Episode 466: Lots of Invertebrates!

Here’s the big invertebrate episode I’ve been promising people! Thanks to Sam, warbrlwatchr, Jayson, Richard from NC, Holly, Kabir, Stewie, Thaddeus, and Trech for their suggestions this week!

Further reading:

Does the Spiral Siphonophore Reign as the Longest Animal in the World?

The common nawab butterfly:

The common nawab caterpillar:

A velvet worm:

A giant siphonophore [photo by Catriona Munro, Stefan Siebert, Felipe Zapata, Mark Howison, Alejandro Damian-Serrano, Samuel H. Church, Freya E.Goetz, Philip R. Pugh, Steven H.D.Haddock, Casey W.Dunn – https://www.sciencedirect.com/science/article/pii/S1055790318300460#f0030]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Hello to 2026! This is usually where I announce that I’m going to do a series of themed episodes throughout the coming year, and usually I forget all about it after a few months. This year I have a different announcement. After our nine-year anniversary next month, which is episode 470, instead of new episodes I’m going to be switching to old Patreon episodes. I closed the Patreon permanently at the end of December but all the best episodes will now run in the main feed until our ten-year anniversary in February 2027. That’s episode 523, when we’ll have a big new episode that will also be the very last one ever.

I thought this was the best way to close out the podcast instead of just stopping one day. The only problem is the big list of suggestions. During January I’m going to cover as many suggestions as I possibly can. This week’s episode is about invertebrates, and in the next few weeks we’ll have an episode about mammals, one about reptiles and birds, and one about amphibians and fish, although I don’t know what order they’ll be in yet. Episode 470 will be about animals discovered in 2025, along with some corrections and updates.

I hope no one is sad about the podcast ending! You have a whole year to get used to it, and the old episodes will remain forever on the website so you can listen whenever you like.

All that out of the way, let’s start 2026 right with a whole lot of invertebrates! Thanks to Sam, warbrlwatchr, Jayson, Richard from NC, Holly, Kabir, Stewie, Thaddeus, and Trech for their suggestions this week!

Let’s start with Trech’s suggestion, a humble ant called the weaver ant. It’s also called the green ant even though not all species are green, because a species found in Australia is partially green. Most species are red, brown, or yellowish, and they’re found in parts of northern and western Australia, southern Asia, and on most islands in between the two areas, and in parts of central Africa. The weaver ant lives in trees in tropical areas, and gets the name weaver ant because of the way it makes its nest.

The nests are made out of leaves, but the leaves are still growing on the tree. Worker ants grab the edge of a leaf in their mandibles, then pull the leaf toward another leaf or sometimes double the leaf over. Sometimes ants have to make a chain to reach another leaf, with each ant grabbing the next ant around the middle until the ant at the end of the chain can grab the edge of a leaf. While the leaf is being pulled into place alongside the edge of another leaf, or the opposite edge of the same leaf, other workers bring larvae from an established part of the nest. The larvae secrete silk to make cocoons, but a worker ant holds a larva at the edge of the leaf, taps its little head, and the larva secretes silk that the workers use to bind the leaf edges together. A single colony has multiple nests, often in more than one tree, and are constantly constructing new ones as the old leaves are damaged by weather or just die off naturally.

The weaver ant mainly eats insects, which is good for the trees because many of the insects the ants kill and eat are ones that can damage trees. This is one reason why farmers in some places like seeing weaver ants, especially fruit farmers, and sometimes farmers will even buy a weaver ant colony starter pack to place in their trees deliberately. The farmer doesn’t have to use pesticides, and the weaver ants even cause some fruit- and leaf-eating animals to stay away, because the ants can give a painful bite. People in many areas also eat the weaver ant larvae, which is considered a delicacy.

Our next suggestion is by Holly, the zombie snail. I actually covered this in a Patreon episode, but I didn’t schedule it for next year because I thought I’d used the information already in a regular episode, but now I can’t find it. So let’s talk about it now!

In August of 2019, hikers in Taiwan came across a snail that looked like it was on its way to a rave. It had what looked like flashing neon decorations in its head, pulsing in green and orange. Strobing colors are just not something you’d expect to find on an animal, or if you did it would be a deep-sea animal. The situation is not good for the snail, let me tell you. It’s due to a parasitic flatworm called the green-banded broodsac.

The flatworm infects birds, but to get into the bird, first it has to get into a snail. To get into a snail, it has to be in a bird, though, because it lives in the cloaca of a bird and attaches its eggs to the bird’s droppings. When a snail eats a yummy bird dropping, it also eats the eggs. The eggs hatch in the snail’s body instead of being digested, where eventually they develop into sporocysts. That’s a branched structure that spreads throughout the snail’s body, including into its head and eyestalks.

The sporocyst branches that are in the snail’s eyestalks further develop into broodsacs, which look like little worms or caterpillars banded with green and orange or green and yellow, sometimes with black or brown bands too—it depends on the species. About the time the broodsacs are ready for the next stage of life, the parasite takes control of the snail’s brain. The snail goes out in daylight and sits somewhere conspicuous, and its body, or sometimes just its head or eyestalks, becomes semi-translucent so that the broodsacs show through it. Then the broodsacs swell up and start to pulse.

The colors and movement resemble a caterpillar enough that it attracts birds that eat caterpillars. A bird will fly up, grab what it thinks is a caterpillar, and eat it up. The broodsac develops into a mature flatworm in the bird’s digestive system, and sticks itself to the walls of the cloaca with two suckers, and the whole process starts again.

The snail gets the worst part of this bargain, naturally, but it doesn’t necessarily die. It can survive for a year or more even with the parasite living in it, and it can still use its eyes. When it’s bird time, the bird isn’t interested in the snail itself. It just wants what it thinks is a caterpillar, and a lot of times it just snips the broodsac out of the snail’s eyestalk without doing a lot of damage to the snail.

If a bird doesn’t show up right away, sometimes the broodsac will burst out of the eyestalk anyway. It can survive for up to an hour outside the snail and continues to pulsate, so it will sometimes still get eaten by a bird.

Okay, that was disgusting. Let’s move on quickly to the tiger beetle, suggested by both Sam and warblrwatchr.

There are thousands of tiger beetle species known and they live all over the world, except for Antarctica. Because there are so many different species in so many different habitats, they don’t all look the same, but many common species are reddish-orange with black stripes, which is where the name tiger beetle comes from. Others are plain black or gray, shiny blue, dark or pale brown, spotted, mottled, iridescent, bumpy, plain, bulky, or lightly built. They vary a lot, but one thing they all share are long legs.

That’s because the tiger beetle is famous for its running speed. Not all species can fly, but even in the ones that can, its wings are small and it can’t fly far. But it can run so fast that scientists have discovered that its simple eyes can’t gather enough photons for the brain to process an image of its surroundings while it runs. That’s why the beetle will run extremely fast, then stop for a moment before running again. Its brain needs a moment to catch up.

The tiger beetle eats insects and other small animals, which it runs after to catch. The fastest species known lives around the shores of Lake Eyre in South Australia, Rivacindela hudsoni. It grows around 20 mm long, and can run as much as 5.6 mph, or 9 km/hour, not that it’s going to be running for an entire hour at a time. Still, that’s incredibly fast for something with little teeny legs.

Another insect that is really fast is called the common nawab, suggested by Jayson. It’s a butterfly that lives in tropical forests and rainforests in South Asia and many islands. Its wings are mainly brown or black with a big yellow or greenish spot in the middle and some little white spots along the edges, and the hind wings have two little tails that look like spikes. It’s really pretty and has a wingspan more than three inches across, or about 8.5 cm.

The common nawab spends most of its time in the forest canopy, flying quickly from flower to flower. Females will travel long distances, but when a female is ready to lay her eggs, she returns to where she hatched. The male stays in his territory, and will chase away other common nawab males if they approach.

The common nawab caterpillar is green with pale yellow stripes, and it has four horn-like projections on its head, which is why it’s called the dragon-headed caterpillar. It’s really awesome-looking and I put it on the list to cover years ago, then forgot it until Jayson recommended it. But it turns out there’s not a lot known about the common nawab, so there’s not a lot to say about it.

Next, Richard from NC suggested the velvet worm. It’s not a worm and it’s not made of velvet, although its body is soft and velvety to the touch. It’s long and fairly thin, sort of like a caterpillar in shape but with lots of stubby little legs. There are hundreds of species known in two families. Most species of velvet worm are found in South America and Australia.

Some species of velvet worm can grow up to 8 and a half inches long, or 22 cm, but most are much smaller. The smallest lives in New Zealand on the South Island, and only grows up to 10 mm long, with 13 pairs of legs. The largest lives in Costa Rica in Central America and was only discovered in 2010. It has up to 41 pairs of legs, although males only have 34 pairs.

Various species of velvet worm are different colors, although a lot of them are reddish, brown, or orangey-brown. Most species have simple eyes, although some have no eyes at all. Its legs are stubby, hollow, and very simple, with a pair of tiny chitin claws at the ends. The claws are retractable and help it climb around. It likes humid, dark places like mossy rocks, leaf litter, fallen logs, caves, and similar habitats. Some species are solitary but others live in social groups of closely related individuals.

The velvet worm is an ambush predator, and it hunts in a really weird way. It’s nocturnal and its eyes are not only very simple, but the velvet worm can’t even see ahead of it because its eyes are behind a pair of fleshy antennae that it uses to feel its way delicately forward. It walks so softly on its little legs that the small insects and other invertebrates that it preys on often don’t even notice it. When it comes across an animal, it uses its antennae to very carefully touch it and decide whether it’s worth attacking.

When it decides to attack, it squirts slime that acts like glue. It has a gland on either side of its head that squirts slime quite accurately. Once the prey is immobilized, the velvet worm may give smaller squirts of slime at dangerous parts, like the fangs of spiders. Then it punctures the body of its prey with its jaws and injects saliva, which kills the animal and starts to liquefy its insides. While the velvet worm is waiting for this to happen, it eats up its slime to reuse it, then sucks the liquid out of the prey. This can take a long time depending on the size of the animal—more than an hour.

A huge number of invertebrates, including all insects and crustaceans, are arthropods, and velvet worms look like they should belong to the phylum Arthropoda. But arthropods always have jointed legs. Velvet worm legs don’t have joints.

Velvet worms aren’t arthropods, although they’re closely related. A modern-day velvet worm looks surprisingly like an animal that lived half a billion years ago, Antennacanthopodia, although it lived in the ocean and all velvet worms live on land. Scientists think that the velvet worm’s closest living relative is a very small invertebrate called the tardigrade, or water bear, which is Stewie’s suggestion.

The water bear isn’t a bear but a tiny eight-legged animal that barely ever grows larger than 1.5 millimeters. Some species are microscopic. There are about 1,300 known species of water bear and they all look pretty similar, like a plump eight-legged stuffed animal with a tubular mouth that looks a little like a pig’s snout. It uses six of its fat little legs for walking and the hind two to cling to the moss and other plant material where it lives. Each leg has four to eight long hooked claws. Like the velvet worm, the tardigrade’s legs don’t have joints. They can bend wherever they want.

Tardigrades have the reputation of being extremophiles, able to withstand incredible heat, cold, radiation, space, and anything else scientists can think of. In reality, it’s just a little guy that mostly lives in moss and eats tiny animals or plant material. It is tough, and some species can indeed withstand extreme heat, cold, and so forth, but only for short amounts of time.

The tardigrade’s success is mainly due to its ability to suspend its metabolism, during which time the water in its body is replaced with a type of protein that protects its cells from damage. It retracts its legs and rearranges its internal organs so it can curl up into a teeny barrel shape, at which point it’s called a tun. It needs a moist environment, and if its environment dries out too much, the water bear will automatically go into this suspended state, called cryptobiosis. When conditions improve, the tardigrade returns to normal.

Another animal has a similar ability, and it’s a suggestion by Thaddeus, the immortal jellyfish. It’s barely more than 4 mm across as an adult, and lives throughout much of the world’s oceans, especially where it’s warm. It eats tiny food, including plankton and fish eggs, which it grabs with its tiny tentacles. Small as it is, the immortal jellyfish has stinging cells in its tentacles. It’s mostly transparent, although its stomach is red and an adult jelly has up to 90 white tentacles.

The immortal jellyfish starts life as a larva called a planula, which can swim, but when it finds a place it likes, it sticks itself to a rock or shell, or just onto the sea floor. There it develops into a polyp colony, and this colony buds new polyps that are clones of the original. These polyps swim away and grow into jellyfish, which spawn and develop eggs, and those eggs hatch into new planulae.

Polyps can live for years, while adult jellies, called medusae, usually only live a few months. But if an adult immortal jellyfish is injured, starving, sick, or otherwise under stress, it can transform back into a polyp. It forms a new polyp colony and buds clones of itself that then grow into adult jellies.

It’s the only organism known that can revert to an earlier stage of life after reaching sexual maturity–but only an individual at the adult stage, called the medusa stage, can revert to an earlier stage of development, and an individual can only achieve the medusa stage once after it buds from the polyp colony. If it reverts to the polyp stage, it will remain a polyp until it eventually dies, so it’s not really immortal but it’s still very cool.

All the animals we’ve talked about today have been quite small. Let’s finish with a suggestion from Kabir, a deep-sea animal that’s really big! It’s the giant siphonophore, Praya dubia, which lives in cold ocean water around many parts of the world. It’s one of the longest creatures known to exist, but it’s not a single animal. Each siphonophore is a colony of tiny animals called zooids, all clones although they perform different functions so the whole colony can thrive. Some zooids help the colony swim, while others have tiny tentacles that grab prey, and others digest the food and disperse the nutrients to the zooids around it.

Some siphonophores are small but some can grow quite large. The Portuguese man o’ war, which looks like a floating jellyfish, is actually a type of siphonophore. Its stinging tentacles can be 100 feet long, or 30 m. Other siphonophores are long, transparent, gelatinous strings that float through the depths of the sea, and that’s the kind the giant siphonophore is.

The giant siphonophore can definitely grow longer than 160 feet, or 50 meters, and may grow considerably longer. Siphonophores are delicate, and if they get washed too close to shore or the surface, waves and currents can tear them into pieces. Other than that, and maybe the occasional whale or big fish swimming right through them and breaking them up, there’s really no reason why a siphonophore can’t just keep on growing and growing and growing…

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, corrections, or suggestions, email us at strangeanimalspodcast@gmail.com.

Thanks for listening!

Episode 443: Ant Lions and the Horrible Seal Problem

Thanks to Jayson and warblrwatchr for suggesting this week’s invertebrates!

Further reading:

Parasite of the Day: Orthohalarachne attenuata

Trap-jaw ants jump with their jaws to escape the antlion’s den

Get out of my noooooose:

An ant lion pit:

An ant lion larva:

A lovely adult antlion, Nannoleon, which lives in parts of Africa [photo by Alandmanson – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=58068259]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s almost August, and of course we’re doing invertebrate August again this year. Let’s get ready by talking about a few extra invertebrates this week, with suggestions from Jayson and warblrwatchr.

Before we get started, I have some quick housekeeping. First, a big shout-out to Nora who emailed me recently. I just wanted to say hi and I hope you’re having a good day. Next, I’m moving in just a few weeks to Atlanta, Georgia! I know I was talking forever about moving to Bloomington, Indiana, but I changed my mind. The next few episodes are already scheduled so I can concentrate on moving.

I’m about 75% packed at this point and have given away or sold a lot of stuff, including a lot of books. But I have a collection that a listener might be interested in. I offered it to the patrons last month but no one grabbed it, so I’ll offer it here.

I have every issue of the little magazine Flying Snake ever published, 30 in all. They’re a fun hodgepodge of articles, reprinted newspaper clippings, old photos, and other stuff more or less associated with cryptozoology and weirdness in general. I’ve decided they take up too much space on my shelves to take with me to Atlanta. If you’re interested in giving them a home, let me know and I’ll box them up and send them to you for free. The first person who says they’ll take them will get them, but the catch is that you have to take them all. I won’t just send you a few. I’ll also throw in all four volumes of the Journal of Cryptozoology. This offer stands until mid-August when I move, because if I have to move them to my new apartment, I’m just going to keep them.

Okay, now let’s learn about some invertebrates! First, Jayson wanted to learn about a tiny invertebrate called Orthohalarachne attenuata. It doesn’t have a common name because most people will never ever encounter it, or think about it, and I kind of wish I didn’t have to think about it because it’s gross. Thanks a lot, Jayson. It’s a mite that lives in the nasal passages of seals, sea lions, and walruses. It’s incredibly common and usually doesn’t bother the seal very much, although sometimes it can cause the seal to have difficulty breathing if the infestation is heavy.

The adult mite spends its whole life anchored in the seal’s nasal passages with sharp little claws, although it can move around if it wants to. Its larvae are more active. The mite is mainly spread by seals sneezing on each other, which spreads the larvae onto another seal, and the larvae crawl into the new seal’s nose and mouth.

Unless you’re a seal or other pinniped, this might sound gross but probably doesn’t bother you too much. But consider that in 1984, a man went to the doctor when one of his eyes started hurting. The doctor found a mite attached to his eyeball, and yes, it was Orthohalarachne attenuata. The man had visited Sea World two days before he started feeling pain in his eye, and happened to be close to some walruses that were sneezing.

Luckily for pinnipeds kept in captivity in zoos that give their animals proper care, mite infestations can be treated successfully by veterinarians.

Let’s move on quickly to an invertebrate that isn’t a parasite that can get in your eyes, the ant lion! It was suggested by warblrwatchr and I’ve been wanting to cover it for a while. When I was a kid, there was a strip of soft powdery dirt under the eaves of the school gym that always had ant lions in it, and I would squat down during recess and watch to see if any ants would fall in and get caught. Sometimes this did actually happen and the resulting battle between ant and ant lion was exciting and kind of horrible to witness.

The ant lion is actually the larva of antlion lacewing, which look like a small damselfly that is mainly active at dusk. Ant lions live throughout the world, with more than 2,000 species known. Some wait for prey while hidden in leaf litter, while some hide in rock crevices and become camouflaged by lichens growing on them. Many others dig little pits in sand or soft dirt. They’re also called the doodlebug in some places, because when they’re looking for a place to dig a little pit, they make a loopy pattern in the dirt as they’re walking around.

The ant lion’s body is robust and has little backwards-pointing bristles that help it dig itself into the dirt and stay there without moving until it needs to. It waits at the bottom of the pit, hidden underground with just its long, sharp jaws showing through the dirt, until an ant or other insect falls in. The ant can’t climb out because the sides of the pit are so sharply angled that they start to cave in, sending the ant down to the bottom of the pit. If that doesn’t work, the ant lion kicks dirt at the ant so that it falls. Then the ant lion grabs the ant in its fearsome jaws and injects venom and digestive enzymes into it, and that is the end of the ant. The jaws actually have little projections that are hollow and act like horrible little straws, so that the ant lion sucks the liquefied ant insides into its digestive system.

One species of ant, the trap-jaw ant, can sometimes escape the ant lion’s pit by using its own fearsome jaws as a spring to bounce itself to safety. There are many species of trap-jaw ant that live in tropical and subtropical areas throughout much of the world, including Africa, Asia, Australia, and much of the Americas. Its long jaws can snap closed extremely quickly and with a lot of force, allowing it to kill prey, bite pieces off of food, and lots of other activities. They can also jump with their jaws, and this improves their ability to bounce right out of the ant lion pit.

The ant lion can remain in its larval stage for years, maturing slowly. It has no anus but it doesn’t expel the waste products that it can’t digest, it just stores them in its body. When it does finally pupate, it uses a lot of the waste to produce silk for its cocoon. Whatever is left over it leaves behind when it emerges from its cocoon.

The cocoons are naturally hidden underground, and when the adult antlion lacewing emerges, it digs its way to the surface and rests while its wings open. Compared to the tough little larva, the adult is delicate and not very robust. It doesn’t live very long, usually no more than a few weeks, and most species eat pollen or nectar, or maybe tiny insects. It mainly just seeks out a mate, and the female lays her eggs in soft soil. When they hatch, they build their first tiny pits and the cycle starts again. And nobody gets into anybody’s eyeballs.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 416: The heaviest tarantula and the bitey-est ant

Thanks to Siya, Sutton, Owen, and Aksel for suggesting this week’s topic, the Goliath birdeater tarantula and the fire ant!

Further listening:

The TEETH Podcast

Further reading:

Tropical fire ants traveled the world on 16th century ships

The Goliath birdeater tarantula, bigger than some kittens:

Fire ants:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about two invertebrates, a spider and an insect. Thanks to Siya, Sutton, Owen, and Aksel for suggesting them!

We’ll start with the spider, which Siya and Sutton both suggested. It’s the goliath tarantula, also called the goliath birdeater. You know it has to be a big spider if it’s called a birdeater. We’ve talked about it before, but not in a long time.

The goliath birdeater is the heaviest spider in the world. If you think of the usual spider, even a big one, it’s still pretty lightweight. Let’s use a wolf spider as an example, which is found just about everywhere in the world. It’s a hunting spider that doesn’t spin a web, and while different species vary in size, the biggest is the Carolina wolf spider found in many parts of North America. A big female can have a legspan of four inches across, or 10 cm, with a body up to an inch and a half long, or 35 mm—but it weighs less than an ounce. That’s barely 28 grams, or just a little heavier than five sheets of printer paper.

In comparison, the goliath birdeater tarantula can weigh over 6 ounces, or 175 grams. That’s heavier than a baseball, or two packs of cards. Its legspan can be as much as 12 inches across, or 30 cm with a body length of about 5 inches, or 13 cm. It’s brown or golden in color and lives in South America, especially in swampy parts of the Amazon rainforest. It’s nocturnal and mostly eats worms, large insects, other spiders, amphibians like frogs and toads, and occasionally other small animals like lizards or even snakes. And yes, every so often it will catch and eat a bird, but that’s rare. Birds are a lot harder to catch than worms, especially since the Goliath birdeater lives on the ground, not in trees.

Because it’s so large, the goliath looks like it would be incredibly dangerous to humans. It does have fangs and can inflict a venomous bite, but it’s not very strong venom. The danger comes from a very different source, because the goliath birdeater is famous for its urticating spines.

Many species of tarantula have special setae, hairlike structures called urticating spines, that can be dislodged from the body easily. If a tarantula feels threatened, it will rub a leg against its abdomen, dislodging the urticating spines. The spines are fine and light so they float upward away from the spider on the tiny air currents made by the tarantula’s legs, and right into the face of whatever animal is threatening it. The spines are covered with microscopic barbs that latch onto whatever they touch. If that’s your face or hands, they are going to make your skin itch painfully, and if it happens to be your eyeball you might end up having to go to the eye doctor for an injured cornea. Scientists who study tarantulas usually wear eye protection.

The goliath birdeater tarantula is considered a delicacy in northeastern South America. People eat it roasted. Apparently it tastes kind of like shrimp.

Next, Owen and Aksel wanted to learn about fire ants. I couldn’t believe that we’ve never talked about fire ants before!

Fire ant is the name for any of the more than 200 species in the genus Solenopsis, but it’s typically used to refer to the species Solenopsis invicta. It’s native to tropical South America but has been introduced to parts of North America, Australia, China, Taiwan, India, Africa, and many other places where the climate is tropical or sub-tropical.

The fire ant initially became so invasive due to Spanish galleons in the 16th century, which carried trade goods around the world. A ship that’s meant to carry a lot of cargo is built so that it needs to be weighted down to a certain degree to sail safely. A lot of times if a Spanish ship didn’t have enough goods in its hold to make it weigh enough, the captain would bring a few tons of soil onboard to make up the difference. Then, when the ship got to its next port where it was supposed to pick up new cargo, it would just dump the dirt wherever it was. It didn’t matter to the fire ant if the dirt was dumped into the water, because fire ants are prepared for their nests getting flooding. They cling together and form huge rafts that the wind pushes to shore. But more often, the dirt would get dumped on land for other ships to re-use.

A team of scientists figured out where the invasive fire ant populations came from by comparing the genetic signatures of 192 different populations. They hypothesized that the ants with the highest genetic diversity were the original population, and that as the ants were moved around the world by ship, genetic diversity would get lower and lower, since all the ants were descendants of the original colony or colonies transported accidentally in the dirt. They mapped out the genetics, then compared the results to Spanish trade routes in the mid-1600s, and it all matched up.

The fire ant made it to the United States in the late 1930s or early 1940s, the West Indies around 1980, and Australia around 2001. These days a lot of fire ants end up transported to new areas in golf course sod imported from Florida.

A fire ant colony consists of a queen, thousands of worker ants, and larger soldier ants that protect the workers and especially the queen. Some colonies have more than one queen. The ants eat anything, including seeds and insects, and even small animals, but also including dead animals they find. The colony can have as many as a quarter million ants. The nest is underground and entrances can be far from the nest itself, and nests can be so large that they can cause structures built over them to collapse.

Invasive animals of any kind aren’t good for the native animals, and the same is true for the fire ant. The fire ant specializes in colonizing areas where humans have disturbed the ground, whereas native ants often have trouble surviving in disturbed areas. The fire ants crowd out native ants and can destroy some native plants.

But the main reason why people don’t like fire ants is that they bite and they’re venomous. The bites cause a burning sensation and painful swelling, but some people are allergic to the venom and can actually die from ant bites. Luckily, that’s rare, but the bites are still painful.

Some countries have spent millions of dollars trying to eradicate the fire ant, including Australia and New Zealand. New Zealand seems to have succeeded, but Australia is still struggling to get the invasion under control. Fortunately, a lot of animals eat fire ants, which helps. One of the animals that especially loves to eat fire ants is the wolf spider, so now we’ve come full circle in this episode.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

If you are wishing that I’d gone into more detail about fire ant attacks, you might like the TEETH podcast. It’s the only podcast where you’ll hear wild animal attack stories directly from the survivors, hosted by a wilderness guide and attack survivor himself. I’ll put a link in the show notes so you can go listen. It’s appropriate for all ages. I don’t think they’ve actually covered a fire ant attack, but they’ve got lots of other fascinating accounts.

Episode 376: The Horned Lizard AKA Horny Toad

Thanks to Khalil for suggesting the horny toad, also called the horned lizard or horned toad!

Further reading:

The Case of the Lost Lizard

The Texas horned lizard:

Texas Horned Lizard (Phrynosoma cornutum)

The rock horned lizard [photo taken from article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about a reptile suggested by Khalil, who is Leo’s friend, so a big shout-out to both. Khalil wants to learn about the horny toad, also called the horned toad or horned lizard.

We talked about it briefly back in episode 299. The horny toad is actually a lizard that lives in various parts of North America, especially western North America, from Canada down through much of the United States and into Mexico. The largest species is the Texas horned lizard, with a big female growing about 5 inches long, or almost 13 cm, not counting its tail.

The horny toad does actually resemble a toad in some ways. Its body is broad and rounded and its face has a blunt, froglike snout. Its tail is quite short. It’s also kind of sluggish and spends a lot of time just sitting in the sun, relying on its mottled coloration to camouflage it. If it feels threatened, it will actually just freeze and hope the predator doesn’t notice it. It’s covered with little pointy scales, and if a predator does approach, it will puff up its body so that the scales stick out even more and it looks larger. It also has true horns on its head, little spikes that are formed by projections of its skull, and if a predator tries to bite it, the horny toad will jerk its head up to stab its horns into the predator’s mouth.

Horny toads mainly eat a type of red ant called the harvester ant. The harvester ant is venomous but the horny toad is resistant to the venom and is specialized to eat lots and lots of the ants. Its esophagus produces lots of mucus when it’s eating, which collects around the ants and stops them from being able to bite before they die.

Because it eats so many venomous ants, many scientists think the horny toad stores some of the toxins in its body, especially in its blood. Its blood tastes especially bad to canids like coyotes that are common in the areas where it lives. But it does the horny toad no good to have bad-tasting blood if a predator has to bite it to find out, so the horny toad has a way to give a predator a sample of its blood in the weirdest way you can imagine.

If a horny toad is cornered by a predator and can’t run away, and puffing up isn’t helping deter the predator, the lizard has one last trick up its sleeve. It increases the blood pressure in its head by restricting some of the blood vessels carrying blood back to the heart, and when the blood pressure increases enough, it causes tiny blood vessels around the eyelids to rupture. It doesn’t just release blood, it squirts blood up to five feet away, or 1.5 meters. As if that wasn’t metal enough, the horny toad can aim this stream of blood, and it aims it right at the predator’s eyes.

Imagine for a moment that you are a hungry coyote. You’re young and don’t know that horny toads taste bad, you just know you’ve found this plump-looking lizard that doesn’t move very fast. It keeps puffing up and looking spiky, but you’re hungry so you keep charging in to try and grab it with your teeth in a way that won’t hurt your tongue on those spikes. Then, suddenly, your eyes are full of lizard blood that stings and makes it hard to see, and the blood drips down into your mouth and it tastes TERRIBLE. It doesn’t matter how hungry you are, this fat little lizard is definitely off the menu. Meanwhile, the horny toad is fine.

Scientists aren’t sure if every species of horny toad can squirt blood. Some species probably can’t, while some do it very seldom. It also doesn’t help against some predators, like birds, who don’t have a great sense of taste and aren’t affected by the toxins in the horny toad’s blood.

The horny toad relies on the harvester ant for most of its specialized diet, although it does eat other insects too. It can’t survive without eating harvester ants. The problem is, the harvester ant is in decline after fire ants were introduced to North America from South America. The horny toad doesn’t eat fire ants, and the fire ants out-compete the local harvester ants, leaving the horny toad with less and less food.

Humans really don’t like fire ants, which can cause damage to homes when they dig their huge underground nests, and which inflict really painful bites. When people try to get rid of fire ants, sometimes the treatments also kill harvester ants. Incidentally, some animals that really love to eat fire ants include armadillos, black widow spiders, wolf spiders, and bobwhites.

The Texas horned lizard lives throughout a fairly large range, so although its numbers are in decline along with its ant food, it’s still doing okay for now. But not every horny toad is so lucky.

The rock horned lizard, also called Ditmars’ horned lizard, is only found in one small part of Sonora in northern Mexico. It was first discovered by science in 1891, when an archaeological expedition caught one. The lizard was described in 1906 but by then it hadn’t actually been seen in the wild since 1897, when two more were caught by a man who donated them to the New York Zoological Park. Those were the only three specimens that had ever been collected. Herpetologists worried that the rock horned lizard had gone extinct.

The main issue was that no one was exactly sure where those three specimens had been collected and no one knew exactly where the 1891 expedition had traveled. The man who caught the two lizards in 1897 didn’t say exactly where he’d caught them, just that it was in northern Sonora. But what a scientist named Vincent Roth realized when researching the lizard is that the three preserved specimens probably still contained undigested and partially digested food in their bodies, and that if the insects the lizards had eaten could be identified, it could give an important clue as to where the lizards had lived.

Dr. Roth requested that the gut contents be removed from the 1891 specimen for study, and also from one of the 1897 specimens. The third specimen had been taxidermied and the guts discarded. Dr. Roth cleaned the gut contents with alcohol and examined them microscopically, and found the remains of 14 insects, the seeds of three different species of grass, and some pebbles. All this happened in 1970, so instead of emailing a bunch of experts for help, Dr. Roth had to write physical letters to specialists throughout the world for help identifying the insects.

The specialists were happy to help, and they determined that the pebbles and grass seeds would have been eaten by accident when the lizard slurped up ants carrying them. The lizards had the remains of several different ants in their digestive tracts, including harvester ants, along with weevils, jumping spiders, grasshoppers, and other insects. These were identified, including some rare ones only ever found in certain areas of Sonora. Even the grass seeds and the pebbles were identified.

It all pointed to a particular mountain range in northern Sonora, and an expedition was arranged by Dr. Roth to search for the lizard. But they didn’t find it! They made plans to return, but asked the local people to keep an eye out for a specific type of horned lizard. In 1971 a report came of a rock horned lizard discovered by a local, followed soon by a few others. The lizard was safe, although it’s rare. Scientists had just been looking in the wrong place for it.

Since the rock horned lizard is only a few inches long and blends in so well with its surroundings, it’s no wonder it was hard to find. Fortunately it’s been rediscovered so that scientists can study it and keep it safe. The next step is to keep the harvester ants safe so that all the horny toads have plenty of yummy ants to eat.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 336: The Turtle Ant and the Alien Butt Spider

Thanks to Kari for suggesting this week’s topics! Definitely check out her book Butt or Face?, which is funny and has lots of animal information!

Further reading:

Butt or Face? by Kari Lavelle

GBIF: Araneus praesignis [the spider pictures below come from this site]

The turtle ant’s body is flattened and the soldier caste ants have specialized head shapes to block the nest entrances:

The alien butt spider has a butt that looks like an alien’s face!

The alien butt spider hides during the day in its leaf fort:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two really weird invertebrates suggested by Kari. One of these two animals is her favorite and the other is a weird ant from a book she wrote. Kari’s full name is Kari Lavelle and her book is for kids, called Butt or Face? It actually releases tomorrow as this episode goes live, so if you’re listening to this episode on Monday, July 10, 2023, you still have time to preorder the book, or you can just wait a day and run out to your local bookstore or library to get a copy.

Kari was nice enough to send me a copy of the book and it’s really funny and interesting. It’s partly a game where you look at a picture and decide whether it shows an animal’s butt or its face. It’s a lot harder than you’d think! You make your guess and turn the page to find out if you’re right and learn about the animal. It’s very fun and I actually guessed wrong on one animal, but I’m not telling you which one. There’s a link in the show notes if you want to learn more about the book and maybe order a copy for yourself.

Anyway, let’s talk about the ant first, because it’s actually one I’ve had on the list to talk about for a while. I was really excited to see it in Kari’s book. It’s called the turtle ant, sometimes called the “door head” ant. That gives you a clue as to whether its picture in the book features its butt or its face.

The turtle ant is any of the well over 100 species of ant in the genus Cephalotes, which are native to the Americas. Most live in Central and South America, especially in tropical and subtropical areas. Almost all species live in trees, nesting in cavities originally made by beetle larvae.

For the most part, turtle ants are pretty typical compared to other ant species. They have a generalized diet, eating pretty much anything they find. This includes plant material, dead insects and other animals they find, bird poop, nectar, and even pollen in some species. Each colony has a single queen that mates with multiple males and lays all the eggs for the colony. Worker ants tend the eggs and larvae, gather food, and keep the colony clean. But as in some other ants, many species of turtle ant have a soldier caste. These are worker ants who are specialized to defend the nest. We talked about army ants recently, in episode 328, and also back in episode 185, and army ant soldiers have massive sharp mandibles that can inflict painful bites. But the turtle ant soldiers don’t have sharp mandibles and aren’t aggressive. They have one job, and that job is to stand at the nest’s entrances and stop them up with their heads, only moving when another ant needs to get through.

As a result, turtle ant soldiers have weird-shaped heads. The head shape varies from species to species, with some looking more normal and some being heavily armored and strangely shaped. Well, they’re not strangely shaped except in comparison to an ordinary ant head. They’re shaped exactly right to do the job they’ve evolved to do, be a door. In some species, the top of the soldier’s head is completely round and flattened, just the right size and shape to block the entrance.

Turtle ants have another ability that they share with some other ants. If an ant falls from the twig or branch it’s climbing on, instead of just falling to the ground, it can glide back to the tree trunk. Turtle ants have flattened bodies, which helps catch the air like a tiny ant-shaped parachute. Unlike other ants that do this, which glide head-first, the turtle ant glides abdomen-first. It uses its legs and head to adjust which way it’s gliding, and most of the time it lands safely on the tree trunk.

There are undoubtedly more turtle ant species than we know about so far, and we actually don’t know very much about most of the species we have discovered. Most turtle ants live in trees, and that makes them hard to study.

There’s actually a spider called the ant-mimicking crab spider that eats turtle ants. It looks so much like a turtle ant worker that it can get close to the actual ants before it’s recognized as a predator, at which point it has a good chance of grabbing an ant to eat before the ant can run away. But that’s not actually the type of spider we’re talking about next.

The other animal we’re talking about today isn’t one from the book, it just happens to be one of Kari’s favorite animals *cough*sequel*cough*. It’s called the alien butt spider and it is completely awesome, as you can tell from the name.

The alien butt spider lives in Queensland, Australia, and it gets its name because—maybe you should just guess. I’ll wait.

Yes, you’re right! The abdomen of the spider has black or dark blue-green markings that look for all the world like the face of a tiny space alien from a movie. The spider itself is mostly green and very small, with a big female only growing about 8 mm long, although its legspan can be 20 mm across. Males are smaller, mostly because the male has a much smaller abdomen.

Its scientific name is Bijoaraneus praesignis, changed in December 2021 from Araneus praesignis. It’s also called the outstanding orbweaver or green orbweaver. Like many spiders, especially orbweavers, it’s mostly active at night. It spins a big round web that looks like the kind you see on Halloween decorations, because that’s the kind of web most orbweavers make, and at night it waits on or near the web for an insect to get stuck in it. During the day, though, the alien butt spider needs to hide. It makes what’s called a retreat in a leaf that’s partially closed or curled. The spider spins a thick layer of silk across the edges of the leaf that turns it into basically a little leaf fort, then crawls inside. The underside of the spider is plain greenish-yellow with no markings, so it’s hard to see against the leaf, especially through the layer of silk.

The spider’s abdomen is green with a yellow or white pattern on top, with black eye spots visible from the rear. The eye spots show up really well against the yellow or white pattern. But the spider also has black markings at the front of its abdomen, which also look like eyespots from some angles. The rest of its body is green, greeny-yellow, and brown, which helps it blend into leafy backgrounds.

Naturally, the alien butt spider is not actually trying to look like an alien. That’s something humans have decided it looks like because it’s green and the eyespots are so large. The spider just wants potential predators to see the eyespots and think, “Darn, that animal already saw me so I can’t sneak up on it. I won’t waste my energy trying to grab it.” Or maybe, “Uh oh, look at the size of that animal’s eyes! I must be looking at the head of a very large animal that might eat me, plus it’s looking right at me. I’d better run.”

Even though it looks kind of spooky, the alien butt spider is completely harmless to humans. We also don’t know much about it, so while it seems to be a common spider within its range, we don’t know for sure if it’s potentially endangered. It’s best to leave this little alien alone no matter how cute it is (and it is very cute).

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 335: Large Blue Butterfly vs Ants

We’re kicking off July with a beautiful butterfly that does horrible things to ants!

Further reading:

UK Butterflies – Large Blue

The large blue butterfly (picture taken from page linked above):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I recently realized that I have so many weird and interesting invertebrates saved up to feature for invertebrate August that I can’t fit them all into one month, so let’s kick off invertebrate August in July!

This week we’re going to learn about a beautiful butterfly called the large blue, because it is both large and blue. Well, sort of large. The butterfly has a wingspan of up to two inches, or about 5 cm. Its wings are a dusty blue with black spots, although there are a lot of regional differences. Some populations are almost black, some are more tan than blue, and some don’t have spots.

The large blue lives throughout much of Eurasia, although its numbers have decreased in many places in the last 50 years or so. In some places it’s even gone extinct, mainly due to habitat loss. It needs specific host plants for the caterpillars to eat, and it also needs a particular type of ant in order for the caterpillars to survive–because the large blue caterpillar is a brood parasite!

We’ve talked about brood parasites before in birds, where a bird will lay an egg in the nest of a different species of bird. In the case of the large blue butterfly, in summertime the female lays her eggs on wild thyme or marjoram plants near a colony of red ants in the genus Myrmica [meer-mee-kuh]. She usually only lays one egg on any given plant.

When the eggs hatch, the newly emerged caterpillars feed on plants at first, just like any other caterpillar, especially the flowers of the plant. If more than one large blue caterpillar is on a plant and they encounter each other, one of them will grab the other and eat it. Drama among the thyme plants! The caterpillar goes through three growth stages, called instars, as an ordinary caterpillar (except for the cannibalism thing), but once it reaches the fourth instar it starts acting very different.

The caterpillar drops to the ground and releases a chemical that mimics the smell of the Myrmica ant larvae. When an ant finds a caterpillar, the caterpillar will rear up so that it resembles an ant larva. The ant usually takes it back to its nest at this point, but sometimes the caterpillar will just follow an ant trail and enter the nest on its own. Either way, the ants will assume it’s a lost baby and take it to the nesting chamber, where they feed and take care of it.

The caterpillar is bigger than a usual ant larva, but it uses this to its advantage. It mimics the sounds made by a queen ant, which means the ants take extra good care of it. If the ants run out of regular food to feed the caterpillar, they will even start feeding it real ant larvae. But sometimes the caterpillar gets impatient, or maybe just hungry, and will just start eating the other pupating ant larvae.

The system isn’t perfect, because a lot of times the ants figure out that the caterpillar is an intruder and will kill and eat it. If the queen ant encounters the caterpillar, she recognizes that it isn’t an ant larva and will attack it. Sometimes the ants just up and abandon the nest, leaving the caterpillar behind. In that case, the caterpillar will either leave the nest itself and find another one, or it will wait for a new ant colony to find the nest and move in. This can actually happen repeatedly during the nine months or so that the caterpillar requires to finish growing, although during the winter the caterpillar is more or less dormant.

Around the end of spring, the caterpillar spins a cocoon and pupates right there in the ant nest. The ants continue to take care of it, making sure the pupa is clean. When it emerges as a new butterfly after a few weeks, it has to find its way out of the ant nest and to the surface, where it climbs a plant stem and rests while its wings inflate and dry. The adult butterflies only live for a few weeks, eating flower nectar, especially of the thyme plant.

One of the places where the large blue butterfly went extinct was in the British Isles, where it was last seen in 1979. Before that, though, scientists already recognized that the species was in danger in Britain. They knew that the butterflies needed wild thyme and Myrmica ants, and made sure to plant lots of the thyme in areas with lots of Myrmica ant colonies. But the butterflies still declined until none were left in Britain. It turns out that the large blue butterfly requires a particular species of Myrmica ant, Myrmica sabuleti, and if the caterpillars are adopted by other ant species, they aren’t usually successful in surviving to grow up.

Fortunately, a few years later, scientists re-introduced large blue butterflies to Britain from Sweden, and this time it worked. Not only are there still large blue butterflies in Britain again, they’re now more common in Britain than anywhere else throughout its range.

Other butterflies closely related to the large blue also act as brood parasites to Myrmica ants, but to different species. There are probably more butterflies that do this than we know, since it takes a lot of very careful observation of the butterflies, caterpillars, and ants to determine what exactly is going on. Considering that even the ants don’t really know what’s going on, it’s no surprise that scientists have trouble figuring it out too.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 328: Giant Ants

Thanks to Richard from NC for suggesting Titanomyrma!

Further reading:

‘Giant’ ant fossil raises questions about ancient Arctic migrations

A fossilized queen Titanomyrma ant with a rufous hummingbird (stuffed) for scale:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Richard from North Carolina, who sent me an article about an extinct giant ant called Titanomyrma. This episode is short, but I think you’ll find it interesting.

We’ve talked about ants in previous episodes, most recently episode 185. Most ant colonies consist of a single queen ant who lays all the eggs for her colony, seasonally hatched males with wings who fly off as soon as they’re grown, and worker ants. The worker ants are all female but don’t lay eggs. Army ants have another caste, the soldier ant, which are much larger than the worker ants and have big heads and strong, sharp mandibles. In many species of ant, the worker ants are further divided into castes that are specialized for specific tasks.

The biggest species of ant alive today is probably the giant Amazonian ant. The workers can grow over 1.2 inches long, or more than 3 cm, which is huge for an ant. It lives in South America in small colonies, usually containing less than 100 workers, and unlike most ants it doesn’t have a queen. Instead, one of the workers mates with a male and lays eggs for the colony. The giant Amazonian ant can sting and its sting contains venom that causes intense pain for up to two days. Fortunately, you will probably never encounter these giant ants, and even if you do they’re not very aggressive.

Another contender for the biggest species of ant alive today is the Dorylus genus of army ants, also called driver ants, which we talked about in episode 185. It lives in Africa in colonies that have millions of members, and the queen is the largest ant known. A queen army ant can measure 2.4 inches long, or 63 millimeters, but worker ants are much smaller.

Around 50 million years ago, giant ants related to modern driver ants lived in both Europe and North America. The genus is Titanomyrma and three species are known so far, found in Germany, England, Canada, and the American states of Tennessee and Wyoming.

The Wyoming ant fossil was discovered years ago and donated to the Denver Museum of Nature and Science, where it was stored in a drawer and forgotten about. In 2011 a curator found it and showed it to a paleoentomologist named Bruce Archibald. Dr. Archibald recognized it immediately as a fossilized queen ant even though it was the size of a hummingbird. He also realized it was very similar to a type of giant ant that once lived in Germany.

The German discovery was the first Titanomyrma species discovered, and it’s also the biggest known so far. The queen Titanomyrma gigantea grew up to 2.8 inches long, or 7 centimeters. Males grew up to 1.2 inches long, or 3 cm. The fossilized queen ants found have wings, with a wingspan of over 6 inches, or 16 cm. The other two known species are generally smaller, although still pretty darn big for ants.While they’re not that much bigger than the living Dorylus queens, most of the size of a queen Dorylus ant comes from her enlarged abdomen. Titanomyrma ants were just plain big all over.

Titanomyrma didn’t have a stinger, so it’s possible it used its mandibles to inflict bites, the way modern army ants do. It might also have sprayed formic acid at potential predators, as some ants do today.

The biggest ants alive today all live in tropical areas, so researchers thought Titanomyrma probably did too. During the Eocene, the world was overall quite warm and parts of Europe were tropical. The northern hemisphere supercontinent Laurasia was in the process of breaking up, but Europe and North America were still connected by the Arctic. Even though the Arctic was a lot warmer 50 million years ago than it is now, it was still too cold for a tropical ant. If Titanomyrma couldn’t survive in cold weather, how did it spread from one continent to another when it had to go through the Arctic?

There were warming periods during the Eocene that lasted a few hundred thousand years at a time, so researchers thought the ants probably migrated through the Arctic while it was warmer than usual. Then, in early 2023, a fossilized Titanomyrma queen ant was discovered in Canada. Because the rock it was preserved in has been distorted over the years, we can’t be certain how big the ant actually was. What we do know, though, is that the ant lived in a mountainous area that could get quite chilly, very different from the tropical climate scientists thought the giant ants needed.

As a result of the new finding, researchers are reconsidering whether the giant ants that lived 50 million years ago were really all that similar to modern giant ants. Just because the biggest ants alive today require tropical climates doesn’t mean that ancient giant ants did.

Hopefully more giant ant fossils will turn up soon, so we can learn more about where they lived, how they lived, and precisely how big they could get.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 185: Ice Worms, Army Ants, and Other Strange Invertebrates!

Let’s learn about some weird insects this week! Thanks to Llewelly for suggesting army ants!

Further reading:

If you’re interested in the magazine Flying Snake, I recommend it! You can order online or print issues by emailing the editor, Richard Muirhead, at the address on the website, and there’s a collection of the first five issues on Amazon here (in the U.S.) or here (UK)!

The magnificent, tiny ice worm! The dark speckles in the snow (left) are dozens of ice worms, and the ones on the right are shown next to a penny for scale. Teeny!

ARMY ANTS! WATCH OUT. These are soldier ants from various species:

The Appalachian tiger swallowtail (dark version of the female on the right):

Tiger swallowtails compared:

The giant whip scorpion. Not baby:

Jerusalem cricket. Also not baby but more baby than whip scorpion:

PEOPLE. GET THOSE HORRIBLE THINGS OFF YOUR HANDS.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about a number of strange and interesting invertebrates as part of Invertebrate August. Thanks to Llewelly for a great suggestion, and we also have a mystery invertebrate that I learned about from the awesome magazine Flying Snake. Flying Snake is a small UK magazine about strange animals and weird things that happen around the world. It’s a lot of fun and I’ll put a link in the show notes if you want to learn more about it. It’s been published for years and years but I only just learned about it a few months ago, and promptly ordered paper copies of all the issues, but they’re also available online and the first five issues are collected into a book.

So, let’s start with an invertebrate I only just learned about, and which I was so fascinated by I wanted to tell you all about it immediately! It’s called the ice worm, and it’s so weird that it sounds like something totally made up! But not only is it real, there are at least 77 species that live in northern North America, specifically parts of Alaska, Washington state, Oregon, and British Columbia.

The ice worm is related to the earthworm, and in fact it looks like a dark-colored, tiny earthworm if you look closely. It’s usually black or dark brown. It likes the cold—in fact, it requires a temperature of around 32 degrees Fahrenheit, or zero Celsius, to survive. You know, freezing. But the ice worm doesn’t freeze. In fact, if it gets much warmer than freezing, it will die. Some species live in snow and among the gravel in streambeds, and some actually live in glaciers. Ice worms can survive and thrive in such cold conditions because their body contains proteins that act as a natural antifreeze. It navigates through densely packed ice crystals with the help of tiny bristles called setae [see-tee] that help it grip the crystals. Earthworms have setae too to help them move through soil.

During the day, the ice worm hides in snow or ice to avoid the sun, and comes to the surface from the late afternoon through morning. It will also come to the surface on cloudy or foggy days. It eats pollen that gets trapped in snow and algae that is specialized to live in snow and ice, as well as bacteria and other microscopic or nearly microscopic animals and plant material. In turn, lots of birds eat ice worms. Birds also occasionally carry ice worms from one glacier or mountaintop to another by accident, which is how ice worms have spread to different areas.

The glacier ice worm can grow to 15 mm long and is only half a mm thick, basically just a little thread of a worm. It only lives in glaciers. You’d think that in such an extreme environment there would only be small pockets of glacier ice worms, but researchers in 2002 estimated that the Suiattle [soo-attle] Glacier in Washington state contained 7 billion ice worms. That’s Billion with a B on one single glacier. Other ice worm species can grow longer than the glacier ice worm, including Harriman’s ice worm that can grow nearly 2.5 inches long, or 6 cm, and is 2.5 mm thick.

There are tall tales about ice worms that can grow 50 feet long, or 15 meters, but those are just stories. An ice worm that big wouldn’t be able to find enough to eat.

Next, let’s talk about a type of ant. Llewelly suggested the army ant a long time ago, and recently I got an email from Ivy whose list of favorite animals includes the army ant!

The army ant lives in parts of Africa, South America, and Asia, and although there are some 200 species in different subfamilies, recent research suggests that many of them are descended from the same species that lived in the supercontinent Gondwana more than 100 million years ago.

Army ants don’t dig permanent nests like other ants. Instead they make temporary camps, usually in a tree trunk or sometimes in a burrow the ants dig. But these camps aren’t anything like ordinary ant nests. Often they’re formed from the bodies of worker ants, who link their legs together to make a living wall. The walls form tubes that make up chambers and passages of the nest, and inside the nest the queen lays her eggs. There are also chambers where food is stored. But the nest isn’t permanent. At most, the army ant only stays in one place for a few weeks, after the larvae pupate. The colony feeds the food stores to the queen, who lays a new batch of eggs timed to hatch when the new ants emerge from their cocoons. At that point, the colony breaks camp and enters the nomadic phase of behavior until the newly hatched batch of larvae are ready to pupate.

What do they do with the larvae while they wander? Workers carry them around. As in other ant species and the honeybees we talked about recently, an army ant colony is divided into different types of ant. There’s a single queen ant, seasonally hatched males with wings who fly off as soon as they’re grown, and many worker ants. But army ants have another caste, the soldier ant. These are much larger than the worker ants and have big heads and strong, sharp mandibles. Some species of army ant forage primarily on the ground while some hunt through treetops and some underground, but they generally hunt in large, well-organized columns with soldier ants on the outside as guards. In many species, the worker ants are further divided into castes that are specialized for specific tasks.

The queen ant is an egg-laying machine. Queens of some species can lay up to 4 million eggs every month. The queen is wingless, but a new queen doesn’t need to leave the colony the way other ant species do. Instead, when new queens emerge from their cocoons as adults, the colony splits and two new colonies form from the old one, each with one of the new queens. Usually more than two queens hatch, but only two survive.

When males emerge from their cocoons, they immediately fly off and search for another colony. But a male can’t just land and mate with a queen. He has to get through her guards, and they decide whether they like him or not. If they find him adequate, they bite his wings off and bring him to the queen. After he mates, he dies. This sounds like the plot of a weird science fiction novel from the 1960s. If a colony’s queen dies, the worker ants may join another colony.

Let’s talk specifically about the Dorylus genus of army ants for a few minutes, which live in Africa and Asia. Dorylus army ants live in simply enormous colonies. When the colony goes foraging, there may be 15 million ants marching in a dense column, and they can eat half a million animals every single day.

That’s why the army ant is so feared. The column of ants is made up of worker ants in the middle with the much larger soldier ants along the edges. The columns don’t move very quickly, but the ants attack, kill, and eat any living animal they encounter that can’t run away. This includes insects, spiders, scorpions, and lots of worms, but also eggs and baby birds, other baby animals, frogs and toads, and even larger animals. What isn’t eaten on the spot is carried back to the camp to feed larvae and the queen.

Army ants are also beneficial to the ecosystem and to humans specifically in many ways. A column of army ants that marches through a village will eat so many insects that they act like a really high quality exterminating service for homes and gardens. They also scare insects and other animals that flee from the ant columns, and a lot of animals benefit from the general chaos. Birds of many species will follow army ants in flocks, grabbing insects as they flee the ants. Some birds even make special calls to alert others that army ants are on the move, so that everybody gets a chance for easy food. Even more animal species will follow the column to clean up what they leave behind, including partially eaten carcasses, animals that were killed but rejected as food, and even the feces of the birds that follow the ants.

And, of course, a lot of animals just eat the army ants. Chimpanzees make different types of tools to help them safely harvest army ants. Most commonly, a chimp will use a stick it’s modified to the right length and shape, referred to as an ant-dipping probe. It will put one end of the stick down in the column of army ants and wait until ants start climbing up the stick. When there are enough ants on the stick, it will remove the stick and eat the ants off of it. It’s an ant-kebob!

If you’re wondering why the chimps aren’t attacked by the ants, or why the ants don’t figure out they’re climbing a stick to nowhere, Dorylus army ants, like most army ant species, are all blind. They communicate by releasing pheromones, which are chemicals with specific signatures that other ants can sense, something like smells. Some species that mostly live above-ground have re-evolved sight to a limited degree.

The mandibles of Dorylus army ant soldiers are so strong, and the ant is so tenacious about holding on, that people in some East African tribes traditionally use them to stitch up wounds. The soldier ant is held so that it bites with one mandible on each side of a wound, holding the edges of skin together. Then the person severs the ant’s body from its head, killing it—but the jaws are so strong that they will continue to stay in place for several days while the wound heals.

In Central and South America, the army ant genus Eciton [ess-ih-tahn] is very similar to Dorylus. Some species can cross obstacles like streams by building a living bridge out of individuals to allow the rest of the column to cross.

Whew, okay, I should probably have made the army ant its own episode, because there’s so much cool research about it that I could just go on forever. But let’s move on to a much different insect next, a butterfly that lives in the eastern United States, especially in the Appalachian Mountains. This is the Appalachian tiger swallowtail, which has yellow wings with black stripes and a black border, and a black body. Some females have all-black wings with orange spots. When the genetic makeup of the butterfly was examined, it turns out that the species originated as a hybrid of the Eastern tiger swallowtail and the Canadian tiger swallowtail. This kind of hybridization is rare in the wild. The Appalachian tiger swallowtail lives in the mountains, usually in high elevations, and while its range overlaps with both parent species, it almost never hybridizes with either. It has inherited the Canadian butterfly’s tolerance for cold but is twice its size. Researchers estimate that the hybridization occurred around 100,000 years ago.

I learned that interesting fact about the Appalachian tiger swallowtails from the May 2018 Flying Snake issue, and let’s go ahead and learn about a mystery invertebrate I also read about in that issue of Flying Snake.

The mystery is from The Desert Magazine, which was published between 1937 and 1985. It was a monthly magazine that focused on the southwestern United States, with article titles like “Rock Hunter in the Sawange Range” and “Ghost City of the White Hills.” Both those headlines are from the January 1947 issue, which is also where the first mention of the Baby of the Desert shows up in the letters section. Flying Snake excerpts the relevant letters from that issue and a few later issues, but I got curious and found the originals online.

I’ll quote part of the original letter because it’s really weird and interesting:

“Gentlemen: Would like to ask if there is such a thing as a very poisonous desert resident called ‘Baby of the Desert,’ so named because of the resemblance of its face to that of a human baby. Whether this so-called ‘Baby of the Desert’ is supposed to be insect, reptile or rodent, I could not find out. …[I]t was considerably smaller than the Gila monster.”

The letter was signed William M. Weldon from South Pasadena, California.

The editor responded, “The question of the Baby of the Desert, Baby-face, or Niño de la Tierra, as it is variously called, came up for discussion on the Letters page of the magazine two years ago. A reader sent in a description of the fearsome beast as it had been pictured to him and asked for confirmation from someone who had seen it.”

Because of the mention of another letter asking about the Baby of the Desert, two years before, I went through the letters sections of all the 1945 issues to find the original. I couldn’t find it in 1945, but I did find a nice letter from James Mayberry in California, who found a desert tortoise with blue paint on its shell. He thought someone had brought the tortoise back from a visit to the desert. James named the tortoise Mojave but knew it needed to go home, so he sent it to the Desert Magazine. I’m delighted to say that the editor took it out to a lonely desert hill where there were other tortoises and let Mojave go. Tortoises live a long time so Mojave might still be stumping around out there, the blue paint on his shell faded in the sun.

Then I went back through the 1944 issues and found the letter in the July issue. It was from Albert Lloyd of Tulsa, Oklahoma, who wrote, “Perhaps some reader can supply authentic information about a small denizen of the deserts and mesas of the Southwest, which the Mexicans call Niño de la Tierra, or Child of the Earth. During four years of roaming around New Mexico and Arizona I was never fortunate enough to see one. But I have talked with several who claim to have seen it. They describe it as a doll-like animal, about three or four inches in length, walking on all fours, with head and face like that of an infant. They claim it will not attack you unless molested and that its bite is more deadly than a rattlesnake’s.”

The editor of the Desert Magazine suggested that the Baby of the Desert was an insect. “[I]t appears that the Baby-face is actually our old friend the yellow and black striped Jerusalem cricket or Sand-cricket, who is nocturnal and usually found under boards or stones.”

But responses in the letters section in following issues, February and April 1947, don’t agree. S.G. Chamberlin of San Fernando, California wrote, “Some years ago…we uncovered what we first thought to be a Jerusalem Cricket. The coloring was the same and it was a little more than two inches long. Later in the day a ranch hand brought us a Jerusalem Cricket and then we noticed quite a difference in the bodies and heads of the two insects. The round face of the first one did attract our attention although we didn’t think of a baby at the time. The ranch foreman placed them in different bottles to show them to a man in the Farm Bureau office who was versed in such things. He reported back that the first insect was called Vinegarones or Sun Spider and supposed to be harmless.

“At the ranch we were told that on the Mexican border there was a similar insect that is supposed to be poisonous.”

And Coila Harris of South Laguna, California wrote, “I was interested in the recent letters about ‘Baby Face.’ This is not the Jerusalem cricket or potato bug, as many believe, but could be mistaken for one of these insects. Baby-face lives down Mexico way. When we were living in El Paso, one of the weird looking bugs was found under our house. It had a body of a large Tarantula, the head was white as a bleached bone and looked like a bald headed baby, a dreadful thing. I was told at the time that Mexicans consider them so poisonous, that if bitten on the finger by one, they chop off the finger.”

Unfortunately for me, the second I saw the mention of a vinegarone, I had a good idea of what this animal might be. And I really don’t want to look at pictures of vinegaroons.

I do try very hard not to be biased against gross-looking insects, because for one thing, they aren’t hurting me and gross is in the eye of the beholder. One person’s “ooh gross” is the other person’s “Oh, that is so neat!” Spiders don’t bother me and as long as I don’t have to look closely at an invertebrate’s mouthparts and things, I’m usually okay. But I get a big case of the nopes when it comes to the vinegaroon.

The vinegaroon is an arachnid, related to spiders and scorpions. It sort of looks like a mixture of the two, although there are lots of species and they vary quite a lot. It’s also called the whip scorpion. The name vinegaroon comes from the acidic liquid it squirts from the base of its whip-like tail if it feels threatened, which smells like vinegar. It lives in tropical and subtropical parts of the Americas and Asia, with one species known from Africa. Most species prefer dark, humid areas and live in burrows in rotting wood or under rocks and leaf litter, but the giant whip scorpion lives in more arid areas in the southwestern United States and Mexico.

The giant whip scorpion grows to around 2.5 inches long, or 6 cm, not counting the long whip-like tail. Like all vinegaroons, it eats insects, slugs, and other small animals. But no one could look at it and think “baby.” It has big claw-like pedipalps in addition to six walking legs and a pair of front legs that are extremely long and thin, that it uses to feel around with. It has eyes—in fact, like spiders it has eight eyes—but it doesn’t see very well and mostly navigates by touch. It’s dark brown or black with some lighter brown markings on its abdomen.

The Jerusalem cricket looks superficially similar to the vinegaroon although it’s not an arachnid. It’s also not a cricket, and it doesn’t have anything to do with Jerusalem since it’s native to the western United States and Mexico. In fact, it’s related to the weta of New Zealand. It lives in the same sort of places that vinegaroons like, burrowing in moist soil and rotting wood, but it mostly eats decaying plant material although it will sometimes eat small insects. It can bite, although it’s not venomous or poisonous, but it can give off a horrible smell if it’s disturbed. It’s yellowish to dark reddish-brown with a black-striped abdomen and a rounded head. It also does not look anything like a baby.

BUT, while it’s known by a couple of Navajo names that translate to variations on “red skull bug,” in Spanish it’s called cara de niño, which means child’s face, or niño de la tierra.

So I think the Desert Magazine editor was right. The Baby of the Desert is the Jerusalem cricket. But I wouldn’t be a bit surprised if the Jerusalem cricket is sometimes confused with the giant whip scorpion. They’re both large nocturnal creatures with a similar body shape and coloring, that live in the same areas and occupy the same habitat. And they’re both horrifically creepy-looking. You know what? I bet you anything that “Baby of the Desert” and “baby-face” are ironic names. BAD BABY.

The Jerusalem cricket doesn’t have any kind of hearing organs akin to ears but it can sense vibrations. Instead of chirping, it drums its abdomen on the ground to attract a mate. This is what the drumming sounds like.

[Jerusalem cricket drumming]

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 179: Lost and Found Animals

This week let’s learn about some animals that were discovered by science, then not seen again and presumed extinct…until they turned up again, safe and sound!

Further reading:

A nose-horned dragon lizard lost to science for over 100 years has been found

Modigliani’s nose-horned lizard has a nose horn, that’s for sure:

Before the little guy above was rediscovered, we basically just had this painting and an old museum specimen:

The deepwater trout:

The dinosaur ant:

The dinosaur ant statue of Poochera:

The false killer whale bite bite bite bite bite:

Some false killer whales:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn about some animals that were discovered by scientists but then lost and assumed extinct, until they were found again many years later. There’s a lot of them and they’re good to think about when we feel down about how many species really are extinct.

We’ll start with a brand new announcement about a reptile called Modigliani’s nose-horned lizard, named after an Italian explorer named Elio Modigliani. He donated a specimen of the lizard to a natural history museum when he got home from exploring Indonesia. That was in 1891, and in 1933 scientists finally described it formally as Harpesaurus modiglianii.

The lizard was especially interesting because it had a horn on its nose that pointed forward and slightly up, and it had spines along its back. It looked like a tiny dragon.

But no one saw another one, not in Indonesia, not anywhere. Researchers knew it had lived where Modigliani said it did because a group of people from Indonesia called the Bataks knew about the lizard. It was part of their mythology and they carved pictures of it. But they didn’t have any, live or dead. Researchers thought it must have gone extinct.

Until 2018. In June 2018, a wildlife biologist named Chairunas Adha Putra was surveying birds in Indonesia, specifically in North Sumatra, when he found a dead lizard. Putra isn’t a lizard expert but he thought it might interest a herpetologist colleague named Thasun Amarasinghe, so he called him. Amarasinghe said oh yeah, that does sound interesting, do you mind sending it to me so I can take a look?

And that’s history, because once he saw it, Amarasinghe knew exactly what the lizard was.

Amarasinghe immediately called Putra, who was still out surveying birds. Could Putra please go back to where he’d found the dead lizard and see if he could find another one, preferably alive? It was really important.

Putra returned obligingly and searched for another lizard. It took him five days, but finally he found one asleep on a branch. He caught it and took pictures, measured it, and observed it before releasing it a few hours later. Hurray for scientists who go that extra mile to help scientists in other fields!

Modigliani’s nose-horned lizard is bright green with a yellow-green belly and spines, plus some mottled orange markings. At least, that’s what it looks like most of the time. It can change colors just like a chameleon. If it’s feeling stressed, it turns a darker gray-green and its spines and belly turn orangey. But it can change its color to match its environment too.

It’s related to a group of lizards called dragon lizards, which includes the bearded dragon that’s often kept as a pet. There are a lot of dragon lizards, and 30 of them have never been seen since they were first described.

Unfortunately, deforestation and habitat loss throughout North Sumatra and other parts of Indonesia threaten many animals, but the Modigliani’s nose-horned lizard was found just outside of a protected area. Hopefully it will stay safely in the protected area while scientists and conservationists study it and work out the best way to keep it safe.

A fish called the deepwater trout, also known as the black kokanee or kunimasu salmon, used to live in a Japanese lake called Lake Tazawa, and that was the only place in the world where it lived. It’s related to the sockeye salmon but it’s much smaller and less flashy. It grows to about a foot long, or 30 cm, and is black and gray in color as an adult, silvery with black markings as a young fish.

In the 1930s, plans to build a hydroelectric power plant on the lake alarmed scientists. The plan was to divert water from the River Tama to work the power station, after which the water would run into the lake. The problem is that the River Tama was acidic with agricultural runoff and water from acidic hot springs in the mountains. The scientists worried that if they didn’t do something to help the fish, soon it would be too late.

In 1935 they moved as many of the fish’s eggs as they could find to other lakes in hopes that the species wouldn’t go extinct. In 1940 the plant was completed, and as expected, the lake’s water became too acidic for the deepwater trout to survive. In fact, it became too acidic for anything to survive. Soon almost everything living in the lake was dead. Within a decade the lake was so acidic that local farmers couldn’t even use it for irrigation, because it just killed any plants it touched. Lake Tazawa is still a mostly dead lake despite several decades of work to lessen its acidity by adding lime to the water.

So, the deepwater trout went extinct in Lake Tazawa along with many other species, and to the scientists’ dismay, they found no sign that the eggs they’d moved to other lakes had survived. The deepwater trout was listed as extinct.

But in 2010, a team of scientists took a closer look at Lake Saiko. It’s one of the lakes where the deepwater trout’s eggs were transferred, and it’s a large, deep lake near Mount Fuji that’s popular with tourists.

The team found nine specimens of deepwater trout. Further study reveals that the population of fish is healthy and numerous enough to survive, as long as it’s left alone. Fortunately, Lake Saiko is inside a national park where the fish can be protected.

Next, let’s look at a species of ant called the dinosaur ant. It was collected by an amateur entomologist named Amy Crocker in 1931 in western Australia. Crocker wasn’t sure what kind of ant she had collected, so she gave the specimens to an entomologist named John Clark. Clark realized the ant was a new species, one that was so different from other ants that he placed it in its own genus.

The dinosaur ant is yellowish in color and workers have a retractable stinger that can inflict painful stings. It has large black eyes that help it navigate at night, since workers are nocturnal. It lives in old-growth woodlands in only a few places in Australia, as far as researchers can tell, and it prefers cool weather. Its colonies are very small, usually less than a hundred ants per nest. Queen ants have vestigial wings while males have fully developed wings, and instead of a nuptial flight that we talked about in episode 175 last month, young queens leave the nest where they’re hatched by just walking away from it instead of flying. Males fly away, and researchers think that once the queens have traveled a certain distance from their birth colony, they release pheromones that attract males. If a queen with an established colony dies, she may be replaced with one of her daughters or the colony may adopt a young queen from outside the colony. Sometimes a queen will go out foraging for her food, instead of being restricted to the nest and fed by workers, as in other ant species.

The dinosaur ant is called that because many of its features are extremely primitive compared to other ants. It most closely resembles the ant genus Prionomyrmex, which went extinct around 29 million years ago. Once researchers realized just how unusual the dinosaur ant was, and how important it might be to our understanding of how ants evolved, they went to collect more specimens to study. But…they couldn’t find any.

For 46 years, entomologists combed western Australia searching for the dinosaur ant, and everyone worried it had gone extinct. It wasn’t until 1977 that a team found it—and not where they expected it to be. Instead of western Australia, the team was searching in South Australia. They found the ant near a tiny town called Poochera, population 34 as of 2019, and the town is now famous among ant enthusiasts who travel there to study the dinosaur ant. There’s a statue of an ant in the town and everything.

The dinosaur ant is now considered to be the most well-studied ant in the world. It’s also still considered critically endangered due to habitat loss and climate change, but it’s easy to keep in captivity and many entomologists do.

Let’s finish with a mammal, and the situation here is a little different. In 1846 a British paleontologist published a book about British fossils, and one of the entries was a description of a dolphin. The description was based on a partially fossilized skull discovered three years before and dated to 126,000 years ago. It was referred to as the false killer whale because its skull resembled that of a modern orca. Scientists thought it was the ancestor of the orca and that it was extinct.

Uh, well, maybe not, because in 1861, a dead but very recently alive one washed up on the coast of Denmark.

The false killer whale is dark gray and grows up to 20 feet long, or 6 meters. It navigates and finds prey using echolocation and mostly eats squid and fish, including sharks. It’s not that closely related to the orca and actually looks more like a pilot whale. It lives in warm and tropical oceans and some research suggests it may migrate to different feeding spots throughout the year. It often travels in large groups of a hundred individuals. That’s as many dolphins as there are ants in dinosaur ant colonies. Part of the year it spends in shallow water, the rest of the year in deeper water, only coming closer to shore to feed.

Researchers are only just starting to learn more than the basics about the false killer whale, and what they’re learning is surprising. It will share food with its family and friends, and will sometimes offer fish to people who are in the water. It sometimes forms mixed-species groups with other species of dolphin, sometimes hybridizes with other closely-related species of dolphin, and will protect other species of dolphin from predators. It’s especially friendly with the bottlenose dolphin. So basically, this is a pretty nice animal to have around if you’re a dolphin, or if you’re a swimming human who would like a free fish. So it’s a good thing that it didn’t go extinct 126,000 years ago.

This is what the false killer whale sounds like:

[false killer whale sounds]

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 175: Three Small Mystery Animals

This week we’ve got three more mystery animals, but they’re small instead of gigantic! Also, I didn’t say anything about it in the episode, but Black lives matter. Stay safe and fight for justice, everyone.

The water chevrotain:

The real-life face-scratcher monster, Schizodactylus monstrosus, more properly known as a dune cricket:

Flying ants:

It’s flying ants, that’s what it is:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about three mystery animals, but they’re not giants. They’re small mysteries.

We’ll start with a small mystery animal from the Republic of Guinea in West Africa. Guinea borders the ocean on its west and is shaped sort of like a croissant. The middle of the country is mountainous, which is where the tankongh is supposedly found.

The tankongh is supposed to look like a small, shy zebra with tusks and it lives in high mountain forests. If that description makes you think of a chevrotain, you may have listened to episode 116, about various unusual hoofed animals. The chevrotain is a small ruminant that has short tusks or fangs instead of horns or antlers like other ruminants. Many have white stripes and spots, including the water chevrotain.

The water chevrotain is the largest of the known chevrotain species, but that’s not saying much because they’re all pretty small. The female is a little larger than the male, but it’s barely more than a foot tall at the shoulder, or 35 cm. The coat is reddish-brown with horizontal white stripes on the sides and white spots on the back. It has a rounded rump with a short tail that’s white underneath. So, you know, it’s sort of rabbit-like, but with long slender legs and tiny cloven hooves like a little bitty pig’s legs. It lives in tropical lowland forests of Africa, always near water. It’s nocturnal and mostly eats fruit, although it will also eat insects and crabs.

But while that sounds a little like the description given of the tankongh, it’s not a very close match. The water chevrotain only lives in lowlands, while the tankongh is supposed to live in the mountains. But the water chevrotain is the only species of chevrotain that lives in Africa; all the others are native to Asia.

So it’s very possible that there’s another chevrotain species hiding in the mountains of Guinea and nearby countries. One visitor to Guinea reported being shown some tiny gray hooves and pieces of black and cream skin supposedly from a tankongh that had been killed and eaten. Since the water chevrotain is red-brown and white, the skin must be from a different animal. Unfortunately, the witness doesn’t report if the hooves were cloven like the chevrotain’s.

Hopefully, if this is a species of chevrotain that’s new to science, it’s safe in its mountain habitat from the deforestation, mining, and other issues threatening many animals in Guinea.

Our next mystery animal is an invertebrate from India called the muhnochwa, or face scratcher. The story apparently started in 2002 and spread throughout Uttar Pradesh state. Stories of a small but hideous insect with six legs covered with spines caused panic during an especially hot, dry summer. The scratch monster supposedly came out at night and attacked sleepers, scratching them greviously with its legs, sometimes causing burns or even killing people. Some witnesses said it was the size of a football and that it glowed or sparkled with red and blue lights.

Then, in late August, someone trapped a scratch monster and took it to Lucknow University for identification. It was a type of dune cricket, usually only found in sandy ground near river banks in parts of India, Pakistan, Sri Lanka, and Myanmar. It grows around three inches long, or almost 8 cm, and is yellowish-brown with sturdy legs that do indeed have spiny structures at the ends. It’s nocturnal although it doesn’t glow or shine.

During the day, the dune cricket lives in burrows it digs in the sandy soil, often very deep burrows since the cricket prefers damp ground. It comes out at night to hunt insects, especially grasshoppers, beetles, and crickets, including other dune crickets. Its antennae are longer than its body and the spines on its legs help it burrow and navigate the sandy soil where it lives.

So while the cricket is scary-looking, it’s not dangerous to humans at all. It certainly couldn’t kill anyone, and probably couldn’t do more than make faint scratches that wouldn’t even pierce the skin.

Possibly what happened was that unusually dry weather caused the crickets to search for moist ground, which means they might have been seen in areas where they were usually extremely rare. Because of its ferocious appearance, people assumed it was dangerous, and then stories about people dying from the insect started circulating, which made people even more frightened. Even after the insect was identified, news outlets kept reporting it as a monstrous, possibly extraterrestrial creature, which made things worse, although fortunately it eventually turned into an urban legend sort of joke once people realized it wasn’t really dangerous.

Oh, and the dune cricket is also an insect in Animal Crossing, called the mole cricket. You have to listen for its chirping, then dig it up, and quick switch to your net to scoop it up as it runs away. But you can’t do that now unless you live in the southern hemisphere, because it’s only in the game between November and May in the northern hemisphere.

Our last small mystery animal is an ant, but not one particular species of ant. In many ant species, once a year a special hatch of eggs develop into ants with wings. The female ants are all queens but there are also plenty of much smaller males. The ants swarm into the air and fly off in a group. This generally happens in summer, especially on hot, humid days.

It’s known as a nuptial swarm because all the ants are ready to mate and start new colonies. Well, the queens start new colonies. The males just die. The queen ants that survive the nuptial swarm after mating land, bite off their own wings, and search for a good place to start a new nest. If the queen survives, she begins laying eggs to hatch workers, using the sperm she collected from males during the flight. She’ll use the sperm for the rest of her life, and in some species that’s something like twenty years. She stores it in a special chamber in her body.

Entomologists know a lot about swarming ants. It’s not exactly a rare phenomenon. Nuptial swarms can sometimes contain millions of individual ants as ants from different colonies combine. This helps reduce the risk of any particular ant being eaten by predators and it helps mix up the gene pool by allowing ants from different colonies to find each other and mate. The females release pheromones that attract the males, and the females usually fly quickly and make the male pursue so queens mate with only the strongest males.

Different species of ant will fly at different times and require different temperature and humidity levels to start the nuptial flight. Many species prefer to fly after rain or thunderstorms and some prefer to fly in late evening or at night when there are fewer predators. Sometimes a swarm is so large it shows up on weather radar.

But that’s not the mysterious part. But is it possible that these clouds of winged ants, which often fly so closely together that they seem to be a solid mass, could be the source of some UFO sightings?

At first thought that’s preposterous. Ants don’t give off light any more than dune crickets do. Or do they?

Ants have hard exoskeletons and sometimes this can reflect sunlight so that the ant appears to glow. But I’m talking about actual glowing ants, not just reflected light.

As you may remember from episode 10, about electric animals, we’re only just now starting to learn about how insects and other invertebrates use electric fields. One thing that we know happens is a build-up of static electricity on the body of flying insects. This is well documented in bumblebees and when a bee lands on a flower, the static electricity actually temporarily changes the flower’s own negative charge. Other bees can sense this change and know that a bee has already visited that flower recently. The static charge also helps pollen adhere to the bee.

So it’s completely possible that flying ants also have an electrostatic charge, from both the action of the wings and the movement of air molecules over the body. Ordinarily that wouldn’t be visible, but in late evening or night-time when the air is already charged from the recent passage of a storm, on rare occasions the whole colony might glow. Since it’s hard enough to tell an object’s size, distance, and speed in the air, a zigzagging, fast-moving, densely compacted swarm of a million or so winged ants glowing in the sky might be taken for a much larger but much farther away aircraft of some kind emitting light.

That’s not to say that every UFO is a swarm of glowing winged ants. Obviously, even if it does happen like this, it would be extremely rare. But it might be the case for the occasional UFO sighting. After all, UFOs are unidentified flying objects, whether that object is an alien spaceship buzzing our planet or a bunch of glowing ants. So if you see a UFO on a humid summer night after a thunderstorm, maybe take a closer look just in case you’re observing an incredibly rare natural phenomenon. And if it isn’t glowing ants, it might be aliens, so either way you might see something amazing.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!