Episode 416: The heaviest tarantula and the bitey-est ant

Thanks to Siya, Sutton, Owen, and Aksel for suggesting this week’s topic, the Goliath birdeater tarantula and the fire ant!

Further listening:

The TEETH Podcast

Further reading:

Tropical fire ants traveled the world on 16th century ships

The Goliath birdeater tarantula, bigger than some kittens:

Fire ants:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about two invertebrates, a spider and an insect. Thanks to Siya, Sutton, Owen, and Aksel for suggesting them!

We’ll start with the spider, which Siya and Sutton both suggested. It’s the goliath tarantula, also called the goliath birdeater. You know it has to be a big spider if it’s called a birdeater. We’ve talked about it before, but not in a long time.

The goliath birdeater is the heaviest spider in the world. If you think of the usual spider, even a big one, it’s still pretty lightweight. Let’s use a wolf spider as an example, which is found just about everywhere in the world. It’s a hunting spider that doesn’t spin a web, and while different species vary in size, the biggest is the Carolina wolf spider found in many parts of North America. A big female can have a legspan of four inches across, or 10 cm, with a body up to an inch and a half long, or 35 mm—but it weighs less than an ounce. That’s barely 28 grams, or just a little heavier than five sheets of printer paper.

In comparison, the goliath birdeater tarantula can weigh over 6 ounces, or 175 grams. That’s heavier than a baseball, or two packs of cards. Its legspan can be as much as 12 inches across, or 30 cm with a body length of about 5 inches, or 13 cm. It’s brown or golden in color and lives in South America, especially in swampy parts of the Amazon rainforest. It’s nocturnal and mostly eats worms, large insects, other spiders, amphibians like frogs and toads, and occasionally other small animals like lizards or even snakes. And yes, every so often it will catch and eat a bird, but that’s rare. Birds are a lot harder to catch than worms, especially since the Goliath birdeater lives on the ground, not in trees.

Because it’s so large, the goliath looks like it would be incredibly dangerous to humans. It does have fangs and can inflict a venomous bite, but it’s not very strong venom. The danger comes from a very different source, because the goliath birdeater is famous for its urticating spines.

Many species of tarantula have special setae, hairlike structures called urticating spines, that can be dislodged from the body easily. If a tarantula feels threatened, it will rub a leg against its abdomen, dislodging the urticating spines. The spines are fine and light so they float upward away from the spider on the tiny air currents made by the tarantula’s legs, and right into the face of whatever animal is threatening it. The spines are covered with microscopic barbs that latch onto whatever they touch. If that’s your face or hands, they are going to make your skin itch painfully, and if it happens to be your eyeball you might end up having to go to the eye doctor for an injured cornea. Scientists who study tarantulas usually wear eye protection.

The goliath birdeater tarantula is considered a delicacy in northeastern South America. People eat it roasted. Apparently it tastes kind of like shrimp.

Next, Owen and Aksel wanted to learn about fire ants. I couldn’t believe that we’ve never talked about fire ants before!

Fire ant is the name for any of the more than 200 species in the genus Solenopsis, but it’s typically used to refer to the species Solenopsis invicta. It’s native to tropical South America but has been introduced to parts of North America, Australia, China, Taiwan, India, Africa, and many other places where the climate is tropical or sub-tropical.

The fire ant initially became so invasive due to Spanish galleons in the 16th century, which carried trade goods around the world. A ship that’s meant to carry a lot of cargo is built so that it needs to be weighted down to a certain degree to sail safely. A lot of times if a Spanish ship didn’t have enough goods in its hold to make it weigh enough, the captain would bring a few tons of soil onboard to make up the difference. Then, when the ship got to its next port where it was supposed to pick up new cargo, it would just dump the dirt wherever it was. It didn’t matter to the fire ant if the dirt was dumped into the water, because fire ants are prepared for their nests getting flooding. They cling together and form huge rafts that the wind pushes to shore. But more often, the dirt would get dumped on land for other ships to re-use.

A team of scientists figured out where the invasive fire ant populations came from by comparing the genetic signatures of 192 different populations. They hypothesized that the ants with the highest genetic diversity were the original population, and that as the ants were moved around the world by ship, genetic diversity would get lower and lower, since all the ants were descendants of the original colony or colonies transported accidentally in the dirt. They mapped out the genetics, then compared the results to Spanish trade routes in the mid-1600s, and it all matched up.

The fire ant made it to the United States in the late 1930s or early 1940s, the West Indies around 1980, and Australia around 2001. These days a lot of fire ants end up transported to new areas in golf course sod imported from Florida.

A fire ant colony consists of a queen, thousands of worker ants, and larger soldier ants that protect the workers and especially the queen. Some colonies have more than one queen. The ants eat anything, including seeds and insects, and even small animals, but also including dead animals they find. The colony can have as many as a quarter million ants. The nest is underground and entrances can be far from the nest itself, and nests can be so large that they can cause structures built over them to collapse.

Invasive animals of any kind aren’t good for the native animals, and the same is true for the fire ant. The fire ant specializes in colonizing areas where humans have disturbed the ground, whereas native ants often have trouble surviving in disturbed areas. The fire ants crowd out native ants and can destroy some native plants.

But the main reason why people don’t like fire ants is that they bite and they’re venomous. The bites cause a burning sensation and painful swelling, but some people are allergic to the venom and can actually die from ant bites. Luckily, that’s rare, but the bites are still painful.

Some countries have spent millions of dollars trying to eradicate the fire ant, including Australia and New Zealand. New Zealand seems to have succeeded, but Australia is still struggling to get the invasion under control. Fortunately, a lot of animals eat fire ants, which helps. One of the animals that especially loves to eat fire ants is the wolf spider, so now we’ve come full circle in this episode.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

If you are wishing that I’d gone into more detail about fire ant attacks, you might like the TEETH podcast. It’s the only podcast where you’ll hear wild animal attack stories directly from the survivors, hosted by a wilderness guide and attack survivor himself. I’ll put a link in the show notes so you can go listen. It’s appropriate for all ages. I don’t think they’ve actually covered a fire ant attack, but they’ve got lots of other fascinating accounts.

Episode 376: The Horned Lizard AKA Horny Toad

Thanks to Khalil for suggesting the horny toad, also called the horned lizard or horned toad!

Further reading:

The Case of the Lost Lizard

The Texas horned lizard:

Texas Horned Lizard (Phrynosoma cornutum)

The rock horned lizard [photo taken from article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about a reptile suggested by Khalil, who is Leo’s friend, so a big shout-out to both. Khalil wants to learn about the horny toad, also called the horned toad or horned lizard.

We talked about it briefly back in episode 299. The horny toad is actually a lizard that lives in various parts of North America, especially western North America, from Canada down through much of the United States and into Mexico. The largest species is the Texas horned lizard, with a big female growing about 5 inches long, or almost 13 cm, not counting its tail.

The horny toad does actually resemble a toad in some ways. Its body is broad and rounded and its face has a blunt, froglike snout. Its tail is quite short. It’s also kind of sluggish and spends a lot of time just sitting in the sun, relying on its mottled coloration to camouflage it. If it feels threatened, it will actually just freeze and hope the predator doesn’t notice it. It’s covered with little pointy scales, and if a predator does approach, it will puff up its body so that the scales stick out even more and it looks larger. It also has true horns on its head, little spikes that are formed by projections of its skull, and if a predator tries to bite it, the horny toad will jerk its head up to stab its horns into the predator’s mouth.

Horny toads mainly eat a type of red ant called the harvester ant. The harvester ant is venomous but the horny toad is resistant to the venom and is specialized to eat lots and lots of the ants. Its esophagus produces lots of mucus when it’s eating, which collects around the ants and stops them from being able to bite before they die.

Because it eats so many venomous ants, many scientists think the horny toad stores some of the toxins in its body, especially in its blood. Its blood tastes especially bad to canids like coyotes that are common in the areas where it lives. But it does the horny toad no good to have bad-tasting blood if a predator has to bite it to find out, so the horny toad has a way to give a predator a sample of its blood in the weirdest way you can imagine.

If a horny toad is cornered by a predator and can’t run away, and puffing up isn’t helping deter the predator, the lizard has one last trick up its sleeve. It increases the blood pressure in its head by restricting some of the blood vessels carrying blood back to the heart, and when the blood pressure increases enough, it causes tiny blood vessels around the eyelids to rupture. It doesn’t just release blood, it squirts blood up to five feet away, or 1.5 meters. As if that wasn’t metal enough, the horny toad can aim this stream of blood, and it aims it right at the predator’s eyes.

Imagine for a moment that you are a hungry coyote. You’re young and don’t know that horny toads taste bad, you just know you’ve found this plump-looking lizard that doesn’t move very fast. It keeps puffing up and looking spiky, but you’re hungry so you keep charging in to try and grab it with your teeth in a way that won’t hurt your tongue on those spikes. Then, suddenly, your eyes are full of lizard blood that stings and makes it hard to see, and the blood drips down into your mouth and it tastes TERRIBLE. It doesn’t matter how hungry you are, this fat little lizard is definitely off the menu. Meanwhile, the horny toad is fine.

Scientists aren’t sure if every species of horny toad can squirt blood. Some species probably can’t, while some do it very seldom. It also doesn’t help against some predators, like birds, who don’t have a great sense of taste and aren’t affected by the toxins in the horny toad’s blood.

The horny toad relies on the harvester ant for most of its specialized diet, although it does eat other insects too. It can’t survive without eating harvester ants. The problem is, the harvester ant is in decline after fire ants were introduced to North America from South America. The horny toad doesn’t eat fire ants, and the fire ants out-compete the local harvester ants, leaving the horny toad with less and less food.

Humans really don’t like fire ants, which can cause damage to homes when they dig their huge underground nests, and which inflict really painful bites. When people try to get rid of fire ants, sometimes the treatments also kill harvester ants. Incidentally, some animals that really love to eat fire ants include armadillos, black widow spiders, wolf spiders, and bobwhites.

The Texas horned lizard lives throughout a fairly large range, so although its numbers are in decline along with its ant food, it’s still doing okay for now. But not every horny toad is so lucky.

The rock horned lizard, also called Ditmars’ horned lizard, is only found in one small part of Sonora in northern Mexico. It was first discovered by science in 1891, when an archaeological expedition caught one. The lizard was described in 1906 but by then it hadn’t actually been seen in the wild since 1897, when two more were caught by a man who donated them to the New York Zoological Park. Those were the only three specimens that had ever been collected. Herpetologists worried that the rock horned lizard had gone extinct.

The main issue was that no one was exactly sure where those three specimens had been collected and no one knew exactly where the 1891 expedition had traveled. The man who caught the two lizards in 1897 didn’t say exactly where he’d caught them, just that it was in northern Sonora. But what a scientist named Vincent Roth realized when researching the lizard is that the three preserved specimens probably still contained undigested and partially digested food in their bodies, and that if the insects the lizards had eaten could be identified, it could give an important clue as to where the lizards had lived.

Dr. Roth requested that the gut contents be removed from the 1891 specimen for study, and also from one of the 1897 specimens. The third specimen had been taxidermied and the guts discarded. Dr. Roth cleaned the gut contents with alcohol and examined them microscopically, and found the remains of 14 insects, the seeds of three different species of grass, and some pebbles. All this happened in 1970, so instead of emailing a bunch of experts for help, Dr. Roth had to write physical letters to specialists throughout the world for help identifying the insects.

The specialists were happy to help, and they determined that the pebbles and grass seeds would have been eaten by accident when the lizard slurped up ants carrying them. The lizards had the remains of several different ants in their digestive tracts, including harvester ants, along with weevils, jumping spiders, grasshoppers, and other insects. These were identified, including some rare ones only ever found in certain areas of Sonora. Even the grass seeds and the pebbles were identified.

It all pointed to a particular mountain range in northern Sonora, and an expedition was arranged by Dr. Roth to search for the lizard. But they didn’t find it! They made plans to return, but asked the local people to keep an eye out for a specific type of horned lizard. In 1971 a report came of a rock horned lizard discovered by a local, followed soon by a few others. The lizard was safe, although it’s rare. Scientists had just been looking in the wrong place for it.

Since the rock horned lizard is only a few inches long and blends in so well with its surroundings, it’s no wonder it was hard to find. Fortunately it’s been rediscovered so that scientists can study it and keep it safe. The next step is to keep the harvester ants safe so that all the horny toads have plenty of yummy ants to eat.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 336: The Turtle Ant and the Alien Butt Spider

Thanks to Kari for suggesting this week’s topics! Definitely check out her book Butt or Face?, which is funny and has lots of animal information!

Further reading:

Butt or Face? by Kari Lavelle

GBIF: Araneus praesignis [the spider pictures below come from this site]

The turtle ant’s body is flattened and the soldier caste ants have specialized head shapes to block the nest entrances:

The alien butt spider has a butt that looks like an alien’s face!

The alien butt spider hides during the day in its leaf fort:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two really weird invertebrates suggested by Kari. One of these two animals is her favorite and the other is a weird ant from a book she wrote. Kari’s full name is Kari Lavelle and her book is for kids, called Butt or Face? It actually releases tomorrow as this episode goes live, so if you’re listening to this episode on Monday, July 10, 2023, you still have time to preorder the book, or you can just wait a day and run out to your local bookstore or library to get a copy.

Kari was nice enough to send me a copy of the book and it’s really funny and interesting. It’s partly a game where you look at a picture and decide whether it shows an animal’s butt or its face. It’s a lot harder than you’d think! You make your guess and turn the page to find out if you’re right and learn about the animal. It’s very fun and I actually guessed wrong on one animal, but I’m not telling you which one. There’s a link in the show notes if you want to learn more about the book and maybe order a copy for yourself.

Anyway, let’s talk about the ant first, because it’s actually one I’ve had on the list to talk about for a while. I was really excited to see it in Kari’s book. It’s called the turtle ant, sometimes called the “door head” ant. That gives you a clue as to whether its picture in the book features its butt or its face.

The turtle ant is any of the well over 100 species of ant in the genus Cephalotes, which are native to the Americas. Most live in Central and South America, especially in tropical and subtropical areas. Almost all species live in trees, nesting in cavities originally made by beetle larvae.

For the most part, turtle ants are pretty typical compared to other ant species. They have a generalized diet, eating pretty much anything they find. This includes plant material, dead insects and other animals they find, bird poop, nectar, and even pollen in some species. Each colony has a single queen that mates with multiple males and lays all the eggs for the colony. Worker ants tend the eggs and larvae, gather food, and keep the colony clean. But as in some other ants, many species of turtle ant have a soldier caste. These are worker ants who are specialized to defend the nest. We talked about army ants recently, in episode 328, and also back in episode 185, and army ant soldiers have massive sharp mandibles that can inflict painful bites. But the turtle ant soldiers don’t have sharp mandibles and aren’t aggressive. They have one job, and that job is to stand at the nest’s entrances and stop them up with their heads, only moving when another ant needs to get through.

As a result, turtle ant soldiers have weird-shaped heads. The head shape varies from species to species, with some looking more normal and some being heavily armored and strangely shaped. Well, they’re not strangely shaped except in comparison to an ordinary ant head. They’re shaped exactly right to do the job they’ve evolved to do, be a door. In some species, the top of the soldier’s head is completely round and flattened, just the right size and shape to block the entrance.

Turtle ants have another ability that they share with some other ants. If an ant falls from the twig or branch it’s climbing on, instead of just falling to the ground, it can glide back to the tree trunk. Turtle ants have flattened bodies, which helps catch the air like a tiny ant-shaped parachute. Unlike other ants that do this, which glide head-first, the turtle ant glides abdomen-first. It uses its legs and head to adjust which way it’s gliding, and most of the time it lands safely on the tree trunk.

There are undoubtedly more turtle ant species than we know about so far, and we actually don’t know very much about most of the species we have discovered. Most turtle ants live in trees, and that makes them hard to study.

There’s actually a spider called the ant-mimicking crab spider that eats turtle ants. It looks so much like a turtle ant worker that it can get close to the actual ants before it’s recognized as a predator, at which point it has a good chance of grabbing an ant to eat before the ant can run away. But that’s not actually the type of spider we’re talking about next.

The other animal we’re talking about today isn’t one from the book, it just happens to be one of Kari’s favorite animals *cough*sequel*cough*. It’s called the alien butt spider and it is completely awesome, as you can tell from the name.

The alien butt spider lives in Queensland, Australia, and it gets its name because—maybe you should just guess. I’ll wait.

Yes, you’re right! The abdomen of the spider has black or dark blue-green markings that look for all the world like the face of a tiny space alien from a movie. The spider itself is mostly green and very small, with a big female only growing about 8 mm long, although its legspan can be 20 mm across. Males are smaller, mostly because the male has a much smaller abdomen.

Its scientific name is Bijoaraneus praesignis, changed in December 2021 from Araneus praesignis. It’s also called the outstanding orbweaver or green orbweaver. Like many spiders, especially orbweavers, it’s mostly active at night. It spins a big round web that looks like the kind you see on Halloween decorations, because that’s the kind of web most orbweavers make, and at night it waits on or near the web for an insect to get stuck in it. During the day, though, the alien butt spider needs to hide. It makes what’s called a retreat in a leaf that’s partially closed or curled. The spider spins a thick layer of silk across the edges of the leaf that turns it into basically a little leaf fort, then crawls inside. The underside of the spider is plain greenish-yellow with no markings, so it’s hard to see against the leaf, especially through the layer of silk.

The spider’s abdomen is green with a yellow or white pattern on top, with black eye spots visible from the rear. The eye spots show up really well against the yellow or white pattern. But the spider also has black markings at the front of its abdomen, which also look like eyespots from some angles. The rest of its body is green, greeny-yellow, and brown, which helps it blend into leafy backgrounds.

Naturally, the alien butt spider is not actually trying to look like an alien. That’s something humans have decided it looks like because it’s green and the eyespots are so large. The spider just wants potential predators to see the eyespots and think, “Darn, that animal already saw me so I can’t sneak up on it. I won’t waste my energy trying to grab it.” Or maybe, “Uh oh, look at the size of that animal’s eyes! I must be looking at the head of a very large animal that might eat me, plus it’s looking right at me. I’d better run.”

Even though it looks kind of spooky, the alien butt spider is completely harmless to humans. We also don’t know much about it, so while it seems to be a common spider within its range, we don’t know for sure if it’s potentially endangered. It’s best to leave this little alien alone no matter how cute it is (and it is very cute).

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 335: Large Blue Butterfly vs Ants

We’re kicking off July with a beautiful butterfly that does horrible things to ants!

Further reading:

UK Butterflies – Large Blue

The large blue butterfly (picture taken from page linked above):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I recently realized that I have so many weird and interesting invertebrates saved up to feature for invertebrate August that I can’t fit them all into one month, so let’s kick off invertebrate August in July!

This week we’re going to learn about a beautiful butterfly called the large blue, because it is both large and blue. Well, sort of large. The butterfly has a wingspan of up to two inches, or about 5 cm. Its wings are a dusty blue with black spots, although there are a lot of regional differences. Some populations are almost black, some are more tan than blue, and some don’t have spots.

The large blue lives throughout much of Eurasia, although its numbers have decreased in many places in the last 50 years or so. In some places it’s even gone extinct, mainly due to habitat loss. It needs specific host plants for the caterpillars to eat, and it also needs a particular type of ant in order for the caterpillars to survive–because the large blue caterpillar is a brood parasite!

We’ve talked about brood parasites before in birds, where a bird will lay an egg in the nest of a different species of bird. In the case of the large blue butterfly, in summertime the female lays her eggs on wild thyme or marjoram plants near a colony of red ants in the genus Myrmica [meer-mee-kuh]. She usually only lays one egg on any given plant.

When the eggs hatch, the newly emerged caterpillars feed on plants at first, just like any other caterpillar, especially the flowers of the plant. If more than one large blue caterpillar is on a plant and they encounter each other, one of them will grab the other and eat it. Drama among the thyme plants! The caterpillar goes through three growth stages, called instars, as an ordinary caterpillar (except for the cannibalism thing), but once it reaches the fourth instar it starts acting very different.

The caterpillar drops to the ground and releases a chemical that mimics the smell of the Myrmica ant larvae. When an ant finds a caterpillar, the caterpillar will rear up so that it resembles an ant larva. The ant usually takes it back to its nest at this point, but sometimes the caterpillar will just follow an ant trail and enter the nest on its own. Either way, the ants will assume it’s a lost baby and take it to the nesting chamber, where they feed and take care of it.

The caterpillar is bigger than a usual ant larva, but it uses this to its advantage. It mimics the sounds made by a queen ant, which means the ants take extra good care of it. If the ants run out of regular food to feed the caterpillar, they will even start feeding it real ant larvae. But sometimes the caterpillar gets impatient, or maybe just hungry, and will just start eating the other pupating ant larvae.

The system isn’t perfect, because a lot of times the ants figure out that the caterpillar is an intruder and will kill and eat it. If the queen ant encounters the caterpillar, she recognizes that it isn’t an ant larva and will attack it. Sometimes the ants just up and abandon the nest, leaving the caterpillar behind. In that case, the caterpillar will either leave the nest itself and find another one, or it will wait for a new ant colony to find the nest and move in. This can actually happen repeatedly during the nine months or so that the caterpillar requires to finish growing, although during the winter the caterpillar is more or less dormant.

Around the end of spring, the caterpillar spins a cocoon and pupates right there in the ant nest. The ants continue to take care of it, making sure the pupa is clean. When it emerges as a new butterfly after a few weeks, it has to find its way out of the ant nest and to the surface, where it climbs a plant stem and rests while its wings inflate and dry. The adult butterflies only live for a few weeks, eating flower nectar, especially of the thyme plant.

One of the places where the large blue butterfly went extinct was in the British Isles, where it was last seen in 1979. Before that, though, scientists already recognized that the species was in danger in Britain. They knew that the butterflies needed wild thyme and Myrmica ants, and made sure to plant lots of the thyme in areas with lots of Myrmica ant colonies. But the butterflies still declined until none were left in Britain. It turns out that the large blue butterfly requires a particular species of Myrmica ant, Myrmica sabuleti, and if the caterpillars are adopted by other ant species, they aren’t usually successful in surviving to grow up.

Fortunately, a few years later, scientists re-introduced large blue butterflies to Britain from Sweden, and this time it worked. Not only are there still large blue butterflies in Britain again, they’re now more common in Britain than anywhere else throughout its range.

Other butterflies closely related to the large blue also act as brood parasites to Myrmica ants, but to different species. There are probably more butterflies that do this than we know, since it takes a lot of very careful observation of the butterflies, caterpillars, and ants to determine what exactly is going on. Considering that even the ants don’t really know what’s going on, it’s no surprise that scientists have trouble figuring it out too.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 328: Giant Ants

Thanks to Richard from NC for suggesting Titanomyrma!

Further reading:

‘Giant’ ant fossil raises questions about ancient Arctic migrations

A fossilized queen Titanomyrma ant with a rufous hummingbird (stuffed) for scale:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Richard from North Carolina, who sent me an article about an extinct giant ant called Titanomyrma. This episode is short, but I think you’ll find it interesting.

We’ve talked about ants in previous episodes, most recently episode 185. Most ant colonies consist of a single queen ant who lays all the eggs for her colony, seasonally hatched males with wings who fly off as soon as they’re grown, and worker ants. The worker ants are all female but don’t lay eggs. Army ants have another caste, the soldier ant, which are much larger than the worker ants and have big heads and strong, sharp mandibles. In many species of ant, the worker ants are further divided into castes that are specialized for specific tasks.

The biggest species of ant alive today is probably the giant Amazonian ant. The workers can grow over 1.2 inches long, or more than 3 cm, which is huge for an ant. It lives in South America in small colonies, usually containing less than 100 workers, and unlike most ants it doesn’t have a queen. Instead, one of the workers mates with a male and lays eggs for the colony. The giant Amazonian ant can sting and its sting contains venom that causes intense pain for up to two days. Fortunately, you will probably never encounter these giant ants, and even if you do they’re not very aggressive.

Another contender for the biggest species of ant alive today is the Dorylus genus of army ants, also called driver ants, which we talked about in episode 185. It lives in Africa in colonies that have millions of members, and the queen is the largest ant known. A queen army ant can measure 2.4 inches long, or 63 millimeters, but worker ants are much smaller.

Around 50 million years ago, giant ants related to modern driver ants lived in both Europe and North America. The genus is Titanomyrma and three species are known so far, found in Germany, England, Canada, and the American states of Tennessee and Wyoming.

The Wyoming ant fossil was discovered years ago and donated to the Denver Museum of Nature and Science, where it was stored in a drawer and forgotten about. In 2011 a curator found it and showed it to a paleoentomologist named Bruce Archibald. Dr. Archibald recognized it immediately as a fossilized queen ant even though it was the size of a hummingbird. He also realized it was very similar to a type of giant ant that once lived in Germany.

The German discovery was the first Titanomyrma species discovered, and it’s also the biggest known so far. The queen Titanomyrma gigantea grew up to 2.8 inches long, or 7 centimeters. Males grew up to 1.2 inches long, or 3 cm. The fossilized queen ants found have wings, with a wingspan of over 6 inches, or 16 cm. The other two known species are generally smaller, although still pretty darn big for ants.While they’re not that much bigger than the living Dorylus queens, most of the size of a queen Dorylus ant comes from her enlarged abdomen. Titanomyrma ants were just plain big all over.

Titanomyrma didn’t have a stinger, so it’s possible it used its mandibles to inflict bites, the way modern army ants do. It might also have sprayed formic acid at potential predators, as some ants do today.

The biggest ants alive today all live in tropical areas, so researchers thought Titanomyrma probably did too. During the Eocene, the world was overall quite warm and parts of Europe were tropical. The northern hemisphere supercontinent Laurasia was in the process of breaking up, but Europe and North America were still connected by the Arctic. Even though the Arctic was a lot warmer 50 million years ago than it is now, it was still too cold for a tropical ant. If Titanomyrma couldn’t survive in cold weather, how did it spread from one continent to another when it had to go through the Arctic?

There were warming periods during the Eocene that lasted a few hundred thousand years at a time, so researchers thought the ants probably migrated through the Arctic while it was warmer than usual. Then, in early 2023, a fossilized Titanomyrma queen ant was discovered in Canada. Because the rock it was preserved in has been distorted over the years, we can’t be certain how big the ant actually was. What we do know, though, is that the ant lived in a mountainous area that could get quite chilly, very different from the tropical climate scientists thought the giant ants needed.

As a result of the new finding, researchers are reconsidering whether the giant ants that lived 50 million years ago were really all that similar to modern giant ants. Just because the biggest ants alive today require tropical climates doesn’t mean that ancient giant ants did.

Hopefully more giant ant fossils will turn up soon, so we can learn more about where they lived, how they lived, and precisely how big they could get.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 185: Ice Worms, Army Ants, and Other Strange Invertebrates!

Let’s learn about some weird insects this week! Thanks to Llewelly for suggesting army ants!

Further reading:

If you’re interested in the magazine Flying Snake, I recommend it! You can order online or print issues by emailing the editor, Richard Muirhead, at the address on the website, and there’s a collection of the first five issues on Amazon here (in the U.S.) or here (UK)!

The magnificent, tiny ice worm! The dark speckles in the snow (left) are dozens of ice worms, and the ones on the right are shown next to a penny for scale. Teeny!

ARMY ANTS! WATCH OUT. These are soldier ants from various species:

The Appalachian tiger swallowtail (dark version of the female on the right):

Tiger swallowtails compared:

The giant whip scorpion. Not baby:

Jerusalem cricket. Also not baby but more baby than whip scorpion:

PEOPLE. GET THOSE HORRIBLE THINGS OFF YOUR HANDS.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about a number of strange and interesting invertebrates as part of Invertebrate August. Thanks to Llewelly for a great suggestion, and we also have a mystery invertebrate that I learned about from the awesome magazine Flying Snake. Flying Snake is a small UK magazine about strange animals and weird things that happen around the world. It’s a lot of fun and I’ll put a link in the show notes if you want to learn more about it. It’s been published for years and years but I only just learned about it a few months ago, and promptly ordered paper copies of all the issues, but they’re also available online and the first five issues are collected into a book.

So, let’s start with an invertebrate I only just learned about, and which I was so fascinated by I wanted to tell you all about it immediately! It’s called the ice worm, and it’s so weird that it sounds like something totally made up! But not only is it real, there are at least 77 species that live in northern North America, specifically parts of Alaska, Washington state, Oregon, and British Columbia.

The ice worm is related to the earthworm, and in fact it looks like a dark-colored, tiny earthworm if you look closely. It’s usually black or dark brown. It likes the cold—in fact, it requires a temperature of around 32 degrees Fahrenheit, or zero Celsius, to survive. You know, freezing. But the ice worm doesn’t freeze. In fact, if it gets much warmer than freezing, it will die. Some species live in snow and among the gravel in streambeds, and some actually live in glaciers. Ice worms can survive and thrive in such cold conditions because their body contains proteins that act as a natural antifreeze. It navigates through densely packed ice crystals with the help of tiny bristles called setae [see-tee] that help it grip the crystals. Earthworms have setae too to help them move through soil.

During the day, the ice worm hides in snow or ice to avoid the sun, and comes to the surface from the late afternoon through morning. It will also come to the surface on cloudy or foggy days. It eats pollen that gets trapped in snow and algae that is specialized to live in snow and ice, as well as bacteria and other microscopic or nearly microscopic animals and plant material. In turn, lots of birds eat ice worms. Birds also occasionally carry ice worms from one glacier or mountaintop to another by accident, which is how ice worms have spread to different areas.

The glacier ice worm can grow to 15 mm long and is only half a mm thick, basically just a little thread of a worm. It only lives in glaciers. You’d think that in such an extreme environment there would only be small pockets of glacier ice worms, but researchers in 2002 estimated that the Suiattle [soo-attle] Glacier in Washington state contained 7 billion ice worms. That’s Billion with a B on one single glacier. Other ice worm species can grow longer than the glacier ice worm, including Harriman’s ice worm that can grow nearly 2.5 inches long, or 6 cm, and is 2.5 mm thick.

There are tall tales about ice worms that can grow 50 feet long, or 15 meters, but those are just stories. An ice worm that big wouldn’t be able to find enough to eat.

Next, let’s talk about a type of ant. Llewelly suggested the army ant a long time ago, and recently I got an email from Ivy whose list of favorite animals includes the army ant!

The army ant lives in parts of Africa, South America, and Asia, and although there are some 200 species in different subfamilies, recent research suggests that many of them are descended from the same species that lived in the supercontinent Gondwana more than 100 million years ago.

Army ants don’t dig permanent nests like other ants. Instead they make temporary camps, usually in a tree trunk or sometimes in a burrow the ants dig. But these camps aren’t anything like ordinary ant nests. Often they’re formed from the bodies of worker ants, who link their legs together to make a living wall. The walls form tubes that make up chambers and passages of the nest, and inside the nest the queen lays her eggs. There are also chambers where food is stored. But the nest isn’t permanent. At most, the army ant only stays in one place for a few weeks, after the larvae pupate. The colony feeds the food stores to the queen, who lays a new batch of eggs timed to hatch when the new ants emerge from their cocoons. At that point, the colony breaks camp and enters the nomadic phase of behavior until the newly hatched batch of larvae are ready to pupate.

What do they do with the larvae while they wander? Workers carry them around. As in other ant species and the honeybees we talked about recently, an army ant colony is divided into different types of ant. There’s a single queen ant, seasonally hatched males with wings who fly off as soon as they’re grown, and many worker ants. But army ants have another caste, the soldier ant. These are much larger than the worker ants and have big heads and strong, sharp mandibles. Some species of army ant forage primarily on the ground while some hunt through treetops and some underground, but they generally hunt in large, well-organized columns with soldier ants on the outside as guards. In many species, the worker ants are further divided into castes that are specialized for specific tasks.

The queen ant is an egg-laying machine. Queens of some species can lay up to 4 million eggs every month. The queen is wingless, but a new queen doesn’t need to leave the colony the way other ant species do. Instead, when new queens emerge from their cocoons as adults, the colony splits and two new colonies form from the old one, each with one of the new queens. Usually more than two queens hatch, but only two survive.

When males emerge from their cocoons, they immediately fly off and search for another colony. But a male can’t just land and mate with a queen. He has to get through her guards, and they decide whether they like him or not. If they find him adequate, they bite his wings off and bring him to the queen. After he mates, he dies. This sounds like the plot of a weird science fiction novel from the 1960s. If a colony’s queen dies, the worker ants may join another colony.

Let’s talk specifically about the Dorylus genus of army ants for a few minutes, which live in Africa and Asia. Dorylus army ants live in simply enormous colonies. When the colony goes foraging, there may be 15 million ants marching in a dense column, and they can eat half a million animals every single day.

That’s why the army ant is so feared. The column of ants is made up of worker ants in the middle with the much larger soldier ants along the edges. The columns don’t move very quickly, but the ants attack, kill, and eat any living animal they encounter that can’t run away. This includes insects, spiders, scorpions, and lots of worms, but also eggs and baby birds, other baby animals, frogs and toads, and even larger animals. What isn’t eaten on the spot is carried back to the camp to feed larvae and the queen.

Army ants are also beneficial to the ecosystem and to humans specifically in many ways. A column of army ants that marches through a village will eat so many insects that they act like a really high quality exterminating service for homes and gardens. They also scare insects and other animals that flee from the ant columns, and a lot of animals benefit from the general chaos. Birds of many species will follow army ants in flocks, grabbing insects as they flee the ants. Some birds even make special calls to alert others that army ants are on the move, so that everybody gets a chance for easy food. Even more animal species will follow the column to clean up what they leave behind, including partially eaten carcasses, animals that were killed but rejected as food, and even the feces of the birds that follow the ants.

And, of course, a lot of animals just eat the army ants. Chimpanzees make different types of tools to help them safely harvest army ants. Most commonly, a chimp will use a stick it’s modified to the right length and shape, referred to as an ant-dipping probe. It will put one end of the stick down in the column of army ants and wait until ants start climbing up the stick. When there are enough ants on the stick, it will remove the stick and eat the ants off of it. It’s an ant-kebob!

If you’re wondering why the chimps aren’t attacked by the ants, or why the ants don’t figure out they’re climbing a stick to nowhere, Dorylus army ants, like most army ant species, are all blind. They communicate by releasing pheromones, which are chemicals with specific signatures that other ants can sense, something like smells. Some species that mostly live above-ground have re-evolved sight to a limited degree.

The mandibles of Dorylus army ant soldiers are so strong, and the ant is so tenacious about holding on, that people in some East African tribes traditionally use them to stitch up wounds. The soldier ant is held so that it bites with one mandible on each side of a wound, holding the edges of skin together. Then the person severs the ant’s body from its head, killing it—but the jaws are so strong that they will continue to stay in place for several days while the wound heals.

In Central and South America, the army ant genus Eciton [ess-ih-tahn] is very similar to Dorylus. Some species can cross obstacles like streams by building a living bridge out of individuals to allow the rest of the column to cross.

Whew, okay, I should probably have made the army ant its own episode, because there’s so much cool research about it that I could just go on forever. But let’s move on to a much different insect next, a butterfly that lives in the eastern United States, especially in the Appalachian Mountains. This is the Appalachian tiger swallowtail, which has yellow wings with black stripes and a black border, and a black body. Some females have all-black wings with orange spots. When the genetic makeup of the butterfly was examined, it turns out that the species originated as a hybrid of the Eastern tiger swallowtail and the Canadian tiger swallowtail. This kind of hybridization is rare in the wild. The Appalachian tiger swallowtail lives in the mountains, usually in high elevations, and while its range overlaps with both parent species, it almost never hybridizes with either. It has inherited the Canadian butterfly’s tolerance for cold but is twice its size. Researchers estimate that the hybridization occurred around 100,000 years ago.

I learned that interesting fact about the Appalachian tiger swallowtails from the May 2018 Flying Snake issue, and let’s go ahead and learn about a mystery invertebrate I also read about in that issue of Flying Snake.

The mystery is from The Desert Magazine, which was published between 1937 and 1985. It was a monthly magazine that focused on the southwestern United States, with article titles like “Rock Hunter in the Sawange Range” and “Ghost City of the White Hills.” Both those headlines are from the January 1947 issue, which is also where the first mention of the Baby of the Desert shows up in the letters section. Flying Snake excerpts the relevant letters from that issue and a few later issues, but I got curious and found the originals online.

I’ll quote part of the original letter because it’s really weird and interesting:

“Gentlemen: Would like to ask if there is such a thing as a very poisonous desert resident called ‘Baby of the Desert,’ so named because of the resemblance of its face to that of a human baby. Whether this so-called ‘Baby of the Desert’ is supposed to be insect, reptile or rodent, I could not find out. …[I]t was considerably smaller than the Gila monster.”

The letter was signed William M. Weldon from South Pasadena, California.

The editor responded, “The question of the Baby of the Desert, Baby-face, or Niño de la Tierra, as it is variously called, came up for discussion on the Letters page of the magazine two years ago. A reader sent in a description of the fearsome beast as it had been pictured to him and asked for confirmation from someone who had seen it.”

Because of the mention of another letter asking about the Baby of the Desert, two years before, I went through the letters sections of all the 1945 issues to find the original. I couldn’t find it in 1945, but I did find a nice letter from James Mayberry in California, who found a desert tortoise with blue paint on its shell. He thought someone had brought the tortoise back from a visit to the desert. James named the tortoise Mojave but knew it needed to go home, so he sent it to the Desert Magazine. I’m delighted to say that the editor took it out to a lonely desert hill where there were other tortoises and let Mojave go. Tortoises live a long time so Mojave might still be stumping around out there, the blue paint on his shell faded in the sun.

Then I went back through the 1944 issues and found the letter in the July issue. It was from Albert Lloyd of Tulsa, Oklahoma, who wrote, “Perhaps some reader can supply authentic information about a small denizen of the deserts and mesas of the Southwest, which the Mexicans call Niño de la Tierra, or Child of the Earth. During four years of roaming around New Mexico and Arizona I was never fortunate enough to see one. But I have talked with several who claim to have seen it. They describe it as a doll-like animal, about three or four inches in length, walking on all fours, with head and face like that of an infant. They claim it will not attack you unless molested and that its bite is more deadly than a rattlesnake’s.”

The editor of the Desert Magazine suggested that the Baby of the Desert was an insect. “[I]t appears that the Baby-face is actually our old friend the yellow and black striped Jerusalem cricket or Sand-cricket, who is nocturnal and usually found under boards or stones.”

But responses in the letters section in following issues, February and April 1947, don’t agree. S.G. Chamberlin of San Fernando, California wrote, “Some years ago…we uncovered what we first thought to be a Jerusalem Cricket. The coloring was the same and it was a little more than two inches long. Later in the day a ranch hand brought us a Jerusalem Cricket and then we noticed quite a difference in the bodies and heads of the two insects. The round face of the first one did attract our attention although we didn’t think of a baby at the time. The ranch foreman placed them in different bottles to show them to a man in the Farm Bureau office who was versed in such things. He reported back that the first insect was called Vinegarones or Sun Spider and supposed to be harmless.

“At the ranch we were told that on the Mexican border there was a similar insect that is supposed to be poisonous.”

And Coila Harris of South Laguna, California wrote, “I was interested in the recent letters about ‘Baby Face.’ This is not the Jerusalem cricket or potato bug, as many believe, but could be mistaken for one of these insects. Baby-face lives down Mexico way. When we were living in El Paso, one of the weird looking bugs was found under our house. It had a body of a large Tarantula, the head was white as a bleached bone and looked like a bald headed baby, a dreadful thing. I was told at the time that Mexicans consider them so poisonous, that if bitten on the finger by one, they chop off the finger.”

Unfortunately for me, the second I saw the mention of a vinegarone, I had a good idea of what this animal might be. And I really don’t want to look at pictures of vinegaroons.

I do try very hard not to be biased against gross-looking insects, because for one thing, they aren’t hurting me and gross is in the eye of the beholder. One person’s “ooh gross” is the other person’s “Oh, that is so neat!” Spiders don’t bother me and as long as I don’t have to look closely at an invertebrate’s mouthparts and things, I’m usually okay. But I get a big case of the nopes when it comes to the vinegaroon.

The vinegaroon is an arachnid, related to spiders and scorpions. It sort of looks like a mixture of the two, although there are lots of species and they vary quite a lot. It’s also called the whip scorpion. The name vinegaroon comes from the acidic liquid it squirts from the base of its whip-like tail if it feels threatened, which smells like vinegar. It lives in tropical and subtropical parts of the Americas and Asia, with one species known from Africa. Most species prefer dark, humid areas and live in burrows in rotting wood or under rocks and leaf litter, but the giant whip scorpion lives in more arid areas in the southwestern United States and Mexico.

The giant whip scorpion grows to around 2.5 inches long, or 6 cm, not counting the long whip-like tail. Like all vinegaroons, it eats insects, slugs, and other small animals. But no one could look at it and think “baby.” It has big claw-like pedipalps in addition to six walking legs and a pair of front legs that are extremely long and thin, that it uses to feel around with. It has eyes—in fact, like spiders it has eight eyes—but it doesn’t see very well and mostly navigates by touch. It’s dark brown or black with some lighter brown markings on its abdomen.

The Jerusalem cricket looks superficially similar to the vinegaroon although it’s not an arachnid. It’s also not a cricket, and it doesn’t have anything to do with Jerusalem since it’s native to the western United States and Mexico. In fact, it’s related to the weta of New Zealand. It lives in the same sort of places that vinegaroons like, burrowing in moist soil and rotting wood, but it mostly eats decaying plant material although it will sometimes eat small insects. It can bite, although it’s not venomous or poisonous, but it can give off a horrible smell if it’s disturbed. It’s yellowish to dark reddish-brown with a black-striped abdomen and a rounded head. It also does not look anything like a baby.

BUT, while it’s known by a couple of Navajo names that translate to variations on “red skull bug,” in Spanish it’s called cara de niño, which means child’s face, or niño de la tierra.

So I think the Desert Magazine editor was right. The Baby of the Desert is the Jerusalem cricket. But I wouldn’t be a bit surprised if the Jerusalem cricket is sometimes confused with the giant whip scorpion. They’re both large nocturnal creatures with a similar body shape and coloring, that live in the same areas and occupy the same habitat. And they’re both horrifically creepy-looking. You know what? I bet you anything that “Baby of the Desert” and “baby-face” are ironic names. BAD BABY.

The Jerusalem cricket doesn’t have any kind of hearing organs akin to ears but it can sense vibrations. Instead of chirping, it drums its abdomen on the ground to attract a mate. This is what the drumming sounds like.

[Jerusalem cricket drumming]

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 179: Lost and Found Animals

This week let’s learn about some animals that were discovered by science, then not seen again and presumed extinct…until they turned up again, safe and sound!

Further reading:

A nose-horned dragon lizard lost to science for over 100 years has been found

Modigliani’s nose-horned lizard has a nose horn, that’s for sure:

Before the little guy above was rediscovered, we basically just had this painting and an old museum specimen:

The deepwater trout:

The dinosaur ant:

The dinosaur ant statue of Poochera:

The false killer whale bite bite bite bite bite:

Some false killer whales:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn about some animals that were discovered by scientists but then lost and assumed extinct, until they were found again many years later. There’s a lot of them and they’re good to think about when we feel down about how many species really are extinct.

We’ll start with a brand new announcement about a reptile called Modigliani’s nose-horned lizard, named after an Italian explorer named Elio Modigliani. He donated a specimen of the lizard to a natural history museum when he got home from exploring Indonesia. That was in 1891, and in 1933 scientists finally described it formally as Harpesaurus modiglianii.

The lizard was especially interesting because it had a horn on its nose that pointed forward and slightly up, and it had spines along its back. It looked like a tiny dragon.

But no one saw another one, not in Indonesia, not anywhere. Researchers knew it had lived where Modigliani said it did because a group of people from Indonesia called the Bataks knew about the lizard. It was part of their mythology and they carved pictures of it. But they didn’t have any, live or dead. Researchers thought it must have gone extinct.

Until 2018. In June 2018, a wildlife biologist named Chairunas Adha Putra was surveying birds in Indonesia, specifically in North Sumatra, when he found a dead lizard. Putra isn’t a lizard expert but he thought it might interest a herpetologist colleague named Thasun Amarasinghe, so he called him. Amarasinghe said oh yeah, that does sound interesting, do you mind sending it to me so I can take a look?

And that’s history, because once he saw it, Amarasinghe knew exactly what the lizard was.

Amarasinghe immediately called Putra, who was still out surveying birds. Could Putra please go back to where he’d found the dead lizard and see if he could find another one, preferably alive? It was really important.

Putra returned obligingly and searched for another lizard. It took him five days, but finally he found one asleep on a branch. He caught it and took pictures, measured it, and observed it before releasing it a few hours later. Hurray for scientists who go that extra mile to help scientists in other fields!

Modigliani’s nose-horned lizard is bright green with a yellow-green belly and spines, plus some mottled orange markings. At least, that’s what it looks like most of the time. It can change colors just like a chameleon. If it’s feeling stressed, it turns a darker gray-green and its spines and belly turn orangey. But it can change its color to match its environment too.

It’s related to a group of lizards called dragon lizards, which includes the bearded dragon that’s often kept as a pet. There are a lot of dragon lizards, and 30 of them have never been seen since they were first described.

Unfortunately, deforestation and habitat loss throughout North Sumatra and other parts of Indonesia threaten many animals, but the Modigliani’s nose-horned lizard was found just outside of a protected area. Hopefully it will stay safely in the protected area while scientists and conservationists study it and work out the best way to keep it safe.

A fish called the deepwater trout, also known as the black kokanee or kunimasu salmon, used to live in a Japanese lake called Lake Tazawa, and that was the only place in the world where it lived. It’s related to the sockeye salmon but it’s much smaller and less flashy. It grows to about a foot long, or 30 cm, and is black and gray in color as an adult, silvery with black markings as a young fish.

In the 1930s, plans to build a hydroelectric power plant on the lake alarmed scientists. The plan was to divert water from the River Tama to work the power station, after which the water would run into the lake. The problem is that the River Tama was acidic with agricultural runoff and water from acidic hot springs in the mountains. The scientists worried that if they didn’t do something to help the fish, soon it would be too late.

In 1935 they moved as many of the fish’s eggs as they could find to other lakes in hopes that the species wouldn’t go extinct. In 1940 the plant was completed, and as expected, the lake’s water became too acidic for the deepwater trout to survive. In fact, it became too acidic for anything to survive. Soon almost everything living in the lake was dead. Within a decade the lake was so acidic that local farmers couldn’t even use it for irrigation, because it just killed any plants it touched. Lake Tazawa is still a mostly dead lake despite several decades of work to lessen its acidity by adding lime to the water.

So, the deepwater trout went extinct in Lake Tazawa along with many other species, and to the scientists’ dismay, they found no sign that the eggs they’d moved to other lakes had survived. The deepwater trout was listed as extinct.

But in 2010, a team of scientists took a closer look at Lake Saiko. It’s one of the lakes where the deepwater trout’s eggs were transferred, and it’s a large, deep lake near Mount Fuji that’s popular with tourists.

The team found nine specimens of deepwater trout. Further study reveals that the population of fish is healthy and numerous enough to survive, as long as it’s left alone. Fortunately, Lake Saiko is inside a national park where the fish can be protected.

Next, let’s look at a species of ant called the dinosaur ant. It was collected by an amateur entomologist named Amy Crocker in 1931 in western Australia. Crocker wasn’t sure what kind of ant she had collected, so she gave the specimens to an entomologist named John Clark. Clark realized the ant was a new species, one that was so different from other ants that he placed it in its own genus.

The dinosaur ant is yellowish in color and workers have a retractable stinger that can inflict painful stings. It has large black eyes that help it navigate at night, since workers are nocturnal. It lives in old-growth woodlands in only a few places in Australia, as far as researchers can tell, and it prefers cool weather. Its colonies are very small, usually less than a hundred ants per nest. Queen ants have vestigial wings while males have fully developed wings, and instead of a nuptial flight that we talked about in episode 175 last month, young queens leave the nest where they’re hatched by just walking away from it instead of flying. Males fly away, and researchers think that once the queens have traveled a certain distance from their birth colony, they release pheromones that attract males. If a queen with an established colony dies, she may be replaced with one of her daughters or the colony may adopt a young queen from outside the colony. Sometimes a queen will go out foraging for her food, instead of being restricted to the nest and fed by workers, as in other ant species.

The dinosaur ant is called that because many of its features are extremely primitive compared to other ants. It most closely resembles the ant genus Prionomyrmex, which went extinct around 29 million years ago. Once researchers realized just how unusual the dinosaur ant was, and how important it might be to our understanding of how ants evolved, they went to collect more specimens to study. But…they couldn’t find any.

For 46 years, entomologists combed western Australia searching for the dinosaur ant, and everyone worried it had gone extinct. It wasn’t until 1977 that a team found it—and not where they expected it to be. Instead of western Australia, the team was searching in South Australia. They found the ant near a tiny town called Poochera, population 34 as of 2019, and the town is now famous among ant enthusiasts who travel there to study the dinosaur ant. There’s a statue of an ant in the town and everything.

The dinosaur ant is now considered to be the most well-studied ant in the world. It’s also still considered critically endangered due to habitat loss and climate change, but it’s easy to keep in captivity and many entomologists do.

Let’s finish with a mammal, and the situation here is a little different. In 1846 a British paleontologist published a book about British fossils, and one of the entries was a description of a dolphin. The description was based on a partially fossilized skull discovered three years before and dated to 126,000 years ago. It was referred to as the false killer whale because its skull resembled that of a modern orca. Scientists thought it was the ancestor of the orca and that it was extinct.

Uh, well, maybe not, because in 1861, a dead but very recently alive one washed up on the coast of Denmark.

The false killer whale is dark gray and grows up to 20 feet long, or 6 meters. It navigates and finds prey using echolocation and mostly eats squid and fish, including sharks. It’s not that closely related to the orca and actually looks more like a pilot whale. It lives in warm and tropical oceans and some research suggests it may migrate to different feeding spots throughout the year. It often travels in large groups of a hundred individuals. That’s as many dolphins as there are ants in dinosaur ant colonies. Part of the year it spends in shallow water, the rest of the year in deeper water, only coming closer to shore to feed.

Researchers are only just starting to learn more than the basics about the false killer whale, and what they’re learning is surprising. It will share food with its family and friends, and will sometimes offer fish to people who are in the water. It sometimes forms mixed-species groups with other species of dolphin, sometimes hybridizes with other closely-related species of dolphin, and will protect other species of dolphin from predators. It’s especially friendly with the bottlenose dolphin. So basically, this is a pretty nice animal to have around if you’re a dolphin, or if you’re a swimming human who would like a free fish. So it’s a good thing that it didn’t go extinct 126,000 years ago.

This is what the false killer whale sounds like:

[false killer whale sounds]

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 175: Three Small Mystery Animals

This week we’ve got three more mystery animals, but they’re small instead of gigantic! Also, I didn’t say anything about it in the episode, but Black lives matter. Stay safe and fight for justice, everyone.

The water chevrotain:

The real-life face-scratcher monster, Schizodactylus monstrosus, more properly known as a dune cricket:

Flying ants:

It’s flying ants, that’s what it is:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about three mystery animals, but they’re not giants. They’re small mysteries.

We’ll start with a small mystery animal from the Republic of Guinea in West Africa. Guinea borders the ocean on its west and is shaped sort of like a croissant. The middle of the country is mountainous, which is where the tankongh is supposedly found.

The tankongh is supposed to look like a small, shy zebra with tusks and it lives in high mountain forests. If that description makes you think of a chevrotain, you may have listened to episode 116, about various unusual hoofed animals. The chevrotain is a small ruminant that has short tusks or fangs instead of horns or antlers like other ruminants. Many have white stripes and spots, including the water chevrotain.

The water chevrotain is the largest of the known chevrotain species, but that’s not saying much because they’re all pretty small. The female is a little larger than the male, but it’s barely more than a foot tall at the shoulder, or 35 cm. The coat is reddish-brown with horizontal white stripes on the sides and white spots on the back. It has a rounded rump with a short tail that’s white underneath. So, you know, it’s sort of rabbit-like, but with long slender legs and tiny cloven hooves like a little bitty pig’s legs. It lives in tropical lowland forests of Africa, always near water. It’s nocturnal and mostly eats fruit, although it will also eat insects and crabs.

But while that sounds a little like the description given of the tankongh, it’s not a very close match. The water chevrotain only lives in lowlands, while the tankongh is supposed to live in the mountains. But the water chevrotain is the only species of chevrotain that lives in Africa; all the others are native to Asia.

So it’s very possible that there’s another chevrotain species hiding in the mountains of Guinea and nearby countries. One visitor to Guinea reported being shown some tiny gray hooves and pieces of black and cream skin supposedly from a tankongh that had been killed and eaten. Since the water chevrotain is red-brown and white, the skin must be from a different animal. Unfortunately, the witness doesn’t report if the hooves were cloven like the chevrotain’s.

Hopefully, if this is a species of chevrotain that’s new to science, it’s safe in its mountain habitat from the deforestation, mining, and other issues threatening many animals in Guinea.

Our next mystery animal is an invertebrate from India called the muhnochwa, or face scratcher. The story apparently started in 2002 and spread throughout Uttar Pradesh state. Stories of a small but hideous insect with six legs covered with spines caused panic during an especially hot, dry summer. The scratch monster supposedly came out at night and attacked sleepers, scratching them greviously with its legs, sometimes causing burns or even killing people. Some witnesses said it was the size of a football and that it glowed or sparkled with red and blue lights.

Then, in late August, someone trapped a scratch monster and took it to Lucknow University for identification. It was a type of dune cricket, usually only found in sandy ground near river banks in parts of India, Pakistan, Sri Lanka, and Myanmar. It grows around three inches long, or almost 8 cm, and is yellowish-brown with sturdy legs that do indeed have spiny structures at the ends. It’s nocturnal although it doesn’t glow or shine.

During the day, the dune cricket lives in burrows it digs in the sandy soil, often very deep burrows since the cricket prefers damp ground. It comes out at night to hunt insects, especially grasshoppers, beetles, and crickets, including other dune crickets. Its antennae are longer than its body and the spines on its legs help it burrow and navigate the sandy soil where it lives.

So while the cricket is scary-looking, it’s not dangerous to humans at all. It certainly couldn’t kill anyone, and probably couldn’t do more than make faint scratches that wouldn’t even pierce the skin.

Possibly what happened was that unusually dry weather caused the crickets to search for moist ground, which means they might have been seen in areas where they were usually extremely rare. Because of its ferocious appearance, people assumed it was dangerous, and then stories about people dying from the insect started circulating, which made people even more frightened. Even after the insect was identified, news outlets kept reporting it as a monstrous, possibly extraterrestrial creature, which made things worse, although fortunately it eventually turned into an urban legend sort of joke once people realized it wasn’t really dangerous.

Oh, and the dune cricket is also an insect in Animal Crossing, called the mole cricket. You have to listen for its chirping, then dig it up, and quick switch to your net to scoop it up as it runs away. But you can’t do that now unless you live in the southern hemisphere, because it’s only in the game between November and May in the northern hemisphere.

Our last small mystery animal is an ant, but not one particular species of ant. In many ant species, once a year a special hatch of eggs develop into ants with wings. The female ants are all queens but there are also plenty of much smaller males. The ants swarm into the air and fly off in a group. This generally happens in summer, especially on hot, humid days.

It’s known as a nuptial swarm because all the ants are ready to mate and start new colonies. Well, the queens start new colonies. The males just die. The queen ants that survive the nuptial swarm after mating land, bite off their own wings, and search for a good place to start a new nest. If the queen survives, she begins laying eggs to hatch workers, using the sperm she collected from males during the flight. She’ll use the sperm for the rest of her life, and in some species that’s something like twenty years. She stores it in a special chamber in her body.

Entomologists know a lot about swarming ants. It’s not exactly a rare phenomenon. Nuptial swarms can sometimes contain millions of individual ants as ants from different colonies combine. This helps reduce the risk of any particular ant being eaten by predators and it helps mix up the gene pool by allowing ants from different colonies to find each other and mate. The females release pheromones that attract the males, and the females usually fly quickly and make the male pursue so queens mate with only the strongest males.

Different species of ant will fly at different times and require different temperature and humidity levels to start the nuptial flight. Many species prefer to fly after rain or thunderstorms and some prefer to fly in late evening or at night when there are fewer predators. Sometimes a swarm is so large it shows up on weather radar.

But that’s not the mysterious part. But is it possible that these clouds of winged ants, which often fly so closely together that they seem to be a solid mass, could be the source of some UFO sightings?

At first thought that’s preposterous. Ants don’t give off light any more than dune crickets do. Or do they?

Ants have hard exoskeletons and sometimes this can reflect sunlight so that the ant appears to glow. But I’m talking about actual glowing ants, not just reflected light.

As you may remember from episode 10, about electric animals, we’re only just now starting to learn about how insects and other invertebrates use electric fields. One thing that we know happens is a build-up of static electricity on the body of flying insects. This is well documented in bumblebees and when a bee lands on a flower, the static electricity actually temporarily changes the flower’s own negative charge. Other bees can sense this change and know that a bee has already visited that flower recently. The static charge also helps pollen adhere to the bee.

So it’s completely possible that flying ants also have an electrostatic charge, from both the action of the wings and the movement of air molecules over the body. Ordinarily that wouldn’t be visible, but in late evening or night-time when the air is already charged from the recent passage of a storm, on rare occasions the whole colony might glow. Since it’s hard enough to tell an object’s size, distance, and speed in the air, a zigzagging, fast-moving, densely compacted swarm of a million or so winged ants glowing in the sky might be taken for a much larger but much farther away aircraft of some kind emitting light.

That’s not to say that every UFO is a swarm of glowing winged ants. Obviously, even if it does happen like this, it would be extremely rare. But it might be the case for the occasional UFO sighting. After all, UFOs are unidentified flying objects, whether that object is an alien spaceship buzzing our planet or a bunch of glowing ants. So if you see a UFO on a humid summer night after a thunderstorm, maybe take a closer look just in case you’re observing an incredibly rare natural phenomenon. And if it isn’t glowing ants, it might be aliens, so either way you might see something amazing.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

 

Episode 141: Zombie Animals

We’re inching closer to Halloween and it’s getting spookier out there! This week let’s learn about some animals that get zombified for various reasons. This is an icky episode, so you might not want to snack while you’re listening. Thanks to Sylvan for the suggestion about the loxo and mud crabs!

Further reading:

Zombie Crabs!

Ladybird made into ‘zombie’ bodyguard by parasitic wasp

A mud crab held by a dangerous wizard:

A paralyzed ladybug sitting on a parasitic wasp cocoon:

A cat and a rodent:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s another week closer to Halloween, so watch out for ghosts and goblins and zombie animals! Zombie animals?! Yes, that’s this week’s topic! Thanks to Sylvan for suggesting the loxo parasite, which we’ll talk about first. Brace yourself, everyone, because it’s about to get icky!

Before we learn about loxo, let’s learn about the mud crab, for reasons that will shortly become clear. Mud crab is the term for a whole lot of small crabs that live in shallow water, mostly in the Atlantic or eastern Pacific Oceans but sometimes in lakes and other fresh water near the ocean, depending on the species. Most are less than an inch long, or under about 30 mm. The largest is called the black-fingered mud crab, which grows to as much as an inch and a half long, or 4 cm. Most mud crabs are scavengers, eating anything they come across, but the black-fingered mud crab will hunt hermit crabs, grabbing their little legs and yanking them right out of their shells. It also uses its strong claws to crack the shells of oysters.

Loxothylacus panopaei is actually a type of barnacle. You know, the little arthropods that fasten themselves to ships and whales and things. But loxo, as it’s called, doesn’t look a bit like those barnacles except in its larval stages. After it hatches, it passes through two larval stages; during the first stage, it molts four times in only two days as it grows rapidly.

Then, during the cyprid larval stage, the microscopic loxo searches for a place to live. The male remains free-swimming but the female cyprid larva is looking for a mud crab. She enters the crab’s body through its gills and waits for it to molt its exoskeleton, during which time she metamorphoses into what’s called a kentrogon, basically a larva with a pointy end. As soon as the crab molts its exoskeleton, the female loxo uses her pointy end, called a stylet, to stab a hole in the crab’s unprotected body. Then she injects parasitic material that actually seems to be the important part of herself, which enters the crab’s blood—called hemolymph in arthropods like crabs. Like most invertebrates, crabs don’t have blood vessels. The hemolymph circulates throughout the inside of the body, coming into direct contact with tissues and organs. This means that once the loxo has infiltrated the hemolymph, she has access to all parts of the crab’s body.

At this stage, the loxo matures into something that isn’t anything like a barnacle, but is an awful lot like something from a horror movie. She grows throughout the crab, forming rootlets that merge with the crab’s body and changes them. Basically, the female loxo becomes part of her crab host. Eventually she controls its nervous system and molds it to her own needs. She even molds the body to her own needs, since if she’s parasitized a male crab she has to widen its body cavity so it can hold her eggs.

The crab stops being able to reproduce and doesn’t want to. It only wants to care for the eggs that the female loxo produces. She extrudes an egg sac so that it hangs beneath the crab’s abdomen, where a male loxo can fertilize it when he swims by. The crab then treats the egg sac as if it contains its own eggs, protecting them and making sure they get plenty of oxygenated water. This is true even for male crabs, which ordinarily don’t take part in protecting their own eggs. The loxo eggs hatch in about a week, and as soon as they do, the female loxo inhabiting the crab starts the process over again. While a mud crab in the wild can live for a few years, once it’s taken over by the loxo parasite it only lives around 45 days.

Most mud crab populations are reasonably resistant to the parasite, but where the loxo has been introduced to areas where it didn’t live before, it can decimate the local mud crab population. This happened in Chesapeake Bay in the 1960s in North America. The local oysters had been so over-fished that they were nearly completely gone, also nearly destroying the local oyster industry. They imported oysters from the Gulf of Mexico to replenish local stocks, but no one realized they were bringing the loxo with those oysters. These days, up to 90% of the Chesapeake Bay mud crabs are infected with the loxo parasite, while only up to 5% of the Gulf of Mexico mud crabs are infected. Researchers at the Chesapeake Bay Parasite Project are working to figure out more about how the loxo infiltrates its host and changes it genetically, and are monitoring infection rates in the wild.

If you think that’s gross, it’s not going to get any better the rest of this episode.

Next let’s learn about another zombie animal, this one a spider. A number of spiders are parasitized by a tiny wasp called Zatypota percontatoria. It lives throughout much of the northern hemisphere and prefers forested areas with plenty of web-building spiders in the family Theridiidae, also known as cobweb spiders.

Cobweb spiders are really common with around 3,000 species that live throughout the world, including the black widow, which by the way is not nearly as dangerous as people think. Some cobweb spiders are kleptoparasites, which means they steal food and other resources from another animal, in this case larger spiders. A kleptoparasite cobweb spider actually lives in the web of a larger spider, and when a small bug gets caught in the web, it steals it. Sometimes the cobweb spider will kill and eat the spider that built the web in the first place too.

But most cobweb spiders are ordinary spiders, and most are quite small, usually only a few millimeters long. Many are marked with pretty patterns in brown, white, black, and other colors. Different species build different kinds of webs, but they all eat small insects.

As for the wasp, it’s about the same size as the spider it’s trying to parasitize, and sometimes smaller. It has long wings, long antennae, and a long abdomen that in the female ends in a sharp ovipositor. The female finds a spider, usually a young spider that’s less able to defend itself, and stabs it in the abdomen with her ovipositor. Then she lays a single egg inside the spider and flies away.

The egg doesn’t bother the spider, although once the egg hatches into a larva it starts to feed on the spider’s hemolymph. Remember, that’s the equivalent of blood in the invertebrate world. At the same time, it’s releasing hormones into the spider that change its habits. Basically the wasp larva controls the spider so that it acts to the benefit of the larva, not itself.

All this takes about a month. When the larva is ready to pupate and metamorphose into an adult wasp, it secretes a final hormone that influences the spider’s behavior. This one causes the spider to spin a strong, cocoon-like web. When the web is finished, the larva bursts out of the spider’s body, killing it, and eats the spider. Then it enters the cocoon and develops into an adult wasp.

Because spiders are good at defending themselves, only about 1% of spiders end up parasitized. I’m sure the spiders think that’s 1% too many. There are other parasitic wasp species in other places, but they all act about the same as Zatypota.

Another wasp, Dinocampus coccinellae, parasitizes ladybugs. Like Zatypota, the female wasp lays one egg in the ladybug’s body. When it hatches, the larva eats the ladybug’s insides while the ladybug continues to go about its ordinary activities. But after several weeks, the larva is ready to pupate. It paralyzes the ladybug, bursts out of its body, and spins a cocoon that the ladybug sits on.

But the ladybug isn’t dead. It protects the cocoon from other insects by twitching and making grasping motions with its legs.

After about a week, the adult wasp emerges from its cocoon and flies away. The ladybug usually dies, but not always. About a quarter of infected ladybugs recover and are fine. Researchers aren’t sure how the wasp larva causes the paralysis. It may release a virus that infects the ladybug or it may have something to do with venom released by the larva.

This wouldn’t be a proper zombie episode if I didn’t talk about that disgusting parasitic fungus that affects certain carpenter ants in the rainforests in Brazil and Thailand. It completely squicks me out so I’m going to explain it very, very quickly.

Fungal spores float through the air and land on an ant, where they stick. They release enzymes that eventually break down the ant’s exoskeleton, allowing the fungus to spread inside the ant’s body. Finally it’s able to control the ant and makes it crawl up the stem of a plant and bite into a leaf vein. The ant is unable to move at this point and eventually dies. The fungus sprouts from inside the ant and grows into stalks, especially from the ant’s head. About a week later it releases spores that go on to infect other ants. Ugh. So glad I’m not an ant.

Ants can sense when one of the colony has contracted the fungus, and will carry the infected ant far away from the colony so it’s less likely to infect others. The ants also groom each other to remove any spores that may have attached. The fungus can completely destroy ant colonies, but it has a parasite of its own, another fungus that stops the first fungus from releasing spores. A related parasitic fungus also infects certain caterpillars.

Look, I’m totally over talking about fungus, so let’s move on.

So is there any chance that a parasite will turn you into a zombie? There’s not, but a behavior-changing parasite does sometimes infect humans. It’s called Toxoplasma gondii, and while its effects on human behavior has been studied extensively, the effects are so minor as to be nearly nonexistent in most cases.

Toxoplasmosis is a disease caused by a single-celled parasite, and it’s one that not only infects humans, it’s really common. I probably have it but I’m not going to think too hard about that. For most people, it never bothers them and never causes any symptoms, or only mild short-term symptoms like a lowgrade cold that takes a few weeks to clear up. But it can be more serious in people with a suppressed or weak immune system, and can cause problems for the baby if its mother gets infected while she’s pregnant.

There are estimates that up to half the people in the world are infected with toxoplasmosis but never know. The reason it’s so common is that the parasite targets cats, and can be spread in cat feces. And, you know, if you scoop out the cat’s litter box you might be exposed. That’s why pregnant women shouldn’t clean up after a cat. Infection can also result from eating undercooked meat from an infected animal, eating unwashed fruit or vegetables, drinking unpasteurized milk, and drinking untreated water.

Any mammal or bird can contract the parasite, but it can only reproduce in a cat’s digestive system. It doesn’t hurt the cat, it just wants to get inside the cat so it can reproduce. And the best way to get inside a cat is to be part of a rodent that a cat eats.

When a rat or other rodent is infected with Toxoplasma gondii, its behavior changes. Suddenly, it starts to like cats. You can probably see where this is going. Not only does it stop avoiding cats, it actually seeks them out. The cat, naturally, can’t believe its luck, kills and eats the rodent, and may become infected.

If you have a pet cat, the best way to reduce the risk of contracting toxoplasmosis is to scoop the litter box daily, then wash your hands. It takes about a day for the parasite to become active after being shed in cat poop, so if you scoop the litter box right away the risk is lower. Researchers are working on vaccines, and they’ve actually already developed a vaccine that’s now used in sheep. If you keep your cat inside, where it’s safer anyway, it’s much less likely to be exposed to the parasite in the first place.

So, take ordinary precautions but don’t worry too much about toxoplasmosis. Unless, of course, you are a rodent.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 093: Insects Large and Small, mostly large

Many thanks this week to listeners Bob, Nicholas, and Damian, who all suggested insects of one kind or another! So this week is an insect extravaganza, or at least we learn about some gigantic insects, the rarest insect in the world, and a tiny ant.

The Lord Howe Island phasmid:

The longest insect in the world:

The Queen Alexandra’s birdwing butterfly:

The Hercules beetle with random frog. Onward, my steed!

Further reading:

An article about phasmid eggs

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’ve received a bunch of excellent topic suggestions this year and I’m getting behind on addressing them, so the next few weeks will mostly be listener suggestions. This week we’re going to look at a topic several listeners have suggested…insects.

Now, you know insects are not my favorite, but they are definitely interesting. So thanks to listeners Bob, Nicholas, and Damian, we’re going to learn about various horrifying, I mean fascinating, insects!

We’ll start with some very small insects. I could probably do a whole episode just about ants, and maybe one day I will, but right now let’s look at a type of ant suggested by Bob. Bob lives in California and mentioned that the type of ant common in that part of the United States is the Argentine ant. It’s native to South America, specifically lowlands around the Paraná River, but it’s spread to many other parts of the world.

The Argentine ant is only about 2 to 3 mm long and are brownish in color. The queen ants are about twice the size of the worker ants, and each colony has many queens, unlike other ant species that may only have one queen per colony. Queen ants are the only ones that lay eggs. Worker ants find food and bring it back to the colony, tend the queen and her eggs, and dig the shallow nest where the colony lives.

Argentine ants are omnivorous, eating pretty much anything, and are definitely pests. They get into people’s kitchens to find food and will even make nests inside houses. Because a colony has more than one queen, the colonies are hard to eradicate. They also displace native ant species, which can impact the entire ecosystem since other animals that depend on native ants as their primary food won’t be able to find enough to eat. Argentine ants also cause problems for farmers, partly because they eat the larvae of pollinating insects, partly because they tend aphids for the honeydew that aphids secrete. Aphids are a pest to many crops, and the last thing farmers want is more aphids around—but Argentine ants want all the aphids they can get.

Researchers have found out something really unusual about Argentine ants. The ants that still live in their native habitat are genetically diverse and territorial, with different colonies fighting each other for nesting sites and hunting grounds. This keeps the population under control naturally. But outside of its native habitat, all the Argentine ants in the world are so genetically similar that in many cases, ants from different colonies act as though they were from the same colony. They don’t fight for territory, and instead act like a supercolony that can stretch for hundreds of miles, killing off or displacing native ants and other insect species.

But in some parts of North America, the Argentine ant is facing an ant species that may end up beating it at its own game. The Asian needle ant has started taking territory from the Argentine ant, helped by its resistance to cold weather. Both species of ant become less active in winter, but the Asian needle ant starts reproducing and foraging much earlier in the spring than the Argentine ant. This gives it a head start every year. Plus, the Asian needle ant is aggressive and has a venomous sting. Unfortunately, the Asian needle ant is just as bad an invasive species as the Argentine ant, driving out native ant species—and, in fact, it’s worse because some people are allergic to its sting.

Now let’s go from tiny ants to an insect I was terrified of as a kid, the stick insect, also called walking sticks or phasmids. I like the word phasmid. I don’t know why the idea of a stick insect was so scary to kid me, except that I liked to climb trees and I think I thought one day I’d climb a tree and discover that some of those sticks were not actually part of the tree. Nicholas suggests the Lord Howe Island phasmid in particular, which isn’t just a stick insect, it’s the rarest insect in the world. AND it’s enormous! In fact, it’s sometimes called the land lobster or tree lobster.

The Lord Howe Island phasmid can grow eight inches long, or 20 cm, and can weigh a full ounce, or 25 grams. Males are smaller than females. It has a round head with short antennae, sort of like a cricket, but its body is long and heavy with big legs. It’s black in color with no wings. It’s thicker than most stick insects and doesn’t so much resemble a stick as a cricket on steroids. I’m looking at a picture right now of someone holding one on the palm of their hand, and the insect is literally longer than their palm and almost as long as their palm and fingers. Put it down. Don’t touch it.

These days the Lord Howe Island phasmid lives in one place. That place is not Lord Howe Island off the coast of Australia. That’s where it used to live, and it was so common and so large that fishermen used it as bait. But rats and mice invaded the island in 1918, and by 1920 they’d eaten all the phasmids, which were declared extinct in 1960. But in 1964, someone found a dead phasmid on Ball’s Pyramid, a volcanic islet 12 miles, or 20 km, away from Lord Howe Island.

Ball’s Pyramid is what’s known as a volcanic stack, the eroded remnant of a volcano which is part of the submerged continent of Zealandia. It’s basically a cliff rising straight up out of the ocean. It’s the tallest volcanic stack in the world, 1,844 feet high, or 562 meters, 3,600 feet long, or 1,100 meters, and 980 feet wide, or 300 meters. It’s surrounded by rough seas and barely submerged rocks, and there’s pretty much nothing on it, so not very many people have ever tried to land on the islet. A group of mountain climbers scaled it in 1965 and again in 1979, but in 1982 access to the islet was restricted. It’s now part of the Lord Howe Island Marine Park.

During the successful climbs of Ball’s Pyramid, and a few unsuccessful climbs, dead phasmids were photographed but no live ones found. In 2001, a couple of entomologists landed to make a survey of the islet, primarily to determine whether the Lord Howe Island phasmid was alive on the island or actually extinct. They were pretty sure it was extinct. They found some Melaleuca howeana shrubs growing in a few cracks in the rock, and incidentally that’s a subspecies of tea tree that only grows on Ball’s Pyramid and Lord Howe Island. It grows up to ten feet tall, or 4 meters, and almost as wide. And in one of the shrubs they found 24 live Lord Howe Island phasmids.

Since then, eggs have been collected from the wild and relocated to a captive breeding program, which has been successful so far. Hopefully Lord Howe Island phasmids will be rereleased onto Lord Howe Island, once the rats and mice are eradicated.

Researchers think the Lord Howe Island phasmid was able to survive in such low numbers because females are able to reproduce without being fertilized by males, called parthenogenesis. Researchers have compared DNA taken from the Ball’s Pyramid insects to museum specimens gathered from Lord Howe Island prior to 1920 and determined that they are the same species.

The term phasmid, of course, refers to an order of insects that are mostly camouflaged to look like twigs or leaves, and it contains the longest insects in the world. And that’s good, because listener Damian wants to know about the biggest insects alive today.

The longest insect is Phryganistria chinensis Zhao, a stick insect only discovered in 2014 by researcher Zhao Li of the Insect Museum of West China. Locals in the mountains had told him about a massively long phasmid and he finally tracked one down. He brought it back alive to the museum, where it laid six eggs. Can you possibly imagine how excited he must have been by those eggs? When they hatched, the smallest of the babies was 26 centimeters long, or over ten inches. The adult female measured 62.4 cm, or just over two feet long. HOLY CRAP. TWO FEET LONG. That’s more of a walking branch than a walking stick. Not only that, its legs are almost as long as its body.

Since then, the babies have grown up and one of them, another female, is now the longest living insect ever measured, at 64 cm, or 25 inches. So you know what this means. It means there are some of them in the wild that are probably even longer.

Before the discovery of Zhao’s phasmid, the longest insect known was called Chan’s megastick, which was 22.3 inches long, or 56.7 cm. It was discovered in 2008 in Borneo in Southeast Asia, and only six specimens have ever been found. That means it too probably has even longer individuals living in the wild.

Many stick insects lay eggs that look like seeds. For a long time researchers weren’t sure why. After all, birds eat seeds. Why would an insect lay eggs that might attract hungry birds? But it turns out that the eggs contain a deposit of fat that attracts seed-eating ants, and the ants carry the eggs back to their nest and bury them. The eggs are then safe from birds, parasitic wasps, and other predators. We have come full circle back to ants, notice? Not only that, but researchers in Japan tested whether the protective coating on some seed-mimicking phasmid eggs would protect the eggs if they were eaten by birds. Sure enough, when they fed the eggs to the brown-eared bulbul, a bird known to eat phasmids, a few of the eggs survived and hatched. So it’s likely that phasmid eggs resemble seeds to attract ants but it’s okay if they also attract birds—in fact, it might even be a good thing since the birds would spread the eggs to new areas. Special thanks to Nicholas, who sent me links to several articles about stick insects, including the article about phasmid eggs. I’ll put a link in the show notes if you want to read the article, because it’s really interesting.

So the longest insects are phasmids, but what is the heaviest insect alive? That would be the Little Barrier Island giant weta from New Zealand, also called the wetapunga, which has weighed in at 72 grams, or over 2 ½ ounces. That’s heavier than some songbirds and mice. The wetapunga is basically an enormous cricket and somewhat resembles a gigantic, rather elongated version of one of my least favorite bugs, the cave cricket. It’s that same sort of sickly orangey tan color. If you look at it from the right angle it looks kind of like a lobster, which I also don’t like. Not only can the wetapunga be really heavy, it’s also long—not stick insect long, but a respectable four inches or so long, or 10 cm, and even longer if you count the stretched-out legs.

It eats plants and is mostly nocturnal.

Like the Lord Howe Island phasmid, the wetapunga is vulnerable to introduced predators. It only survives in the wild on Little Barrier Island, and is now the subject of a successful captive breeding program. It’s been around for 190 million years so it would be a shame to let it go extinct now.

The insect with the biggest wingspan is a butterfly called Queen Alexandra’s birdwing, which can have a wingspan almost a foot across, or over 25 cm. Its body is just over 3 inches long, or 8 cm. The female is larger than the male and has brown wings with pretty white and yellow markings. The male looks much different, with iridescent blue-green wings and a bright yellow abdomen. The butterfly is a strong flyer that spends a lot of time flying much higher that typical butterflies do. Males court females with a spectacular aerial dance.

The Queen Alexandra’s birdwing lives in eastern Papua New Guinea in a coastal rainforest, a habitat that is only about 40 square miles total, or 100 square km. Not only is it threatened by habitat loss due to palm oil plantations, which are absolutely insidious and seriously, you should stop buying products that use palm oil, but a volcanic eruption in the 1950s destroyed part of its habitat too. It’s protected and no one is supposed to buy, sell, or trade individuals, live or dead. Hopefully conservationists can work out a way to breed the butterfly in captivity.

The biggest beetle alive today is probably the Hercules beetle, which lives in the rainforests of Central and South America. It’s only longer than the titan beetle that lives in the Amazon rainforest because of its long rhinoceros-like horns, which push its length to 7 inches, or 17 cm. A male uses his horns to fight by grabbing another male with his horns and throwing him. The male Hercules beetle is black with yellowish or yellow-green wing cases. Females are usually all black and don’t have horns. Hercules beetle larvae are humongous and weigh a whopping 100 grams, or 3.5 ounces. So technically the Hercules beetle larva is the heaviest insect, but I’ve disqualified it because it’s not fully grown and anyway, it eats rotting wood. I wouldn’t be surprised if half its weight is just all the rotten wood it’s eaten. The adult beetles eat fruit.

So what about extinct insects? Were there ever insects even bigger than the ones alive today? The answer, as you may already know, is a big loud YES. Back in the early Permian era, around 290 million years ago, two species of flying insect called a griffinfly, which resembled a dragonfly, had a wingspan of almost two feet across, or 71 cm, and a body length of 17 inches, or 43 cm. Researchers estimate they may have weighed as much as a pound, or 450 grams.

If you were brave enough to listen to the spiders episode a few weeks ago, you may remember that spiders, and insects, can’t grow too big or they literally can’t get enough oxygen to function. So how did a huge active flying insect of that size manage?

One theory is that the atmosphere in the Permian contained more oxygen than the current level, which made it easier for insects to get the oxygen they needed. Air today is made of about 21% oxygen, with the other 80% made up of other gases, mostly nitrogen, but in the early Permian oxygen content was around 30%, although that was down from a peak of 35% only ten million years before. By the late Permian oxygen content had plunged to 16% and even reached as low as 12% at the beginning of the Triassic, killing off many animals and fragmenting populations of the ones that survived. Because the oxygen content was so low, animals could only survive at or near sea level. Even the lowest mountains were deadly because the air at higher elevations naturally contains less oxygen. Researchers estimate that breathing air with only 12% oxygen at sea level would be like breathing air at 17,400 feet, or 5,300 meters. Humans can’t survive at elevations above about 19,500 feet, or 5,950 meters. The reduction of oxygen in the atmosphere led to a massive extinction event called the Great Dying, where 90% of all marine life and almost 75% of all life on land went extinct around 251 million years ago.

Researchers aren’t sure what caused the de-oxygenation of the atmosphere, but it’s possible the massive volcanic activity near the end of the Permian played a part by releasing carbon dioxide and other gases into the atmosphere. The rock record during the Permian shows the results in stark detail: limestone in the older rock strata that’s full of fossils and the fossilized burrows of little animals that lived in the soft mud at the bottom of shallow oceans. Then there’s a mineralized layer of rock full of pyrite, which forms in low atmospheric conditions. Above this are bands of clay full of minerals from volcanic eruptions but with no fossils present. Above that are mudstone layers where fossils finally start appearing again in small numbers as life rebounded after the extinction event.

I’ve sort of gotten away from huge insects here, so I’ll finish by pointing out that clearly the phasmids of today aren’t having any issues with growing really big. So, you know, watch out where you put your hands when you’re climbing trees.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!