Episode 273: Noisy Invertebrates



Thanks to Isaac, Joel, Ethan, and Richard E. for their suggestions this week!

Don’t forget to check out our crowdfunding campaign for some cute enamel pins!

Further reading:

Snapping Shrimp Drown Out Sonar with Bubble-Popping Trick

One example of a pistol shrimp–there are many, many species (photo from this site):

A walnut sphinx moth sitting on someone’s hand (photo by John Lindsey, found on this page):

A caterpillar (photo by Ashley Bosarge, found on this page):

The Asian longhorned beetle (from this site):

The white-spotted sawyer pine beetle is another type of longhorned beetle:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s been too long since we’ve had an invertebrates episode, so this week let’s learn about some invertebrates that make noise. Thanks to Isaac, Joel, Ethan, and Richard E. for their suggestions!

We don’t have a birthday shout-out this week, but we do have a reminder that the next five episodes, the ones releasing in May, are our Kickstarter episodes! Those are from the Kickstarter level where the backer got to choose the topic and work with me to craft the episode. I’ve been amazed at how fantastic those episodes turned out, and I think you’ll like them.

Speaking of crowdfunding campaigns, a quick reminder that the Tiny Pin Friends Indiegogo is still going on. It’s sort of stuck halfway to our goal, probably because I got busy with the book release and haven’t been telling people about the pins, so if you want to take a look at the pin designs, there’s a link in the show notes. Thanks!

Now, on to the invertebrates! Both Isaac and Joel suggested the same topic at different times, pistol shrimp. This is a group of shrimps also called snapping shrimps. Most species live in warm, shallow coastal habitats like coral reefs, but some live in colder water and at least one lives in freshwater caves.

The pistol shrimp only grows a few inches long at most, or about 5 cm. It gets its name from its big claw, which functions in a similar way to the workings of a pistol (sort of). But instead of shooting bullets, the claw shoots bubbles—but so incredibly fast, they might as well be bullets.

A pistol shrimp has two claws, but one is small and used for picking stuff up and grabbing food. The other claw is the pistol claw that’s much bigger and stronger. Which claw is which depends on the individual, and if a shrimp’s pistol claw gets damaged or bitten off, its other claw will develop into a pistol claw. The damaged or lost claw eventually regenerates into a little claw for manipulating food.

The pistol shrimp is mostly an ambush hunter. It will hide in a burrow or rock crevice with its antennae sticking out, and when a small animal like a fish happens by, the shrimp will emerge from its hiding place just far enough to get a good shot at the animal. It opens its big claw and snaps it shut so fast and so forcefully that it shoots tiny bubbles out at speeds of over 60mph, or 100 km/hour. Obviously the bubbles don’t travel very far at that speed, really only a few millimeters, but it’s powerful enough at this short range to stun or outright kill a small animal. The shrimp then grabs its stunned or dead prey and drags it back into its hiding spot to eat.

The process is way more complicated than it sounds. When the claw opens, water rushes into a tiny chamber in the claw. When it snaps closed, a tiny point on the claw pushes into the chamber, which leaves no room for the water. The water is therefore forced out of the chamber at such incredibly high pressure that it leaves vapor-filled cavities in the water, the bubbles, which collapse with a loud snapping sound. The pressure wave from the collapsing bubble is what actually kills or stuns an animal. Physics! I don’t understand it! Check the show notes for an article that goes into more detail about this process, which I’ve hopefully described correctly.

The bubble’s collapse makes such a loud noise that the pistol shrimp is one of the loudest animals in the ocean, but the sound lasts for less than a millisecond. It takes 100 to 400 milliseconds for you to blink your eye, to give you a comparison. The collapsing bubble also produces light and intense heat, but it’s such a tiny bubble with such a limited range that the heat and light don’t make any difference. The light isn’t very bright and lasts such a tiny amount of time that the human eye can’t even perceive it.

The pistol shrimp doesn’t only use its big claw to hunt for food and defend itself from potential predators. It also communicates with other pistol shrimp with the sound, and pistol shrimp can live in colonies of hundreds of individuals. With them all snapping together, no matter how short each snap is, the collective sound can be incredibly loud—so loud it interferes with sonar in submarines.

This is what it sounds like, although it also kind of sounds like popcorn popping, if you ask me:

[snapping shrimp sounds]

Next, Ethan suggested the walnut sphinx moth, because his son found one, they looked it up, and they were both amazed at how awesome it is. It lives in the eastern part of North America and is a big, robust moth with a wingspan up to 3 inches across, or 7.5 cm. Its wings and body are mostly brown and gray, often with darker and lighter markings but sometimes all one color. The edges of its wings have an uneven scallop shape and when it perches, it spreads both pairs of wings out in a sort of X shape. Its wing shape and coloring make it look a lot like an old dead leaf.

Like many moths, the walnut sphinx moth doesn’t eat at all as an adult. After it metamorphoses into an adult, it only lives long enough to mate and lay eggs. It spends most of its life as a caterpillar, where it eats the leaves of various kinds of trees, especially nut trees, including walnut, hazelnut, and hickory. The caterpillar is a pretty green with tiny white dots all over and yellow or white streaks along its sides, although some individuals are red, orange, or pink instead of green. It has a red or green horn on its tail end.

The most amazing thing about this moth is how the caterpillar keeps from being eaten. Lots of animals like to eat caterpillars, especially birds, but when a bird tries to grab this caterpillar, it thrashes around and actually makes a sound! You don’t typically think of caterpillars as noisy. It’s actually not very loud, but it does make a little whistle that mimics a bird’s alarm call, and can make a little buzzing sound too. The caterpillar makes the sound through its breathing tubes, called spiracles.

Researchers have played the caterpillar’s whistle sound at bird feeders and the birds react as though they’re hearing a bird making an alarm call.

This is what the whistle sounds like [whistle] and this is what the buzzing sounds like [buzz].

Richard E. recently tweeted some amazing pictures of beetles and suggested we cover more beetles, and I totally agree! We’ll finish with a beetle that makes this weird creaky sound:

[beetle sound]

The Asian longhorned beetle is sometimes called the starry sky beetle because it’s black with white dots. It’s native to eastern China and Korea, but it’s an invasive species in North America, parts of Europe, and other parts of Asia. It can grow about an inch and a half long, or 4 cm, but its antennae are up to twice as long as its whole body.

The female chews little holes in the bark of a tree and lays a single egg in each hole. When the larva hatches, it burrows deeper into the tree, eating sap and wood, until it’s ready to pupate. When it emerges as an adult, it chews its way out of the tree for the first time in its life, and flies away to find a mate. It especially likes poplar, maple, and willow trees. If enough beetle larvae are eating their way through a tree, the tree becomes weakened and can lose branches or even die.

There are lots of other species of longhorned beetle, though, and a lot of them make creaky scraping sounds. The male has ridges on his head that he scrapes along his thorax to attract a mate.

The white-spotted sawyer, also called the pine beetle, is native to North America and is black with a single white spot at the base of the wings, and sometimes with more white spots on the wings. It looks a lot like the Asian longhorned beetle but has black antennae whereas the Asian beetle has black and white antennae.

Like the many other longhorned beetle species, the female chews little holes in a tree to lay eggs in, but in this case she prefers pine and spruce trees, especially ones that are dead or dying or have sustained fire damage. The male white-spotted sawyer finds a good tree and defends it from other males, and if a female likes the tree she’ll mate with the male. But while the male keeps other males away, other females sometimes sneak in and lay eggs in the holes the female has already chewed in the tree. These nest holes take a long time to make and if a female can sneak some of her eggs into holes another female has already made, it saves her a lot of effort.

In addition to the male making a creaking noise to attract a mate, longhorned beetle larvae just generally make a lot of noises as they chew their way through a tree. If you’re ever walking through the woods and hear this sound, now you know what it is:

[creaky beetle sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 272: The Waitoreke



Thanks to Sarah L. for buying the podcast two books off our wishlist! This episode was inspired by an entry in one of those books!

A very happy birthday this week to Matthew!

Don’t forget that you can still contribute to our Indiegogo “Tiny Pin Friends” campaign to get a small hard enamel pin of a narwhal, a capybara with a tangerine on its head, and/or a thylacine!

On April 19, 2022, the book Beyond Bigfoot & Nessie: Lesser-Known Mystery Animals from Around the World goes officially on sale in paperback everywhere! (The ebook is already available.) Bookstores in the U.S. can order fully returnable copies at a standard bookstore discount; bookstores outside of the U.S. still get a discount but the copies are non-returnable. The book should be available to order anywhere you usually order books, including Amazon and Bookshop.org!

Further reading:

Rakali/Water-rat–Australia’s “otter”

Additional Sources (because this episode turned out to be really hard to research):

Conway, J., Koseman, C.M., Naish, D. (2013). Cryptozoologicon vol. I, 37-38. Irregular Books.

Ley, Willy. (1987). Exotic Zoology, 291-295. Bonanza. (Original work published 1959)

Pollock, G. A. (1970). The South Island otter: A reassessment. Proceedings (New Zealand Ecological Society), 17, 129–135.

Pollock, G. A. (1974). The South Island otter: An addendum. Proceedings (New Zealand Ecological Society), 21, 57-61.

Worthy, T. H., et al. (2006). Miocene mammal reveals a Mesozoic ghost lineage on insular New Zealand, southwest Pacific. Proceedings of the National Academy of Sciences of the United States of America103(51), 19419–19423. https://doi.org/10.1073/pnas.0605684103

An otter with its telltale bubble chain (Photo by Linda Tanner):

A rakali swimming (photo by Con Boekel, from website linked to above):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a fascinating mystery animal from New Zealand! Many thanks to Sarah L., who very generously bought me a couple of books off my podcast wishlist, which I tend to forget is even a thing that exists! One of the books is Cryptozoologicon, Volume 1 by John Conway, C.M. Koseman, and Darren Naish, and that’s where I got this week’s topic, the mysterious waitoreke. [why-tore-EH-kee]

This week is also special because the paperback version of our own book, Beyond Bigfoot & Nessie: Lesser-Known Mystery Animals from Around the World, officially goes on sale on April 19, 2022. That’s tomorrow, if you’re listening to this the day the episode goes live. It should be available to order everywhere you ordinarily buy books, throughout the world. The ebook is available too. I’ve mailed all Kickstarter copies so if you haven’t received your copy yet, let me know. There were a few people who never returned the backer survey so I don’t have those addresses to mail books to. If you want a signed copy of the book at this point, or a hardback copy, you’ll need to catch me in person. I’ll be at ConCarolinas over the first weekend of June and I’d love to meet up with you. I’m working on the audiobook now, for those of you waiting for that one. (It’s a slow process, so don’t expect it for at least another month, sorry.)

You know what else is happening this week? A birthday shout-out! Happy birthday to Matthew! I hope your birthday is everything you ever hoped for in a birthday, or maybe even more!

New Zealand has almost no native mammal species except for a few bats, some seals and sea lions that live along the coast, and some whales and dolphins that live off the coast. Lots of mammals have been introduced, from dogs to rats, cattle to cats, but there are reports of a small mammal in New Zealand called some version of waitoreke, supposedly a Maori word meaning something like swift-moving water animal. Even the animal’s name is confusing, though. No one’s sure whether the word is genuinely Maori. The animal is also sometimes referred to as the South Island otter, the New Zealand platypus, the New Zealand muskrat, or the New Zealand beaver.

Reports of the animal go back a couple of centuries, basically as soon as Europeans stumbled across the country. One of the earliest reports is from 1861 by Julius von Haast, a geologist who spent many years surveying the geography and geology of New Zealand, and who made a lot of discoveries along the way. The huge, extinct Haast’s eagle is named after him, for instance, since he was the first European scientist to examine its remains. In June of 1861, Haast spotted some tracks in the mud along a riverbank, which he noted looked like an otter’s tracks but smaller. Two shepherds in the area claimed they’d seen the animal and that it was the size of a large rabbit with dark brown fur. Haast seems to be the first person to have used the word waitoreke, but a naturalist named Walter Mantell might have used the word first—it’s not clear.

The Maori people of the South Island also reported seeing the animal. One man even said it had sometimes once been kept as a pet, although he may have actually been referring to the tuatara, a reptile we talked about way back in episode 3. The waitoreke was supposed to be about two feet long, or 61 cm, not counting its bushy tail, brown in color, with short legs, and a head that was something between a dog and cat’s head. It spent most of its time in the water but it also came on land and lived in a burrow.

The problem with these accounts is that they were mainly gathered by Walter Mantell, who was not Maori. He might have misunderstood some details or not recorded them accurately. Most of the details we have come from an interview with a Maori chief whose name Mantell recorded as Tarawhata, although this may have been incorrect. Tarawhata said that there were two types of waitoreke, a water type and a land type. The land type ate lizards, the water type ate fish. He might have been referring to two different animals or he might have been referring to the same animal living in two different habitats.

We don’t even know when Mantell talked to his witnesses except that it had to have been sometime after about 1840 when he first came to New Zealand. We don’t have Mantell’s original notes, either. The details come from a paper presented by Mantell’s father, a zoologist, to the Royal Zoological Society of London in November 1850. For that matter, we don’t have Haast’s original notes about the footprints he spotted in 1861. His account was reported in a book by another geologist, published in German in 1863, with an English version in 1867.

There have been more recent sightings of the waitoreke, though. A fisherman named A.E. Tapper spotted what might have been a waitoreke six times between 1890 and 1921, which he wrote about in 1926 in letters to the Southland Times. He described the animal as a dark mousy brown with a rounded head like a seal’s, about the size of a possum or rabbit. In his account of the last sighting, in 1921 while he was fishing the Waikiwi River near an abandoned bridge, he wrote, “[s]omething…splashed, dived into the water and swam past me upstream, disappearing under some scrub on the other side. It was dusk, the water dark, yet I was close enough to distinguish a dark shadowy form 18 inches, or two feet deep [about 45 to 60 cm]. The wake it made in the water showed it to be of some size, but the strangest part was the noise it made when going through the water and the numerous bubbles that followed in its track. The noise was exactly that made by throwing a handful of…small stones in the water… I went down next day but beyond finding tracks in the mud similar to a rabbit’s but apparently webbed I found no trace.” He also found a hole in the bank several months later after the water level had dropped, meaning the hole had previously been underwater even though it looked like a rabbit burrow.

Unfortunately, while we know exactly where this sighting took place, by 1970 the surrounding marshlands had been drained and cleared for crops, and the river was so polluted that basically nothing lived in it anymore.

In 1957, a woman named Mrs. Linscott saw an animal swim across a big pond, which was connected to the nearby Aparima River. She only saw its head and the front of its body since it vanished into brush at the far end of the pond, but she got a good look at it while it swam. It had a small head with protuberant eyes and round ears, its face was “browny-purple,” and it had whiskers.

In 1968, a man named Bob Thompson was on holiday near the Whakaea River. He got up at dawn one morning and saw an animal emerge from a creek, followed by three young ones who disappeared into some brush. The difference in this case is that Thompson was from Norfolk, England and had lived next to the River Yare, where otters were common at the time. He said these animals were definitely otters.

In 1971, a man named P.J.A. Bradley had returned from an unsuccessful deer hunt near the Hollyford River and was waiting for the boat to take him home when he heard splashing in a quiet inlet nearby. He thought it might be a deer so he approached cautiously. Instead of a deer, he saw an animal playing on the riverbank by repeatedly climbing up and sliding down the mud into the water. He said the animal was dark brown and smooth with a thick tapering tail, short legs, and small head with no noticeable ears. He estimated that it was as much as 3.5 feet long, or 107 cm, including the tail.

All these reports really do sound like otters. We talked about the Eurasian otter in episode 37, about the Dobhar-Chu. It’s a shy, territorial animal that lives in freshwater rivers and lakes, as long as there’s plenty of cover around the edges for it to hide. A big male can grow up to 4.5 feet long, or 1.4 meters, although most are much smaller and females are smaller overall than males. It’s dark brown with a lighter belly, and has a long, slender body, short legs with webbed toes, and a small flattened head with tiny ears. Its tail is thick and tapering. It mostly eats fish, frogs, and various invertebrates like crayfish.

Tapper’s sighting is especially interesting because of the trail of bubbles he reported. This is sometimes called a bubble chain and is a telltale sign that an otter is swimming underwater.

But there’s no evidence, fossil or otherwise, that otters ever lived in New Zealand, or Australia either for that matter. Some species of otter do live in South Asia, but that’s still a long, long way from New Zealand. One theory is that domesticated otters kept as fishing animals were brought to New Zealand by South Asian fishermen who were either lost or blown away from their homes by storms. The problem with this theory is not just that there’s no evidence for it among Maori oral histories, it’s that the fishermen would have had to somehow avoid Australia completely even though it’s a humongous continent they would have to go around to reach New Zealand’s South Island.

There is an unrelated animal in parts of Australia that looks a lot like a small otter, though. That’s the rakali, or water-rat, a semi-aquatic rodent native to Australia, New Guinea, and some nearby islands.

The rakali grows up to about 15 inches long, or 39 cm, not counting its long tail. It has black or dark gray fur with a paler belly, but its tail has a white tip. It has short legs, a small flattened head with small rounded ears, webbed toes on its hind feet, and while its tail is thick for a rodent, it’s thin compared to an otter’s tail. It eats many of the same things that otters eat and is especially good at killing the cane toad, a toxic invasive species in parts of Australia.

But the rakali has never been introduced to New Zealand and has never been seen there. While it does superficially resemble a small otter, it acts very rodent-like in many ways. For instance, it sits up on its haunches to eat and when it’s doing that, it doesn’t look anything like an otter, although it is really cute. It also marks its territory with a scent that smells strongly like cat urine.

Stoats and weasels have been introduced to New Zealand, where they’re invasive species. While they’re much smaller than otters, they do have a similar body shape and both can swim well when they want to. It’s possible that at least some waitoreke sightings are actually sightings of swimming stoats or weasels, although that doesn’t explain all the reports by any means.

Another theory is that the waitoreke isn’t an otter at all but a rare, unknown mammal native to New Zealand. Since New Zealand’s only native land mammals are bats, until 2006 researchers generally rejected this theory out of hand. That’s because until 2006, there weren’t even any fossil remains of mammals found on New Zealand.

New Zealand is just a small part of an otherwise submerged continent called Zealandia. Zealandia was once part of the supercontinent Gondwana, smooshed up next to what are now Australia and Antarctica. Zealandia separated from its neighbors around 80 million years ago and started slowly sinking into the ocean. Then, about 66 million years ago, the massive asteroid strike we talked about in episode 240 killed off the non-avian dinosaurs.

Afterwards, in most of the world, mammals began to evolve rapidly to fill the vacant ecological niches. But Zealandia didn’t have very many mammals to start with, and by 25 million years ago it was mostly underwater anyway except for the highest mountain peaks that stuck up as islands. At this point, though, the continental plate had stopped sinking and instead was being pushed up slowly by tectonic forces—a process that’s still ongoing.

For a long time, geologists even thought Zealandia might have been completely underwater. It wasn’t surprising that the only animals living on land were birds and bats, since they could have flown there after the land re-emerged. But even as evidence of those mountaintop islands became understood, mammals were still nonexistent in New Zealand’s fossil history.

Then, in 1978, some small, incomplete fossils were discovered near Saint Bathans in the southern part of the South Island. This is a rich area for fossils that date to around 16 to 19 million years ago. There are remains of fish, reptiles, a few bats, and lots of birds, and in 2006, paleontologists studying those fossils found in 1978 announced that they’d identified them as the remains of a terrestrial mammal.

It’s referred to as the Saint Bathans mammal and we know almost nothing about it. We only have two fragments of a lower jaw and one femur. We’re pretty sure it’s not a monotreme but that’s about as far as it goes. It was probably the size of a mouse.

Because Zealandia has been separated from all other landmasses for about 80 million years, the Saint Bathans mammal that lived around 17 million years ago was probably very different from mammals found in other parts of the world. Its descendants probably went extinct in the middle Miocene, around 14 million years ago, when there was a relatively small extinction event throughout the world related to a long period of global cooling. But some people theorize that descendants of the Saint Bathans mammal survived to the present day, a rare and shy semi-aquatic animal that fills the same ecological niche as otters and has evolved to look like otters due to convergent evolution.

It’s not likely, to be honest. It’s even less likely than the theory about lost fishermen with pet otters drifting thousands of miles around Australia to come ashore on New Zealand, and that’s not very likely either.

There are still occasional sightings of the waitoreke. With luck someone will get some good pictures of one soon so we can learn more about what this mysterious animal might be.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 271: Springtime Animals



Pre-order your tiny pin friend via our Indiegogo campaign!

This week we talk about some springtime animals! Sort of! Thanks to Derek and Nikita for their suggestions!

Happy birthday to Lillian, Hannah, and Derek! What a busy birthday week! Everybody gets cake!

Further reading:

Tales from Tennessee

There’s more than one way to grow a beak

A male river chub. “It’s not funny guys, put me down guys” (photo by Bill Hubick):

Busy busy busy building a big big nest (photo from site linked to above):

Got a rock (photo from site linked to above):

One bilby:

Two bilbies:

Easter bilbies not bunnies:

Egg tooth:

The red jungle fowl is the wild ancestor of the domestic chicken:

Modern domestic chickens:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s springtime in the northern hemisphere, with spring festivals like Easter coming up fast. This week let’s look at three animals that represent springtime, sort of. Thanks to Derek and Nikita for suggesting two of the animals we’ll learn about this week!

Before we start, though, two things! One, I’m running a little crowdfunding campaign to have some enamel pins made. I won’t spam you about it like our big Kickstarter for the book last fall, but there will be a link in the show notes if you want to take a look. There are three designs, a narwhal, a capybara with a tangerine on its head, and a not-terribly-accurate thylacine. The campaign is called Tiny Pin Friends and it’s on Indiegogo.

https://www.indiegogo.com/projects/tiny-pin-friends/x/2964999#/

Two, it’s birthday shout-out time! This week we have not one, not two, but THREE birthday shout-outs! You know what that means, of course. It means we all need to be celebrating all week! A great big happy birthday to Lillian, Hannah, and Derek! And yes, birthday Derek is the same Derek who suggested one of the animals this week!

In fact, let’s start with his suggestion, a fish called the river chub. It’s a little fish that only grows a little over a foot long at most, or 33 cm, although it’s usually much smaller than that. It’s common in fast-moving streams and rivers throughout North America, especially in the Appalachian Mountains and surrounding areas.

The river chub isn’t all that exciting to look at, unless of course you’re a fish enthusiast or a river chub yourself. It’s greenish-silver above and pale underneath with orange fins. Males are larger than females and during breeding season, in late spring, the male turns purplish-red, his head enlarges, and he develops tubercles on the front part of his head that look sort of like white rhinestones.

His physical changes aren’t just to attract a mate. The male river chub builds a pebble nest by picking up little stones and moving them to just the right spots, so by having a more robust head and broad mouth, he can pick up bigger stones. And he picks up a LOT of stones, as many as 10,000 of them, which he arranges and rearranges.

Females are attracted to well-made nests. After a female lays her eggs in the nest, the male fertilizes the eggs and then spends the next week or so defending them by head-butting other males and potential predators, until the eggs hatch into larvae.

The pebble nests help other animals too. Over 30 species of fish use the nests as spawning sites once the river chub’s eggs hatch. Good job, river chub, helping out all those other fish!

Next, a while back Nikita suggested we learn about the bilby. It’s not springtime right now in Australia where the bilby lives, but the Christian holiday of Easter is still celebrated at the same time as it is in the northern hemisphere. Instead of chocolate Easter bunnies, in Australia they also have chocolate Easter bilbies.

In 1968, a nine-year-old girl named Rose-Marie Dusting wrote a story called “Billy the Aussie Easter Bilby.” When she grew up, Rose-Marie published the story as a picture book, which became popular enough that it inspired people in Australia to start talking about the Easter bilby instead of the Easter bunny. Starting in 1991 there was a big push to change from Easter bunnies to bilbies. Rabbits are an invasive species in Australia and do a lot of damage, and in fact they’ve almost driven the bilby to extinction. The lesser bilby did go extinct in the 1950s but the greater bilby is hanging on despite introduced predators like cats and foxes, rabbits and other introduced animals that eat all their food, and habitat loss.

The bilby has silky fur that’s mostly gray in color, and it has long pink ears that look sort of like a rabbit’s. It’s sometimes called the rabbit-eared bandicoot because of its ears. It has a long, pointy muzzle that’s pink and a long tail that’s black with a white tip, and it’s about the size of a cat but with shorter, thinner legs. It has a good sense of smell and good hearing, naturally, but its big ears are also useful for shedding heat. This is important since it often lives in hot, dry areas.

The bilby is nocturnal and spends the day in one of several burrows it digs in its territory. Not only are the burrows up to almost 10 feet long, or 3 meters, but they can be up to 6 feet deep, or 2 meters, with multiple exits. Digging such large, deep burrows not only keeps the bilby cool on hot days, it helps improve soil quality and provides shelter for lots of other animals that move in when the bilby isn’t home.

The bilby eats a lot of plant material, including seeds, fruit, bulbs, and tubers, along with eggs and various types of fungus, but it also eats insects, spiders, grubs, snails, and other small animals. It gets all of the moisture it needs from its diet. Its tongue is long and sticky, which helps it gather termites and other insects more easily, and its ears are so sensitive that it can hear insects moving around underground. It will actually put its ear to the ground to listen, then dig the insect up.

A mother bilby usually has one or two babies at a time that stay in her pouch for a little under three months. Her pouch is rear-facing so that sand and dirt don’t get onto her joeys when she digs a new burrow. Once her joey leaves the pouch, she hides it in one of her burrows and comes to feed and take care of it for another few weeks, until it’s ready to strike out on its own. In a lot of marsupials, the joey will come and go from the pouch as it grows older, but by the time the bilby’s joey is ready to emerge from the pouch, she already has a new baby or two ready to be born, so she needs her pouch for the new joeys.

Sales of some brands of chocolate Easter bilbies raise money to help bilby conservation efforts. And here I thought there was no way to improve on chocolate.

We’ll finish with the humble domestic chicken. Chickens are symbols of springtime because that’s when they start laying a whole lot of eggs. Most birds only lay eggs after mating, but chickens have been selectively bred so that the females, called hens, start to lay unfertilized eggs once they’re adults. The eggs you buy at the grocery store are unfertilized. Some people think those little whitish strings on either side of the yolk are embryonic baby chicks, but that’s not the case. Those strings are called chalazae [ka-LAYzee] and they help keep the yolk from moving around too much inside the egg.

Modern domestic chickens are descendants of wild birds called jungle fowl that evolved in parts of Southeast Asia some 50 million years ago. Humans domesticated the red jungle fowl at least 8,000 years ago, probably independently in different areas, and they’ve spread around the world as people migrated from place to place. The red jungle fowl is still around in the wild, too. It looks like a chicken.

Like all birds, jungle fowl descended ultimately from theropod dinosaurs. This included Tyrannosaurus rex, which means you’ll occasionally hear people say that chickens are direct descendants of T. rex. While chickens and other birds are related to T. rex, you wouldn’t find a T. rex in a chicken’s direct ancestry even if you could follow it back 66 million years, although you would find much smaller theropods. You’d have to go back farther than 66 million years, though, because paleontologists think theropods started evolving bird-like features some 160 million years ago.

You may have heard the saying, “That’s as scarce as hen’s teeth” to indicate something that’s not just rare, it’s basically non-existent. That’s because chickens, like all modern birds, don’t have teeth. Most birds and reptiles do grow what’s called an egg tooth, which actually looks like a little spike at the tip of the bill, or the nose in reptiles. It helps the baby break out of its egg, after which it either falls off or is reabsorbed. But it’s not a real tooth.

In late 2020 paleontologists announced they’d found a fossil skull on the island of Madagascar, dated to 85 million years ago, that shows an animal with a beak. The animal resembles a small theropod dinosaur in some ways and resembles an early bird in other ways, but it has features never before seen in either. Its snout is elongated but deep with a heavy bill that looks a little like a toucan’s bill. The bill doesn’t have teeth along the jaws, although other early birds found from around the same time do. That means that not only did birds stop needing teeth as early as 85 million years ago, toothlessness must have evolved repeatedly in various species. However, the new animal’s beak does have teeth at the very tip of its mouth.

Recent research suggests that birds and their ancestors evolved toothless beaks instead of toothy snouts because they had such specialized diets. There were probably also other benefits to having beaks instead of teeth. Some research suggests it might have helped speed up egg hatching. Other studies suggest the lack of teeth lightened the bird’s head and improved flight.

Occasionally a chicken embryo bears a recessive trait called talpid. It’s a lethal mutation, but talpid chick embryos do sometimes live in the egg for a couple of weeks before dying. Genetic researchers study talpid chickens for various reasons, and at one point a researcher named Matthew Harris noticed something odd on the beak of a talpid chicken embryo. It had tiny bumps along the edge that looked like teeth.

Harris took his findings to biologist John Fallon, who verified that the structures are actually teeth, not just serrations. They develop from the same tissues that form teeth in mammals, but the teeth don’t resemble mammal teeth. Instead they’re conical and pointy like a dinosaur’s teeth.

Harris eventually engineered a virus that mimicked the mutation’s molecular signals. Introducing the virus into chickens without the talpid mutations resulted in the chickens developing teeth, although they were reabsorbed into the beak after developing.

So I guess hen’s teeth are still as scarce as hen’s teeth. Also, I don’t really know how we made it here from springtime animals, but here we are.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 270: The Tapir Frog



New frog just dropped.

Happy birthday to Finn and Oran this week! Have a great birthday, both of you!

Further reading:

Frog with tapir-like nose found in Amazon rainforest, thanks to its “beeping” call

Meet the tapir frog:

Looks kind of like the South American tapir, but frog:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a short episode about the recent discovery of a mystery frog in Peru–but first, we have TWO birthday shout-outs! That’s twice the fun!

Happy birthday to both Finn and Oran! I hope your birthdays are amazing! Maybe you should each have two birthday parties, one for yourself and one for the other, even though you don’t know each other and your birthdays are actually on different days.

Peru is a country in western South America, and it’s home to the Amazon Basin rainforest and many other habitats. Frogs are common throughout the Amazon, naturally, since there’s a whole lot of water and rain, and it’s warm all the time. One particular genus of frog, Synapturanus, is especially widespread but is hard to find because it spends most of its time underground.

A team of scientists researching the Amazon’s diversity of animals and plants, especially those organisms that are mostly hidden for various reasons, heard about a particular Synapturanus frog known to the people of the area. The frog is nocturnal and lives underground in burrows it digs in the Amazon peatlands.

Peat is wet soil made up mostly of partially decayed vegetation. It’s the first step in the formation of coal beds, but the coal takes millions of years to form whereas peat only take thousands of years to form. Peatlands are really important to the ecological health of the entire earth, because they store so much carbon and absorb so much water.

The scientists knew from locals that this particular frog existed. The next step was to actually find it so they could learn more about it. A small team of scientists from Peru and other countries traveled to the area, and local guides took them to sites where the frog was supposed to live.

Because the frog is nocturnal, they had to go at night to find it. But because the frog also spends most of its time underground, they couldn’t just walk around shining flashlights on frog-shaped things in hopes of finding a new species of frog. Instead, they had to listen.

Many new frog species are only discovered after a frog expert hears a call they don’t recognize. That was the case for this frog. The male makes a loud beeping noise, especially after rain. Whenever one of the scientists heard one, they’d immediately drop to the ground and start digging with their hands. I can’t even imagine how muddy they must have gotten.

It was around 2am on the last night of the search when their digging paid off. A little brown frog hopped out of its disturbed burrow and all the scientists scrambled around in an excited panic to catch it carefully before it got away.

This is what the frog sounds like:

[tapir frog beeping]

The locals call the frog rana danta, which means tapir frog. The tapir, as you may remember from episodes 18 and 245, among others, is a sort of pig-shaped animal with a short trunk-like snoot called a proboscis. It’s distantly related to rhinoceroses and horses. It uses its proboscis to gather plants and spends a lot of time underwater, and will even sink to the bottom of a pond or stream and walk across it on the bottom instead of swimming.

The tapir most common around the Amazon in Peru is the South American tapir. It’s dark brown in color with a tiny little stub of a tail and a shorter proboscis than other tapir species. Its proboscis looks less like a little trunk and more like a long pointy nose.

The tapir frog is chocolate brown in color, has no tail of course because it’s a frog, and while it has a chonky body sort of life a tapir, its nose draws out to a blunt point. It looks remarkably similar in shape to a South American tapir, but in frog form.

The team ended up catching several of the frogs, and genetic studies determined that it is indeed a new species. They described the new frog in February of 2022 and named it Synapturanus danta. Danta is the local word for tapir.

While we still don’t know much about the tapir frog, it probably lives only in the Amazon peatlands and eats worms and small insects it finds underground. The discovery is important because it’s yet another animal endemic to this part of the Amazon. Conservationists are working to preserve the Amazon peatlands habitat from development in order to save all the unique plants and animals that live there. Development is just a fancy term for habitat loss.

The Putumayo Corridor is a proposed conservation area that follows the Putumayo River across Ecuador, Colombia, Peru, and Brazil. Its goal is to keep the river from being dammed and protect it from logging and other invasive development, while allowing local people to manage the land in traditional ways as they have for thousands of years. Hopefully the peatlands will remain undisturbed and the little tapir frog will continue to beep from its underground home for a very long time.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 269: Gila Monsters, Basilisks, and Sand Boas, oh my!



Thanks to Zachary, Enzo, and Oran for their suggestions this week! Let’s learn about some interesting reptiles!

Happy birthday to Vale! Have a fantastic birthday!!

The magnificent Gila monster:

The Gila monster’s tongue is forked, but not like a snake’s:

The remarkable green basilisk (photo by Ryan Chermel, found at this site):

A striped basilisk has a racing stripe:

I took this photo of a basilisk myself! That’s why it’s a terrible photo! The basilisk is sitting on a branch just above the water, its long tail hanging down:

The desert sand boa:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about three weird and interesting reptiles, with suggestions from Zachary, Enzo, and Oran, including a possible solution to a mystery animal we’ve talked about before!

But first, we have a birthday shoutout! A very happy birthday to Vale! You should probably get anything you want on your birthday, you know? Want a puppy? Sure, it’s your birthday! Want 12 puppies? Okay, birthday! Want to take your 12 puppies on a roadtrip in a fancy racecar? Birthday!

Our first suggestion is from Enzo and Zachary, who both wrote me at different times suggesting an episode about the Gila monster. How I haven’t already covered an animal that has monster right there in its name, I just don’t know.

The Gila monster is a lizard that lives in parts of southwestern North America, in both the United States and Mexico. It can grow up to two feet long, or 60 cm, including its tail. It’s a chonky, slow-moving lizard with osteoderms embedded in its skin that look like little pearls. Only its belly doesn’t have osteoderms. This gives it a beaded appearance, and in fact the four other species in its genus are called beaded lizards. Its tongue is dark blue-black and forks at the tip, but not like a snake’s tongue. It’s more like a long lizard tongue that’s divided at the very end.

The Gila monster varies in color with an attractive pattern of light-colored blotches on a darker background. The background color is dark brown or black, while the lighter color varies from individual to individual, from pink to yellow to orange to red. You may remember what it means when an animal has bright markings that make it stand out. It warns other animals away. That’s right: the Gila monster is venomous!

The Gila monster has modified salivary glands in its lower jaw that contain toxins. Its lower teeth have grooves, and when the lizard needs to inject venom, the venom flows upward through the grooves by capillary force. Since it mostly eats eggs and small animals, scientists think it only uses its venom as a defense. Its venom is surprisingly toxic, although its bite isn’t deadly to healthy adult humans. It is incredibly painful, though. Some people think the Gila monster can spit venom like some species of cobra can, but while this isn’t the case, one thing the Gila monster does do is bite and hold on. It can be really hard to get it to let go.

The fossilized remains of a Gila monster relative were discovered in 2007 in Germany, dating to 47 million years ago. The fossils are well preserved and the lizard’s teeth already show evidence of venom canals. The Gila monster is related to monitor lizards, although not closely, and for a long time people thought it was almost the only venomous reptile in the world. These days we know that a whole lot of lizards produce venom, including the Komodo dragon, which is a type of huge monitor lizard.

In 2005, a drug based on a protein found in Gila monster venom was approved for use in humans. It helps manage type 2 diabetes, and while the drug itself is synthetic and not an exact match for the toxin protein, if researchers hadn’t started by studying the toxin, they wouldn’t have come up with the drug.

The Gila monster lives in dry areas with lots of brush and rocks where it can hide. It spends most of its time in a burrow or rock shelter where it’s cooler and the air is relatively moist, and only comes out when it’s hungry or after rain. It eats small animals of various kinds, including insects, frogs, small snakes, mice, and birds, and it will also eat carrion. It especially likes eggs and isn’t picky if the eggs are from birds, snakes, tortoises, or other reptiles. It has a keen sense of smell that helps it find food. During spring and early summer, males wrestle each other to compete for the attention of females. The female lays her eggs in a shallow hole and covers them over with dirt, and the warmth of the sun incubates them.

The Gila monster is increasingly threatened by habitat loss. Moving a Gila monster from a yard or pasture and taking it somewhere else actually doesn’t do any good, because the lizard will just make its way back to its original territory. This is hard on the lizard, because it requires a lot of energy and exposes it to predators and other dangers like cars. It’s better to let it stay where it is. It eats animals like mice and snakes that you probably would rather not have in your yard anyway, and as long as you don’t bother it, it won’t bother you. Also, it’s really pretty.

Next, Oran wants to learn more about the basilisk lizard. We talked about it very briefly in episode 252 and I actually saw two of them in Belize, so they definitely deserve more attention.

The basilisk lives in rainforests from southern Mexico to northern South America. There are four species, and a big male can grow up to three feet long, or 92 cm, including his long tail. The basilisk’s tail is extremely long, in fact—up to 70% of its total length.

Both male and female basilisks have a crest on the back of the head. The male also has a serrated crest on his back and another on his tail that make him look a little bit like a tiny Dimetrodon.

The basilisk is famous for its ability to run across water on its hind legs. The toes on its large hind feet have fringes of skin that give the foot more surface area and trap air bubbles, which is important since its feet plunge down into the water almost as deep as the leg is long. Without the air trapped under its toe fringes, it wouldn’t be running, it would be swimming. It can run about 5 feet per second, or 1.5 meters per second, for about three seconds, depending on its weight. It uses its long tail for balance while it runs.

When a predator chases a basilisk, it rears up on its hind legs and runs toward the nearest water, and when it comes to the water it just keeps on running. The larger and heavier the basilisk is, the sooner it will sink, but it’s also a very good swimmer. If it’s still being pursued in the water, it will swim to the nearest tree and climb it, because it also happens to be a really good climber.

The basilisk can also close its nostrils to keep water and sand out, which is useful because it sometimes burrows into sand to hide. It can also stay underwater for as long as 20 minutes, according to some reports. It will eat pretty much anything it can find, including insects, eggs, small animals like fish and snakes, and plant material, including flowers. It mostly eats insects, though.

Fossil remains of a lizard discovered in Wyoming in 2015 may be an ancestor to modern basilisks. It lived 48 million years ago and probably spent most of its time in trees. It had a bony ridge over its eyes that shaded its eyes from the sun and also made it look angry all the time. It grew about two feet long, or 61 cm., and may have already developed the ability to run on its hind legs. We don’t know if it could run on water, though.

Finally, Zachary also suggested the sand boa. Sand boas are non-venomous snakes that are mostly nocturnal. During the day the sand boa burrows deep enough into sand and dirt that it reaches a cool, relatively moist place to rest. At night it comes out and hunts small animals like rodents. If it feels threatened, it will dig its way into loose soil to hide. It’s a constrictor snake like its giant cousin Boa constrictor, but it’s much smaller and isn’t aggressive toward humans.

Zachary thinks that the sand boa might actually be the animal behind sightings of the Mongolian death worm. We’ve talked about the Mongolian death worm in a few episodes, most recently in episode 156.

The Mongolian death worm was first mentioned in English in a 1926 book about paleontology, but it’s been a legend in Mongolia for a long time. It’s supposed to look like a giant sausage or a cow’s intestine, reddish in color and said to be up to 5 feet long, or 1.5 meters. It mostly lives underground in the western or southern Gobi Desert, but in June and July it surfaces after rain. Anyone who touches the worm is supposed to die painfully, although no one’s sure how exactly it kills people. Some suggestions are that it emits an electric shock or that it spits venom.

Mongolia is in central Asia and is a huge but sparsely populated country. At least one species of sand boa lives in Mongolia, although it’s rare. This is Eryx miliaris, the desert sand boa. Females can grow up to 4 feet long, or 1.2 meters, while males are usually less than half that length. Until recently it was thought to be two separate species, and sometimes you’ll see it called E. tataricus, but that’s now an invalid name.

The desert sand boa is a strong, thick snake with a blunt tail and a head that’s similarly blunt. In other words, like the Mongolian death worm it can be hard to tell at a glance which end is which. Its eyes are small and not very noticeable, just like the death worm. It’s mostly brown in color with some darker and lighter markings, although its pattern can be quite variable. Some individuals have rusty red markings on the neck.

It prefers dry grasslands and will hide in rodent burrows. When it feels threatened, it will coil its tail up and may pretend to bite, but like other sand boas it’s not venomous and is harmless to humans.

At first glance, the desert sand boa doesn’t seem like a very good match with the Mongolian death worm. But in 1983, a group of scientists went searching for the death worm in the Gobi. They were led by a Bulgarian zoologist named Yuri Konstantinovich Gorelov, who had been the primary caretaker of a nature preserve in Mongolia for decades and was familiar with the local animals. The group visited an old herder who had once killed a death worm, and in one of those weird coincidences, while they were talking to the herder, two boys rushed in to say they’d seen a death worm on a nearby hill.

Naturally, Gorelov hurried to the top of the hill, where he found a rodent burrow. Remember that this guy knew every animal that lived in the area, so he had a good idea of what he’d find in the burrow. He stuck his hand into it, which made the boys run off in terror, and pulled out a good-sized sand boa. He draped it around his neck and sauntered back to show it to the old herder, who said that yes, this was exactly the same kind of animal he’d killed years before.

That doesn’t mean every sighting of a death worm is necessarily a sand boa. I know I’ve said this a million times, but people see what they expect to see. The death worm is a creature of folklore, whether or not it’s based on a real animal. If you hear the story of a dangerous animal that looks like a big reddish worm with no eyes and a head and tail that are hard to distinguish, and you then see a big snake with reddish markings, tiny eyes, and a head and tail that are hard to distinguish, naturally you’ll assume it’s a death worm.

At least some sightings of the death worm are actually sightings of a sand boa. But some death worm sightings might be due to a different type of snake or lizard, or some other animal—maybe even something completely new to science. That’s why it’s important to keep an open mind, even if you’re pretty sure the animal in question is a sand boa. Also, maybe don’t put your bare hand in a rodent burrow.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 268: Rediscovered Animals!



My little cat Gracie got lost but she’s home! Let’s learn about some other rediscovered animals this week!

A very happy birthday to Seamus! I hope you have the best birthday ever!

Further listening:

The Casual Birder Podcast (where you can hear me talk about birding in Belize!)

Further reading:

Bornean Rajah Scops Owl Rediscovered After 125 Years

Shock find brings extinct mouse back from the dead

Rediscovery of the ‘extinct’ Pinatubo volcano mouse

Gracie, home at last! She’s so SKINNY after a whole week being lost but she’s eating lots now:

The Bornean Rajah scops owl (photo from article linked above):

The djoongari is the same as the supposedly extinct Gould’s mouse (photo from article linked above):

The Pinatubo volcano mouse:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

While I was researching animals discovered in 2021, I came across some rediscoveries. I thought that would make a fun episode, so here are three animals that were thought to be extinct but were found again!

A couple of quick things before we get started, though.

First, happy birthday to Seamus! I hope you have a brilliant birthday and that it involves family, friends, or at least your favorite kind of cake, but hopefully all three.

Next, a few weeks ago I appeared on the Casual Birder Podcast talking in depth about my trip to Belize and some of the birds I saw there. I’ll put a link in the show notes. It’s a great podcast that I really recommend if you’re interested in birding at all, and the host has such a lovely calming voice I also recommend it if you just like to have a pleasant voice in the background while you do other stuff.

Finally, thanks for the well wishes from last week, when I let our emergency episode run. I’m actually fine, but my little cat Gracie got frightened while I was bringing her into the house from a vet visit, and she ran away. That was on Friday, March 11 and I spent all night looking for her, but then we had a late-season snowstorm come through and dump six inches of snow on my town, which made me even more frantic. At dawn on Saturday I put on my boots and heavy coat and spent all day searching for Gracie, and on Sunday I was still searching for her. I didn’t have time to work on a new episode. In fact, I searched every day as much as possible all week long, until I was certain she was gone forever. I couldn’t bring myself to work on this episode because rediscovered animals just seemed like a cruel joke when my little cat was gone. I was almost done with a different episode when on Saturday night, March 19, 2022, eight full days after Gracie had disappeared, I got a phone call. Someone had seen a little gray cat under their shed, over half a mile from my house! I rushed over and THERE WAS GRACIE! I found her! She is home!

So I’ve been researching rediscovered animals with Gracie purring in my lap, in between her going to her bowl to eat. She’s lost a lot of weight but other than that she seems healthy, and she’s very happy to be home.

The person who found Gracie first noticed her around their birdfeeder, so we’ll start with a rediscovered bird.

There are two subspecies of Rajah scops owl that are only found on two islands in southeast Asia, Borneo and Sumatra. The subspecies that lives in Sumatra is fairly common throughout the mountains on that island, where it lives in the lower branches of trees in higher elevations. It’s a tiny owl that only weighs about 4 ounces, or 100 grams. As the article I link to in the show notes points out, that’s about the weight of four AA batteries.

The subspecies that lives on Borneo, though, was always much rarer and had a much smaller range. In fact, no one had seen one since 1892 and researchers thought it was probably extinct. There’s another owl that lives in the mountains of Borneo, the mountain scops owl, that’s fairly common.

In May of 2016, a team of scientists started a 10-year study of birds that lived on Mount Kinabalu in the country of Malaysia in northern Borneo. One team member, Keegan Tranquillo, was checking bird nests that very same month and noticed an owl that didn’t look like the mountain scops owl. It was larger and its plumage was different.

Tranquillo contacted ecologist and bird expert Andy Boyce, who came out to take a look. When he saw the owl, Boyce was excited at first but then filled with anxiety. He knew the owl must be incredibly rare and would be in great danger of going extinct if conservation efforts weren’t put into place. Many areas of Borneo are under pressure from logging, mining, and palm oil plantations, which is leading to habitat loss all over the island.

Not only that, the more Boyce looked at the owl, the more he noticed differences from the Sumatran subspecies of Rajah scops owl. He suspected it might not be a subspecies but a completely separate species. That made it even more important to protect the owl and study it.

The owl’s rediscovery was announced in May 2021. Studies of the owl are ongoing but hopefully will soon result in more information about it and its habitat.

Next, let’s talk about a rodent, since Gracie likes to play with toy mice. This rediscovery came from Australia, where a study of extinct Australian rodents and their living relations found something surprising. It’s the opposite of the owl we just talked about, that might end up being a separate species of its own.

The mouse in question was once called Gould’s mouse. It used to be common throughout Australia, where it’s a native mammal, but it was declared extinct in 1990 after no one had seen it since the 1840s. Researchers suspected it had gone extinct after colonizers brought cats to Australia, although diseases and competition from introduced species of mice and rats also had a big impact.

Meanwhile, another native mouse, called the djoongari or Shark Bay mouse, was driven nearly to extinction. Fortunately, the djoongari survived on a few islands off western Australia. Conservation efforts in 2003 introduced it to more islands, where it spread and did well. It’s a social mouse that lives in family groups in a burrow it digs under bushes. It lines the burrow with dry grass to make it warmer and more comfortable.

The djoongari is a large mouse, up to 4.5 inches long not counting the tail, or 11.5 centimeters. The tail is a little longer than the head and body combined. It has long, shaggy fur that’s a mixture of dark and light brown with a paler belly and feet, and it has a tuft of dark fur at the end of its tail like a tiny lion.

In early 2021, the researchers studying native rodent DNA realized that the living djoongari and the extinct Gould’s mouse had the exact same genetic profile! They were the same animal! That means Gould’s mouse didn’t go extinct, although technically it didn’t exist in the first place.

That doesn’t mean the djoongari is perfectly safe, of course. Its range is still extremely restricted and it’s vulnerable to the same factors that nearly drove it to extinction in the first place. But at least it’s still around and can be protected.

We’ll finish with another mouse. In 1991, a volcano in the Philippines erupted. The volcano was called Mount Pinatubo on the island of Luzon, and the eruption was enormous. It was ten times stronger than the eruption of Mount St. Helens in 1980. Lava and ash filled valleys up to 600 feet deep, or 183 meters. More than 800 people died from the eruption itself and the devastation afterwards, during landslides caused by all the ash every time it rained.

In addition to the awful situation for people, animals were affected too. Most of the forests near the volcano were completely destroyed. Scientists thought the Pinatubo volcano mouse had probably gone extinct since it only lived on that one volcanic mountain, which had just blown up. Surveys of the area a few years after the eruption didn’t turn up signs of any of the mice.

The Pinatubo volcano mouse was only described in 1962 from a single specimen collected in 1956. It was a large mouse, almost the size of a rat, with long hind legs for jumping and climbing and a tail much longer than the length of its head and body together. It mostly ate earthworms and other small animals, but not a lot was known about it.

More than 20 years after the eruption, a team of scientists surveyed the animals living on the mountain. The conditions were difficult for the team to navigate, since there was still a lot of ash and erosion in the area that made the steep slopes unstable. The lush forests were gone, replaced by grass and bamboo, shrubs, a few trees, and other plants. They didn’t expect to find a lot of animals, although they thought they’d find introduced species of rats and mice that had moved into the disturbed areas from other parts of the island.

But to their surprise, they found 17 species of mammal on the mountain. Eight were bats, there were wild pigs and deer, and the rest were rodents. And the rodents were mostly native species, not introduced ones—including the Pinatubo volcano mouse!

Researchers theorize that a mouse that lives on an active volcano as its only habitat must have evolved to weather occasional eruptions. The mice were actually most numerous in the places that had been the most destroyed. The term for a species that thrives in environments that have seen widespread natural destruction is “disturbance specialist,” and that’s just what these mice are.

It just goes to show that no matter how bad things may be, there is life. And where there’s life, there’s hope. And probably mice.

Now, if you will excuse me, I have to go make a chocolate cake to take to the person who found Gracie.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 267: The Mystery Sauropod



Show transcript:

Hi. If you’re hearing this, it means I’m sick or something else has happened that has kept me from making a new episode this week. This was a Patreon bonus episode from mid-August 2019. I think it’s a good one. If you’re a Patreon subscriber, I’m sorry you don’t have a new episode to listen to this time. Hopefully I’ll be feeling better soon and we can get back to learning about lots of strange animals.

Welcome to the Patreon bonus episode of Strange Animals Podcast for mid-August, 2019!

While I was doing research for the paleontology mistakes and frauds episodes, I came across the discovery of what might have been the biggest land animal that ever lived. But while I wanted to include it in one episode or the other, it wasn’t clear that it was either a mistake or a fraud. It might in fact have been a real discovery, now lost.

In late 1877 or early 1878, a man named Oramel Lucas was digging up dinosaur bones for the famous paleontologist Edward Cope. Cope was one of the men we talked about in the paleontological mistakes episode, the bitter enemy of Othniel Marsh. Lucas directed a team of workers digging for fossils in a number of sites near Garden Park in Colorado, and around the summer of 1878 he shipped the fossils he’d found to Marsh. Among them was a partial neural arch of a sauropod.

The neural arch is the top part of a vertebra, in this case probably one near the hip. Sauropods, of course, are the biggest land animals known. Brontosaurus, Apatosaurus, and Diplodocus are all sauropods. Sauropods had long necks that were probably mostly held horizontally as the animal cropped low-growing plants and shrubs, and extremely long tails held off the ground. Their legs were column-like, something like enormous elephant legs, to support the massively heavy body.

We know what Diplodocus looked like because we have lots of Diplodocus fossils and can reconstruct the entire skeleton, but for most other sauropods we still only have partial skeletons. The body size and shape of other sauropods are conjecture based on what we know about Diplodocus. In some cases we only have a few bones, or in the case of Cope’s 1878 sauropod, a single partial bone.

Cope examined the neural arch, sketched it and made notes, and published a formal description of it later in 1878. He named it Amphicoelias [Am-fi-sil-i-as] fragillimus.

The largest species of Diplodocus, D. hallorum, was about 108 feet long, or 33 meters, measuring from its stretched-out head to the tip of its tail. Estimates of fragillimus from Cope’s measurement of the single neural arch suggest that its tail alone might be longer than Diplodocus’s whole body.

Cope measured fragillimus’s partial neural arch as 1.5 meters tall, or almost five feet. That’s only the part that remained. It was broken and weathered, but the entire vertebra may have been as large as 2.7 meters high, or 8.85 feet. From that measurement, and considering that fragillimus was seemingly related to Diplodocus, even the most conservative estimate of fragillimus’s overall size is 40 meters long, or 131 feet, and could be as long as 60 meters, or 197 feet. This is far larger than even Seismosaurus, which is estimated to have grown 33.5 meters long, or 110 feet, and which is considered the largest land animal known.

So why isn’t fragillimus considered the largest land animal known? Mainly because we no longer have the fossil to study. It’s completely gone with no indication of where it might be or what happened to it. And that has led to some people thinking that it either never existed in the first place, or that Cope measured it wrong.

One argument is that Cope wrote down the measurements wrong and that the neural arch wasn’t nearly as large as Cope’s notes indicate. But Lucas, who collected the fossil, always made his own measurements and these match up with what Cope reported. Lucas and Cope both remarked on the size of the fossil, which was far larger than any they had ever found.

Oddly, Cope’s nemesis Marsh inadvertently vouches for him by the things Marsh didn’t do. We know that Marsh kept tabs on Cope, including even paying people to spy on his fossil excavations. Marsh was also always ready to pounce on any of Cope’s mistakes and make them a big deal. But Marsh never said anything about the neural arch not being a real find, and never questioned Cope’s measurements of it.

Cope never mentioned what happened to the fossil. It wasn’t until 1921 that two researchers pointed out that it was missing from the Cope Collection. So what happened to it?

Most researchers suspect it just crumbled away. The fossil formed in a type of rock called mudstone, which fractures easily into little irregular cubes. In fact, Cope gave the sauropod the name fragillimus because the fossil appeared so fragile—not because of the mudstone per se, but because so much of the fossil had already weathered away and as a result it looked too delicate to be part of such a large animal.

These days paleontologists treat fossils with various preservatives to harden them, but that practice didn’t start until 1880, several years after the neural arch was found. Cope only made one drawing of it, which wasn’t his usual practice. It’s possible the fossil was so delicate at that point that just turning it over to draw the other side caused it to fall apart. Many researchers suspect that Cope or one of his assistants eventually discarded it after it crumbled into a pile of mudstone blocks.

Obviously, if we don’t have the fossil Cope examined, maybe we should go looking for more fossils that Cope’s workers might have missed. Cope did mention a femur located near the neural arch that may have been another fragillimus bone, but it’s not clear if the femur was actually collected. We have Cope’s journal entry where he sketched the dig sites Lucas was working, a rough map that shows at least seven sites. But it’s been a century and a half since then and most of the sites have been lost. In 1994 a team tried to relocate the site where Lucas found the neural arch, but without luck. It’s also possible that any remaining fossils have weathered away completely. In the dig sites that have been found, the mudstone has mostly weathered away down to the underlying sandstone.

Researchers have been able to estimate a probable age for fragillimus from Cope’s notes about the stratigraphy where the neural arch was found. Fragillimus probably lived in the late Jurassic, roughly 150 million years ago. This matches up with the age of other enormously large sauropods. But if fragillimus really was so much larger than the others, how did it live? Would an animal that size actually be able to support its weight, feed itself, and function overall? Wouldn’t it overheat in the sun or starve due to not finding enough food to power its colossal body?

Researchers think that sauropods grew to such enormous sizes because their food was nutritionally lacking. That doesn’t make sense until you realize that when a herbivore’s food is poor, the longer it can keep the plant material in its digestive system, the more nutrients it can extract from it. Sauropods were probably hindgut fermenters like all modern herbivorous reptiles and a lot of birds. The best way to keep lots of plant material in the digestive system is to be really big and have a really big digestive tract. This is the case with many herbivores today, like elephants, rhinos, and horses. Other benefits come from being extremely large, too, such as being larger than potential predators.

Sauropods generally lived in semiarid savannas. Grass hadn’t evolved yet, so researchers think the main groundcover plant was ferns, which sauropods probably ate in bulk. There would also have been shrubs, small trees, and some areas with much taller trees. It’s possible that sauropods spent most of the day among the trees, sleeping in the shade, and came out at night to do most of their grazing.

Cope also found fossils from another sauropod that he named Amphicoelias altus. In fact, he described both Amphicoelias species in the same paper. Some researchers have therefore suspected that the two species were actually the same. A. altus is estimated to grow about the same size as Diplodocus, about 82 feet long, or 25 meters.

But in 2018, a paleontologist named Kenneth Carpenter examined Cope’s information on fragillimus and came to some interesting conclusions. He reclassified it from the family Diplodocidae to the family Rebbachisauridae and renamed it Maraapunisaurus fragillimus. As a result, the estimates of its size have changed. Carpenter suggests that it was much smaller, about 99 feet long, or 30 meters, but that Cope’s measurements were correct. Sauropods of this family just have larger vertebrae than Diplodocidae.

The only difficulty with fragillimus being a member of the Rebbachisauridae is that this group of sauropods isn’t known to have lived in North America, just Europe and South America. But the fossil record is incomplete and every find requires researchers to adjust what we know about where dinosaurs lived and how widespread a particular species or family was.

Hopefully, eventually more and better remains of fragillimus will turn up soon. Then we can work out exactly how big it really was.

Thanks for your support, and thanks for listening! The next episode in the main feed will be about an unusual small fish and an extinct pig relative called the unicorn pig. Basically both those animals should have gone in other episodes but I messed up and forgot to add them to strangest small fish and the weird pigs episodes, but they’re both really neat and I wanted to share them.

https://www.patreon.com/rss/strangeanimalspodcast?auth=eb94e995bdf4bc11930eeda8bc5b4a3e


Episode 266: Mystery Macaws



Thanks to Pranav for this week’s suggestion!

Happy birthday to MaxOrangutan! Have a great birthday!

Further reading:

Scarlet macaw DNA points to ancient breeding operation in Southwest

The glorious hyacinth macaw:

Roelant Savery’s dodo painting with not one but TWO separate mystery macaws featured:

The blue-and-gold macaw:

Eleazar Albin’s mystery macaw:

Detail from Jan Steen’s painting of a mystery macaw:

The scarlet macaw:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Recently, Pranav suggested the topic of mystery macaws. As it happens, that’s a topic I researched for the book, which by the way is now FORMATTED! And hopefully by the time you hear this I’ll have been able to order a test copy to make sure it looks good before I order enough copies for everyone who backed the Kickstarter at that level. Whew!

I’ve used the mystery macaw chapter from the book as a basis for this episode, but it’s not identical by any means—I’ve added some stuff.

Before we learn about some mystery macaws, though, we have a birthday shout-out! Happy birthday to MaxOrangutan! Max! I bet you like bananas and climb around a lot! I hope you have a fantastic birthday, maybe with a banana cake or a cake banana, which I think is a thing I just made up but it sounds good, doesn’t it?

Macaws are a type of parrot native to the Americas. They have longer tails and larger bills than true parrots and have face patches that are mostly white or yellow. There are six living species of macaw known but many others that are extinct or probably extinct. The largest living species is the hyacinth macaw, which is a beautiful blue all over except for yellow face markings. It can grow over 3 feet long, or about 92 centimeters, including its long tail. It mostly eats nuts, even coconuts and macadamia nuts that are too tough for most other animals to crack open, but it also likes fruit, seeds, and some other plant material. Like other parrots, macaws are intelligent birds that have been observed using tools. For instance, the hyacinth macaw will use pieces of sticks and other items to keep a nut from rolling away while it works on biting it open.

The story of a mystery bird sometimes called the Martinique macaw starts almost 400 years ago, when Jacques Bouton, a French priest, visited the Caribbean in 1639 and specifically Martinique in 1642. Bouton wrote an account of the people and animals he saw, including several macaws that don’t quite match any birds known today. One of these is the so-called Martinique macaw, which he said was blue and saffron in color. Saffron is a rich orangey yellow.

We have some paintings that might be depictions of the mystery macaws. An artist named Eleazar Albin painted a blue and yellow parrot with a white face patch in 1740 that’s supposedly the Martinique macaw, although Albin would have seen the bird in Jamaica when he visited in 1701, not Martinique. The two islands are about 1,100 miles apart, or almost 1,800 kilometers.

A similar blue and yellow macaw appears in Roelant Savery’s 1626 painting of a dodo. The dodo lived on the island of Mauritius in the Indian Ocean, nowhere near the Americas. Savery just liked to paint dodos and included them in a lot of his art. In another 1626 painting, called “Landscape with Birds,” he included a dodo, an ostrich, a chicken, a turkey, a peacock, ducks, swans, cranes of various kinds, and lots of other birds that don’t live anywhere near each other. On the far left edge of the painting there’s a blue macaw with yellow underparts.

In the early 20th century, a zoologist named Walter Rothschild read Bouton’s account and decided those birds needed to be described as new species, even though there were no type specimens and no way of knowing if the birds were actually new to science.

He described the Martinique macaw in 1905 but reclassified it when he published a book named Extinct Birds in 1907. He got an artist to paint a depiction of it based on Bouton’s account and it actually doesn’t look all that similar to Albin’s and Savery’s birds. It’s dark blue above, bright orange underneath, and only has a small white patch next to its lower mandible instead of a big white patch over the eye.

In other words, Albin’s macaw might be a totally different bird from the Martinique macaw.

There is a known bird that might have inspired Albin’s painting. The blue-and-gold macaw lives in many parts of northern South America. It has rich yellowy-gold underparts and is a brilliant aqua blue above. It matches the colors of Albin’s painting pretty well, but not the facial markings. The blue-and-gold macaw has a white face but a large stripe of black, outlining the white patch, that extends under its chin. Albin’s macaw doesn’t have any black markings and its white patch is much smaller than the blue-and-gold macaw’s.

Of course, Albin may have gotten details wrong in his painting. Even though he was probably painting from sketches and notes he took during his visit to Jamaica, about forty years had passed since he actually saw it. As for Savery’s paintings of a similar macaw, he never traveled to the Americas and probably based his paintings on pet birds brought to Europe by sailors and missionaries. He was known for his meticulous detail when painting animals, though, and his birds clearly show the white face and black stripe under the chin of a blue-and-gold macaw, even though the blue plumage appears much darker than in living birds. This is probably due to the paint pigments fading over the centuries.

Savery’s birds lack one detail that blue-and-gold macaws have: a small patch of blue under the tail. This would be an easy detail for an artist to miss, though, especially if he finished the painting’s details without a real bird to look at. Albin’s painting also lacks the blue patch.

That still leaves us with two bird mysteries. Was Albin’s macaw a real species or just a blue-and-gold macaw with incorrect details? And what bird did Bouton see in Martinique?

These aren’t the only mystery macaws, though. Roelant Savery painted another one in the same dodo picture where the mystery blue and yellow macaw appears. This macaw is bright red all over except for some yellow markings on the wing and a white face patch. He painted that one in 1626, and in 1665 a Dutch artist named Jan Steen painted a very similar bird in the background of a painting. It’s also red except for yellowish markings on its wings and a yellowish or white face patch.

There are many reports of a big red macaw seen on the Guadaloupe islands in the Caribbean that date all the way back to 1493 when Christopher Columbus visited. Back then the bird was common but by the end of the 17th century it was rare. It was supposed to look a lot like the scarlet macaw, which is common in parts of Central America and northern South America, but it was smaller with a shorter tail. It was mostly red with blue and yellow markings on the wings and a white patch on its face. Its tail was all red, whereas the scarlet macaw has a red and blue tail.

Savery’s and Steen’s paintings don’t show any blue markings, so either the artists got that detail incorrect or they were painting birds that didn’t have blue wing markings—meaning that there’s potentially yet another mystery red macaw.

There are, in fact, a whole lot of mystery macaws, maybe as many as 15. Some of these may be species or subspecies of macaw that went extinct before any scientist could examine them, while some may have just been known macaw species outside of their natural range.

People have been trading macaws and parrots as a type of currency for thousands of years, since their large, brightly colored feathers were in high demand for ceremonial items. They’re relatively easy to tame and can be kept as pets. A genetic study of scarlet macaw remains found at archaeological sites in New Mexico revealed that the birds were all relatively closely related even though the remains came from birds who lived at different times over a 300-year period. Researchers think there must have been a captive breeding program in place somewhere in the area about a thousand years ago. It wasn’t at the sites where the bird remains were found because there were no macaw eggshells in the whole area.

Similarly, remains of scarlet macaws and Amazon parrots have been found in archaeological sites in the Atacama desert. The remains date back to almost a thousand years ago also. But the Atacama is in northern Chile on the western coast of South America, not the southwestern United States. To reach it from the scarlet macaw’s natural range in northern South America you have to travel more than 300 miles, or 500 kilometers, at minimum and cross the Andes Mountains. But that’s exactly what people did, bringing macaws and parrots to oasis communities in the Atacama by llama caravan.

If any of these mystery macaws ever existed, they seem to be extinct now—but they might not be. Many macaws live in South America in sometimes hard to explore terrain. While many known species of macaw are threatened with habitat loss and hunting for feathers or for the pet trade, there’s always a possibility that an undiscovered species still thrives in remote parts of the Amazon rainforest.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 265: Penguins!



Thanks to Page for suggesting we talk about penguins this week!

A big birthday shout-out to EllieHorseLover this week too!

Further reading:

March of the penguins (in Norway)

Rare Yellow Penguin Bewilders Scientists

Giant Waikato penguin: school kids discover new species

An ordinary king penguin with the rare “yellow” king penguin spotted in early 2021 (photo by Yves Adams, taken from article linked above):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I was looking over the ideas list recently and noticed that Page had suggested we cover a specific bird way back in 2020! It’s about time we get to it, so thanks to Page we’re going to learn about penguins this week, including a penguin mystery.

But first, we have a birthday shout-out! Happy birthday to EllieHorseLover, whose birthday comes right before next week’s episode comes out. Have a fantastic birthday, Ellie, and I agree with you about horses. They are awesome and so are you.

Also, a quick correction from last week’s episode about Dolly the dinosaur. If you listened to episode 264 the day it came out, you heard the incorrect version, but I was able to correct it and upload the new version late that day. Many thanks to Llewelly, who pointed out that Dolly hasn’t actually been identified as a Diplodocus, just as a sauropod in the family Diplodocidae. Paleontologists are still studying the fossil and probably will be for some time. Also, I said that sauropods aren’t related to birds but that’s not the case. Sauropods share a common ancestor with birds and that’s why they both have the same kind of unusual respiratory system.

So, speaking of birds, it’s time to learn about penguins! We’ve talked about penguins twice before, but not recently at all. It’s about time we really dug into the topic.

Penguins live in the southern hemisphere, including Antarctica. The only exception is the Galapagos penguin, which we talked about in episode 99, which lives just north of the equator. Penguins are considered aquatic birds because they’re so well adapted to swimming and they spend most of their time in the ocean finding food. Instead of wings, their front limbs are flippers that they use to maneuver in the water. They’re incredibly streamlined too, with a smooth, dense coat of feathers to help keep them warm in cold water without slowing them down.

One of the ways a penguin keeps from freezing in the bitterly cold winters of Antarctica and in cold water is by a trick of anatomy that most other animals don’t have. The artery that supplies blood to the flippers crosses over the veins that return blood from the flippers deeper into the body. The arterial blood is warm since it’s been through the body’s core, but the blood that has just traveled through the flippers has lost a lot of heat. Because the veins and the arteries cross several times, the cold venal blood is warmed by the warm arterial blood where the blood vessels touch, which means the blood returning into the body’s core is warm enough that it doesn’t chill the body.

Penguins groom their feathers carefully to keep them clean and spread oil over them. The oil and the feathers’ nanostructures keep them from icing over when a penguin gets out of the water in sub-zero temperatures. The feathers are not only super-hydrophobic, meaning they repel water, their structure acts as an anti-adhesive. That means ice can’t stick to the feathers no matter how cold it is. In 2016 researchers created a nanofiber membrane that repels water and ice with the same nanostructures found in penguin feathers. It could eventually be used to ice-proof electrical wires and airplane wings.

Penguin feathers also trap a thin layer of air, which helps the penguin stay buoyant in the water and helps keep its skin warm and dry.

While a penguin is awkward on land, it’s fast and agile in the water. It mostly eats small fish, squid and other cephalopods, krill and other crustaceans, and other small animals, and it can dive deeply to find food. The emperor penguin is the deepest diver, with the deepest recorded dive being over 1,800 feet, or 565 meters. The gentoo penguin has been recorded swimming 22 mph underwater, or 36 km/hour.

Penguins are famous for being mostly black and white, but in 2010, a study of an extinct early penguin revealed that it looked much different. The fossil was found in Peru and is incredibly detailed. The flipper shape is clear, proving that even 36 million years ago penguins were already fully aquatic. Even some of the feathers are preserved, allowing researchers to reconstruct the bird’s coloration from melanosomes in the fossilized feathers. They show that instead of black and white, the extinct penguin was reddish-brown and gray. The bird was also one of the biggest penguins known, up to five feet long, or 1.5 meters.

Another species of extinct penguin was discovered in 2006 in New Zealand by a group of school children on a field trip. The New Zealand penguin lived between about 28 and 34 million years ago and while it wasn’t as big as the Peru fossil penguin, it had longer legs that made it about 4.5 feet tall, or 1.4 meters. It was described as a new species in September of 2021 and somehow I missed that one when I was researching the 2021 discoveries episode.

The smallest penguin alive today is the fairy penguin, which only grows 16 inches tall at most, or 40 cm. It lives off the southern coasts of Australia and Chile, and all around New Zealand’s coasts. It’s also called the little blue penguin because its head is gray-blue. The largest penguin is the emperor penguin, which lives in Antarctica and can grow over four feet tall, or 130 cm.

The king penguin looks like a slightly smaller version of the emperor penguin, which makes sense because they’re closely related. It can stand over 3 feet tall, or 100 cm. Its numbers are in decline due to climate change that has caused some of the small fish and squid the penguins eat to move away from the penguin’s nesting grounds. Large-scale commercial fishing has also reduced the number of fish available to penguins. As a result, the penguins have a hard time finding enough food for themselves and their babies. King penguins are protected, though, and conservation efforts are in place to stop commercial fishing near their nesting grounds. A ban on commercial fishing around Robben Island in South Africa, where the endangered African penguin nests, increased the survival of chicks by 18%, so hopefully the same will be true for the king penguin.

In early 2021, a Belgian wildlife photographer named Yves Adams was leading a group of photographers on an island where king penguins live. They spotted a group of the penguins swimming nearby when Adams noticed that one of the penguins seemed really pale. It was yellowish-white instead of black and white, although it did have the yellow markings on its head and breast that other king penguins have. It and the other penguins came ashore and Adams got lots of pictures of it. Ornithologists who have studied the pictures aren’t sure what kind of genetic anomaly has caused the penguin’s coloration, but with luck scientists will be able to find it again and take a genetic sample.

The king penguin is also the subject of a small penguin mystery, but the mystery starts with the great auk. As we talked about in episode 78, the name penguin was originally used for a bird also called the great auk or gairfowl, which lived in the northern hemisphere. It was common throughout its range until people decided to start killing them by the thousands for their feathers and meat. By 1844, the last pair of great auks were killed. The great auk was a black and white aquatic bird that looked a lot like a penguin due to convergent evolution.

The story goes that in the late 1930s people started seeing great auks on the Lofoten Islands off the coast of Norway. Since this was 70 years after the great auk officially went extinct, the reports caused a flurry of excitement.

While a small, scattered population of great auks probably did persist for years or even decades after their official extinction, once an expedition investigated the Lofoten Islands they discovered not auks but penguins. Specifically, a small group of king penguins. How did the penguins get there from their natural range in various sub-Antarctic islands on the other side of the world?

Some reports say whalers captured some penguins as pets and later released them, but it actually appears that the introduction of nine king penguins to two islands off the coast of Norway was done by the Nature Protection Society, backed by the Norwegian government, in 1936. The penguins were still there until at least 1944, with the last sighting coming from 1954.

These weren’t the only penguins released in the islands. In 1938 the Norwegian government released around 60 other penguins from various species onto the islands. The goal was to establish penguin breeding colonies in Norwegian waters in a confused attempt to claim the Antarctic for Norwegian whaling. The real mystery is why they thought that would work.

Very occasionally, a stray penguin is found in the northern hemisphere with no idea how it got there. In the past, people assumed the penguin got lost and swam the wrong way or got pushed away from its homeland by storms, but these days biologists think these lost penguins were transported by fishing boats. Sometimes a penguin will get tangled in a fishing net and hauled aboard by accident, and the fishers will untangle it and keep it as a pet for a while before setting it free. It would be better if the penguin was set free immediately so it could return to its home, but it’s better than being killed. Just ask the penguin.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!


Episode 264: Sick, Sad Dinosaurs



This week we answer a question you probably didn’t ask, did dinosaurs ever get sick? The answer is yes (or else it would be a super short episode). (Thanks to Llewelly for some corrections!)

A big birthday shout-out to Gwendolyn! Have a great birthday!

The unlocked Patreon episode about green puppies

Further reading:

Researchers discover first evidence indicating dinosaur respiratory infection

Sauro-throat, Part 3: what does Dolly’s disease tell us about sauropods?

Dinosaurs got cancer

Giant Dinosaur Had 2 Tumors on Its Tailbone

Dinosaurs got sick, too–but from what?

cough cough:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a dinosaur episode, but not one you may expect. We’re going to learn about some dinosaur fossils found with evidence of sickness to answer the question, did dinosaurs get sick? Yes, they did. Otherwise this episode would be about two minutes long.

I know some people get squicked when they hear about illness and disease, so I’ve also unlocked a Patreon episode about puppies that are born green. Don’t worry, the puppies are fine! There’s a link in the show notes so you can click through and listen to the episode on your browser, no login needed.

Before we get to the dinosaurs, we have a birthday shout-out! Happy birthday to Gwendolyn, who is turning two years old this week! Oh my gosh, Gwendolyn, you’re going to learn so many new things this year! I hope you have a wonderful birthday.

And now, the dinosaurs.

Just a few days ago as this episode goes live, researchers announced that they’d found the fossilized remains of a young sauropod dinosaur. It lived around 150 million years ago in what is now the United States, specifically in southwestern Montana. The fossil was nicknamed Dolly by the paleontologists who studied it.

Dolly was a sauropod in the family Diplodocidae, and like other sauropods the Diplodocids all had huge neck vertebrae because their necks were so long. The bones weren’t solid, though, but contained air sacs that made the bones lighter and also connected to the respiratory system. This is the case in birds too. Technically the air sacs in the bones are called pneumatic diverticula, but that’s hard to say so I’m just going to call them air sacs.

When a bird breathes, instead of its lungs inflating and deflating, the air sacs throughout its body and bones inflate and deflate. This pumps fresh air through the lungs and allows the bird to absorb a lot more oxygen with every breath than most mammals can.

The bones of Dolly’s neck had unusual bony protrusions around the spaces where the air sacs once were. When the paleontologists made a CT scan of the protrusions they discovered they were abnormal bone growths that probably resulted from an infection. Sauropods share a common ancestor with birds and researchers think they might have sometimes caught a respiratory illness similar to aspergillosis [asper-jill-OH-sus], a disease common in birds and reptiles today.

Dolly would have had a fever, difficulty breathing, coughing, a sore throat, and other symptoms familiar to us as flu-like or pneumonia-like. Aspergillosis can be fatal in birds, so this respiratory infection might have actually been what killed Dolly. I think we can all agree that the worst symptom to have as a sauropod, whose necks were as much as 30 feet long, or 9 meters, is a sore throat.

That’s not the only indication of illness in a dinosaur fossil, of course. A 2003 paper published in Nature detailed the results of a study where paleontologists scanned 10,000 dinosaur vertebrae from over 700 animals to see if any of them showed tumors. They found 97 individuals that did, all of them from around 70 million years ago and all of them hadrosaurs. Those are the duck-billed dinosaurs that were common in the late Cretaceous in many parts of the world, especially in what is now North America and Asia. Hadrosaurs had flattened snouts that made the skull look like it has a duck bill, but it wasn’t a birdlike bill and hadrosaurs had teeth.

The hadrosaur was a plant-eater and it especially liked to eat conifers. Conifers were really common through most of the Cretaceous and are still around today, including pines, cedars, junipers, hemlocks, redwoods, yews, cypresses, larches, spruces, and more. Most are fast-growing evergreens with scaly or needle-like leaves, and many of them produce resins that are high in toxins to help ward off insects and fungus, and help keep many animals from eating the leaves. Amber is fossilized resin from conifer trees.

Conifer resins contain carcinogenic chemicals, which means that eating enough conifer leaves can increase the risk of developing tumors. Hadrosaurs ate conifers all the time, so it’s not surprising that the 2003 study found a relatively high percentage of hadrosaur vertebrae with tumors. Most of the tumors were small and benign. Only two dinosaurs showed evidence of cancerous tumors. Most confusing to the researchers is that the tumors are mostly in the hadrosaurs’ tail vertebrae.

A more recent study, from 2016, found two tiny tumors on one vertebra from a titanosaur. It lived 90 million years ago in what is now Brazil in South America. Titanosaurs are some of the largest sauropods known, including one species that was 85 feet long, or 26 meters, but the tumors were only about 8 millimeters across and were benign. This was the first study that found a tumor in a dinosaur that wasn’t a hadrosaur, although they’ve been found in fossils of other animals like mosasaurs and ancient crocodiles.

A study published in 2020 found advanced cancer in the leg bone of a centrosaurus too. Centrosaurus was a ceratopsian dinosaur that lived in the late Cretaceous in what is now Canada. It had a single horn on its nose, two smaller horns over its eyes, and a frill at the back of its head that was decorated with two more small hook-like horns. It lived in herds and ate plants. The individual with the cancerous leg bone would have had trouble running or even walking on its bad leg, but it didn’t die of cancer or predation. Instead, researchers think it drowned in a flood along with the rest of its herd. This means it was protected by its herd and able to live a normal life despite its disease. In fact, when the centrosaurus bone was first discovered, researchers thought it just showed a healed fracture.

That’s the case for a disease seen in some theropod dinosaurs, specifically tyrannosaurids, including Tyrannosaurus rex. Even Sue the T. rex shows evidence of this disease and researchers think it might have been wide-spread among tyrannosaurids. Initially paleontologists thought it was the result of bite wounds from other dinosaurs, but a 2009 study presented evidence that the lesions seen in many tyrannosaurid skulls were due to a parasitic infection similar to that found in some birds today.

The infection is called trichomonosis and is especially common in pigeons, where it’s called canker, and birds of prey, where it’s called frounce. Other birds can catch it too and it can decimate songbird populations. It’s due to a parasite that only affects birds, so you can’t catch it from a sick bird. If you have a birdfeeder or birdbath in your yard, it’s a good idea to give it a good scrub every so often and let it dry out thoroughly before putting it out again in a different area. The parasite is spread from bird to bird and causes lesions in the mouth and throat that can eventually cause the bird to die. 

Researchers think trichomonosis in tyrannosaurids was spread not only between individuals when fighting, but the parasite might have been present in other dinosaurs that tyrannosaurids typically killed and ate. The parasite might not have caused symptoms in other dinosaurs, but when a tyrannosaurid was infected, the parasite completed its life cycle in its host. Other researchers think tyrannosaurids practiced cannibalism, which would also spread the parasite. The parasite actually feeds on the infected animal’s jawbone, causing erosive lesions in the mouth and throat which can stop a bird from being able to swallow, so researchers think many tyrannosaurids died of it the same way birds do.

A 2011 study of a reptile called Labidosaurus, which lived about 275 million years ago in the midwestern United States, showed a bacterial infection in the jaw bone that was the equivalent to an abscessed tooth. Labidosaurus grew about a foot long, or 30 cm, and looked like a lizard with a wide head. It lived long before dinosaurs evolved. This specimen is the first fossil ever found that shows a bacterial infection in a land-dwelling animal. The reptile had bitten something that caused it to lose two teeth, and as the injury healed over, bacteria were trapped inside the jaw. This led to a bad bone infection that was still active when the animal died, although researchers aren’t sure if the infection caused the animal’s death or not.

Most diseases don’t leave any evidence in bones, so we don’t have a fossil record of them. Since all animals get sick sometimes, it’s certain that dinosaurs had various diseases too. Next time you get a sore throat, just be glad that your throat isn’t as long as a sauropod’s.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!