasia and North America. It’s one of the biggest animals alive today, but in the past, some rhinos were even bigger. We’ve talked about Elasmotherium before, which lived in parts of Eurasia as recently as 39,000 years ago. It had long legs and could probably gallop like a horse, but it was the size of a mammoth. It also probably had a single horn that grew in the middle of its forehead, which is why it’s sometimes called the Siberian unicorn.

We’ve also talked about Paraceratherium before. It was one of the biggest land mammals that ever lived, and while it didn’t have a horn, it was a type of rhinoceros. It lived in Eurasia between about 34 and 23 million years ago, and it probably stood about 16 feet tall at the shoulder, or 5 meters. The tallest giraffe ever measured was 19 feet tall, or 5.88 meters, at the top of its head. Paraceratherium had a long neck, possibly as much as eight feet long, or 2.5 meters, but it would have held its neck more or less horizontal most of the time. It spent its time eating leaves off of trees that most animals couldn’t reach, and when it raised its head to grab a particularly tasty leaf, it was definitely taller than the tallest giraffe, and taller than any other mammal known.

While rhinos are famous for their horns, not every rhinoceros ancestor had a horn. But because rhino horns are made of keratin and not bone, we don’t always know if an extinct species had a horn. Most of the time the horns rotted away without being preserved. We do know that some ancient rhinos had a pair of nose horns that grew side by side, that some had a single nose horn or forehead horn, that some had both a nose horn and a forehead horn, and that some definitely had no horns at all.

The rhinos alive today have either one or two horns. The Indian rhinoceros has one horn on its nose, and the closely related Javan rhino also only has one horn. The Sumatran rhino has two horns, as do the white rhino and the black rhino. Sometimes an individual rhino will develop an extra horn that grows behind the other horn or horns and is usually very small. This is extremely rare and seems to be due to a genetic anomaly. There are even reports of rhinos that have four horns, all in a row, but the extra ones, again, are very small.

Mia specifically wanted to learn about the black rhino. It and the white rhino are native to Africa. You might think that the white rhino is pale gray and the black rhino is dark gray, but that’s actually not the case. They’re both sort of a medium gray in color and they’re very closely related. It’s possible that the word “white” actually comes from the Dutch word for “wide,” referring to the animal’s wide mouth. The black rhino has a more pointed lip that looks a little bit like a beak.

One interesting thing about the black and white rhinos is that neither species has teeth in the front of its mouth. It uses its lips to grab plants instead of its front teeth, and then it uses its big molars to chew the plants. The white rhino mostly eats grass while the black rhino eats leaves and other plant material.

A big male black rhino can stand over 5 1/2 feet tall at the shoulder, or 1.75 meters, and is up to 13 feet long, or 4 meters. It can weigh as much as 4,000 lbs, or 1,800 kg. This sounds huge and it is, but it’s actually smaller than the white rhino, which is the biggest rhino alive today. A big male white rhino can stand over 6 1/2 feet tall at the shoulder, or 2 meters, can be 15 feet long, or 4.6 meters, and can weigh up to 5,300 lbs, or 2,400 kg. These are really really big animals. Nothing much messes with the rhino because it’s so big and heavy, its skin is so tough, and it can do a lot of damage with its horn if it wants to. The rhino doesn’t see very well, but it has good hearing and a good sense of smell.

The nose horn is always the bigger one in species that have two horns, and in the black rhino it can grow quite long. One nose horn was measured as being over 4 1/2 feet long, or 1.4 meters, although most are only about 20 inches long, or 50 cm. The rear horn, which grows roughly over the eyes, is about half the length of the front horn, and is sometimes no more than a little bump. But some black rhinos found in South Africa have a rear horn that’s at least as long as the front horn, and sometimes longer, and that brings us to our mystery rhino.

A rhino with this trait is referred to as a keitloa, a word taken from the Tswana language spoken in the area. In the 19th century, the keitloa was referred to by European colonizers as the blue rhinoceros. The blue rhino wasn’t blue, but it was considered quite rare and different from the ordinary black rhino. It was supposed to be bigger and and even more solitary than the black rhino.

Until 1881, many scientists thought the keitloa was a separate species of rhino from the black rhino, which it otherwise resembled. In 1881, though, a study of black rhinos and blue rhinos determined that they were the same species. A century later, in 1987, scientists found that black rhinos with better access to water grew larger horns than black rhinos living in dryer areas.

There are a number of subspecies of black rhino recognized by scientists, some of them still alive today and some driven recently to extinction. Some people still think that the keitloa may be a separate subspecies of black rhino. That’s one of many reasons why it’s so important to protect all rhinoceroses and their habitats, so we can learn more about these amazing animals.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 344: Psittacosaurus!

Thanks to Clay for suggesting this week’s topic, psittacosaurus! Thanks to Will for a correction about kangaroos too.

Don’t forget to check out the great podcast I Know Dino for all the best big dinosaur info!

Further reading:

What dinosaurs’ colour patterns say about their habitat

Unusual fossil shows rare evidence of a mammal attacking a dinosaur

A countershaded psittacosaurus model [photo by Jakob Vinther, from first article linked above]:

Repenomamus and psittacosaurus, fighting forever [photo from second article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at a dinosaur suggested by Clay, who has been very patient waiting for this one. In a huge coincidence, the podcast I Know Dino is trading promos with us, so if you haven’t heard about I Know Dino yet, make sure to listen until the very end of this episode for some more information about it. It’s a great podcast that I love to pieces, and I think you’ll love it too.

We also have a quick correction, and I feel really bad because this one should have gone in the updates episode last month. Will emailed me back in April to point out that in episode 73, about phantom kangaroos, I said that kangaroos and wallabies were native to Australia, New Zealand, and New Guinea. In fact, they’re not native to New Zealand, although they’ve been introduced there. So yikes, that was a big oversight on my part, and thanks very much to Will!

Now, on to Clay’s suggestion, psittacosaurus!

Psittacosaurus was a type of ceratopsian that lived during the early Cretaceous, between about 125 and 100 million years ago. We’ve talked about ceratopsians before back in episode 125, so if you remember that episode you’ll know that ceratopsians were big herbivorous dinosaurs famous for their head frills and horns. Triceratops is the most famous example, although it had lots of relations. But Psittacosaurus was a very early ceratopsian, and it’s nothing like Triceratops.

If you had a time machine and went back to look at Psittacosaurus, you might not even think it was related to Triceratops at all. It didn’t have real horns or frills, most species were only about six and a half feet long at most, or two meters, but most importantly, it walked on its hind legs.

We have hundreds of Psittacosaurus fossils, so we know quite a bit about it. Young individuals apparently walked on all four legs, but as it grew up, Psittacosaurus became bipedal. It still ate plants, though, and may have specialized in eating seeds and other tough plant materials. It couldn’t chew its food the way later ceratopsians could, but it did swallow little stones to help it grind up hard plant parts. These gastroliths have been found preserved with Psittacosaurus fossils.

Psittacosaurus lived in what is now Asia, especially eastern and central Asia, and probably spent most of its time in forested areas. Because it lived only in the early Cretaceous, and because it was such a common animal with so many fossils found, if a paleontologist finds a Psittacosaurus fossil at a dig site, they can be pretty confident that the site dates to the early Cretaceous. Paleontologists have identified about twelve species of Psittacosaurus so far, although there’s still debate about the actual number of species, and at least some of them had feathers. We know because we have some well-preserved fossils with feather and skin impressions.

Psittacosaurus wasn’t completely covered with feathers, though. Its feathers were bristle-like and have only been found sticking up along the top of the tail. Scientists think they were probably used for display. That means they were probably brightly colored, so if you go back in that time machine I mentioned earlier, please make sure to take lots of pictures.

In fact, Clay said that Psittacosaurus looks like it’s “half parrot, half porcupine and half dinosaur” (that is actually one and a half animals, Clay, but we know what you mean and that actually is a really good description of it). Psittacosaurus’s bristles stuck up kind of like porcupine quills, although they weren’t sharp. Careful study of the quills shows that they were probably more like highly modified scales instead of feathers like you’d find on a modern bird, and that they grew around 6 inches long, or 15 cm. Some modern birds do actually have bristles like this, including the turkey. Most male turkeys, and some females, have a bundle of hair-like bristles on the breast that’s called a beard.

Psittacosaurus’s name means “parrot lizard” because of the shape of its beak, which may have helped it crack seeds and nuts. Its head kind of resembled that of a turtle, although unlike a turtle it also had teeth. Its head was broad with cheekbones that jutted out sideways, sometimes so far that it looked like it had horns on the sides of its face just above the jaw. At least one species had prominances behind the eye that again, kind of look like little horns but technically aren’t.

We even have a hint about what Psittacosaurus looked like. A study published in 2016 examined preserved melanosomes, which are the structures that pigment an animal’s skin and feathers. The study determined that Psittacosaurus had a light-colored belly and was darker on its back. This is called countershading and it’s very common because it acts as a form of camouflage.

As part of the study, scientists created two life-sized models of Psittacosaurus. One of them they painted gray all over, while the other they painted brown with lighter brown underparts. They took the models to the Bristol Botanic Garden in the UK, which has a section with plants from the Cretaceous. (This sounds awesome and I really want to visit.) They placed the models in various spots and photographed them, then compared how well the models were camouflaged. The countershaded model was most well camouflaged in forested areas, which matches up with what scientists know about how it lived.

In addition to the fossils with skin and feather impressions, we have lots of fossils of Psittacosaurus of all ages, from newly hatched to big old dinosaurs. We even have a fossilized juvenile Psittacosaurus preserved in what would have been the stomach of Repenomamus, and it looks like the little dinosaur was bitten into pieces before being swallowed. Repenomamus was a mammal that was built like a miniature badger.

For a long time scientists weren’t sure if Repenomamus hunted baby dinosaurs or just scavenged ones that were already dead. Then, in 2012, an amazing fossil was unearthed in China. A study of the prepared fossil was just released in July 2023.

The fossil is of two animals, Repenomamus and Psittacosaurus. The Psittacosaurus was bigger than the Repenomamus but not by much. The two animals died suddenly when they were buried in a mudslide following a volcanic eruption, and their skeletons are tangled up together. But this wasn’t just chance. A close look reveals details that show they’d been fighting ferociously even while the mudslide was bearing down on them. Repenomamus has one little front foot wrapped around the jaw of Psittacosaurus, a back foot wrapped around one of the dinosaur’s hind legs, and its jaws are biting at Psittacosaurus’s ribs. It looks like the mammal was winning the fight, but in this particular case no one got out alive.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Rediscover your love for dinosaurs with I Know Dino, the Big Dinosaur Podcast!

A new dinosaur is discovered and named nearly every week and I Know Dino covers the latest scientific discoveries, fun facts about dinosaurs, and a deep dive into a specific dinosaur.

I Know Dino is made by adults for adults, but we keep it clean so kids who are science buffs can listen too. You can find it wherever you get your podcasts.

Episode 341: The Leaf Sheep and the Mold Pig

Thanks to Murilo and an anonymous listener for their suggestions this week!

Further reading:

The ‘sheep’ that can photosynthesize

Meet the ‘mold pigs,’ a new group of invertebrates from 30 million years ago

A leaf sheep:

Shaun the sheep:

A mold pig:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn about two animals that sound like you’d find them on a farm, but they’re much different than their names imply. Thanks to Murilo for suggesting the leaf sheep, which is where we’ll start.

The leaf sheep isn’t a sheep or a leaf. It’s actually a type of sea slug that lives in tropical waters near Japan and throughout much of coastal south Asia. The reason it’s called a leaf sheep is because it actually looks a lot like a tiny cartoon sheep covered with green leaves instead of wool.

Back in episode 215 we talked about the sea bunny, which is another type of sea slug although it’s not closely related to the leaf sheep. The leaf sheep is even smaller than the sea bunny, which can grow up to an inch long, or about 25 mm. The leaf sheep only grows about 10 mm long at most, which explains why it wasn’t discovered until 1993. No one noticed it.

The leaf sheep’s face is white or pale yellow with two tiny black dots for eyes set close together, which kind of makes it look like Shaun the Sheep. It also has two black-tipped protuberances that look like ears, although they’re actually chemoreceptors called rhinophores. The rest of its body is covered with leaf-shaped spines called cerata, which are green and often tipped with pink, white, or black. This helps disguise it as a plant, but there’s another reason why it’s green.

The leaf sheep eats a particular kind of algae called Avrainvillea, which looks like moss or fuzzy carpet. While algae aren’t exactly plants or animals, many do photosynthesize like plants. In other words, they transform sunlight into energy to keep them alive. In order to photosynthesize, a plant or algae uses a special pigment called chlorophyll that makes up part of a chloroplast in its cells, which happens to be green.

The leaf sheep eats the algae, but it doesn’t digest the chloroplasts. Instead, it absorbs them into its own body and uses them for photosynthesis. That way it gets nutrients from eating and digesting algae and it gets extra energy from sunlight. This is a trait shared by other sea slugs in the superorder Sacoglossa. Because they need sunlight for photosynthesis, they live in shallow water, often near coral reefs.

When the leaf sheep’s eggs hatch, the larvae have shells, but as they mature they shed their shells.

This is a good place to talk about cyanobacteria, which was requested ages ago by an anonymous listener. Cyanobacteria mostly live in water and are also called blue-green algae, even though they’re not actually classified as algae. They’re considered bacteria, although not every scientist agrees. Some are unicellular, meaning they just consist of one cell, while others are multicellular like plants and animals, which means they have multiple cells specialized for different functions. Some other cyanobacteria group together in colonies. So basically, cyanobacteria looked at the chart of possible life forms and said, “yes, thanks, we’ll take some of everything.” That’s why it’s so hard to classify them.

Cyanobacteria photosynthesize, and they’ve been doing so for far longer than plants–possibly as much as 2.7 billion years, although scientists think cyanobacteria originally evolved around 3.5 billion years ago. The earth is about 4.5 billion years old and plants didn’t evolve until about 700 million years ago.

Like most plants also do, cyanobacteria produce oxygen as part of the photosynthetic process, and when they started doing so around 2.7 billion years ago, they changed the entire world. Before then, earth’s atmosphere hardly contained any oxygen. If you had a time machine and went back to more than two billion years ago, and you forgot to bring an oxygen tank, you’d instantly suffocate trying to breathe the air. But back then, even though animals and plants didn’t yet exist, the world contained a whole lot of microbial life, and none of it wanted anything to do with oxygen. Oxygen was toxic to the lifeforms that lived then, but cyanobacteria just kept producing it.

Cyanobacteria are tiny, but there were a lot of them. Over the course of about 700 million years, the oxygen added up until other lifeforms started to go extinct, poisoned by all that oxygen in the oceans and air. By two billion years ago, pretty much every lifeform that couldn’t evolve to use or at least tolerate oxygen had gone extinct. So take a deep breath of life-giving oxygen and thank cyanobacteria, which by the way are still around and still producing oxygen. However, they’re still up to their old tricks because they also produce what are called cyanotoxins, which can be deadly.

That brings us to another animal in our imaginary farm, the mold pig. It’s not a pig or a mold, and unlike the leaf sheep and cyanobacteria, it’s extinct. At least, we think it’s extinct.

The mold pig is a microinvertebrate only discovered in 2019. The only reason we know about it at all is because of amber found in the Dominican Republic, on an island in the Caribbean Sea. As we’ve discussed in past episodes, especially episode 108, amber is the fossilized resin of certain types of tree, and sometimes the remains of small animals are found inside. Often these animals are insects, but sometimes even tinier creatures are preserved that we would otherwise probably never know about.

The mold pig was about 100 micrometers long, or .1 millimeter. You’ve probably heard of the tardigrade, or water bear, which we talked about in episode 234, and if so you might think the mold pig was a type of tardigrade just from looking at it, since it looks similar. It had four pairs of legs like tardigrades do, but while scientists think they were related, and that the mold pig was probably also related to mites, it was different enough that it’s been classified in its own genus and may need to belong to its own phylum. Its official name is Sialomorpha.

The mold pig probably ate mold, fungus, and microscopic invertebrates. It lived around 30 million years ago, and right now that’s about all we know about it. There’s a good chance that it still survives somewhere in the world, but it’s so tiny that it’s even easier to overlook than the leaf sheep. Maybe you will be the person who rediscovers its living descendants.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 339: The Tully Monster!

Is it an invertebrate? Is it a vertebrate? It’s the Tully monster!

Further reading:

3D Tully monster probably not related to vertebrates

Has the “Tully monster” mystery finally been solved after 65 years?

Possibly what the Tully monster looked like while alive:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about an ancient creature surrounded by mystery. When I was working on last week’s updates episode, I found some new information about it and intended to include it as an update. Then I realized I was referencing a Patreon episode, which I also reworked into a chapter of the Beyond Bigfoot & Nessie book. So instead, I included the new information in this episode all about the Tully monster.

In 1955, an amateur fossil collector named Francis Tully discovered a really weird fossil. This was in one particular area of Illinois in the United States, roughly in the middle of North America. The fossil was about six inches long, or 15 cm, and Tully thought it resembled a tiny torpedo.

He took the fossil to the Field Museum of Natural History in Chicago in hopes that somebody could tell him what his fossil was. The paleontologists he showed it to had no idea what it was or even what it might be related to. It was described in 1966 and given the name Tullimonstrum, which means Mr. Tully’s monster, which is pretty much what everyone was calling it already.

300 million years ago, in what is now the state of Illinois, a strange animal lived in the shallow sea that covered part of the area. The land that bordered this sea was swampy, with many rivers emptying into the ocean. These river waters carried dead plant materials and mud, which settled to the bottom of the ocean. When an animal died, assuming it wasn’t eaten by something else, its body sank into this soft muddy mess. The bacteria in the mud produced carbon dioxide that combined with iron that was also present in the mud, which formed a mineral called siderite that encased the dead animal. This slowed decay long enough that an impression of the body formed in the mud, and as the centuries passed and the mud became stone, the fossilized body impression was surrounded by a protective ironstone nodule. That’s why we know about the soft-bodied animals from this area, even though soft-bodied animals rarely leave fossil evidence.

So what did this weird animal look like?

The Tully monster was shaped sort of like a slug or a leech, and it had a segmented body. Its eyes were on stalks that jutted out sideways, although the stalks were more of a horizontal bar that grew across the top of the head. The tail end had two vertical fins, which argues that the Tully monster was probably a good swimmer. But at the front of its body it had a long, thin, jointed proboscis that ended in claws or pincers lined with eight tiny tooth-like structures.

It’s easy to assume that the pincers acted as jaws and therefore the proboscis was a mouth on a jointed stalk, but we really don’t know. The Tully monster may have used its proboscis to probe for food in the mud at the bottom of the sea, but because the proboscis had a joint, it probably couldn’t act as a sort of straw. The pincers may have grabbed tiny prey and conveyed it to a mouth that hasn’t been preserved on the specimens we have.

The Tully monster resembles nothing else known, and is so bizarre that researchers aren’t sure where to place it taxonomically. And it wasn’t rare. Paleontologists have since found lots of Tully monster fossils in the Illinois fossil beds, known as the Mazon Creek formation. The Mazon Creek formation is also the source of highly detailed fossils of hundreds of other plant and animal species, including some that have never been found anywhere else.

Scientists have suggested any number of animal groups that the Tully monster might belong to. It might be a type of arthropod, a mollusk, a segmented worm…or it might be a vertebrate. The tiny tooth-like structures in the pincers have been analyzed and some researchers think they were more similar to keratin than chitin. Keratin is a vertebrate protein while chitin is an invertebrate protein.

In 2016 a study argued that pigments in the eyes are arranged the same way as they are in vertebrates, which meant the Tully monster might have been a vertebrate. The problem is that some invertebrates also have these same pigment arrangements, notably cephalopods like octopuses. A 2019 study also looked at the chemical makeup of the fossil eyes, this time with even more advanced equipment—specifically, a synchrotron radiation lightsource, which is a type of particle accelerator. It sounds so science-y. This study suggested that the Tully monster’s eyes had a different chemical makeup than the vertebrates found in the same fossil beds, which means the Tully monster probably wasn’t a vertebrate after all. But it also didn’t match up with known invertebrates from the same fossil beds.

Of course, it might be a deuterostome. The animals in this superphylum develop a nerve cord at some stage of life, usually as an embryo, but may not retain it into adulthood. This includes echinoderms such as sea stars and sea urchins, tunicates like sea squirts, and possibly acorn worms although some scientists disagree. All vertebrates are also members of the superphylum too.

One suggestion is that the Tully monster is related to a type of animal called a conodont. Technically the term conodont refers to its teeth, with the animal itself known as conodontophora, but conodont is easier to say. We know very little about the conodont, since almost the only fossils we have of it are the tiny teeth. We also have eleven body impressions, so we know it was long and skinny like an eel and grew up to 20 inches long, or 50 cm. We also know it had large eyes, a notochord (or primitive spine), and fins on the tail end.

Conodont teeth first appear in the fossil record during the Cambrian, some 525 million years ago. They disappear entirely from the fossil record about 200 million years ago during the Triassic-Jurassic extinction event. But during those 300-some million years they were around, they left a whole lot of tiny fossil teeth, so many that they’re considered an index fossil, which helps scientists determine how old a particular strata of rock is.

When I say tiny teeth, I mean tiny—they’re microfossils usually measured in micrometers, although some of the larger ones were as much as 6 mm long. But they weren’t teeth like modern animal teeth, and the mouth wasn’t like anything we know today.

The conodont’s mouth is called a feeding apparatus by scientists, and it’s very different from what most of us think of as a mouth. This was long before jawed animals evolved some 400 million years ago, and the conodont’s teeth are technically known as conodont elements since they’re not really teeth. There were three types of the conodont elements, meaning they had different shapes and probably different functions.

Some species of conodont may have used the elements to crush prey, but they probably weren’t very strong swimmers so may have mostly eaten very small animals. Some researchers even suggest the conodont used the elements to filter plankton from the water, while others think the conodont might have been parasitic on larger animals, like the sea lamprey is. Conodonts were probably related to hagfish and lampreys and may have looked similar, although not everyone agrees with this classification. Some researchers even think conodonts might have been invertebrates.

Another possibility is that the Tully monster was related to Anomalocarids, which you may remember from the Cambrian explosion episode. Anomalocaris and its relations were arthropods that resemble nothing else alive. It had eyes on stalks, clawed appendages that grew from its front near the mouth, and the rear of its body was segmented with tail fins. Another Cambrian arthropod, Opabinia, had a single flexible feeding proboscis with claws at the end, five eyes on stalks, and a segmented body, so the Tully monster may have been related to it. But we don’t have anything definitive yet one way or another as to what it was related to.

The most recent study on whether the Tully monster was an invertebrate or a vertebrate was published in early 2023 in the journal Nature. The study used high-resolution 3D scanning to examine 153 Tully monster specimens. The scientists determined that the tooth-like structures at the end of the proboscis don’t appear to be keratin, and the Tully monster has segmentation in its head, which is not something found in vertebrates. These and other findings mean that as of now, it looks like the Tully monster was an invertebrate.

However, we still have no idea what kind of invertebrate it might have been. The 2023 study suggests it was either a non-vertebrate chordate or a protostome. Non-vertebrate chordates include hagfish and tunicates, while protostomes include a whole lot of invertebrates, including insects, worms, and mollusks.

The reason all this is important is because there’s a whole lot we don’t know yet about how jawed animals evolved from jawless fish. If the Tully monster really was a vertebrate, it would give us new information about jawless animals. But part of the reason it’s hard to determine where the Tully monster should be placed taxonomically is because of how incredibly weird it is, and that’s exciting too.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 338: Updates 6 and an Arboreal Clam!?!

This week we have our annual updates and corrections episode, and at the end of the episode we’ll learn about a really weird clam I didn’t even think was real at first.

Thanks to Simon and Anbo for sending in some corrections!

Further reading:

Lessons on transparency from the glass frog

Hidden, never-before-seen penguin colony spotted from space

Rare wild asses spotted near China-Mongolia border

Aye-Ayes Use Their Elongated Fingers to Pick Their Nose

Homo sapiens likely arose from multiple closely related populations

Scientists Find Earliest Evidence of Hominins Cooking with Fire

153,000-Year-Old Homo sapiens Footprint Discovered in South Africa

Newly-Discovered Tyrannosaur Species Fills Gap in Lineage Leading to Tyrannosaurus rex

Earth’s First Vertebrate Superpredator Was Shorter and Stouter than Previously Thought

252-Million-Year-Old Insect-Damaged Leaves Reveal First Fossil Evidence of Foliar Nyctinasty

The other paleo diet: Rare discovery of dinosaur remains preserved with its last meal

The Mongolian wild ass:

The giant barb fish [photo from this site]:

Enigmonia aenigmatica, AKA the mangrove jingle shell, on a leaf:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week is our annual updates and corrections episode, but we’ll also learn about the mangrove jingle shell, a clam that lives in TREES. A quick reminder that this isn’t a comprehensive updates episode, because that would take 100 years to prepare and would be hours and hours long, and I don’t have that kind of time. It’s just whatever caught my eye during the last year that I thought was interesting.

First, we have a few corrections. Anbo emailed me recently with a correction from episode 158. No one else caught this, as far as I can remember. In that episode I said that geckos don’t have eyelids, and for the most part that’s true. But there’s one family of geckos that does have eyelids, Eublepharidae. This includes the leopard gecko, and that lines up with Anbo’s report of having a pet leopard gecko who definitely blinked its eyes. This family of geckos are sometimes even called eyelid geckos. Also, Anbo, I apologize for mispronouncing your name in last week’s episode about shrimp.

After episode 307, about the coquí and glass frogs, Simon pointed out that Hawaii doesn’t actually have any native frogs or amphibians at all. It doesn’t even have any native reptiles unless you count sea snakes and sea turtles. The coqui frog is an invasive species introduced by humans, and because it has no natural predators in Hawaii it has disrupted the native ecosystem in many places, eating all the available insects. Three of the Hawaiian islands remain free of the frogs, and conservationists are working to keep it that way while also figuring out ways to get them off of the other islands. Simon also sent me the chapter of the book he’s working on that talks about island frogs, and I hope the book is published soon because it is so much fun to read!

Speaking of frogs, one week after episode 307, an article about yet another way the glass frog is able to hide from predators was published in Science. When a glass frog is active, its blood is normal, but when it settles down to sleep, the red blood cells in its blood collect in its liver. The liver is covered with teensy guanine crystals that scatter light, which hides the red color from view. That makes the frog look even more green and leaf-like!

We’ve talked about penguins in several episodes, and emperor penguins specifically in episode 78. The emperor penguin lives in Antarctica and is threatened by climate change as the earth’s climate warms and more and more ice melts. We actually don’t know all that much about the emperor penguin because it lives in a part of the world that’s difficult for humans to explore. In December 2022, a geologist named Peter Fretwell was studying satellite photos of Antarctica to measure the loss of sea ice when he noticed something strange. Some of the ice had brown stains.

Dr Fretwell knew exactly what those stains were: emperor penguin poop. When he obtained higher-resolution photos, he was able to zoom in and see the emperor penguins themselves. But this wasn’t a colony he knew about. It was a completely undiscovered colony.

In episode 292 we talked about a mystery animal called the kunga, and in that episode we also talked a lot about domestic and wild donkeys. We didn’t cover the Mongolian wild ass in that one, but it’s very similar to wild asses in other parts of the world. It’s also called the Mongolian khulan. It used to be a lot more widespread than it is now, but these days it only lives in southern Mongolia and northern China. It’s increasingly threatened by habitat loss, climate change, and poaching, even though it’s a protected animal in both Mongolia and China.

In February of 2023, a small herd of eight Mongolian wild asses were spotted along the border of both countries, in a nature reserve. A local herdsman noticed them first and put hay out to make sure the donkeys had enough to eat. The nature reserve has a water station for wild animals to drink from, and has better grazing these days after grassland ecology measures were put into place several years ago.

In episode 233 we talked about the aye-aye of Madagascar, which has weird elongated fingers. Its middle finger is even longer and much thinner than the others, which it uses to pull invertebrates from under tree bark and other tiny crevices. Well, in October of 2022 researchers studying aye-ayes started documenting another use for this long thin finger. The aye-ayes used it to pick their noses. It wasn’t just one aye-aye that wasn’t taught good manners, it was widespread. And I hope you’re not snacking while I tell you this, the aye-aye would then lick its finger clean. Yeah. But the weirdest thing is that the aye-aye’s thin finger is so long that it can potentially reach right through the nose right down into the aye-aye’s throat.

It’s pretty funny and gross, but wondering why some animals pick their noses is a valid scientific question. A lot of apes and monkeys pick their noses, as do humans (not that we admit it most of the time), and now we know aye-ayes do too. The aye-aye is a type of lemur and therefore a primate, but it’s not very closely related to apes and monkeys. Is this just a primate habit or is it only seen in primates because we have fingers that fit into our nostrils? Would all mammals pick their nose if they had fingers that would fit up in there? Sometimes if you have a dried snot stuck in your nose, it’s uncomfortable, but picking your nose can also spread germs if your fingers are dirty. So it’s still a mystery why the aye-aye does it.

A recent article in Nature suggests that Homo sapiens, our own species, may have evolved not from a single species of early human but from the hybridization of several early human species. We already know that humans interbred with Neandertals and Denisovans, but we’re talking about hybridization that happened long before that between hominin species that were even more closely related.

The most genetically diverse population of humans alive today are the Nama people who live in southern Africa, and the reason they’re so genetically diverse is that their ancestors have lived in that part of Africa since humans evolved. Populations that migrated away from the area, whether to different parts of Africa or other parts of the world, had a smaller gene pool to draw from as they moved farther and farther away from where most humans lived.

Now, a new genetic study of modern Nama people has looked at changes in DNA that indicate the ancestry of all humans. The results suggest that before about 120,000 to 135,000 years ago, there was more than one species of human, but that they were all extremely closely related. Since these were all humans, even though they were ancient humans and slightly different genetically, it’s probable that the different groups traded with each other or hunted together, and undoubtedly people from different groups fell in love just the way people do today. Over the generations, all this interbreeding resulted in one genetically stable population of Homo sapiens that has led to modern humans that you see everywhere today. To be clear, as I always point out, no matter where people live or what they look like, all people alive today are genetically human, with only minor variations in our genetic makeup. It’s just that the Nama people still retain a lot of clues about our very distant ancestry that other populations no longer show.

To remind everyone how awesome out distant ancestors were, here’s one new finding of how ancient humans lived. We know that early humans and Neandertals were cooking their food at least 170,000 years ago, but recently archaeologists found the remains of an early hominin settlement in what is now Israel where people were cooking fish 780,000 years ago. There were different species of fish remains found along with the remains of cooking fires, and some of the fish are ones that have since gone extinct. One was a carp-like fish called the giant barb that could grow 10 feet long, or 3 meters.

In other ancient human news, the oldest human footprint was discovered recently in South Africa. You’d think that we would have lots of ancient human footprints, but that’s actually not the case when it comes to footprints more than 50,000 years old. There are only 14 human footprints older than that, although there are older footprints found made by ancestors of modern humans. The newly discovered footprint dates to 153,000 years ago.

It wouldn’t be an updates episode without mentioning Tyrannosaurus rex. In late 2022 a newly discovered tyrannosaurid was described. It lived about 76 million years ago in what is now Montana in the United States, and while it wasn’t as big as T. rex, it was still plenty big. It probably stood about seven feet high at the hip, or a little over 2 meters, and might have been 30 feet long, or 9 meters. It probably wasn’t a direct ancestor of T. rex, just a closely related cousin, although we don’t know for sure yet. It’s called Daspletosaurus wilsoni and it shows some traits that are found in older Tyrannosaur relations but some that were more modern at the time.

Dunkleosteus is one of a number of huge armored fish that lived in the Devonian period, about 360 million years ago. We talked about it way back in episode 33, back in 2017, and at that time paleontologists thought Dunkleosteus terrelli might have grown over 30 feet long, or 9 meters. It had a heavily armored head but its skeleton was made of cartilage like a shark’s, and cartilage doesn’t generally fossilize, so while we have well-preserved head plates, we don’t know much about the rest of its body.

With the publication in early 2023 of a new study about dunkleosteus’s size, we’re pretty sure that 30 feet was a huge overestimation. It was probably less than half that length, maybe up to 13 feet long, or almost 4 meters. Previous size estimates used sharks as size models, but dunkleosteus would have been shaped more like a tuna. Maybe you think of tuna as a fish that makes a yummy sandwich, but tuna are actually huge and powerful predators that can grow up to 10 feet long, or 3 meters. Tuna are also much heavier and bigger around than sharks, and that was probably true for dunkleosteus too. The study’s lead even says dunkleosteus was built like a wrecking ball, and points out that it was probably the biggest animal alive at the time. I’m also happy to report that people have started calling it chunk-a-dunk.

We talked about trace fossils in episode 103. Scientists can learn a lot from trace fossils, which is a broad term that encompasses things like footprints, burrows, poops, and even toothmarks. Recently a new study looked at insect damage on leaves dating back 252 million years and learned something really interesting. Some modern plants fold up their leaves at night, called foliar nyctinasty, which is sometimes referred to as sleeping. The plant isn’t asleep in the same way that an animal falls asleep, but “sleeping” is a lot easier to say than foliar nyctinasty. Researchers didn’t know if folding leaves at night was a modern trait or if it’s been around for a long time in some plants. Lots of fossilized leaves are folded over, but we can’t tell if that happened after the leaf fell off its plant or after the plant died.

Then a team of paleontologists from China and Sweden studying insect damage to leaves noticed that some leaves had identical damage on both sides, exactly as though the leaf had been folded and an insect had eaten right through it. That’s something that happens in modern plants when they’re asleep and the leaves are folded closed.

The team looked at fossilized leaves from a group of trees called gigantopterids, which lived between 300 and 250 million years ago. They’re extinct now but were advanced plants at the time, some of the earliest flowering plants. They also happen to have really big leaves that often show insect damage. The team determined that the trees probably did fold their leaves while sleeping.

In episode 151 we talked about fossils found with other fossils inside them. Basically it’s when a fossil is so well preserved that the contents of the dead animal’s digestive system are preserved. This is incredibly rare, naturally, but recently a new one was discovered.

Microraptor was a dinosaur that was only about the size of a modern crow, one of the smallest dinosaurs, and it probably looked a lot like a weird bird. It could fly, although probably not very well compared to modern birds, and in addition to front legs that were modified to form wings, its back legs also had long feathers to form a second set of wings.

Several exceptionally well preserved Microraptor fossils have been discovered in China, some of them with parts of their last meals in the stomach area, including a fish, a bird, and a lizard, so we knew they were generalist predators when it came to what they would eat. Now we have another Microraptor fossil with the fossilized foot of a mammal in the place where the dinosaur’s stomach once was. So we know that Microraptor ate mammals as well as anything else it could catch, although we don’t know what kind of mammal this particular leg belonged to. It may be a new species.

Let’s finish with the mangrove jingle shell. I’ve had it on the list for a long time with a lot of question marks after it. It’s a clam that lives in trees, and I actually thought it might be an animal made up for an April fool’s joke. But no, it’s a real clam that really does live in trees.

The mangrove jingle shell lives on the mangrove tree. Mangroves are adapted to live in brackish water, meaning a mixture of fresh and salt water, or even fully salt water. They mostly live in tropical or subtropical climates along coasts, and especially like to live in waterways where there’s a tide. The tide brings freshly oxygenated water to its roots. A mangrove tree needs oxygen to survive just like animals do, but it has trouble getting enough through its roots when they’re underwater. Its root system is extensive and complicated, with special types of roots that help it stay upright when the tide goes out and special roots called pneumatophores, which stick up above the water or soil and act as straws, allowing the tree to absorb plenty of oxygen from the air even when the rest of the root system is underwater. These pneumatophores are sometimes called knees, but different species of mangrove have different pneumatophore shapes and sizes.

One interesting thing about the mangrove tree is that its seeds actually sprout while they’re still attached to the parent tree. When it’s big enough, the seedling drops off its tree into the water and can float around for a long time before it finds somewhere to root. If can even survive drying out for a year or more.

The mangrove jingle shell clam lives in tropical areas of the Indo-Pacific Ocean, and is found throughout much of coastal southeast Asia all the way down to parts of Australia. It grows a little over one inch long, or 3 cm, and like other clams it finds a place to anchor itself so that water flows past it all the time and it can filter tiny food particles from the water. It especially likes intertidal areas, which happens to be the same area that mangroves especially like.

Larval jingle shells can swim, but they need to find somewhere solid to anchor themselves as they mature. When a larva finds a mangrove root, it attaches itself and grows a domed shell. If it finds a mangrove leaf, since mangrove branches often trail into the water, it attaches itself to the underside and grows a flatter shell. Clams attached to leaves are lighter in color than clams attached to roots or branches. Fortunately, the mangrove is an evergreen tree that doesn’t drop its leaves every year.

So there you have it. Arboreal clams! Not a hoax or an April fool’s joke.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 330: Vintana and Tiarajudens

Thanks to Lorenzo for suggesting Tiarajudens! We’ll learn about it this week along with another extinct animal, Vintana.

Further reading:

Funky facial flanges [the skull picture below comes from this site]

First Postcranial Fossils of Rare Gondwanatherian Mammal Unearthed in Madagascar

The Earliest Saberteeth Were for Fighting, Not Biting [the skeleton picture below comes from this site]

Vintana’s skull had weird jugal flanges:

Tiarajudens had saber teeth as well as palatal teeth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Just last month we had an episode about the tenrec and an extinct animal called Adalatherium. At the end of that episode, I said something I say a lot, that we don’t know very much about it or the other ancient mammals that lived at the time, and that I hoped we would find some new fossils soon. Well, guess what! A paper about a newly discovered Gondwanathere fossil was published just a few days ago as this episode goes live. Rather than save it for the updates episode later this summer, let’s learn about an animal named Vintana sertichi, along with a suggestion from Lorenzo for another extinct animal.

As you may remember from episode 324, Adalatherium is a member of a group of animals called Gondwanatheria, which arose in the southern hemisphere around the time that the supercontinent Gondwana was breaking apart. We only have a few fossils of these animals so paleontologists still don’t know how they’re related, although we do know they’re not related to the mammals living today. Every new specimen found of these rare mammals helps scientists fill the gaps in our knowledge. That’s what happened with Vintana.

Vintana lived at the end of the Cretaceous, until the asteroid strike about 66 million years ago that killed off the non-avian dinosaurs and a whole lot of other animals, probably including Vintana. The first fossilized specimen was a skull found in Madagascar and described in 2014. It was really well preserved, which allowed scientists to learn a lot about the animal.

Vintana was an active animal that ate plants. It had large eyes and a good sense of smell and hearing, so its ears might have been fairly large too. Its face probably looked a lot like a big rodent’s face, but the skull itself had a weird feature. The cheekbones extended downward on each side next to the jaw, and these extensions are called jugal flanges. They would have allowed for the attachment of really big jaw muscles. That suggests that Vintana could probably give you a nasty bite, not that you need to worry about that unless you find a time machine. It might also mean that Vintana ate tough plants that required a lot of chewing.

Vintana probably looked a lot like a groundhog, or marmot, which we talked about recently in episode 327. It wasn’t related to the groundhog, though, and was bigger too. Scientists estimate it weighed about 20 lbs, or 9 kg.

The fossil specimen of Adalatherium that we talked about in episode 324 was discovered in Madagascar in 2020. When a tail vertebra from another mammal was found in the same area, researchers scanned and compared it to Adalatherium’s vertebrae. They were similar but not an exact match, plus the new bone was almost twice as large as the same bone in Adalatherium’s spine. It matched the size of Vintana and was assigned to that species. Vintana was probably related to Adalatherium but was bigger and had a shorter, wider tail. And as of right now, that’s just about all we know about it.

Next, let’s learn about another extinct animal, this one suggested by Lorenzo. Lorenzo gave me a bunch of great suggestions and I picked this one to pair with Vintana, because otherwise this episode would have been really short. Vintana lived at the end of the dinosaurs, but Tiarajudens lived long before the dinosaurs evolved, around 260 million years ago.

Tiarajudens was a therapsid, a group that eventually gave rise to mammals although it’s not a direct ancestor of mammals. Technically it’s an anomodont. We don’t have a complete skeleton so we don’t know for sure how big it was, but we do have a skull and some leg bones so we know it was about the same size or a little bigger than a big dog. There are only two species known, one from what is now South America and one from what is now Africa, but 260 million years ago those two landmasses were connected and were part of the supercontinent Gondwana.

Tiarajudens had weird teeth even compared to other anomodonts. It had a pair of saber teeth that resembled the tusks found in later anomodonts, but they weren’t really tusks. They were big fangs that grew from the upper jaw and jutted down out of the mouth well past the bottom of the jaw. Later anomodonts probably used their tusks to dig up plants, but there aren’t wear marks on Tiarajudens’s saber teeth that would indicate it used them for digging. Many paleontologists think it used them for defense and to fight other Tiarajudenses over mates or territory. We don’t know if the saber teeth were present in all individuals, since we’ve only found a few specimens.

Tiarajudens also had palatal teeth. These days palatal teeth are mostly found in amphibians, especially frogs. Palatal teeth grow down from the roof of the mouth and Tiarajudens’s were flat like molars. We haven’t found a lower jaw yet so we don’t know what the bottom teeth looked like, but from the wear marks on the upper teeth, it was clear that Tiarajudens was actually chewing its food. That was really unusual among all animals at the time, and in fact Tiarajudens is one of the first animals to really chew its food instead of giving it a chomp or two and swallowing it mostly whole. It ate plants, probably tough ones that required a lot of chewing.

So what did Tiarajudens look like beyond its teeth? It probably resembled a bulky four-legged dinosaur with a short tail, but it may have had whiskers. That’s as much as we know right now, because Tiarajudens was not only an early therapsid, it was different in many ways from most other therapsids known. For instance, it had what are called gastralia, or belly ribs, which were once common in tetrapods. Some dinosaurs had gastralia, including T. rex, but most therapsids didn’t. These days crocodiles and their relations still have gastralia, and so does the tuatara, but most animals don’t.

Both Tiarajudens and Vintana were unusual animals that we just don’t know much about. Let’s hope that changes soon and scientists find more fossils of both. I’ll keep you updated.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 329: Manatees and a Surprise Sloth

Thanks to Alexandra and Pranav for their suggestions this week! Let’s learn about manatees and sloths, including a surprising extinct sloth.

Further reading:

Sloths in the Water

A West Indian manatee:

A three-toed sloth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Alexandra and Pranav, who wanted an episode about manatees. We’ll also talk about another marine mammal, a weird extinct one you may never have heard of.

The manatee is also called the sea cow, because it sort of slightly resembles a cow and it grazes on plants that grow underwater. It’s a member of the order Sirenia, which includes the dugong, and sirenians are probably most closely related to the elephant. This sounds ridiculous at first, but there are a lot of physical similarities between the manatee and the elephant. Their teeth are very similar, for instance, even if the manatee doesn’t grow tusks. The elephant has a pair of big chewing teeth on each side of its mouth that look more like the bottoms of running shoes than ordinary teeth. Every so many years, the four molars in an elephant’s mouth start to get pushed out by four new molars. The new teeth grow in at the back of the mouth and start moving forward, pushing the old molars farther forward until they fall out. The manatee has this same type of tooth replacement, although its teeth aren’t as gigantic as the elephant’s teeth. The manatee also has hard ridged pads on the roof of its mouth that help it chew its food.

Female manatees are larger than males on average, and a really big female manatee can grow over 15 feet long, or 4.6 meters. Most manatees are between 9 and 10 feet long, or a little less than 3 meters. Its body is elongated like a whale, but unlike a whale it’s slow, usually only swimming about as fast as a human can swim. Its skin is gray or brown although often it has algae growing on it that helps camouflage it. The end of the manatee’s tail looks like a rounded paddle, and it has front flippers but no rear limbs. Its face is rounded with a prehensile upper lip covered with bristly whiskers, which it uses to find and gather water plants.

Every so often a manatee will eat a little fish, apparently on purpose. Since most herbivorous animals will eat meat every so often, this isn’t unusual. Mostly, though, the manatee spends almost all of its time awake eating plants, often from the bottom of the waterway where it lives. It lives in shallow water and will use its flippers to walk itself along the bottom, and also uses its flippers to dig up plants. Its upper lip is divided in two like the upper lips of many animals, which you can see in a dog or cat as that little line connecting the bottom of the nose to the upper lip. In the manatee, though, both sides of the lips have a lot of muscles and can move independently.

There are three species of manatee alive today: the West Indian manatee that lives in the Gulf of Mexico down to the eastern coast of northern South America, the Amazonian manatee that lives exclusively in fresh water in the Amazon basin, and the West African manatee that lives in brackish and fresh water. Sometimes the West Indian manatee will also move into river systems to find food.

Back in episode 153 we talked about the Florida manatee, which is a subspecies of West Indian manatee. In the winter it mostly lives around Florida but in summer many individuals travel widely. It’s sometimes found as far north as Massachusetts along the Atlantic coast, and as far west as Texas in the Gulf of Mexico, but despite its size, the manatee doesn’t have a lot of blubber or fat to keep it warm. The farther away it travels from warm water, the more likely it is to die of cold.

In the 1970s there were only a few hundred Florida manatees alive and it nearly went extinct. It was listed as an endangered species and after a lot of effort by a lot of different conservation groups, it’s now only considered threatened, but it’s still vulnerable to habitat loss, injuries from boats, and getting tangled in fishing gear and drowning. Occasionally a crocodile will eat a young manatee, but for the most part it’s so big, and lives in such shallow water, that most predators won’t bother it. It basically only has to worry about humans, and unfortunately humans still cause a lot of manatee deaths every year with boats.

A lot of times, a manatee that’s hit by a boat is only injured. There are several rehabilitation centers in the United States, where an injured manatee can be treated by veterinarians until it’s healed and can be reintroduced into the wild.

One other detail that makes the manatee similar to the elephant is its flippers, which is probably not what you expected me to say. Most manatees have toenails on their flippers that closely resemble the nails on elephant feet. The exception is the Amazonian manatee that doesn’t have toenails at all.

A lot of the food the Amazonian manatee eats actually floats on the surface of the rivers where it lives, and it will also eat fruit that drops into the water. Because the Amazon basin is subject to a dry season where there’s not a lot of food, the manatee eats a lot when it can to build up fat reserves for later. During the dry season, it usually moves to the biggest lakes in the area as the rivers and shallower lakes dry up or get too shallow for the manatee to swim in. Since the manatee has a low metabolic rate, it can live off its fat reserves until the dry season is over.

One interesting thing about the manatee is that it only has six vertebrae in its neck. Almost all other mammals have seven, even giraffes. The exception is the two-toed sloth, which also has six, and the three-toed sloth, which has a varying number of neck vertebrae, up to nine in some species!

Pranav also wanted to learn about sloths, so let’s talk about them next. All sloths are native to Central and South America. The sloths living today live in forests, especially rainforests, and spend almost all their time in trees.

A sloth makes the manatee look like a speed demon. It spends most of its time hanging from its long claws beneath branches, eating leaves and other plant material, but when it does move, it does so extremely slowly. This helps it stay camouflaged from predators, because its fur contains algae that makes it look green, so a barely-moving green-furred sloth hanging from a tree just looks like a bunch of leaves. It does move from one tree to another to find fresh leaves, and once a week it climbs down from its tree to defecate and urinate on the ground. Yes, it only relieves itself once a week.

The sloth’s digestive tract is also extremely slow, which allows it to extract as much nutrition as possible from each leaf. It takes about a month for a sloth to fully digest one mouthful of food.

The three-toed sloth is about the size of a large cat while the two-toed sloth is slightly larger, maybe the size of a small to medium-sized dog. The two-toed sloth is nocturnal while the three-toed sloth is mostly diurnal. Even though they look and act very similar, the two types of sloth are not very closely related. Both have long curved claws and strong pulling muscles, although their pushing muscles are weak. This is why a sloth can’t walk like other animals; the muscles that would allow it to do so aren’t strong enough to support its own weight. And yet, it can hang from a branch and walk along it for as long as it needs to. I don’t think I could hang from a branch by my fingers for five minutes without having to let go.

Surprisingly, the sloth can also swim quite well, which allows it to find new trees even if there are streams or rivers in the way. But a few million years ago, a different type of sloth lived off the coast of western South America and did a whole lot of swimming. In fact, later species of Thalassocnus were probably fully marine mammals.

We talked about Thalassocnus briefly way back in episode 22. It was related to the giant ground sloths that were themselves related to the living three-toed sloths. The earliest Thalassocnus fossils are of semi-aquatic animals that grazed in shallow water. Fossils from more recent species show increasing adaptations to deeper water, including increased weight of the skeleton to help it stay underwater instead of bobbing up to the surface.

Thalassocnus eventually evolved a stiff, partially fused spine, which reflects the unusual way it moved around underwater. Instead of swimming the way a whale does, or even the way a dog or person does, it moved more like a hippopotamus. Hippos sort of bounce along underwater, using their feet to push off from the bottom. Thalassocnus probably did this too and used its long tail to help it maneuver.

Thalassocnus was a lot bigger than modern sloths. Even the smallest known species were the size of a big human, and the biggest species grew up to 11 feet long, or 3.3 meters. That biggest species was the one that lived most recently, up to about 1.5 million years ago, and researchers think it was fully aquatic. Its nostrils were on the top of its snout and it had prehensile lips to help it find plants underwater. Some researchers even think it could have had a short trunk something like a tapir. It had seven neck vertebrae, as in most other mammals.

There’s still a lot we don’t know about Thalassocnus, but because we have fossils of five different species that lived at different times, scientists are able to determine a lot about how it developed from a mostly terrestrial animal to a mostly or fully marine animal. The youngest species had smaller, weaker legs than the earlier ones, which suggests it didn’t use its legs to walk on land. It probably lived a lot like modern manatees, finding sea grasses and other plants on the sea floor in shallow water, but not able to swim very fast.

One last thing about the manatee is that it spends about half of its time asleep, and it sleeps underwater. It comes up for a breath every 15 minutes or so. Modern sloths sleep a lot too, around 15 hours a day. Chill sleepy friends.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 328: Giant Ants

Thanks to Richard from NC for suggesting Titanomyrma!

Further reading:

‘Giant’ ant fossil raises questions about ancient Arctic migrations

A fossilized queen Titanomyrma ant with a rufous hummingbird (stuffed) for scale:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Richard from North Carolina, who sent me an article about an extinct giant ant called Titanomyrma. This episode is short, but I think you’ll find it interesting.

We’ve talked about ants in previous episodes, most recently episode 185. Most ant colonies consist of a single queen ant who lays all the eggs for her colony, seasonally hatched males with wings who fly off as soon as they’re grown, and worker ants. The worker ants are all female but don’t lay eggs. Army ants have another caste, the soldier ant, which are much larger than the worker ants and have big heads and strong, sharp mandibles. In many species of ant, the worker ants are further divided into castes that are specialized for specific tasks.

The biggest species of ant alive today is probably the giant Amazonian ant. The workers can grow over 1.2 inches long, or more than 3 cm, which is huge for an ant. It lives in South America in small colonies, usually containing less than 100 workers, and unlike most ants it doesn’t have a queen. Instead, one of the workers mates with a male and lays eggs for the colony. The giant Amazonian ant can sting and its sting contains venom that causes intense pain for up to two days. Fortunately, you will probably never encounter these giant ants, and even if you do they’re not very aggressive.

Another contender for the biggest species of ant alive today is the Dorylus genus of army ants, also called driver ants, which we talked about in episode 185. It lives in Africa in colonies that have millions of members, and the queen is the largest ant known. A queen army ant can measure 2.4 inches long, or 63 millimeters, but worker ants are much smaller.

Around 50 million years ago, giant ants related to modern driver ants lived in both Europe and North America. The genus is Titanomyrma and three species are known so far, found in Germany, England, Canada, and the American states of Tennessee and Wyoming.

The Wyoming ant fossil was discovered years ago and donated to the Denver Museum of Nature and Science, where it was stored in a drawer and forgotten about. In 2011 a curator found it and showed it to a paleoentomologist named Bruce Archibald. Dr. Archibald recognized it immediately as a fossilized queen ant even though it was the size of a hummingbird. He also realized it was very similar to a type of giant ant that once lived in Germany.

The German discovery was the first Titanomyrma species discovered, and it’s also the biggest known so far. The queen Titanomyrma gigantea grew up to 2.8 inches long, or 7 centimeters. Males grew up to 1.2 inches long, or 3 cm. The fossilized queen ants found have wings, with a wingspan of over 6 inches, or 16 cm. The other two known species are generally smaller, although still pretty darn big for ants.While they’re not that much bigger than the living Dorylus queens, most of the size of a queen Dorylus ant comes from her enlarged abdomen. Titanomyrma ants were just plain big all over.

Titanomyrma didn’t have a stinger, so it’s possible it used its mandibles to inflict bites, the way modern army ants do. It might also have sprayed formic acid at potential predators, as some ants do today.

The biggest ants alive today all live in tropical areas, so researchers thought Titanomyrma probably did too. During the Eocene, the world was overall quite warm and parts of Europe were tropical. The northern hemisphere supercontinent Laurasia was in the process of breaking up, but Europe and North America were still connected by the Arctic. Even though the Arctic was a lot warmer 50 million years ago than it is now, it was still too cold for a tropical ant. If Titanomyrma couldn’t survive in cold weather, how did it spread from one continent to another when it had to go through the Arctic?

There were warming periods during the Eocene that lasted a few hundred thousand years at a time, so researchers thought the ants probably migrated through the Arctic while it was warmer than usual. Then, in early 2023, a fossilized Titanomyrma queen ant was discovered in Canada. Because the rock it was preserved in has been distorted over the years, we can’t be certain how big the ant actually was. What we do know, though, is that the ant lived in a mountainous area that could get quite chilly, very different from the tropical climate scientists thought the giant ants needed.

As a result of the new finding, researchers are reconsidering whether the giant ants that lived 50 million years ago were really all that similar to modern giant ants. Just because the biggest ants alive today require tropical climates doesn’t mean that ancient giant ants did.

Hopefully more giant ant fossils will turn up soon, so we can learn more about where they lived, how they lived, and precisely how big they could get.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 325: The Burrunjor

We have merch available again!

Thanks to Will for suggesting this week’s topic, the burrunjor!

Muttaburrasaurus had a big nose [picture by Matt Martyniuk (Dinoguy2) – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=3909643]:

The “rock art” that Rex Gilroy “found”:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Recently, Will suggested we learn about an Australian cryptid called the burrunjor. As it happens, this is a short chapter in my book Beyond Bigfoot & Nessie: Lesser-Known Mystery Animals from Around the World, which is available to buy if you haven’t already. I’ve updated it a little from the chapter, so even if you have the book I think you’ll find this a fun episode.

Dinosaurs once lived in what is now Australia, just as they lived throughout the rest of the world. Similar to the southwestern United States reports of little living dinosaurs that we talked about in episode 252, some people in northern Australia report seeing living dinosaurs running around on their hind legs—but these dinosaurs aren’t so little.

The burrunjor, as it’s called, is often described as looking like a Tyrannosaurus rex. Mostly, though, people don’t actually see it. Instead, they hear roaring or bellowing and later see the tracks of a large, three-toed animal that was walking on its hind legs.

One Australian dinosaur that people mention when trying to solve the mystery of the burrunjor is Muttaburrasaurus. It was an ornithopod that grew up to 26 feet long, or 8 meters. It walked on its hind legs and had a big bump on the top of its muzzle that made its head shape unusual. No one’s sure what the bump was for, but some scientists speculate it might have been a resonant chamber so the animal could produce loud calls to attract a mate. Other scientists think it might have just been for display. Or, of course, it might have been both—or something else entirely. None of the Australian dinosaur sightings mention a big bump on the dinosaur’s nose. Muttaburrasaurus also had four toes on its hind feet, not three, and it disappeared from the fossil record about 103 million years ago. It also probably ate plants, not meat.

Another suggestion is that the burrunjor is a megaraptorid that survived from the late Cretaceous. These dinosaurs looked like theropods but with longer, more robust arms. Most scientists these days group them with the theropods. Most of the known specimens are from what is now South America, but two species are known from Australia, Australovenator and Rapator.

Australovenator is estimated as growing up to 20 feet long, or 6 meters, and probably stood about the same height as a tall human. It was a fast runner and relatively lightly built. It disappeared from the fossil record around 95 million years ago, not that we have very many bones in the first place. We only know Rapator from a single bone dated to 96 million years ago. It was probably related to Australovenator, although some paleontologists think Australovenator and Rapator are the same dinosaur. Either way, it’s doubtful that any of these animals survived the extinction event that killed off all the other non-avian dinosaurs.

“Burrunjor” is supposed to be a word used by ancient Aboriginal people to describe a monstrous lizard that eats kangaroos. But in actuality, Burrunjor is the name of a trickster demigod in the local Arnhem Aboriginal tradition and has nothing to do with reptiles or monsters. The Aboriginal rock art supposedly depicting a dinosaur-like creature doesn’t resemble other rock art in the region and isn’t recognized by researchers or Aboriginal people as being authentic.

All accounts of the burrunjor trace back to a single source, an Australian paranormal writer named Rex Gilroy. Gilroy was the one who “discovered” the rock art of a supposed dinosaur and none of the sightings he reports appear in local newspapers. The first mention of the word burrunjor referring to a monster appears in 1995, when Gilroy’s book Mysterious Australia was first published. According to Gilroy, the most recent burrunjor sighting is from 1985, when a family driving to Roper River reported seeing a feather-covered dinosaur that was 20 feet long, or 6 meters. But again, that report doesn’t appear in the newspapers, just in Gilroy’s books.

Gilroy’s burrunjor is probably a hoax, but there is a big lizard in Australia that sometimes stands on its hind legs. Monitor lizards live throughout Australia and are often called goannas. The largest Australian species can grow over 8 feet long, or 2.5 meters. All monitor lizards, including the Komodo dragon that lives in Indonesia, can stand on their hind legs. The lizard does this to get a better look at the surrounding area. It uses its tail as a prop to keep it stable and can’t actually walk on its hind legs, but an 8-foot lizard standing on its hind legs might look like a dinosaur from a distance.

An even bigger monitor lizard, called Megalania, lived in Australia until at least 50,000 years ago and maybe much more recently. It’s possible that Aboriginal Australians lived alongside it, although there’s no evidence for this either way. (Unless you count the evidence that that would be really really cool.)

Megalania is considered the largest terrestrial lizard known. Dinosaurs weren’t lizards and crocodilians aren’t either, but monitor lizards are. We don’t have any complete fossils of Megalania but its total length, including its tail, is estimated to be as much as 23 feet long, or 7 meters. This is more than twice the length of the Komodo dragon, the largest lizard alive today and a close relation. Like the Komodo dragon, Megalania was probably venomous.

As for Rex Gilroy, he recently passed away at the age of 79 and his books about the burrunjor are out of print. Rest in peace, burrunjor man.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 324: The Tenrec and Adalatherium

We have merch available again!

Thanks to Eva and Leo for suggesting the tenrec!

Further reading:

Marooned on Mesozoic Madagascar

Introduction to Adalatherium hui

The lowland streaked tenrec:

The hedgehog tenrec rolls up just like an actual hedgehog [photo by Rod Waddington, CC BY-SA 2.0, via Wikimedia Commons]:

Actual hedgehog, not a tenrec:

Lesser hedgehog tenrec REALLY looks like an actual hedgehog [By Wilfried Berns www.Tierdoku.com – Transferred from de.wikipedia to Commons.Orig. source: eigene Fotografie, CC BY-SA 2.0 de, https://commons.wikimedia.org/w/index.php?curid=2242515]:


Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about a weird little animal suggested by both Eva and Leo, the tenrec of Madagascar. While we’re at it, we’re going to learn about another little animal found on Madagascar a long time ago that’s one of the weirdest mammals ever discovered.

Before we get started, though, someone sent me a book! If your name is Jennifer or someone named Jennifer mailed this book to me for you, thank you! The book is called The Last Flight of the Scarlet Macaw: One Woman’s Fight to Save the World’s Most Beautiful Bird by Bruce Bercott. Thank you so much! I did not know when I started this podcast over six years ago that one of the benefits of doing an animal podcast is sometimes people send you books about animals, which is the best thing in the world. There’s no note so I thought I’d give you a shout-out on the podcast.

As we learned in episode 318, about 88 million years ago, the island of Madagascar broke off from every other landmass in the world, specifically the supercontinent Gondwana. The continent we now call Africa separated from Gondwana even earlier, around 165 million years ago. Madagascar is the fourth largest island in the world and even though it’s relatively close to Africa these days, many of its animals and plants are much different from those in Africa and other parts of the world because they’ve been evolving separately for 88 million years.

But at various times in the past, some animals from Africa were able to reach Madagascar. We’re still not completely sure how this happened. Madagascar is 250 miles away from Africa, or 400 kilometers, and these days the prevailing ocean currents push floating debris away from the island. In the past, though, the currents might have been different and some animals could have arrived on floating debris washed out to sea during storms. During times when the ocean levels were overall lower, islands that are underwater now might have been above the surface and allowed animals to travel from island to island until they reached Madagascar.

Sometime between 25 and 40 million years ago, a semiaquatic mammal reached Madagascar in enough numbers that it was able to establish itself on the island. It was related to the ancestors of a semiaquatic mammal called the otter-shrew, even though it’s neither an otter nor a shrew. The otter-shrew lives in parts of Africa and is pretty weird on its own, but we’ll save it for another episode one day. The otter-shrew’s relative did so well in its new home of Madagascar that over the millions of generations since, it developed into dozens of species. We now call these animals tenrecs.

It’s hard to describe the tenrec because the various species are often very different in appearance. There are some things that are basically the same for all species, though. First, the tenrec has a low body temperature, although it varies from species to species and also varies depending on time of year. That’s because some species of tenrec go into torpor when it’s cold, or sometimes full hibernation. During torpor the animal’s body temperature drops even more than usual. The common tenrec hibernates up to nine months out of the year.

Second, the tenrec has a cloaca, which is really unusual in placental mammals. Birds, reptiles, and amphibians have a cloaca, which is a single opening used for excretion and often for giving birth or laying eggs too. Most mammals have separate openings for different uses.

Third, all tenrecs are pretty small with only a little short tail. The biggest is only a little over a foot long at most, or 39 cm, and most are much smaller.

Leo specifically likes the streaked tenrec, so let’s learn about it to give us a better idea of what tenrecs are like in general. There are two species of streaked tenrec and while they live in different parts of Madagascar, they mostly live in tropical rainforests. They’re considered a type of spiny tenrec because they have quills all over like a tiny porcupine or a brightly colored hedgehog. The highland streaked tenrec is black and white, while the lowland streaked tenrec is black and yellow.

The streaked tenrec’s bright coloration gives a warning to potential predators that it is pointy. If a predator doesn’t figure it out, the tenrec will raise its quills and shake them to make a little rattling sound. If that doesn’t stop the predator and it tries to bite the tenrec, the quills can detach and will lodge in the predator’s mouth. That generally gets the point across. (haha, point)

The lowland streaked tenrec also communicates by rubbing its quills together to make ultrasonic sounds. This method of sound production is called stridulation and the streaked tenrec is the only mammal known to make sound this way. It has special muscles at the base of its quills that help it move the quills to make sounds. Stridulation is mostly found in insects, including crickets.

Like most tenrecs, the streaked tenrec has a long, thin snout and short legs. It spends a lot of its time digging for earthworms and other invertebrates, and it also eats fruit. It lives in family groups that sleep in shallow burrows. Also, it’s super cute. Just don’t lick it.

Another tenrec with spines is the hedgehog tenrec, which looks and acts incredibly like a hedgehog even though it’s not related. That’s yet another example of convergent evolution. The lesser hedgehog tenrec and the greater hedgehog tenrec, which by the way belong to different genera, are nocturnal animals that live in open forests, savannas, and people’s gardens in Madagascar. During the day it stays hidden in dead leaves or brush, or in a hollow of a tree trunk, and at night it comes out to find insects and other small animals to eat. If it feels threatened, it will roll up into a ball to protect its belly while turning itself into a very pointy mouthful. Its spines don’t come loose the way the streaked tenrec’s do, but they’re sharp. Sometimes a hedgehog tenrec will back up quickly toward a potential predator. If it backs into the predator’s nose, suddenly the predator discovers it’s not all that hungry and its nose hurts and it’s just going to leave.

Many species of tenrec resemble shrews. They’re smaller than a mouse, which they otherwise resemble except that they have a long nose and short tail, and they don’t have quills. Most tenrecs have 6 or 8 babies at a time, but some have more. The common tenrec can have up to 32 babies at a time. It has 29 teats! That’s the most teats known in any mammal.

All this is amazing, but while I was researching the tenrec I learned about an even weirder animal that lived on Madagascar at the end of the Cretaceous. That animal wasn’t a dinosaur, though. It was a mammal.

It was discovered by a team of paleontologists in 1999, but they didn’t actually know they’d discovered it. They thought the piece of rock only contained a small crocodyliform. When preparation of the specimen started in 2002, the scientist working on it received an incredible surprise. In addition to fossil remains of both an adult and a baby crocodyliform, there was an almost complete, articulated skeleton of a weird mammal. All three animals may have been buried suddenly by debris carried by a flash flood, which is why they’re so well preserved.

Most mammals that lived alongside dinosaurs were really small, maybe the size of rats at most, but Adalatherium was about the size of a cat. It may have actually grown larger than a cat, because the only specimen we have is an individual that wasn’t fully grown. It was built sort of like a little badger, with a broad body, short legs, short tail, and short snout.

Adalatherium is a member of a group of mammals called Gondwanatheria, which arose in the southern hemisphere around the time that the supercontinent Gondwana was breaking apart. We only have a few fossils of these animals so paleontologists still don’t know how they’re related, but Adalatherium is a big deal because it’s so detailed and almost the whole skeleton is preserved. Paleontologists have known for a long time that these Gondwanatheria were probably not related to modern mammals, but until Adalatherium was discovered no one realized just how weird these animals were.

If you could go back in time to look at Adalatherium when it was alive, you might not think it was all that weird. Also, you’d be a little distracted because dinosaurs would probably be trying to eat you. Most of the weird details probably weren’t visible, but they’re very obvious to scientists studying the fossilized bones. For instance, Adalatherium had a lot of vertebrae in its backbone, more than other mammals—at least 30 total thoracic and lumbar vertebrae. Humans have 17 total and cats have 20, to give you a comparison with modern mammals.

Adalatherium also had weird legs, with its front legs not really seeming to match its rear legs. Its front legs are longer with a strong shoulder, while its rear legs are short and bowed. Paleontologists think it might have been a burrowing animal, which would explain why its rear legs are strangely shaped compared to its front legs, but it could probably run pretty fast too. It also had unusual double grooves on its anklebones.

Another weird thing about Adalatherium was its skull. The parts of the skull that made up the nasal cavity had lots of little holes in it, called foramina, for nerves and blood vessels to pass through. This isn’t unusual in itself, but Adalatherium had more foramina than any other mammal ever examined, living or extinct. One of the foramen was on top of the snout and doesn’t match up with anything seen in any other mammal. Adalatherium probably had a whole lot of very sensitive whiskers, but for all we know, all the foramina were for some other sensory structure, one that was unlike any found in modern mammals.

Adalatherium lived at the end of the Cretaceous, and it’s possible it went extinct along with the non-avian dinosaurs. Gondwanatheria in general all went extinct by around 43 million years ago and as far as we know, no living descendants are still around. But we know very little about these interesting mammals. Hopefully more fossils of Gondwanatheria in general, and Adalatherium in particular, will turn up soon so we can learn more.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!