Episode 297: Dinosaur Mummies

This week we have a two-ghost rating for our episode about dinosaur mummies! It’s a little spooky because we talk about mummies, but it’s mostly an episode about dinosaurs, which are not spooky.

Further reading:

The lost Tarbosaurus mummy

Dinosaur Mummy Found with Fossilized Skin and Soft Tissues

Dakota the Dinomummy: Millenniums in the Making

Spectacularly Detailed Armored Dinosaur “Mummy” Makes Its Debut

Was a Dinosaur Mummy Dubbed ‘Appalachiosaurus’ Found in Tennessee?

An Edmontosaurus mummy found in 1908:

A 3D model of Dakota’s skin [photo from third link above]:

The Nodosaurid ankylosaur mummy:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s monster month and this week we’ve got a monster from ancient times—really ancient times. We’re talking about mummies today, DINOSAUR mummies! On our spooky scale, this one rates two ghosts out of five since we do talk about mummies, but it’s not too spooky because we mostly talk about dinosaurs!

A dinosaur named Tarbosaurus lived around 70 million years ago in what is now Mongolia. It was probably closely related to Tyrannosaurus rex and would have looked very similar, with a big strong body but teeny-tiny front legs. Its front legs were even smaller than T. rex’s in relation to its body. It grew up to about 33 feet long, or 10 meters, and probably stood about 10 feet high at the hip, or 3 meters, and its big head had a big mouth full of really big teeth. It probably killed and ate hadrosaurs, sauropods, and other big dinosaurs. Some scientists think it was so closely related to T. rex that it should be classified as another species in the genus Tyrannosaurus.

We have quite a few Tarbosaurus fossils, including some very well-preserved skulls, so we know quite a bit about it. It had a good sense of smell and good hearing, but its vision wasn’t all that great. Some paleontologists think it might have been nocturnal. We’ve also found lots of bones of big dinosaurs with bite marks from teeth the size and shape of Tarbosaurus’s.

In 1991, though, a team of scientists found something even more incredible. They found a partial skeleton of a Tarbosaurus with lots of skin impressions. In short, they’d sort of found a mummified dinosaur. (It’s not really a mummy.)

The mummy consisted of the back end of the dinosaur, including the pelvis, tail, and hind legs. It had fallen onto sandy sediment that was especially fine-grained, so when the sediment transformed into sandstone over many millennia, it retained an exceptionally clear impression of the skin, including every small pebbly scale.

The expedition members took pictures and measurements, but they didn’t collect the specimen. Another expedition returned to the area to do so in 1993, but by then the specimen was gone. It was probably stolen by fossil poachers, who probably didn’t even realize the skin impressions were far more valuable than the bones and may have destroyed them while removing the skeleton.

The lost Tarbosaurus specimen is called a fossilized mummy since a dead animal’s skeleton with skin is sort of like a mummy. When the soft tissues of a dead animal or person are preserved in some way that causes them to stop decaying, that’s considered a mummy, and there are a lot of causes.

The most famous mummies, of course, are from ancient Egypt. It was important in Egyptian culture at the time to preserve a dead person’s body, and dead animals were also mummified sometimes, especially cats. The body was treated with salt and spices that helped dry the tissues and preserve them from bacteria, and once it was fully dehydrated the body was wrapped in linen bandages, covered with a natural waterproofing material made from plant resins, and placed in a wooden coffin. Sometimes the coffin was then put into a stone sarcophagus to keep it extra safe.

Other cultures across the world have practiced mummification too, and sometimes mummification happens naturally. This mostly happens in deserts and other dry areas, or in places where it’s very cold and the body freezes before it can decay, then dries out slowly. Sometimes a body is preserved after it’s buried, when the soil of the grave or the conditions in an underground crypt are just right, although bodies found in bogs are mummified too since bogs lack oxygen and that stops the decay of soft tissues.

Another dinosaur mummy was found in 1910 in the western United States, in Wyoming. It’s an Edmontosaurus specimen that’s remarkably well preserved and nearly complete, including skin impressions and even the horny beak. Initially the scientists who studied the animal thought the stomach contents had been preserved too, but more modern studies have concluded that the plant material was probably deposited in the body cavity after death. The dinosaur died near water and flooding may have washed plants into the partially decomposed carcass. There was even a little fish among the plant material, which was probably already dead when it was washed into the body cavity.

Edmontosaurus lived in what is now North America around 67 million years ago, surviving right up to the extinction event that killed off the non-avian dinosaurs. It’s one of many species of hadrosaurid, which are often called duck-billed dinosaurs. It could grow up to 39 feet long, or 12 meters, and possibly larger, and it was relatively common throughout its range. It probably walked on all fours most of the time but could stand or walk on its hind legs only, when it wanted to. It ate plants and may have migrated long distances to find food. It probably lived in groups.

The skin impressions of the 1910 specimen were impressive, but it isn’t the only edmontosaurus mummy ever found. We have several, in fact. The earliest was found in 1908, known as specimen AMNH 5060, and it was discovered by a man named Charles Sternberg and his three sons, who all three became paleontologists later in life. They were hoping to find a good triceratops skull to sell to a museum, but they found something even better when one of the sons realized the dinosaur they were uncovering was wrapped in skin impressions.

AMNH 5060 had died in an area that was very dry, so instead of rotting away, all the moisture in the body dried out and the skin remained stretched across the bones. It was essentially a natural mummy at that point. Then, as in the 1910 specimen, flooding probably covered the dead animal with sediment that preserved it in fine detail. Not only is the skeleton mostly intact, it’s also articulated so that the fossilized body parts are in the same places they were when the animal died, instead of having been scattered around after death.

More edmontosaurus mummies were found later, too, but it wasn’t until 2006 when the most important find so far was discovered in North Dakota, part of the United States. It isn’t just skin impressions we have from this specimen, which is nicknamed Dakota. We have actual fossilized skin and muscles and tendons, along with bones.

Dakota was discovered by Tyler Lyson on his uncle’s ranch when he was still in high school. He knew the dinosaur was there but he didn’t realize how important the find was until five years later when he was a paleontology student. The specimen was excavated in 2006 and was identified as an adolescent edmontosaurus that died about 67 million years ago. It was recently given a new 3D scan and results will hopefully be published soon, letting us all know if there are any fossilized organs inside the body.

Because so much of the soft tissues were preserved in place, we know a lot about how edmontosaurus looked when it was alive. For instance, the intervertebral discs that act as little shock absorbers between vertebrae are still in place, which means we know exactly how long Dakota was when it was alive, about 40 feet long, or 12 meters. Because so many of its tendons and muscles are preserved, scientists can calculate how fast it could run. Dakota could probably run 28 mph, or 45 km/hour. We even have a clue about Dakota’s pattern, if not its coloration. Differences in scale size and texture suggest that the dinosaur might have had stripes on at least part of its body.

Edmontosaurus fossils aren’t the only dinosaur mummies, though. In 2011, an amazing ankylosaur fossil was discovered in a Canadian mine. Ankylosaurs had short legs and wide bodies covered in armor, and while some had club-like tails, Nodosaurids had regular tails but spikes on their backs that pointed sideways. The Canadian ankylosaur mummy is a nodosaurid.

Researchers think the dinosaur was probably caught in a flash flood, which swept it out to sea. It probably swam as long as it could, but its armored body made it heavy and it eventually drowned. Its body sank into the bottom sediment, which protected it from decay, scavengers, weathering, and other things that might have destroyed it. 110 million years later, an equipment operator fortunately noticed how weird the rock was that he’d just uncovered, and the world now has an amazing idea of what a living ankylosaur looked like.

The animal’s armored plates from the front of its body, some skin, and even its stomach contents are beautifully preserved, and the body is still articulated. It looks like it lay down to sleep and turned to stone. Some chemical pigments called melanosomes were discovered during study of the skin, which suggests that its skin was probably reddish-brown in color with a lighter-colored belly. It had massive spikes on its shoulders and along the sides of its neck, along with the smaller osteoderms that made up its armor on the rest of its body.

We know it mostly ate ferns because that was mostly what was in its stomach when it died. There was also some charcoal in its stomach, and researchers think it was probably eating ferns that had grown in an area where a wildfire had been recently. The ferns are so well preserved that scientists can determine their stage of growth, which means the dinosaur probably died in early to mid-summer.

Another dinosaur mummy is a Brachylophosaurus nicknamed Leonardo. Leonardo was found in July 2000 and wasn’t full grown when it died, only maybe three or four years old. Its skin and some of its internal organs are fossilized, and 3D scans have allowed scientists to learn a lot about it.

Brachylophosaurus was a hadrosaurid that lived around 80 million years ago in North America, and it could grow up to around 36 feet long, or 11 meters. It may have lived and migrated in groups. It had a flat crest on its head and a frill down the back, although some individuals had big crests and some had small ones. Paleontologists think big crests might have been a trait found only in males or only in females, we’re not sure which.

It ate plants, and we know from studies of Leonardo’s fossilized digestive system that it had eaten a lot of ferns right before it died, as well as leaves and other material from ancient relatives of conifers and magnolias. It also had worms. That’s right, even the parasites in Leonardo’s digestive system were fossilized. They were needle-like bristly worms who left more than 200 tiny burrows in the digestive lining, fossilized for eternity. Leonardo also had an internal pouch in its neck that was similar to a modern bird’s crop, where food was stored immediately after swallowing and where the digestive process may have started.

We’ll finish by talking about a story from April 2022, which discusses a dinosaur mummy found in my own state of Tennessee. The dinosaur was called Appalachiosaurus and was at least 77 million years old, and its skin and even some of its internal organs were reportedly intact—so much so that DNA was able to be extracted from them. The problem is that this particular story was posted to Facebook on April 1, also known as April Fool’s Day, and yes, it was a hoax. But Appalachiosaurus is a real species of dinosaur, a theropod that grew at least 21 feet long, or 6.5 meters, and probably quite a bit longer since the most complete specimen found so far is a juvenile. We don’t know a lot about Appalachiosaurus since only a few partial remains have ever been discovered. It would be fantastic if a fossilized mummy of one really did turn up one day.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 296: The Hide and the Blood-Sucking Blanket

Monster month is upon us, October, where all our episodes are about spooky things! This episode is only a little bit spooky, though. I give it one ghost out of a possible five ghosts on the spooky scale.

Happy birthday to Casey R.!

Further reading:

All you ever wanted to know about the “Cuero”

Mystery Creatures of China by David C. Xu

Freshwater stingrays chew their food just like a goat

A 1908 drawing of the hide (in the red box) [picture taken from first link above]:

The Caribbean whiptail stingray actually lives in the ocean even though it’s related to river stingrays:

The short-tailed river stingray lives in rivers in South America and is large. Look, there’s Jeremy Wade with one!

The bigtooth river stingray is awfully pretty:

Asia’s giant freshwater stingray is indeed giant:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s finally October, and you know what that means. Monster month! We have five Mondays in October this year, including Halloween itself—and, in the most amazing twist of fate, our 300th episode falls on Halloween!

I know some of our listeners don’t like the really spooky episodes because they’re too scary, especially for our younger listeners. To help people out, I’m going to rate this year’s monster month episodes on a scale of one ghost, meaning it’s only a little tiny bit spooky, to five ghosts, which means really spooky. This week’s episode is rated one ghost, so it’s interesting but won’t make you need to sleep with a night light on.

Before we get started, we have two quick announcements. Some of you may have already noticed that if you scroll all the way down in your podcast app to find the first episode of Strange Animals Podcast, it doesn’t appear. In fact, the first several episodes are missing. That’s because we actually passed the 300 episode mark several weeks ago, because of the occasional bonus episode and so forth, and podcast platforms only show the most recent 300 episodes of any podcast. That’s literally the most I can make appear. However, the early podcasts are still available for you to listen to, you’ll just have to click through to the website to find them.

Second, we have a birthday shout-out this week! A very very happy birthday to Casey R! I hope your birthday is full of all your favorite things.

Now, let’s learn about the hide of South America and the blood-sucking blanket of Asia.

The first mention of a creature called El Cuero in print comes from 1810, in a book called Essay on the Natural History of Chile by a European naturalist named Fr. Juan Ignacio Molina. In his book Molina wrote, “The locals assure that in certain Chilean lakes there is an enormous fish or dragon…which, they say, is man-eating and for this reason they abstain from swimming in the water of those lakes. But they are not in agreement the appearance that they give it: now they make it long, like a serpent with a fox head, and now almost circular, like an extended bovine hide.”

Later scholars pointed out that the reason Molina thought the locals couldn’t decide what the animal looked like was because locals were talking about two different monsters. Molina just confused them. One monster was called a fox-snake and one was the cuero, which means “cow hide” in Spanish. And it’s the hide we’re going to talk about.

During the century or so after Molina wrote his book, folklorists gathered stories and legends from the native peoples of South America, trying to record as much about the different cultures as they could before those cultures were destroyed or changed forever by European colonizers. The hide appears to be a monster primarily from the Mapuche people of Patagonia.

Most stories about the hide go something like this: a person goes into the water to wash, or maybe they have to cross the lake by swimming. The hide surfaces and folds its body around the person like a blanket, dragging them under the water, and the person is never seen again. Sometimes the monster is described as resembling a cowskin or calfskin, sometimes a goat- or sheepskin. It’s usually black or brown and sometimes is reported as having white spots, and some reports say it has hooks or thorns around its edges. It may bask at the water’s surface or in shallow water in daytime, waiting for a person or animal to come too close.

The safest way to kill a hide is to trick it into coming to the surface to catch an animal or person. When it’s close enough, people throw the branches of a cactus with really long, sharp thorns at it. The hide folds its body around the cactus pieces, which pierce it through and kill it. The least safest way to kill a hide is to make sure you’re carrying a sharp knife, and when the hide grabs you, cut your way out of its enveloping folds before you drown or are eaten.

The main suggestion, starting in 1908, was that the hide was a giant octopus that lived in freshwater and had hooks on its legs or around the edges of its mantle. The main problem with this hypothesis is that there are no known freshwater octopuses. There aren’t any freshwater squid either, another suggestion.

A much better suggestion is that the hide is actually some kind of freshwater ray. And, as it happens, there are lots of freshwater stingrays native to South America. Specifically, they’re members of the family Potamotrygonidae, river stingrays.

River stingrays are pretty much round and flat with a slender tail equipped with a venomous stinger. The round part is called a disc, and some species can grow extremely large. The largest is actually a marine species called the Caribbean whiptail stingray, which can grow about 6 1/2 feet across, or 2 meters. But the short-tailed river stingray can grow about 5 feet across, or 1.5 meters, and it lives in the Río de la Plata basin in South America. The short-tailed river stingray is dark gray or brown mottled with lighter spots, while many other river stingrays are black or dark brown with light-colored spots.

Even better for our hypothesis, river stingrays are covered with dermal denticles on their dorsal surface, more commonly called the back. Dermal denticles are also called placoid scales even though they’re not actually scales. They’re covered with enamel to make them even harder, like little teeth. If that sounds strange, consider that rays are closely related to sharks, and sharks are well known to have skin so rough that you can hurt your hand if you try to pet a shark. Please don’t try to pet a shark. Admire sharks from a safe distance like you should with any wild animal.

River stingrays don’t eat people, of course. They mostly eat fish, crustaceans, worms, insects, mollusks, and other small animals. Females are much larger than males and give birth to live young. The ray’s mouth is underneath on the bottom of the disc near the front, and it has sharp teeth. Unlike pretty much every fish known, it chews its food with little bites like a mammal, which if you think about it too much is kind of creepy.

River stingrays also don’t hunt by wrapping animals in their disc, but the disc is involved in hunting in a way. The disc is formed by the ray’s fins, which are extremely broad and encircle the center part of its body, and the disc as a whole is pretty flat. The stingray will lie on the bottom of the river until a little fish or an insect gets too close. Then it will lift the front part of its disc quickly, which sucks water under it. If you’ve ever stood up in the bathtub before the water has completely drained, you can feel the suction as your body leaves the water. Quite often, the stingray’s prey gets sucked under it with the water. The ray then drops back down, trapping the animal underneath it, and chews it up.

That doesn’t mean stingrays aren’t dangerous to humans, though. The stingray’s sting is barbed and very strong, and can cause a painful wound even without its venom. A ray often hides by burying itself in the sand or mud, and if someone steps on it by accident, the ray whips its tail up and jabs its sting into their leg.

In other words, we have a large, flat creature with little pointy denticles on its back that may be dark-colored with white spots, and it’s dangerous to people and animals. That sounds a lot like the hide. There’s just one problem with this theory.

The stingray is a tropical or temperate animal. It needs warm water to survive. Patagonia is at the extreme southern end of South America, much closer to Antarctica than to the equator. No river stingray known lives within at least 500 miles of Patagonia, or 800 km, and the Patagonian lakes where the hide is supposed to live are extremely cold even in summer.

That doesn’t mean there isn’t a stingray unknown to science living in remote areas of Patagonia, of course. Many river stingray species were only discovered in the last decade or so, some of them quite large, and there are still some undescribed species. There’s always the possibility that at least one river stingray species has become adapted to the cold but hasn’t been discovered by scientists yet. It might be endangered now or even extinct.

Or the hide might not be a real animal, just a legend inspired by the river stingrays in other parts of South America. The Mapuche people are not closely related to the other peoples of Patagonia, even though they’ve lived there for at least 2,500 years, and some archaeologists think they might have migrated to Patagonia relatively late. If they brought memories of big river stingrays from their former home north of Patagonia, the memories might have inspired stories of the hide.

On the other side of the world, in China, there’s a similar legend of a monster sometimes called the xizi. The name means “mat” but it’s also referred to as a blood-sucking blanket. It lives in rivers and other waterways, and can even slide out of the water onto land. And like the hide, it’s described as a sort of living blanket that wraps itself around people or animals that venture into the water, where it pulls them under and sucks all the blood out of them.

In the case of the blood-sucking blanket, though, it’s supposed to have sharp round suckers on its underside that it uses to stick to its victims and slurp up their blood. It varies in size, sometimes about a foot across, or 30 cm, sometimes as much as 6 1/2 feet across, or 2 meters. Sometimes it’s described as reddish, sometimes green or covered with fuzzy moss on its back.

One story is that a hunter witnessed an elephant and her calf crossing a shallow river when the calf was dragged underwater by something. The mother elephant grabbed her calf and pulled it to safety, then trampled its attacker. Once the elephants were gone, the hunter went to investigate and found a dead creature that resembled a wool blanket, with a greenish, mossy back but with big suckers underneath the size of rice bowls, sort of like an octopus’s suckers.

And there is a freshwater stingray that lives in Asia, although it isn’t closely related to the river stingrays found in South America. Most of its closest relatives live in the ocean, but the giant freshwater stingray lives in rivers in southeast Asia. It’s dark gray-brown on its back and white underneath, and it has a little pointy nose at the front of its disc. It has denticles on its back and tail just like its distant South American cousins.

It’s also enormous. A big female can grow over 7 feet across, or 2.2 meters. Its tail is long and thin with the largest spine of any stingray known, up to 15 inches long, or 38 cm. In fact, its tail is so long that if you measure the giant freshwater stingray by length including its tail, instead of by width of its disc, it can be as much as 16 feet long, or about 5 meters. Some researchers think there might be individuals out there much larger than any ever measured, possibly up to 16 feet wide. The length and thinness of the tail gives the ray its other common name, the giant freshwater whipray, because its tail looks like a whip.

Even though it’s endangered due to habitat loss and hunting, and it only lives in a few rivers in South Asia these days, the giant freshwater stingray was once much more widespread. Because stingrays have cartilaginous skeletons the same way sharks do, we don’t have very many fossils or subfossil remains except for stingray teeth and denticles, so we don’t know for sure where the giant freshwater stingray used to live. But even if it didn’t live in China, travelers who had seen one in other places might have brought stories of it to China, where it spread as a scary legend.

Or, of course, there might be another freshwater stingray in China that’s unknown to science, possibly endangered or even extinct. It might even still be around, just waiting for someone to go swimming.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

 

Episode 295: The Peregrine Falcon

Thanks to Nikita for this week’s suggestion that we learn all about the peregrine falcon!

I’ll be at the Next Chapter Book Fair in Dalton, Georgia on October 1, 2022! Come say hi!

Further listening:

Crossover episode with Arcane Carolinas from ConCarolinas 2022!

Further reading:

Falcons see prey at speed of Formula 1 car

A peregrine falcon in flight:

Baby peregrine falcons. Look at those giant peets! [photos by Robin Duska, taken from this site]

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Nikita, who wants to learn about the peregrine falcon! The peregrine falcon is the fastest animal known, and I thought about trying to talk very fast for this episode, but I decided I make enough mistakes just talking normally.

A quick note before we start. On Saturday, October 1, 2022, I’ll be at the Next Chapter Book Fair and Convention in Dalton, Georgia. If you happen to be in the area, stop by and say hi! I’ll be selling books and I think I’m on a panel too. That’s the last event I have planned for the year and I’m not sure if I’ll be selling books at conventions next year. It’s fun, but it’s also a lot of work. Whatever copies of the Beyond Bigfoot & Nessie book that don’t sell next week, I can offer for sale directly from me. If you want a signed copy of a slightly banged-up paperback that’s been to a lot of conventions, email me and we can work out a price with shipping.

Speaking of conventions, back in June I had a fantastic time at ConCarolinas, and one of the things I did was join the guys from Arcane Carolinas to record an episode of their excellent podcast. Well, they’ve just released that episode and it’s fantastic! I’ll put a link in the show notes in case you don’t already listen to their podcast.

Now, let’s learn about the peregrine falcon!

The peregrine falcon lives throughout the world, with as many as 19 subspecies, although experts disagree about a few of those. It’s about the size of a crow, with females being much bigger than males. Different subspecies have different patterns, but in general the peregrine falcon is dark above and pale below with a darker barred pattern. It has bright yellow around its eyes, and the base of its hooked bill and its feet are yellow.

The peregrine mates for life, and reuses the same nesting site every year. Some populations of peregrine migrate long distances, and sometimes the male will stay year-round near the nesting site while the female migrates. Either way, at the beginning of the breeding season, which is usually around the end of winter, the pair performs courtship flights where the male will pass food to the female while they’re both flying. Sometimes the female turns over to fly upside-down to take food from her mate.

The male typically prepares several potential nesting sites, and the female chooses which one she likes best to lay her eggs. The peregrine doesn’t build a nest, though, just kicks at the dirt to make what’s called a scrape. It’s just a shallow depression in the dirt. The female lays 2 to 5 eggs that hatch in about a month into fuzzy white babies with gigantic talons. Both parents help incubate the eggs and both feed the babies after they hatch.

The peregrine especially likes open areas with cliffs for its nest, and as far as it’s concerned, skyscrapers are just a type of cliff. It’s surprisingly common in cities as a result, not to mention that cities are home to another bird, the pigeon, that the peregrine loves to eat. The peregrine mostly eats birds, especially pigeons, gulls, ducks, and various songbirds, but it will also eat bats and sometimes small animals like squirrels and rats. It mostly hunts at dawn and dusk, but it will hunt at night too and sometimes during the day.

Even though the peregrine isn’t very big compared to many birds of prey like eagles, owls, and hawks, it is an astounding hunter. It has strong feet equipped with sharp talons to grab prey, and its hooked beak is notched to help it bite through the spine of a bird it’s caught to kill it quickly.

But the main reason the peregrine is such an effective hunter is how fast it can fly. It’s pretty fast while just cruising around looking for prey, flying about 30 miles per hour, or 48 km/hour. If it spots a bird it wants to eat, it can easily more than double its speed to chase it. But that’s not all.

The peregrine’s signature move is the stoop. This is a high-speed dive from a height, and the falcon hits its prey with feet extended but clenched into a fist. Stoop speeds have been recorded and are as high as 238 miles per hour, or 383 km/hour. This is the speed of a Formula One race car! So getting hit by a stooping falcon would be like being punched by a small feathery car. BOOM! That’s the end for you.

While the peregrine mostly eats medium-sized birds, it’s been documented to kill birds as large as a sandhill crane or a great horned owl by stooping. During the stoop, the peregrine changes its body shape for maximum aerodynamics, and high-resolution photos taken of a falcon flying in a wind tunnel show that certain feathers pop up in rows to guide air over the body.

If you were riding in a race car going that fast, everything around you would look like a blur. That’s because our eyes and our brains can only capture and process images so fast. But the peregrine falcon can see just fine at those speeds, because its eyes and brain have evolved to capture and process images extremely quickly. The only birds studied with similar visual processing are flycatchers, little songbirds that chase insects to eat. Insects are fast so flycatchers are fast, but the peregrine falcon catches and eats flycatchers.

The peregrine’s speed of visual processing has a side effect when birds are kept in captivity. If the lights in their enclosure flicker at all, the birds will get sick. That’s because what may be only a barely perceptible flicker to us is like a constant strobe light for the peregrine!

The peregrine has been kept as a hunting bird for thousands of years. It’s not domesticated, but young birds are relatively easy to tame and it can be trained to return to the falconer after catching its prey. Peregrines used to be captured from the wild by falconers, and if you’ve read the book My Side of the Mountain by Jean Craighead George, this is one of the things the boy in the book does. That book was published in 1959, though, and around this time the peregrine falcon began to decline in numbers worldwide due to DDT use.

We’ve talked about DDT recently, in episode 277 about rewilding Scotland. DDT is a pesticide that was developed in the 1950s and used extensively to kill insects on crops and gardens. But DDT doesn’t just do its job and evaporate. It stays in the environment and ends up in the bodies of animals, including people. It’s especially bad for birds of prey, and it causes their eggshells to become so thin and weak that the eggs break when the mother tries to keep them warm. The peregrine falcon was one bird that was especially badly affected, especially in North America and parts of Europe, where it almost went extinct. It was placed on the endangered species list and protected, but it wasn’t until scientists realized that DDT was the cause, and DDT use was banned in most parts of the world, that the peregrine’s numbers stopped dropping.

Falconers played a big part in helping the peregrine falcon recover from nearly going extinct. Falconers mostly care deeply about their birds and know how to take care of them. While the peregrine was on the endangered species list, falconers stopped taking birds from the wild and instead bred already captive birds. Then, once DDT was banned in most places, falconers helped with the reintroduction of peregrines into the wild. The peregrine was removed from the U.S. endangered species list in 1999 and from the Canadian list in 2017. But conservationists worldwide still monitor the peregrine falcon to make sure it continues to do well in the wild.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 294: Updates 5 and a New Zealand Parrot!

It’s our fifth updates and corrections episode, with some fun information about a New Zealand parrot, suggested by Pranav! Thanks also to Llewelly, Zachary, Nicholas, and Simon who sent in corrections.

Further reading:

Vitiligo

Tyrannosaurus remains hint at three possible distinct species

Study refutes claim that T. rex was three separate species

The reign of the dinosaurs ended in spring

Impact crater may be dinosaur killer’s baby cousin

California mice eat monarch butterflies

‘Hobbit’ human story gets a twist, thanks to thousands of rat bones

Playground aims to distract mischievous kea

The kea showing off the bright colors under its wings:

A kea jungle gym set up to stop the birds from moving traffic cones around for fun:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This is our fifth annual updates episode, where I catch us up on new studies published about various animals we’ve talked about before. This is mostly just whatever happens to catch my eye and isn’t comprehensive by any means. Also, because things have been so busy for me the last few weeks, I decided to just go with what I’d already finished and not try to add more.

We’ll start as usual with corrections, then do some updates, then learn about a parrot from New Zealand, which was a suggestion from Pranav. This part of the episode started as a Patreon episode from 2019, so patrons, I promise your October bonus episode will be brand new and interesting and in-depth!

First, both Llewelly and Zachary pointed out that there are lions living in Asia, not just Africa. It’s called the Asiatic lion and these days, it only lives in a few small areas in India. It’s a protected animal but even though their numbers are increasing, there are probably still no more than 700 Asiatic lions living in the wild.

Next, Nicholas points out that vitiligo isn’t a genetic condition, it’s an autoimmune disorder that can be caused by a number of different diseases and conditions. You still can’t catch it from other people, though. We talked about vitiligo briefly in episode 241, about squirrels. Nicholas included a link, which I’ll put in the show notes for anyone who’s interested in learning more.

For our final correction, Simon questioned whether there really are only six living species of macaw known. This was polite of him, since I was completely wrong about this. In fact, there are six genera of macaws and lots of species, although how many species there are exactly depends on who you ask. Since this mistake made it into the Beyond Bigfoot & Nessie book, I am very irritated at myself, but thank you to Simon for helping me clear this up.

Let’s start our updates with the animal who gets an update every single time, Tyrannosaurus rex. A study published in February 2022 examined the fossilized remains of 37 T. rexes and suggested that there may actually be three distinct species of T. rex instead of just one. The study focused specifically on differences in teeth and leg bones that don’t seem to have anything to do with the individual’s age when it died or whether it was male or female.

However, in July 2022, another study found that all the T. rexes found so far do indeed belong to the same species. This is how science works, because new information is always being discovered and that means we have to reassess the things we thought we knew.

In other dinosaur news, in episode 240 we talked about the last day of the dinosaurs. Results of a study released in February 2022 suggest that the asteroid struck in early spring in the northern hemisphere. The asteroid hit the earth so hard that it rocked the entire continental plate that it struck, which caused massive waves unlike any other waves, since all the water above the continental plate was pushed upwards at once. This pushed all the sediment lying quietly on the bottom of the ocean up into the water, so much of it at once that it actually buried a lot of fish alive. The same thing happened in lakes and every other body of water. The fossil site we talked about in episode 240 is still being studied, the one that appears to date to literally the day of the asteroid impact, and preserved soft tissues in some of the fish have been discovered. Careful analysis of the fish show evidence that they all died in early spring. Researchers suggest that the time of year may have been especially bad for many dinosaurs, who were probably just starting to lay eggs and have babies.

In even more recent last-day-of-the-dinosaurs news, in August 2022 a study was released about a newly discovered crater off the coast of West Africa. Researchers are pretty sure it was from an asteroid impact, although much smaller than the big one that hit what is now Mexico and led to the extinction of all non-avian dinosaurs. They’re also not completely certain when it formed, since it’s deep under the sea floor these days and was only discovered when scientists were examining seismic survey data of the sea floor. But it does seem to have formed about 66 million years ago, and another crater found in Ukraine is also about the same age. In other words, there may have been more than one asteroid that hit earth at the same time, either because a bigger asteroid broke into pieces as it entered earth’s atmosphere, or because smaller asteroids were orbiting the bigger one.

We’ve talked about the monarch butterfly several times, especially in episode 203. The monarch is a beautiful orange and black butterfly that migrates from the United States and Canada into central Mexico for the winter, where it gathers in huge groups. The monarch butterfly caterpillar primarily eats the milkweed plant, which contains toxins that the caterpillar stores in its body. Those toxins remain in the body even after the caterpillar has transformed into a butterfly, meaning the butterflies are toxic too. Birds and other animals learn to recognize the bright orange and black pattern of the butterfly and avoid eating it, because it tastes bad and makes them sick.

But a study from December 2021 determined that one animal does eat monarch butterflies, and a whole lot of them. Many species of mouse that live where monarch butterflies spend the winter, in a few spots in Mexico and California, will eat the butterflies, especially ones that fall to the ground either by accident or because they’re unhealthy and weak. The mice show resistance to the butterfly’s toxins.

Research into the small hominin remains on the island of Flores is ongoing, and the most recent findings shed some light on what might have happened about 60,000 years ago. The so-called Hobbit fossils have all been found at Liang Bua, a giant cave, but lots of other fossils have been found at the same site. A whole lot of those are from various species of rodent, especially rats, ranging in size from mouse-sized to ordinary rat-sized to giant rat sized, over two feet long including the tail, or about 75 cm.

Because we know a lot about the rats that lived on Flores, and in some cases still live there, we can infer a lot about what the area around Liang Bua was like over the centuries. Until about 60,000 years ago, most of the rat remains found were of medium-sized species that like open habitats. That means the area around Liang Bua was probably pretty open. But after about 60,000 years ago, there’s a big shift in what kind of rodents appear in the fossil record. More rats of smaller size moved in, ones that were adapted for life in forests, while the medium-sized rats moved out. That corresponds with other animals disappearing from the fossil record in and around the cave, including a species of Komodo dragon and a subspecies of Stegodon, an elephant relation that exhibited island dwarfism and was about the size of a cow. The Flores little people remains also vanish from the cave during this time, until by 50,000 years ago there are no signs of them.

But that doesn’t mean that H. floresiensis went extinct at that time. Researchers now think that as the land around the cave became more heavily forested, the Flores little people moved to other parts of the island that were more open. We don’t know where yet, and as a result we don’t know when exactly they went extinct. They might even have left the island completely. One neighboring island is Sulawesi, and researchers have found small stone tools on that island that are very similar to those made by H. floresiensis.

Modern humans probably arrived on the island of Flores about 46,000 years ago, and it’s possible that when they did, their small-statured cousins were still around.

We’ll finish with Pranav’s suggestion, a New Zealand parrot called the kea!

The kea is a type of parrot, but it doesn’t look much like a parrot at first glance. Parrots usually have brightly colored feathers but the kea appears more drab initially. It’s olive green with black-laced feathers, but it has bright orange feathers under its wings that show when it flies and the tips of its wings are blue. It’s a big, heavy bird with a wingspan more than three feet across, or one meter, and it has a big hooked beak like other parrots. It lives in the mountains of New Zealand’s South Island, the only parrot that lives in such a cold environment.

The kea is an omnivore but it mostly eats plants and insects. It will eat roadkill, small animals like rabbits, chicks of other species of bird, and trash. For over a century there were rumors that the kea would attack sheep, which led to the New Zealand government paying a bounty for dead keas that wasn’t lifted until 1970. By the time the bounty ended, there were only around 5,000 keas left, and even then the bird wasn’t fully protected until 1986.

So does the kea kill sheep or was that just an excuse to kill birds? Actually, the kea does attack sheep, or at least some keas do. Most of the attacks aren’t fatal, but we definitely know it happens because someone got it on video in 1992.

The keas land on the sheep’s back and pull out hunks of wool, which exposes and injures the skin underneath. Then they use their sharp beaks to dig into the wound and eat the fat from the living sheep. This can result in the sheep dying from infection and shock, naturally, so it’s no wonder sheep farmers disliked the kea. But the sheep is not an animal native to New Zealand while the kea is, plus the kea primarily eats plants—and sheep destroy the plants the kea eats, especially the ones high in vegetable lipids that provide the same high energy food that sheep fat does.

Besides, there’s some tantalizing evidence that the kea used to do the same thing to the moa, a huge flightless bird that lived in New Zealand until it went extinct after humans arrived. Moa bones dating to 4,000 years ago and found in a swamp along with lots of other well-preserved bones show markings on the pelvis that may be from kea beaks.

Like other parrots, the kea is remarkably intelligent and known for its tool use. It’s also infamous for its curiosity and willingness to disassemble things, including cars. I found an article about the kea in New Zealand Geographic that has some awesome stories about the bird, like this one that I’ll quote.

“In September 1983, the Old Pompolona Hut on the Milford Track was destroyed by flood when the pent-up Clinton River broke through its winter avalanche dam. The walking track season was only six weeks away. Planners, builders and helicopter crews worked night and day to complete a new hut complex before the first walkers arrived.

“The local clan of kea took a keen interest in all this frantic activity after a cold and quiet winter. Just what were these people up to? One bird, for whom building materials seemed to hold a particular attraction, began stealing nails. So persistent was the bird’s thievery that an exasperated carpenter chased it (in vain) over the roof of the new main hut. While his back was turned, another kea stole his packet of roll-your-owns, shredding tobacco and papers to the raucous approval of spectator kea perched in nearby trees.

“Weeks later, after the new hut had been completed, the purloined nails were discovered. They had been neatly laid in the gutters of an outbuilding’s iron roof, sorted according to size.”

The kea’s intelligence, tool use, and problem-solving abilities line up with those in corvids like crows and ravens. Studies show that corvids are more successful figuring out tasks that require them to make pecking motions in one way or another while parrots, including the kea, are more successful when the tasks require pulling motions. This makes sense, since parrots have a hooked beak that they use to pull things apart, like rotting logs to get at grubs, while corvids have straight beaks that they use to stab through things to find food.

The kea is also really sociable. Young keas play together, often using items as toys. For instance, from the same article, witnesses at a ski resort watched a kea steal a plastic mug, fly off with it, and start up a game of catch with it with a group of other keas.

The kea even has a particular call it makes to encourage other keas to play. In a recent study, when the call was broadcast to some captive keas over a loudspeaker, the keas immediately started a game of chase. Researchers think the call isn’t so much an invitation to play but is more like laughter which makes other keas want to laugh along, or in this case play.

This is what the play call sounds like:

[kea call]

The kea builds its nests in burrows it digs in the ground, with some burrows 20 feet long, or 6 meters. The nesting chamber is lined with soft plant material. Females lay two to five eggs, which hatch in about three weeks. Despite the parents’ care, more than half of babies don’t survive their first year, mostly due to introduced predators like rats, stoats, and possums. But if a kea survives to grow up, it can live up to 50 years or possibly more.

Young keas, like young adult humans, can cause a lot of mischief that sometimes leads to tragedy. A lot of keas are killed by cars because they find cars and roads interesting. They especially like to move road cones, which of course is also dangerous to humans. One community set up a kea jungle gym well off the road to give keas a safe place to play, and it succeeded so well that other communities have built kea jungle gyms too.

Kea numbers are improving slowly, with an estimated 7,000 individuals alive today. Part of the problem is that keas find humans interesting. They like our things, which they want to steal or destroy, and they like our junk food, which they want to eat. In other words, they’re suspiciously like us. Only they can fly.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 293: Bat-Winged Dinosaurs and an Actual Bat

We’ll have a real episode next week but for now, here are two Patreon episodes smashed together into one!

Happy birthday to Speed!

Further reading:

Yi qi Is Neat But Might Not Have Been the Black Screaming Dino-Dragon of Death

Yi qi could probably glide instead of actually flying:

The Dayak fruit bat [photo by Chien C. Lee]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’ve finally finished moving, although I’m still in the process of unpacking and finding places for all my stuff. I haven’t had the chance to do any research this week, so this episode is actually two repurposed Patreon episodes, one from June of 2019 and one from May of 2021. They’re both short episodes so I put them together. I apologize to patrons for not getting something new this week, but I think everyone else will find these animals interesting.

But first, we have a birthday shout-out! A great big happy birthday to Speed! I hope this next year is the very best one yet for you!

Please excuse the varying quality of audio.

Listener Simon sent me an article about a recently discovered dinosaur with batlike wings, only the second batwinged dinosaur ever discovered. I thought that would make a really neat episode, so thank you, Simon!

These are really recent discoveries, both from the same area of northeastern China. In 2007 a small fossil found by a farmer was bought by a museum. A paleontologist named Xing Xu thought it looked interesting. Once the fossil had been cleaned and prepared for study, Xing saw just how interesting it was.

The dinosaur was eventually named Yi qi, which means strange wing. It was found in rocks dated to about 163 million years ago. Yi qi was about the size of a pigeon and was covered with feathers. The feathers were probably fluffy rather than the sleek feathers of modern birds. But most unusual was a long bony rod that grew from each wrist, called a styliform element. Yi qi also had very long third fingers on each hand. The long finger was connected to the wrist rod by a patagium, or skin membrane, and another patagium connected the wrist rod to the body. So even though it had feathers on its body, it probably didn’t have feathered wings. Instead, its forelimbs would have somewhat resembled a bat’s wings.

Paleontologists have studied the fossilized feathers with an electron microscope and discovered the structures of pigments that would have given the feathers color. Yi qi was probably mostly black with yellow or brown feathers on the head and arms. It probably also had long tail feathers to help stabilize it in the air.

Ambopteryx longibrachium was only discovered in 2017, also in northeastern China. It also lived around 163 million years ago and looked a lot like Yi qi. The fossil is so detailed it shows an impression of fuzzy feathers and even the contents of the animal’s digestive tract. Its body contained tiny gizzard stones to help it digest plants but also some bone fragments from its last meal, so paleontologists think it was an omnivore. Its hands have styliform elements, although not a wrist rod like Yi qi, and there’s a brownish film preserved across one of its arms that researchers think are remains of a wing membrane.

Paleontologists think the bat-winged dinosaurs were technically gliders. Careful examination of the wrist rods show no evidence that muscles were attached, so the dinosaurs wouldn’t have been able to adjust the wings well enough to actually fly. Modern bats have lots of tiny muscles in their wing membranes to help them fly.

Yi qi’s wrist rod isn’t unique in the animal world. The flying squirrel has styliform rods made of cartilage that project from the wrists, with the patagia attached to them. When a squirrel wants to glide, it extends its arms and legs and also extends the wrist rods, stretching the patagia taut. It can even control its glide to some extent by adjusting the wrist rods.

These two bat-winged dinosaurs were related, but they aren’t direct ancestors to modern-day birds. They’re scansoriopterygids,[scan-soarie-OPterigid] which are related to the group of dinosaurs that gave rise to birds. We only have five scansoriopterygid fossils, all found in the same area of China, but they’re all exceptionally well preserved fossils. Scansoriopterygids all appear to have been good climbers. They probably mostly lived in trees and mostly ate insects and small animals, gliding from branch to branch like modern flying squirrels do.

Researchers suggest the bat-winged dinosaurs might have gone extinct when bird ancestors evolved true flight with feathered wings, outcompeting the bat-winged dinosaurs’ more limited gliding flight. But with so few fossils, it’s impossible to say how successful the bat-winged dinosaurs were. All we know is they are rare in the fossil record and left no descendants.

So were scansoriopterygids related to pterosaurs? Nope. Pterosaurs weren’t even dinosaurs. They were reptiles and the first vertebrates we’ve found that could actually fly instead of just glide. Pterosaurs first appear in the fossil record around 228 million years ago and they all went extinct about 66 million years ago in the Cretaceous-Paleogene extinction event.

When Yi qi’s description was first published in 2015, the media acted as though it was a radical new find that would change the way we looked at dinosaurs forever. Some people even claimed the fossil was a fake, either a deliberate fraud by Xing and the other paleontologists that worked on the specimen, or that Xing and the others actually had a fossil made up of more than one animal with the bones jumbled together, which they had mistaken for a single animal. But this isn’t the case. Yi qi has been studied extensively with all the technology paleontologists have available these days. It’s the fossil of a single animal and it hadn’t been touched up or altered or messed with in any way before it was prepared by an expert. But while it is a radical new finding, it’s not as radical as some articles made it seem.

In 2008, the description was published of another scansoriopterygid called Epidexipteryx. Epidexipteryx appears to be closely related to Yi qi. It doesn’t have a wrist rod, but its arms were long and its fingers were especially elongated. It had forward-pointing teeth in the front of its jaw and probably had long tail feathers. Paleontologists think it was most likely a strong climber that may have spent most of its time in and around trees. But after that publication, paleontologist Andrea Cau published a paper suggesting that Epidexipteryx’s elongated arms and fingers might have been connected with patagia that allowed it to glide short distances. This was before the first paper about Yi qi was published and before Ambopteryx was even discovered. So the idea of a dinosaur with gliding membranes was already out there.

Hopefully, more scansoriopterygid fossils will be found and studied soon, which will give us more knowledge about what these little animals really looked and acted like. I want one as a pet.

Next, let’s go from bat-winged dinosaurs to some actual bats, specifically an unusual feature found in at least one species of bat, and something of a mystery.

As you probably know, only female mammals lactate. That just means that after a mammal gives birth, the mother produces milk for her baby to drink until it’s old enough to eat the same food that its parents do. All mammals do this, from whales to vampire bats, from humans to kangaroos, from mice to lions. The word mammal actually comes from mammary gland, which is the gland that allows a mother animal to produce milk after she has a baby.

Researchers have examined the genes that allow for milk production and determined that the genes probably developed over 200 million years ago in the common ancestor of all mammals alive today. The genes responsible for making egg yolk proteins started to be lost around 70 million years ago, except in monotremes that still lay eggs. Monotremes are platypuses and echidnas, and while they’re mammals, they retain some features that modern mammals have lost, like egg-laying. But even monotreme mothers produce milk.

Once our far-distant mammal ancestors evolved the ability to feed its babies with milk, the babies didn’t need as much yolk in their eggs. Gradually, over millions of generations, mammals lost the ability to produce egg yolks completely. I mean, except for the monotremes. From now on just assume that any time I talk about modern mammals, in this episode at least, I’m excluding monotremes, because they’re weird.

Ancient mammals laid eggs like reptiles and birds do, with a shell protecting the yolk and other fluids inside, that in turn protected and nourished the growing baby. But eventually a mammal mother retained her eggs in the body, which meant they didn’t need an eggshell since they were safely inside her, and because she was able to feed them nutritious, easy to digest milk as soon as they were born, they didn’t need an egg yolk either. So mammals eventually lost the ability to produce eggs at all.

This gets confusing, of course, because we use the same word, “egg,” to refer to the egg that a chicken or turtle lays, and to refer to the cell that a mother animal produces that can develop into a baby if it’s fertilized by sperm. Obviously I’m just talking about the first kind of egg here.

Anyway, milk production is a complex process that can be hard on the mother’s body, since she has to produce enough nutrients to feed all her babies, whether that’s just one human infant or twin fawns or a whole litter of puppies or kittens. Researchers have compared the genes associated with milk production and discovered that it’s pretty standard across all mammals. While the nutrients available in milk vary from species to species, since not every mammal has the same nutritional needs, how the body produces milk is pretty much identical across the board. All female mammals produce milk after they give birth, but only the females.

If that’s the case, though, why do male mammals have nipples? It turns out that nipples are just part of the basic body plan of a mammal. Some researchers think that originally both males and females lactated, but over the generations males lost the ability.

Except in one case. In that species, the females produce milk…and so do the males.

The Dayak fruit bat lives in parts of southeast Asia and is quite rare. It lives in rainforests and mostly eats fruit, especially figs. It has short, gray-brown fur and only weighs a little more than three ounces, or 95 grams. That’s about the same weight as a deck of cards. Its wingspan is about 18 inches across, or 46 cm. It’s a nocturnal bat but it’s also a megabat, which if you remember episode 88 means that it doesn’t have the advanced echolocation ability that microbats have. It may only navigate through the trees using its vision, since it has large eyes, but it may have some form of echolocation ability we don’t know about yet. There’s a whole lot we don’t know about the Dayak fruit bat.

What we do know is that in summer, female Dayak fruit bats give birth to one or two babies. We also know that in summer, when researchers net bats to examine, both males and females have enlarged breasts that produce milk. The bat, by the way, has breasts toward the sides of its body, basically in the armpits of its wings because that’s most convenient for the baby bats to grab hold of.

That’s all we know so far. We don’t know for sure that the males actually nurse their babies. They don’t produce nearly as much milk as females do, only about 1/10th as much. Some researchers think the father bat may take care of his babies while the mother finds food, but that she takes care of them the rest of the time. That’s just speculation, though, because so little is known about the bat.

Sometimes various diseases, genetic issues, or pollutants in the environment will cause a male animal to produce a little milk, but that’s rare. All the male Dayak fruit bats caught in summer were lactating, as were the females. Males and females caught at other times of the year weren’t lactating. Since mammals stop producing milk after their babies no longer need it, that means both males and females are probably producing milk for babies.

There may be one other bat where males lactate, although I can’t find enough information to verify it. The Bismarck masked flying fox, which sounds like an old-timey superhero, is related to the Dayak fruit bat, since they’re both megabats, but they’re not closely related.

The Bismarck masked flying fox lives in Papua New Guinea and eats fruit and other plant material. Like other flying foxes, it probably finds its food by smell and can’t echolocate. We don’t know much about it either, though, and until 2001 researchers thought it was a subspecies of Temminck’s flying fox. If you do a search for it online, every entry you find will mention that the males lactate, but never with any documentation to back up the claim. So that’s a mystery for now, although I’ll keep trying to find out more.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 292: The Kunga

This week let’s learn about a mystery that was solved by science!

Happy birthday to Zoe!

Further reading:

Let’s all do the kunga!

The kunga, as depicted in a 4500-year-old mosaic:

The Syrian wild ass as depicted in a 1915 photograph (note the size of the animal compared to the man standing behind it):

Domestic donkeys:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As this episode goes live, I should be on my way home from Dragon Con, ready to finish moving into my new apartment! It’s been an extremely busy week, so we’re just going to have a short episode about a historical mystery that was recently solved by science.

But first, we have another birthday shout-out! Happy birthday to Zoe, and I hope you have the most sparkly and exciting birthday ever, unless you’d rather have a chill and low-key birthday, which is just as good depending on your mood.

This week we’re going to learn about an animal called the kunga, which I learned about on Dr. Karl Shuker’s blog. There’s a link in the show notes if you’d like to read his original post.

The mystery of the kunga goes back thousands of years, to the fertile crescent in the Middle East. We’ve talked about this area before in episode 177, about the sirrush, specifically Mesopotamia. I’ll quote from that episode to give you some background:

“These days the countries of Iraq and Kuwait, parts of Turkey and Syria, and a little sliver of Iran are all within what was once called Mesopotamia. It’s part of what’s sometimes referred to as the Fertile Crescent in the Middle East. The known history of this region goes back five thousand years in written history, but people have lived there much, much longer. Some 50,000 years ago humans migrated from Africa into the area, found it a really nice place to live, and settled there.

“Parts of it are marshy but it’s overall a semi-arid climate, with desert to the north. People developed agriculture in the Fertile Crescent, including irrigation, but many cultures specialized in fishing or nomadic grazing of animals they domesticated, including sheep, goats, and camels. As the centuries passed, the cultures of the area became more and more sophisticated, with big cities, elaborate trade routes, and stupendous artwork.”

The domestic horse wasn’t introduced to this area until about 4,000 years ago, although donkeys were common. The domestic donkey is still around today, of course, and is descended from the African wild ass. Researchers estimate it was domesticated 5- or 6,000 years ago by the ancient nomadic peoples of Nubia, and quickly spread throughout the Middle East and into southern Asia and Europe.

But although horses weren’t known in the Middle East 4,500 years ago, we have artwork that shows an animal that looks like a really big donkey, much larger than the donkeys known at the time. It was called the kunga and was highly prized as a beast of burden since it was larger and stronger than an ordinary donkey. It was also rare, bred only in Syria and exported at high prices. No one outside of Syria knew what kind of animal the kunga really was, but we have writings that suggest it was a hybrid animal of some kind. This explains why its breeding was such a secret and why it couldn’t be bred elsewhere. Many hybrid animals are infertile and can’t have babies.

If the artwork was from later times, we could assume it showed mules, the offspring of a horse and a donkey. But horses definitely weren’t known in the Middle East or nearby areas at this time, so it can’t have been a mule.

The kunga was used as a beast of burden to pull plows and wagons, but the largest individuals were used to pull the chariots of kings. Fortunately, the kunga was so highly prized that it was sometimes sacrificed and buried with important people as part of their grave goods. Archaeologists have found a number of kunga skeletons, together with ceremonial harnesses. Unfortunately, it’s actually difficult to tell the difference between the skeletons of various equids, including horses, donkeys, zebras, and various hybrid offspring like mules. All scientists could determine is that the kunga most closely resembled various species and subspecies of donkey.

In January 2022, the mystery was finally solved. A genetic study of kunga remains was published that determined that the kunga was the offspring of a female domesticated donkey and a male Syrian wild ass.

The Syrian wild ass was native to many parts of western Asia. It was barely more than three feet tall at the shoulder, or about a meter, and while it was admired as a strong, beautiful animal that was sometimes hunted for its meat and skin, it couldn’t be tamed.

Because the Syrian wild ass was a different species of equid from the domesticated donkey, and because it couldn’t be tamed and was hard to catch, breeding kungas would be difficult. Male wild asses had to be captured, probably when young, and kept with female donkeys in hopes that they would mate eventually and offspring would result. Obviously the kunga showed what’s called hybrid vigor, where a hybrid is stronger than either of its parents, but because it was also infertile, the largest and strongest kungas couldn’t be bred together. Each kunga had to be bred from a pairing of wild ass and domestic donkey. No wonder it was expensive!

When the horse was introduced to the Middle East, it took the place of the kunga quickly and before long everyone had forgotten what the kunga even was.

Sadly, we can’t try to breed a kunga today to see what it was really like, because the Syrian wild ass went extinct in 1927. But the endangered Persian wild ass was introduced to parts of the Middle East starting in 2003, including Saudi Arabia, Iran, and Israel, to take the place of its extinct Syrian relation, and its numbers are increasing.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 291: The Ediacaran Biota

This week let’s find out what lived before the Cambrian explosion!

A very happy birthday to Isaac!

Further reading:

Some of Earth’s first animals–including a mysterious, alien-looking creature–are spilling out of Canadian rocks

Say Hello to Dickinsonia, the Animal Kingdom’s Newest (and Oldest) Member

Charnia looks like a leaf or feather:

Kimberella looks like a lost earring:

Dickinsonia looks like one of those astronaut footprints on the moon:

Spriggina looks like a centipede no a trilobite no a polychaete worm no a

Glide reflection is hard to describe unless you look at pictures:

Trilobozoans look like the Manx flag or a cloverleaf roll:

Cochleatina looked like a snail:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the last week of August 2022, so let’s close out invertebrate August with a whole slew of mystery fossils, all invertebrates.

But first, we have a birthday shoutout! A humongous happy birthday to Isaac! Whatever your favorite thing is, I hope it happens on your birthday, unless your favorite thing is a kaiju attack.

We’ve talked about the Cambrian explosion before, especially in episode 69 about some of the Burgess shale animals. “Cambrian explosion” is the term for a time starting around 540 million years ago, when diverse and often bizarre-looking animals suddenly appear in the fossil record. But we haven’t talked much about what lived before the Cambrian explosion, so let’s talk specifically about the Ediacaran (eedee-ACK-eron) biota!

I was halfway through researching this episode when I remembered I’d done a Patreon episode about it in 2021. Patrons may recognize that I used part of the Patreon episode in this one. You’d think that would save me time but surprise, it did not.

The word Ediacara comes from a range of hills in South Australia, where in 1946 a geologist noticed what he thought were fossilized impressions of jellyfish in the rocks. At the time the rocks were dated to the early Cambrian period, and this was long before the Cambrian explosion was recognized as a thing at all, much less such an important thing. But since then, geologists and paleontologists have reevaluated the hills and determined that they’re much older than the Cambrian, dating to between 635 to 539 million years ago. That’s as much as 100 million years before the Cambrian. The Ediacaran period was formally designated in 2004 to mark this entire period of time, although fossils of Ediacaran animals generally start appearing about 580 million years ago.

Here’s something interesting, by the way. During the Ediacaran period, every day was only 22 hours long instead of 24, and there were about 400 days in a year instead of 365. The moon was closer to the earth too. And life on earth was still sorting out the details.

Fossils from the Ediacaran period have been discovered in other places besides Australia, including Namibia in southern Africa, Newfoundland in eastern Canada, England, northwestern Russia, and southern China. Once the first well-preserved fossils started being found, in Newfoundland in 1967, paleontologists started to really take notice, because they turned out to be extremely weird. The fossils, not the paleontologists.

Many organisms that lived during this time lived on, in, or under microbial mats on the sea floor or at the bottoms of rivers. Microbial mats are colonies of microorganisms like bacteria that grow on surfaces that are either submerged or just tend to stay damp. Microbial mats are still around today, usually growing in extreme environments like hot springs and hypersaline lakes. But 580 million years ago, they were everywhere.

One problem with the Ediacaran biota, and I should explain that biota just means all the animals and plants that live in a particular place, is that it’s not always clear if a fossil is actually an animal. Many Ediacaran fossils look sort of plant-like. At this stage, the blurry line between animals and plants was even more blurry than it is now, with the added confusion that sometimes non-organic materials can resemble fossils, and vice versa.

For instance, the fossil Charnia, named after Charnwood Forest in England where it was first discovered. In 1957, a boy named Roger, who was rock-climbing in the forest, found a fossil that looked like a leaf or feather. He took a rubbing of the fossil and showed his father, who showed it to a geologist. The year before, in 1956, a 15-year-old girl named Tina saw the same fossil and told her teacher, who said those rocks dated to before the Cambrian and no animals lived before the Cambrian, so obviously what she’d found wasn’t a fossil.

Tina’s teacher was wrong about that, of course, although he was correct that the rocks dated to before the Cambrian, specifically to about 560 million years ago. But while Charnia looks like a leaf, it’s not a plant. This was about 200 million years before plants evolved leaves, and anyway Charnia lived in water too deep for plants to survive. It anchored itself to the sea floor on one end while the rest of the body stuck up into the water, and some specimens have been found that were over two feet long, or 66 cm. Some researchers think it was a filter feeder, but we have very little evidence one way or another.

One common animal found in Australia and Russia is called Kimberella, which lived around 555 million years ago and might have been related to modern mollusks or to gastropods like slugs. It might have looked kind of like a slug, at least superficially. It grew up to 6 inches long, or 15 cm, 3 inches wide, or 7 cm, and an inch and a half high, or 4 cm, which was actually quite large for most animals that lived back then. It was shaped roughly like an oval, with one thin end that stuck out, potentially showing where its front end was, although it didn’t have a head the way we think of it today. The upper surface of its body was protected by a shell, but not the type of shell you’d find on the seashore today. This was a flexible, non-mineralized shell, basically just thick, toughened tissue with what may be mineralized nodules called sclerites embedded in it. All around its body was a frill that might have acted as a gill. The underside of Kimberella was a flat foot like that of a slug.

We know Kimberella lived on microbial mats on the sea floor, and it might have had a feeding structure similar to a radula. That’s because it’s often found associated with little scratches on its microbial mat that resemble the scratches made by a radula when a slug or related animal is feeding on a surface. The radula is a tongue-like organ studded with hard, sharp structures that the animal uses to scrape tiny food particles from a surface.

Kimberella displays bilateralism, meaning it’s the same side to side. That’s the case with a lot of modern animals, including all vertebrates and a lot of invertebrates too, like insects and arachnids. But other Ediacarans showed radically different body plans. Charnia, for instance, exhibits glide reflection, where both sides are the same as in bilateralism, but the sides aren’t exactly opposite each other. If you walk along a beach and make footprints in the sand, your trail of footprints actually demonstrates glide reflection. If you stand on the sand and jump forward with both feet together, your footprints demonstrate bilateralism since the prints are side by side. (This is confusing to describe, sorry.) Pretty much the only living animals with this body pattern are some sea pens, which get their name because they resemble old-fashioned quill pens. Many sea pens look like plants, and for a long time researchers thought Charnia might be an ancient relation to the sea pen. These days most researchers are less certain about the relationship.

A similar-looking animal that lived around the same time as Charnia was Dickinsonia. It looks sort of like a leaf too, but a more broad oval-shaped leaf instead of a long thin one like Charnia. It’s also not a leaf. Some are only a few millimeters long, but some are over 4 1/2 feet long, or 1.4 meters.

Dickinsonia may be related to modern placozoans, a simple squishy creature only about one millimeter across. It travels very slowly across the sea floor and absorbs nutrients from whatever organic materials it encounters. But we don’t know if Dickinsonia was like that or if it was something radically different. Until a few years ago a lot of paleontologists thought Dickinsonia might be some kind of early plant or algae. Then, in 2016, a graduate student discovered some Dickinsonia fossils that were so well preserved that researchers were able to identify molecular information from them. They found cholesteroids in the preserved cells, and since only animals produce cholesteroids, Dickinsonia was definitely an animal. But that’s still about all we know about it so far.

Spriggina is another animal that at first glance looks like a leaf or feather. Then it sort of resembles a trilobite, or a segmented worm, or a possible relation to Dickinsonia. It looks like all sorts of animals but doesn’t really fit with anything known. It grew up to two inches long, or 5 cm, and had what’s referred to as a head shield although we don’t know for sure if it was actually its head. The head shield might have had eyes and might have had some kind of antennae, and some fossils seem to show a round mouth in the middle of the head, but it’s hard to tell. The rest of its body was segmented in rings. What Spriggina didn’t have was legs, or at least none of the fossils found so far show any kind of legs. Some species of Spriggina show a glide reflection body plan, while others appear to show a more ordinary bilateral body plan.

Three Ediacaran animals have such a weird body plan that they’ve been placed in their own phylum, Trilobozoa, meaning three-lobed animals. They show tri-radial symmetry, meaning that they have three sections that are identical radiating out from the center. They lived on microbial mats and were only about 40 mm across at most, which is about an inch and a half. Tribrachidium was roughly round in shape although its relations looked more like tiny cloverleaf rolls. Cloverleaf rolls are made by putting three little round pieces of dough together and baking them so that the roll has three lobes, although Trilobozoans probably didn’t taste as good. Also, Trilobozoans were covered with little grooves from center to edge and had three curved ridges, one on each lobe. The ridges were originally interpreted as arms or tentacles, but they seem to have just been ridges. Researchers think the little grooves directed water over the body’s surface and the ridges acted as tiny dams that slowed the water down just enough that particles of food carried in the water would fall onto the body so that the animal could absorb the nutrients, although we don’t know how that worked.

Many other Ediacaran animals had radial symmetry like modern echinoderms and jellyfish, including the ancestors of jellyfish. Some Ediacaran animals even had shells of various kinds, and they’re generally referred to as small shelly fossils. They were rarely more than a few millimeters across at most and are sometimes found mixed in with microbial mats. Cochleatina, for instance, is less than a millimeter across and all we know about it is that it had a ribbon-like spiral shell like a really simple snail’s shell. It wasn’t a snail, though. We don’t even know if it was an animal. It might have been some kind of algae or it might have been something else. Unlike most small shelly fossils, Cochleatina survived into the Cambrian period.

We’re also not sure why most Ediacaran organisms went extinct at the beginning of the Cambrian, but it’s probable that most were outcompeted by newly evolved animals. There may also have been a change in the chemical makeup of the ocean and atmosphere that caused an extinction event of old forms and allowed the rapid expansion of new animal forms that we call the Cambrian explosion.

We can also learn a lot about what we don’t find in the Ediacaran rocks. Pre-Cambrian animals didn’t appear to burrow into the sea floor, or at least we haven’t found any burrows, just tracks on the surface. Most Ediacaran animals also didn’t have armored bodies or claws or so forth. Researchers think that predation was actually pretty rare back then, with most animals acting as passive filter feeders to gather nutrients from the water, or they ate the microbial mats. It wasn’t until the Cambrian explosion that we see evidence that some animals evolved to kill and eat other animals exclusively.

With every new Ediacaran fossil that’s found and studied, we learn more about this long-ago time when multi-cellular life was brand new.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 290: Lobsters!

Thanks to Pranav for this week’s suggestion, lobsters!

Happy birthday to Jake!!

Visit Dr. Oné R. Pagán’s site for links to his podcast and his free book Arrow: The Lucky Planarian! You can also order his other books from your favorite book store. Here’s the direct link to his interview with me!

Further reading:

Don’t Listen to the Buzz: Lobsters Aren’t Actually Immortal

An ordinary lobster:

A blue lobster!

The scampi looks more like a prawn/shrimp than a lobster, but it’s a lobster:

 

The rosy lobsterette is naturally red because it lives in the deep sea:

The deep-sea lobster Dinochelus ausubeli was only discovered in 2007 and described in 2010:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As invertebrate August continues, this week we’re going to talk about lobsters. Thanks to Pranav for the suggestion!

But first, we have a birthday shout-out! A great big happy birthday this week to Jake! I hope your birthday is epic fun!

I’d also like to let you know that Dr. Oné R Pagán interviewed me recently about my book, Beyond Bigfoot & Nessie: Lesser-Known Mystery Animals from Around the World, and you can hear that interview on his podcast, the Baldscientist Podcast. Baldscientist is all one word. I’ll put a link in the show notes. While you’re at it, you should definitely buy his books, including his latest one, Drunk Flies and Stoned Dolphins: A Trip Through the World of Animal Intoxication, which just came out this year and is a lot of fun, as well as being full of interesting science! He also has a free children’s story called Arrow, the Lucky Planarian that you can download and read. It’s completely charming and you’ll learn a lot about planarians, which are also called flatworms, which are invertebrates, so this is all coming together!

This week’s episode isn’t about planarians, though, but about lobsters. I don’t think we’ve ever discussed lobsters on the podcast before, oddly enough, but it’s been on my ideas list for a long time. When Pranav emailed me recently to suggest we do a lobster episode, I realized it was time! Time for lobsters!

The lobster is a crustacean, and while there are plenty of different lobsters in the world, we’re going to focus on the clawed lobsters this time. There are lots of them, all grouped in the family Nephropidae.

The lobster has eight legs that it walks on, and two more legs with pincers. That’s why it’s in the order Decapoda. Deca means ten and poda means feet. Ten feet. Some of which can pinch you if you’re not careful.

The lobster uses its claws to defend itself from potential predators, and uses them to grab and kill small animals. It eats pretty much anything it can find, from fish and squid to sea stars and mollusks, to dead animals and some plant material. But its claws are too big and clumsy to use to eat with, which is why it has much smaller pincers on its next pairs of legs. These pincers are equipped with chemoreceptors that allow the lobster to taste its food before it actually eats it, which is a neat trick.

The lobster uses these small claws to pull its food into smaller pieces and convey it to the mouthparts, which are under its head. Some mouthparts have sensory hairs that can taste food, some have sharp spines that act as teeth to tear food into smaller pieces, and others are small and just flutter to help keep pieces of food from floating away. The stomach is only about an inch away from the mouth, or about 2.5 cm, no matter the size of the lobster. The stomach itself, and the short esophagus leading to the stomach, are lined with chitin spines that act like teeth to grind food up while enzymes break it down to fully digest it. This seems like a really complicated way to eat, but it’s actually not all that different from the way we eat, it’s just that instead of mouthparts and stomach teeth, we do all our grinding up of food in the mouth with just one set of teeth.

The lobster’s body is protected by an exoskeleton made of chitin, but the trouble with exoskeletons is that they don’t grow. The lobster has to shed its exoskeleton every so often and grow a new one that fits better, and until the new exoskeleton has hardened, the lobster is vulnerable and will usually hide. This can take several weeks. When a lobster is young and growing rapidly, it may molt its exoskeleton every few months or even more often, while an adult lobster typically only molts once every year or two.

Molting takes energy, though, and the bigger a lobster is, the more energy it takes to molt. It’s not like taking off a shirt. The lobster has to wriggle carefully out of its exoskeleton through a split between its tail and abdomen, making sure not to hurt its soft body in the process, and it even molts its stomach teeth, more properly called a gastric mill.

It’s a long, difficult process, during which time the lobster is mostly helpless. Some studies indicate that something like 10% of all lobsters actually die during the molting process. A lobster usually eats its shed exoskeleton in order to extract calcium from it, which helps its new exoskeleton harden faster.

Unlike many animals, lobsters keep growing throughout their lives. Since they can live a long time, that means sometimes people catch really big lobsters. The biggest ever reliably measured was an American lobster caught in 1977 off the coast of Nova Scotia, Canada in North America. It weighed 44 lbs, 6 oz, or 20.14 kg and was 3.5 feet long, or 106 cm. A more ordinary weight of a good-sized lobster is about 2 lbs, or 910 grams.

The lobster can definitely live at least 50 years, and some researchers suggest it can live much longer than that. But it’s really hard to tell the age of a lobster. You can’t go by size since individual lobsters grow at different rates depending on how much food they can find and other factors. A study published in September 2021 reports that a DNA test of genetic modifications that lobsters and other animals accumulate during their lives can determine a lobster’s age with a good degree of accuracy. This is important since it will help conservationists learn more about lobster populations, many of which are under increasing pressure from commercial fishing.

There’s a lot of talk online about how the lobster is actually immortal, and that if nothing kills it, it will just live forever. This rumor got started when scientists reported that lobsters express an enzyme called telomerase that repairs damage to DNA sequences at the ends of chromosomes. Most adult animals lose the ability to express telomerase, but the lobster doesn’t.

But lobsters aren’t immortal. A really old lobster stops shedding its exoskeleton, which slowly becomes more and more battered. The exoskeleton is part of the lobster’s body and can contract bacterial infections when it’s injured. Sometimes the infections are bad enough that it fuses the exoskeleton to the body permanently, so if the lobster does eventually get to the point where it can molt, it gets stuck trying to and dies. Sometimes the exoskeleton just rots away, which leads to the lobster’s death.

Still, the telomerase probably helps the lobster live for such a long time. Now that scientists have a way to determine a lobster’s actual age without harming it, hopefully soon we’ll learn more about how old they really get. We might be surprised, who knows?

Most species of lobster are brown, black, or greenish, which helps them hide on the sea floor. When a lobster is cooked by boiling, chemicals in its exoskeleton react with the hot water and turn it bright red. But sometimes—like, once every 10 million lobsters—a live lobster is found that is red. Researchers aren’t sure what causes this coloration.

Sometimes lobsters can be blue too. It’s still rare but not as rare as red coloration, estimated at about one every two million lobsters. While some species of lobster are naturally dark blue or even dark purple, a blue lobster is a really pretty shade of bright blue. It’s caused by a genetic mutation that results in it producing more of a protein that reacts with the pigments in its body, turning it blue. Since blue lobsters are so striking and attractive, lobster fishers usually either throw blue lobsters back or donate them to local aquariums. People sometimes assume blue lobsters are poisonous even though they’re not, so mostly no one wants to eat them anyway.

Lobsters are closely related to crabs and shrimp, and some clawed lobsters look a lot like their close relatives. This includes the scampi, which is the pinkish and silvery-white coloration of a prawn or shrimp, and only grows about 10 inches long at most, or 25 cm. It lives in parts of the northeastern Atlantic and parts of the Mediterranean Sea, where it digs a burrow in the muddy sea floor and spends most of its time hiding. It eats worms, small fish, jellyfish, and anything else it can catch. There are other species of scampi that live in other parts of the world’s oceans too.

Another lobster that looks even more like a shrimp is the rosy lobsterette, which only grows about 5 inches long, or 13 cm, and which is naturally red. This isn’t a rare coloration but an adaptation to its habitat. Unlike most lobsters, which live in shallow coastal waters, the rosy lobsterette lives in much deeper water where there’s very little light. As we’ve talked about before, the wavelength of light that is red can’t penetrate very far into water, so a red animal in the deep sea is basically invisible. A lot of deep-sea animals can’t even perceive the color red. The rosy lobsterette lives in the Gulf of Mexico, around the Caribbean, and in the western Atlantic Ocean.

There are actually quite a few species of lobster that live in the deep sea, with more being discovered every so often. In 2010 a new species of deep-sea lobster was described, Dinochelus ausubeli, which lives near the Philippines in South Asia. It was discovered during the ten-year Census of Marine Life, which sponsored 540 expeditions by thousands of scientists all over the world. It only grows a few inches long, or about 5 cm, and is mostly transparent with some pinkish coloring. It has one really long, thin, spiny claw with a bulbous base, while the other claw is much smaller.

There are a whole lot of other clawed lobster species, some of them known from only a few specimens. The Cape lobster, for instance, lives off the coast of South Africa in rocky areas, and even though it’s been known to science since the late 18th century, we don’t know much about it. It’s small, only growing about 4 inches long, or 10 cm, and ranges in coloration from greenish to yellowish to brown, even sometimes red, and it looks like a miniature version of the European or American lobsters although it’s not very closely related. In 1992 someone found one, which was such a rare occurrence that it was reported in the news. It was only the 14th specimen ever found at the time, although the publicity it received got other people out looking for the little lobster and more have been found since.

In other words, there are undoubtedly lots more species of lobster than we know about, just waiting to be discovered.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 289: Weird Worms

This week we learn about some weird worms!

Further reading:

Otherworldly Worms with Three Sexes Discovered in Mono Lake

Bizarre sea worm with regenerative butts named after Godzilla’s monstrous nemesis

Underground giant glows in the dark but is rarely seen

Giant Gippsland earthworm (you can listen to one gurgling through its burrow here too)

Further watching:

A giant Gippsland earthworm

Glowing earthworms (photo by Milton Cormier):

This sea worm’s head is on the left, its many “butts” on the right [photo from article linked to above]:

A North Auckland worm [photo from article linked to above]:

A giant beach worm:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we continue Invertebrate August with a topic I almost saved for monster month in October. Let’s learn about some weird worms!

We’ll start with a newly discovered worm that’s very tiny, and we’ll work our way up to larger worms.

Mono Lake in California is a salty inland lake that probably started forming after a massive volcanic eruption about 760,000 years ago. The eruption left behind a crater called a caldera that slowly filled with water from rain and several creeks. But there’s no outlet from the lake—no river or even stream that carries water from the lake down to the ocean. As a result, the water stays where it is and over the centuries a lot of salts and other minerals have dissolved into the lake from the surrounding rocks. The water is three times as salty as the ocean and very alkaline.

No fish live in the lake, but some extremophiles do. There’s a type of algae that often turns the water bright green, brine shrimp that eat the algae, some unusual flies that dive into the water encased in bubbles, birds that visit the lake and eat the brine shrimp and flies, and eight species of worms that have only been discovered recently. All the worms are weird, but one of them is really weird. It hasn’t been described yet so at the moment is just going by the name Auanema, since the research team thinks it probably belongs in that genus.

Auanema is microscopic and lives throughout the lake, which is unusual because the lake contains high levels of arsenic. You know, a DEADLY POISON. But the arsenic and the salt and the other factors that make the lake inhospitable to most life don’t bother the worms.

Auanema produces offspring that can have one of three sexes: hermaphrodites that can self-fertilize, and males and females that need each other to fertilize eggs. Researchers think that the males and females of the species help maintain genetic diversity while the hermaphrodites are able to colonize new environments, since they don’t need a mate to reproduce.

When some of the worms were brought to the laboratory for further study, they did just fine in normal lab conditions, without extreme levels of arsenic and so forth. That’s unusual, because generally extremophiles are so well adapted for their extreme environments that they can’t live anywhere else. But Auanema is just fine in a non-harsh environment. Not only that, but the team tested other species in the Auanema genus that aren’t extremophiles and discovered that even though they don’t live in water high in arsenic, they tolerate arsenic just as well as the newly discovered species.

The team’s plan is to sequence Auanema’s genome to see if they can determine the genetic factors that confer such high resistance to arsenic.

Next, we go up in size from a teensy worm to another newly discovered worm, this one only about 4 inches long at most, or 10 cm. It’s a marine polychaete worm that lives inside sea sponges, although we don’t know yet if it’s parasitizing the sponge or if it confers some benefit to the sponge that makes this a symbiotic relationship. The worm was only discovered in 2019 near Japan and described in early 2022 as Ramisyllis kingghidorahi.

Almost all worms known are shaped, well, like worms. They have a mouth at one end, an anus at the other, and in between they’re basically just a tube. Ramisyllis is one of only three worms known that have branched bodies, which is why they’re called branching sea worms. In this case, Ramisyllis has a single head, which stays in the sponge, but its other end branches into multiple tail ends that occasionally break off and swim away. The tails are specialized structures called stolons. When a stolon breaks off, it swims away and releases the eggs or sperm it contains into the water before dying. The worm then regenerates another stolon in its place.

Ramisyllis’s branches are asymmetrical and the worms found so far can have dozens of branches. Its close relation, a species that lives in sponges off the coast of northern Australia, can have up to 100 branches. Researchers suspect that there are a lot more species of branching sea worms that haven’t been discovered yet.

Next, let’s head back to land to learn about a regular-sized earthworm. There are quite a few species across three different earthworm families that exhibit a particular trait, found in North and South America, Australia and New Zealand, and parts of Africa. A few species have been introduced to parts of Europe too. What’s the trait that links all these earthworms? THEY CAN GLOW IN THE DARK.

Bioluminescent earthworms don’t glow all the time. Most of the time they’re just regular earthworms of various sizes, depending on the species. But if they feel threatened, they exude a special slime that glows blue or green in the dark, or sometimes yellowish like firefly light. The glow is caused by proteins and enzymes in the slime that react chemically with oxygen.

Researchers think that the light may startle predators or even scare them away, since predators that live and hunt underground tend to avoid light. The glow may also signal to predators that the worm could taste bad or contain toxins. The light usually looks dim to human eyes but to an animal with eyes adapted for very low light, it would appear incredibly bright.

One bioluminescent earthworm is called the New Zealand earthworm. It can grow up to a foot long, or 30 cm, although it’s only about 10 mm thick at most, and while it’s mostly pink, it has a purplish streak along the top of its body (like a racing stripe).

Like other earthworms, the New Zealand earthworm spends most of its time burrowing through the soil to find decaying organic matter, mostly plant material, and it burrows quite deep, over 16 feet deep, or 5 meters. If a person tried to dig a hole that deep, without special materials to keep the hole from collapsing, it would fall in and squish the person. Dirt and sand are really heavy. The earthworm has the same problem, which it solves by exuding mucus from its body that sticks to the dirt and hardens, forming a lining that keeps the burrow from collapsing. This is a different kind of mucus than the bioluminescent kind, and all earthworms do this. Not only does the burrow lining keep the worm safe from being squished by cave-ins, it also contains a toxin that kills bacteria in the soil that could harm the worm.

Worms that burrow as deep as the New Zealand earthworm does are called subsoil worms, as opposed to topsoil worms that live closer to the surface. Topsoil contains a lot more organic material than subsoil, but it’s also easier for surface predators to reach. That’s why topsoil worms tend to move pretty fast compared to subsoil worms.

The New Zealand earthworm glows bright orange-yellow if it feels threatened, so bright that the Maori people used the worm as bait when fishing since it’s basically the best fish lure ever.

Another New Zealand earthworm is called the North Auckland worm, and while it looks like a regular earthworm that’s mostly pink or greenish, it’s also extremely large. Like, at least four and a half feet long, or 1.4 meters, and potentially much longer. It typically lives deep underground in undisturbed forests, so there aren’t usually very many people around on the rare occasion when heavy rain forces it to the surface. Since earthworms of all kinds absorb oxygen through the skin, instead of having lungs or gills, they can’t survive for long in water and have to surface if their burrow completely floods.

We don’t actually know that much about the North Auckland worm. Like the New Zealand earthworm, it’s a subsoil worm that mostly eats dead plant roots. Some people report that it glows bright yellow, although this hasn’t been studied and it’s not clear if this is a defensive reaction like in the New Zealand earthworm. It’s possible that people get large individual New Zealand earthworms confused with smaller North Auckland worm individuals. Then again, there’s no reason why both worms can’t bioluminesce.

An even bigger worm is the giant beach worm. It’s a polychaete worm, not an earthworm, and like other polychaete worms, including the branching sea worm we talked about earlier, it has a segmented body with setae that look a little like legs, although they’re just bristles. The giant beach worm’s setae help it move around through and over the sand. It hides in a burrow it digs in the sand between the high and low tide marks, but it comes out to eat dead fish and other animals, seaweed, and anything else it can find. It has strong jaws and usually will poke its head out of its burrow just far enough to grab a piece of food. It has a really good sense of smell but can’t see at all.

There are two species of giant beach worm that live in parts of Australia, especially the eastern and southeastern coasts, where people dig them up to use as fish bait. The largest species can grow up to 8 feet long, or 2.4 meters, and possibly even longer. There are also two species that live in Central and South America, although we don’t know much about them.

Another huge Australian worm is the endangered Giant Gippsland earthworm that lives in Victoria, Australia. It’s also a subsoil worm and is about 8 inches long, or 20 cm…when it’s first hatched. It can grow almost ten feet long, or 3 meters. It’s mostly bluish-gray but you can tell which end is its head because it’s darker in color, almost purple. It lives beneath grasslands, usually near streams, and is so big that if you happen to be in the right place at the right time on a quiet day and listen closely, you might actually hear one of the giant worms moving around underground. When it moves quickly, its body makes a gurgling sound as it passes through the moist soil in its burrow.

The Giant Gippsland earthworm is increasingly endangered due to habitat loss. It also reproduces slowly and takes as much as five years to reach maturity. Conservationists are working to protect it and its remaining habitat in Gippsland. The city of Korumburra used to have a giant worm festival, but it doesn’t look like that’s been held for a while, which is too bad because there aren’t enough giant worm festivals in the world.

To finish us off, let’s learn what the longest worm ever reliably measured is. It was found on a road in South Africa in 1967 and identified as Microchaetus rappi, or the African giant earthworm. It’s mostly dark greenish-brown in color and it looks like an earthworm, because it is an earthworm. On average, this species typically grows around 6 feet long, or 1.8 meters, which is pretty darn big, but this particular individual was 21 feet long, or 6.7 meters. It’s listed in the Guinness Book of World Records as the longest worm ever measured. Beat that, other worms. I don’t think you can.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 288: Mystery Invertebrates

Thanks to Joel for suggesting this week’s topic!

Happy birthday to Fern this week!

Further reading:

Small, rare crayfish thought extinct is rediscovered in cave in Huntsville city limits

Hundreds of three-eyed ‘dinosaur shrimp’ emerge after Arizona monsoon

An invertebrate mystery track in South Africa

The case of the mysterious holes in the sea floor

Contemplating the Con Rit

The Shelton Cave crayfish, rediscovered:

The three-eyed “tadpole shrimp” or “dinosaur shrimp,” triops [photo from article linked above]:

A leech track in South Africa [photo from article linked above]:

A track, or at least a series of holes, discovered in the deep seafloor [photos from article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Thanks to Joel who suggested we do an episode about mystery invertebrates! It took me a while, but I think you’re really going to like this episode. Some of the mysteries are solved and some are not, but they’re all fun.

Before we get to the mystery animals, though, we have a birthday shout-out! A great big happy birthday to Fern! I hope you have your favorite type of birthday cake or other treat and get to enjoy it with your loved ones.

Our first mystery starts in a cave near Huntsville, Alabama in the southern United States, which is in North America. Shelta Cave is a relatively small cave system, only about 2,500 feet long, or 760 meters. That’s about half a mile. It’s a nature preserve now but in the early 1900s it was used as an underground dance hall with a bar and everything.

Biologist John Cooper studied the cave’s aquatic ecosystem in the 1960s when he was doing his dissertation work. His wife Martha helped him since they were both active cavers. At the time, the cave ecosystem was incredibly diverse, including three species of crayfish. One was called the Shelta Cave crayfish, which was only a few inches long, or about 5 cm, mostly translucent or white since it didn’t have any pigment in its body, and with long, thin pincers.

It was rarer than the cave’s other two crayfish species, and unlike them it had only ever been found in Shelta Cave. From 1963 to 1975, only 115 individuals had been confirmed in repeated studies of the cave’s ecosystem.

Then, in the 1970s, several things happened that caused a serious decline in the diversity of life in the cave.

The first was development of the land around the cave into subdivisions, which meant that more pesticides were used on lawns and flower beds, which made its way into the groundwater that entered the cave. It also meant more people discovering the cave and going in to explore, which was disturbing a population of gray bats who also lived in the cave. To help the bats and keep people out, the park service put a gate over the entrance, but the initial gate’s design wasn’t a very good one. It kept people out but it also made it harder for the bats to go in and out, and eventually the bats gave up and moved out of the cave completely. This really impacted the cave’s ecosystem, since bats bring a lot of nutrients into a cave with their droppings and the occasional bat who dies and falls to the cave floor.

The gate has since been replaced with a much more bat-friendly one, but studies afterwards showed that a lot of the animals found in the cave had become rare. The Shelta Cave crayfish had disappeared completely. One was spotted in 1988 but after that, nothing, and the biologists studying the cave worried that it had gone extinct.

Then, in 2019, a team of scientists and students surveying life in the cave spotted a little white crayfish with long, thin pincers in the water. The team leader dived down and scooped it up with his net to examine more closely. The crayfish turned out to be a female Shelta Cave crayfish with eggs, which made everyone excited, and after taking a tiny tissue sample for DNA testing, and lots of photographs, they released her back into the water. The following year they found a second Shelta Cave crayfish.

The Shelta Cave crayfish is so little known that we don’t even know what it eats or how it survives in the same environment with two larger crayfish species. Biologist Dr. Matthew Niemiller is continuing Dr. Cooper’s initial studies of the cave and will hopefully be able to learn more about the crayfish and its environment.

Next let’s travel from a cool, damp, flooded cave in Alabama to northern Arizona. Arizona is in the western United States and this particular part of the state has desert-like conditions most of the year. Almost a thousand years ago, people built what is now called Wupatki Pueblo, a 100-room building with a ballcourt out front and a big community room. It was basically a really nice apartment building. Wupatki means “tall house” in the Hopi language, and while the pueblo people who built it are long gone, Wupatki is still an important place for the Hopi and other Native American tribes in the area. It’s also a national monument that has been studied and restored by archaeologists and is open to the public.

In late July 2021, torrential rain fell over the area, so much rain that it pooled into a shallow temporary lake around Wupatki, including flooding the ballcourt. The ballcourt is 105 feet across, or 32 meters, and surrounded by a low wall. One day while the ballcourt was still flooded, a tourist came up to the lead ranger, Lauren Carter. The visitor said there were tadpoles in the ballcourt.

There are toads in the area that live in burrows and only come out during the wet season when there’s rain, and Carter thought the tadpoles might be from the toads. She went to investigate, saw what looked like tadpoles swimming around, and scooped one up in her hands to take a closer look. But the tadpoles were definitely not larval toads. In fact, they kind of looked like teensy horseshoe crabs, with a rounded shield over the front of the body and a segmented abdomen and tail sticking out from behind, with two long, thin spines at the very end that are called caudal extensions. It had two pairs of antennae and lots of small legs underneath, some adapted for swimming. The largest of the creatures were about two inches long, or 5 cm.

What on earth were they, and where did they come from? This area is basically a desert. Carter stared at the weird little things and remembered hearing about something similar when she worked at the Petrified Forest National Park, also in Arizona. She looked the animal up and discovered what it was.

It’s called Triops and is in the order Notostraca. Notostracans are small crustaceans shaped sort of like tadpoles, which is why it’s sometimes called the tadpole shrimp, but it’s not a shrimp. It has two eyes on the top of its head visible through its flattened, smooth carapace. Species in the genus Triops also have a so-called third eye between the two ordinary eyes, although it’s a very simple eye that probably only detects light and dark. Many crustaceans have these third eyes in their larval forms but very few retain them into adulthood.

Notostracans have been around for about 365 million years, and haven’t changed much in the last 250 million years. It’s an omnivore that mostly lives on the bottom of freshwater pools and shallow lakes, often temporary ones like the flooded ballcourt, although some species live in brackish water and saline pools, or permanent waterways like peat bogs.

Triops eggs are able to tolerate high temperatures and dry conditions, with the eggs remaining viable for years or even decades in the sediment of dried-up ponds. When enough water collects, the eggs hatch and within 24 hours are miniature versions of the adult Triops. They grow up quickly, lay lots of eggs, and die within a few months or when the water dries up again.

Triops eggs are even sold as aquarium pets, since they’re so unusual looking and are easy to care for. They basically eat anything. They especially like mosquito larvae, so if you see some in your local pond or other waterway, give them a tiny high-five.

In 1996, some workers near Indianapolis, Indiana were servicing a tank full of chemical byproducts from making plastic auto parts when they noticed movement in the toxic goo. They investigated and saw several squid-like creatures swimming around. They were red-brown and about 8 inches long, or 20 cm, including their arms or tentacles, but were only about an inch wide, or 2.5 cm.

The workers managed to capture one and put it in a jar, which they stuck in the break room refrigerator. By the time someone in management arranged to have it examined by a scientist, the jar had been thrown out. If you’ve ever tried to keep food in a break room fridge, you’ll know that there’s always someone who will throw out everything in the fridge that isn’t theirs, no matter whether it’s labeled or brand new or not. I have had my day’s lunch thrown out that had only been in the fridge a few hours. Anyway, when the tank was cleaned out the following year, no one found any creatures in it at all.

This sounds really interesting, but there’s precious little information to go on. The story appeared in a few newspapers but we have no names of the people who reportedly saw the creatures, no follow-up information. It has all the hallmarks of a hoax or urban legend. The creatures’ size also seems quite large for extremophiles in a small, closed environment. What would they find to eat to get so big?

Next let’s talk about some mysterious tracks made by invertebrates, as far as we know. We’ll start with a track on land that was a mystery at first, but was solved. A man in the Kruger National Park in South Africa named Rudi Hulshof came across a weird track in the sandy dirt that he didn’t recognize. It was maybe 10 mm wide and kind of looked like a series of connected rectangles, as though a tiny person was moving a tiny cardboard box by rolling it over and over, but there weren’t any footprints, just the body track.

Curious, Hulshof followed the track to find what had made it, and finally discovered the culprit. It was a leech! Most leeches live in water, whether it’s the ocean, a pond or swamp, a river, or just flooded ground. Most species are parasitic worms that attach to other animals with suckers, then pierce the animal’s skin and suck its blood. The leech stays on the animal until it’s full, then drops off. Some leeches are terrestrial, but it appears that this one was a freshwater leech that had attached to an animal passing through the water, then dropped off onto land. It had crawled as far as it could trying to find a better environment, but when Hulshof found it it was dead, so it had not had a good day.

The leech moves on land by stretching the front of its body forward, then dragging its tail end up in a bunch kind of like a worm (it is a kind of worm), so that’s why its track was so unusual-looking. It’s a good thing Hulshof found the leech before something ate it, or else he’d probably still be wondering what had made that track.

We have photographs of other tracks that are still mysterious. You may have heard about one that’s been in the news lately. This one was found by a deep-sea rover in July 2022, more than a mile and a half deep, or 2500 meters, in the north Atlantic Ocean.

The track may or may not actually be a track, although it looks like one at first glance. It consists of a line of little holes in the seafloor, one after the other, although they’re not all the same distance apart. The rover saw them on two separate dives in different locations, so it wasn’t just one track, but although the scientists operating the rover remotely tried to look into the holes, they couldn’t get a good enough view. It does look like there’s sediment piled up next to the holes, so researchers think something might actually be digging the holes, either digging down from the surface to find food hidden in the sediment, or digging up from inside the sediment to find food in the water. The rover did manage to get a sample of sediment from next to one of the holes and a water sample from just above it, and eventually those samples will be tested for possible environmental DNA that might help solve the mystery.

This wasn’t the first time these holes have been seen in the area, though. An expedition in 2004 saw them and hypothesized that the holes are made by an invertebrate with a feeding appendage of some kind that it uses to dig for food. Not only that, we have similar-looking fossil holes in rocks formed from deep marine sediments millions of years ago.

Other deep-sea tracks have a known cause, and humans are responsible. In the 1970s and 1980s, ships with deep-sea dredging equipment traveled through parts of the Pacific Ocean, testing the ocean floor to see whether the minerals in and beneath the sediment were valuable for mining. A few years ago scientists revisited the same areas to see how the ecosystems impacted by test mining had responded.

The answer is, not well. Even after 40 years or so since the deep-sea mining equipment sampled the sea floor, the marks remain. The deep sea is a fragile ecosystem to start with, and any disturbance takes a long, long time to recover—possibly thousands of years. So while the holes discovered in 2022 were almost certainly made by an animal or animals, they might be quite old.

Let’s finish with a mystery animal we’ve talked about before, but a really long time ago—way back in episode 6. It’s definitely time to revisit it.

In 1883 when he was 18 years old, a Vietnamese man named Tran Van Con had seen the body of an enormous creature washed up on shore at Hongay in Vietnam. Van Con said it was probably 60 feet long, or 18 meters, but less than three wide wide, or 90 cm. It had dark brown plates on its back with long spines sticking out from them to either side, and the segment at its tail end had two more spines pointing straight back. It didn’t have a head, which had presumably already rotted off, or something bit it off before the animal washed ashore. It had been dead for a long time considering the smell. In fact, it smelled so terrible that locals finally towed it out to sea to get rid of it. It sank and that was the last anyone ever saw of it. The locals referred to it as a con rit, which means “millipede,” since the armor plates made it look like the segmented body of an immense millipede.

Lots of people have made suggestions as to what the con rit could be, but nothing really fits. It was the length of a whale, but it doesn’t sound like any kind of whale known. The armored plates supposedly rang like metal when hit with a stick. Even if this was an exaggeration, it probably meant the armor plates were really hard, not just the skin of a dead whale that had hardened in the sun. It also implies that the plates had empty space under them, allowing them to echo when hit. Zoologist Dr. Karl Shuker suggests that the plates might have been the exoskeleton of a crustacean of some kind, which makes a lot more sense than a whale, but the sheer size of the carcass is far larger than any crustacean, or even any arthropod, ever known.

There’s also some doubt that the story is accurate. It might even be a hoax. We only know about the con rit at all because the director of Indochina’s Oceanographic and Fisheries service, Dr. A. Krempf, talked to Tran Van Con about it in 1921. That was 38 years after Van Con said he saw the creature, so he might have misremembered details. Not only that, Krempf translated the story from Vietnamese, and there’s no way of knowing how accurate his translation was.

The con rit is also a monster from Vietnamese folktales, a sort of sea serpent that had lots of feet. It was supposed to attack fishing boats to eat the sailors, until a king caught it and chopped it up into pieces. A local mountain was supposedly formed from its head, and the other pieces of its body turned into the unusual stones found on a nearby island.

There’s always the possibility that Tran Van Con actually told Krempf this folktale, but that Krempf misunderstood and thought he was telling him something he actually witnessed. Then again, there are eight reports from ships in the area between 1893 and 1915 of creatures that might have been a con rit. One account from 1899 was a sighting of a creature estimated as being 135 feet long, or 41 meters, which was rowing itself along at the surface by means of multiple fins along its sides.

Whatever the con rit was, there haven’t been any sightings since 1915. That doesn’t mean there isn’t a population of incredibly long invertebrates living in the deep ocean in southeast Asia. If it does exist, maybe one day a deep-sea rover will spot one. Maybe it dug those little holes, who knows?

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!