Episode 023: Nonhuman Musicians

This week’s episode is about nonhuman musicians. It’s rarer than you’d think.

The palm cockatoo. Nature’s drummer. In possibly related news, I know what my next tattoo is going to be.

Snowball the Dancing Cockatoo.

Members of the Thai Elephant Orchestra at the Thai Elephant Conservation Center:

Further reading:

Kinship with Animals by Dave Soldier

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s episode about nonhuman musicians was inspired by an article about palm cockatoos. The male cockatoos drum on tree trunks or hollow logs as part of their courtship display, which doesn’t sound all that unusual until you learn that they use special crafted sticks to drum. A male will select a stick, trim it down the way he wants it, and hold it in his claw to drum. Sometimes he’ll use a hard seedpod instead. The resulting beats are not only consistently in rhythm, each individual has a personal style. Some drum quickly, some slowly, some throw in little flourishes. Sometimes females will drum too, and if a female likes a male’s drumming, she may imitate him or join in.

Here’s a little clip of a male drumming. He’s also whistling.

[palm cockatoo drumming]

The palm cockatoo is an awesome-looking bird. It looks like a drummer. It’s up to two feet long, or 61 cm, smoky gray or gray-black with a heavy gray beak, red cheek patches that flush when the bird is upset or excited, and a messy crest of feathers. It’s native to Papua New Guinea, Indonesia, and the very northern tip of Australia, Cape York Peninsula. Only the Australian birds are known to drum. Unfortunately, the Australian birds are the ones most threatened in the wild due to habitat loss.

The palm cockatoo eats nuts and seeds, and like all parrots it can live a long time. And yes, you can get them as pets—and now I’m desperate for one even though the last thing I need is a pet cockatoo. I have a coworker with a pet parrot who she says is incredibly neurotic. He tends to get overexcited and starts screaming, and she has to put him in his cage and cover it so he’ll shut up. Her kids found the parrot when they were young. He plopped down in her yard when they were playing outside, and they put an empty laundry basket over him to trap him. No one claimed him, so my coworker has now been stuck with a neurotic parrot for over twenty years. She’s pretty sure he survived in the wild by hanging out with crows, because one of the things that will set off his excited screaming is hearing crows outside. And while cockatoos and parrots in general are typically affectionate and make good pets, palm cockatoos are not. They’re considered “difficult.” When parrot fanciers call a type of bird difficult, it’s difficult.

Anyway, the really unusual thing about the palm cockatoo’s drumming isn’t its tool use, which is well known among many types of birds, especially parrots and their relations. It’s the rhythm.

Most animals can’t keep a beat. Synchronization to an external rhythm is called rhythmic entrainment. Humans are really good at it and recognize a beat automatically, but responding in time to a rhythm is a learned skill. Small children have to learn to keep a beat by moving their bodies, speaking, or singing, and they learn it best in social settings. That’s why music, dance, and rhythmic play activities are so important to preschool children. And as a drummer myself, I promise you, humans of any age can learn to improve their rhythm.

But most animals don’t seem to have the ability to distinguish rhythmic beats, although it hasn’t been studied all that much until fairly recently. Some researchers think it may have something to do with the ability to mimic vocal sounds.

That would explain why many birds show rhythmic entrainment, varying from species to species. A sulfur-crested cockatoo named Snowball was internet-famous for a while in clips where the bird danced to music. As a result, Snowball became the subject of a rhythmic entrainment study that shows he can adapt his dancing to changing tempos.

But not all animals who show rhythmic entrainment can mimic vocally. California sea lions aren’t exactly the parrots of the sea animal world, but they can be trained to move to a beat. On the other hand, closely related seals are vocal learners. In fact, one famous harbor seal who was raised by a fisherman who found the orphaned pup could imitate the fisherman so well he was known as “Hoover the Talking Seal.”

Here’s the only clip I would find of Hoover. The first time I listened to it, I couldn’t figure out when the seal was talking. All I could hear was some gruff-sounding guy talking really fast. Well, that’s Hoover.

[Hoover the talking seal]

That is Hoover the talking seal talking. It’s creepy as heck.

It’s possible that sea lions still retain neural pathways that allow vocal mimicking even if they no longer use them. Then again, some researchers now believe that vocal mimicking ability may only be a skill related to rhythmic entrainment, not the source of the ability, and that the neural pathways for rhythmic entrainment may be very old. Some species can express entrainment, others appear to have lost it.

Studies on human brains show that when music plays, pretty much the entire brain lights up in response. That’s because we have special neural connections that help coordinate motor planning, speech, and other skills with the perceived beat. Brains of parrots and other birds are very similar. But monkeys are not. Monkeys can’t dance. Poor monkeys.

One study with rhesus monkeys who were trained to tap in rhythm with a metronome determined that they couldn’t anticipate the beat but could tap just after it, responding to it, even after years of training. Many rhythmic entrainment studies focus on great apes, since it’s reasonable to suppose that humans’ close cousins might share our rhythmic ability.

Patricia Grey, a bio-music researcher at the University of North Carolina at Greensboro, taught a group of captive bonobo apes to play a drum along with a beat. But it wasn’t as simple as showing a bonobo how a drum worked and seeing if it could keep a beat. She had to encourage the apes in a social setting, just like with human children. Also, she had to design a drum that could take a whole lot of abuse. I love that she went to Remo, a company that manufactures drums and drumheads, to have the drum made.

Her experiment started by accident. In 2010, Grey was at the Great Ape Research Center in Des Moines waiting for an experiment to be set up, and while she waited she idly tapped the glass on the bonobo enclosure. A bonobo named Kanzi came over and tapped her hand on the glass in response, matching Grey’s tempo. Intrigued, Grey continued tapping to see how long Kanzi would keep it up. Kanzi didn’t stop, even when her snack time came. She ate her snack lying on her back so she could continue to tap with her feet.

Wild chimpanzees and bonobos drum on logs and their own bodies to make rhythmic noise during play and dominance activities. Dominant male chimps do a particularly exaggerated slow display when thunderstorms approach, called a rain dance by researchers, that involves drumming. A variation of the rain dance has been seen when wildfires are approaching a troupe of chimps. Naturally it’s called a fire dance, and it includes a vocalization heard at no other time.

Chimps are pretty chill when it comes to fire, by the way. They understand how it spreads and how to avoid it without panicking.

Another animal that can keep the beat? Elephants! Asian elephants are vocal mimics and their ability to keep a beat is extremely precise. In 2000, the Thai Elephant Orchestra was created with elephants at a conservation center in Thailand, who learned to play oversized versions of traditional Thai percussion instruments.

The elephants learned the instruments easily, taking to it so quickly and so well that the orchestra’s founders were astonished. The great thing is, the elephants actually create much of the music themselves. The orchestra’s founders, neuroscientist Dave Soldier and elephant conservationist Richard Lair, wanted the elephants to have fun and enjoy making music. So for most songs, the animals are only signaled when to start and stop playing. Occasionally human musicians play along.

The orchestra released three albums between 2002 and 2011, which were all well received—not as novelty albums, but as actual improvisational compositions. Some of the songs are arranged, with the elephants trained to play traditional Thai music. The orchestra performs live for visitors at the conservation center.

The orchestra varies in size from five to fourteen elephants. One particularly talented drummer, Luk Kop, could play three drums at the same time and set up complex rhythms. Unfortunately he was also a dangerous elephant, and that’s not good for a band or an elephant orchestra, so he had to drop out.

The elephants prefer non-dissonant tones and learn to strike the properly resonant parts of their instruments without even being taught. The elephants at the center also enjoy playing harmonicas. The tip of an elephant’s trunk has a fingerlike projection, so an elephant can hold a harmonica and blow through it with its trunk. Soldier reports that one morning he arrived at the center early when the elephants were heading down to the river for their morning bath. Almost all the elephants had brought their harmonicas and were playing together as they walked.

Most of the elephants at the center are former logging animals, and many of their handlers, known as mahouts, once worked with them when they were logging. Mahouts traditionally sing to their elephants, which is supposed to keep them calm. So the elephants in the orchestra are familiar with traditional Thai music.

Locals who have heard the orchestra play say the music sounds like the music in Buddhist temples. Soldier, a musician and composer himself, transcribed an original elephant piece which was then played by a human orchestra in New York. The audience didn’t know it was composed by elephants. Some guesses as to who the composer might be included John Cage, Dvorak, and Charles Ives.

Whether or not you like improvisational Thai music played by elephants, or you think it’s just a stupid gimmick, it’s clear the elephants are having a lot of fun. Here’s a clip of some of their music recorded at the conservation center. That’s some mighty fine percussion for animals who don’t even have hands.

[elephant orchestra]

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes for as little as one dollar a month.

Thanks for listening!

Episode 010: Electric Animals

This week’s episode is about electric animals! There are so many of them that I could only touch on the highlights.

We start with the electric eel. It’s not actually an eel but it is most definitely electric. This one has just read some disturbing fanfic:

The oriental hornet is a living solar panel:

The platypus’s bill is packed with electricity sensors. I couldn’t make this stuff up if I tried:

Amphisbaenids are not electric AS FAR AS WE KNOW. Bzzt.

Thanks for listening! We now have a Patreon if you’d like to subscribe! Rewards include patron-only episodes and stickers!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re looking at electric animals! You’ve probably heard of the electric eel, but you may not know there are a lot of fish, insects, and even a few mammals that can sense or generate electric impulses. This is a re-record of the original episode with some updated information.

All animals generate electric fields in their nerves and the contracting of muscles. Animals that can sense these fields are called electroreceptive. An electroreceptive animal can find hidden prey without using its other senses.

To take that a step further, many electroreceptive animals can also generate weak electrical fields, usually less than a single volt—small electrical pulses or a sort of wave, depending on the species, that can give them information about their environment. Like a dolphin using echolocation, a fish using electro-location can sense where potential prey is, where predators, plants, and rocks are, and can even communicate with other fish of its same species. Of course, those same electric pulses can also attract electroreceptive predators. It’s hard being a fish.

But in some cases, the animal can generate an electric shock so strong it can stun or kill other animals. The most famous is the electric eel, so let’s start with that one.

The electric eel isn’t actually an eel. It’s a type of knife-fish related to carp and catfish. Some other species of knife-fish generate electric fields, but the electric eel is the only one that uses it as a weapon.

The electric eel is a weird fish even without the electric part. It can grow over eight feet long, or 2.5 m, lives in freshwater in South America, and gets most of its oxygen by breathing air at the surface of the water instead of through its gills. It has to surface for air about every ten minutes or it will drown. That’s a weird habit for a fish, but it makes sense when you consider that many electric eels live in shallow streams or floodplains with a tendency to dry up between rains. Oh, and electric eels frequently swim backwards.

A male electric eel makes a foam nest for females with his spit, and the female lays her eggs in it—as many as 17,000 eggs, although 1,200 is more common. The male defends the nest and hatchlings until the rainy season starts and the young electric eels can swim off on their own.

The electric eel has rows of some 6,000 specialized cells, called electrocytes, that act like batteries to store energy. When all the electrocytes discharge at the same time, the resulting shock can be as much as 860 volts, although it’s only delivered at about one amp. I have no idea what that means because I don’t understand electricity.

Since the electrocytes are all found in the animal’s tail, and electric eels are mostly tail, the fish will sometimes curl up and hold its prey against its tail to increase the shock it receives. This honestly sounds like something a villain from a superhero movie would do. The electric eel will also sometimes leap out of the water to shock an animal it perceives as a threat.

You do not want to be in the water when an electric eel discharges. It probably won’t kill you unless you have a heart problem, but it could stun you long enough that you drown. And if more than one electric eel discharges at the same time, the danger increases. There’s a River Monsters episode about electric eels that shows a whole bunch of them in water so shallow that they’re barely covered. Walking through that pond would probably be deadly. I also really love that show.

How does the electric eel not shock itself? Well, it probably does. All of its vital organs are in the front fifth of its body, and well insulated by thick skin and a layer of fat. But its discharges are extremely fast. Think taser, not sticking a fork in a wall socket, which by the way is something you should not do. The charge naturally travels away from its tail and into the nearest object, usually its prey.

There are three known species of electric eel, all of which live in the Amazon basin in South America. Two of the three species were only identified in 2019 after DNA studies of 107 specimens. One of the new species, Electrophorus voltai, can discharge up to 860 volts of electricity, higher than the well-known E. electricus. Researchers think E. voltai has evolved to generate higher jolts because it lives in the highlands of the Brazilian Shield, where the water is clear and doesn’t conduct electricity as well as the mineral-rich water in other electric eel habitats.

One last thing about the electric eel. It can shock people who touch it up to eight hours after it dies.

Most electric animals are fish since water conducts electricity well. Some other notable electric fish are the stargazer, a venomous bottom-dwelling ocean fish that generates shocks from modified eye muscles; the paddlefish; the electric catfish; and of course sharks.

Sharks are the kings of electroreceptive animals. Some sharks can sense voltage fluctuations of ten millionths of a volt. Sharks only sense electricity; they can’t generate it. But some of their cousins, the electric rays, can generate an electric shock equivalent to dropping a toaster in a bathtub, which by the way is another thing you shouldn’t do although why would you even have a toaster in the bathroom?

Scientists are only just discovering electric use in insects. It’s probably more widely spread than we suspect, and it’s used in ways that are very different from fish. The oriental hornet, for instance, converts sunlight into energy like a tiny flying solar panel. Researchers think the hornet uses that extra energy for digging its underground nests.

Flying insects generate a positive charge from the movement of air molecules, which is basically what static electricity is. It also happens to moving vehicles, and which is why you should touch the metal of your car to discharge any static electricity before pumping gasoline so you don’t spark a fire. This episode is full of safety tips. In the case of bees, this static charge helps pollen adhere to their bodies. You know, like tiny yellow socks stuck to a shirt you’ve just taken out of the dryer. When a bee lands on a flower, its charge also temporarily changes the electrical status of the flower. Other bees can sense this change and don’t visit the flower since its nectar has already been taken.

Spiderwebs are statoelectrically charged too, which actually draws insects into the web, along with pollen and other tiny air particles. This helps clean the air really effectively, in fact, so if you have allergies you should thank spiders for helping keep the pollen levels down. The webs only become electrically charged because the spider combs and pulls at the thread during the spinning process.

Only three living mammals are known to be electroreceptive. The South American Guiana dolphin has a row of electroreceptors along its beak, visible dots called vibrissal crypts. They’re basically pores where whiskers would have grown, except that marine mammals no longer grow whiskers. The vibrissal crypts are surrounded by nerve endings and contain some specialized cells and proteins. Researchers think the dolphins use electroreception to find fish and other prey animals in murky water when the animals are so close that echolocation isn’t very effective. A lot of toothed whales, including other dolphins, show these dots, and it’s possible that the Guiana dolphin isn’t the only species that is electroreceptive.

The platypus and its cousin the echidna are the other two electric-sensing mammals. These two are both such odd animals that they’re getting their own episode one day—and that episode is # 45! They are weird way beyond being the mammals that lay eggs deal. So I’ll just mention that their bills are packed with electroreceptors. The platypus in particular uses electroreception as its primary means of finding prey in the mud at the bottom of ponds.

There are undoubtedly more animals out there that make use of electrical fields in one way or another. One possible addition to the list, if it exists at all, is called the Mongolian death worm.

Nomadic tribes in the Gobi Desert describe a sausage-like worm over a foot long, or 30 cm, and the thickness of a man’s arm. Its smooth skin is dark red and it has no visible features, not even a mouth, which makes it hard to tell which end is the head and which is the tail. It squirms or rolls to move. It spends most of its life hidden in the sand, but in June and July it emerges, usually after rain, and can kill people and animals at a distance.

In his book The Search for the Last Undiscovered Animals, zoologist Karl Shuker discusses the death worm at length, including the possibility that it might be able to give electric shocks under the right conditions. Among the reports he recounts are some that sound very interesting in this regard, including that of a visiting geologist poking an iron rod into the sand, who dropped dead with no warning. A death worm emerged from the place where the geologist had been prodding the sand. I’m going to add “don’t poke an iron rod into the sand of the Gobi Desert” to my list of warnings.

The Gobi is a cold desert and has bitter winters, but it’s still a desert, which means it’s arid, which means the death worm probably isn’t a type of earthworm or amphibian—nothing that needs a lot of moisture to stay alive. On the other hand, two types of earthworms have recently been discovered in the Gobi, and there are a few amphibians, especially frogs, that have evolved to live in areas that don’t receive much rain. In episode 156, about some animals of Mongolia, we talk about the Mongolian death worm again if you want to know a little more. Some parts of the Gobi get more moisture than others and may be where the death worm lives.

Shuker suggests it might be a kind of amphisbaenid. Amphisbaenids are legless lizards that look more like worms than snakes. They move more like worms than snakes too, and spend a lot of their lives burrowing in search of worms or insects. No known species of amphisbaenid can generate electric shocks, but then again, only one of the over 2,000 known species of catfish generates electricity.

It’s not completely out of the realm of possibility that electrogenesis might develop in a reptile, assuming that’s what the death worm is. Sand isn’t a good conductor of electricity, but wet sand is. The death worm might ordinarily use weak electrical pulses to stun its small prey, but if it emerges after rain because its tunnels are temporarily flooded, it might feel vulnerable above ground and be more likely to discharge electrically as a warning when approached.

Of course, as always, until we have a body—until we know for sure that the Mongolian death worm is a real animal and not a folktale, we can’t do more than speculate. But it is interesting to think about.

As far as I can find, no living reptiles or birds show any electrical abilities akin to those in fish and other aquatic animals. But electroreceptors in fish were only discovered in the 1950s. There’s a lot we still don’t know. Always another mystery to solve!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

EXTRA: The Ozenkadnook Tiger HOAX?

New information came out today about the infamous Ozenkadnook Tiger photo! Here’s all the breaking news!

The photo in question, taken in 1964.

Someone please tell me how to pronounce Ozenkadnook.

Further reading:

The Ozenkadnook Tiger Photo Revealed as a Hoax

Is the Ozenkadnook Tiger a Cardboard Cryptid?

Show transcript:

It’s a Strange Animals Podcast special! I have breaking news and want to get it out to everyone now rather than wait to include it in a full episode a few weeks down the line.

I’d never heard of the Ozenkadnook tiger until today, but I follow zoologist Darren Naish on Twitter and this morning he tweeted, “Suspicion confirmed! As I hinted in 2016, Rilla Martin’s Ozenkadnook tiger photo was a hoax.” He attached a photo to a column in an Australian newspaper.

Here’s the story as it stands, or stood until today, anyway. In 1964 in western Victoria, Australia, Rilla Martin took a black and white photo of a striped animal with her Brownie box camera. As she told reporters later, she’d been visiting her cousin, Graham Martin, in Goroke and was driving along a dirt road near Ozenkadnook, presumably on her way home. Her camera was on the seat beside her since she’d been taking pictures of her cousin earlier. When she noticed an unusual animal near the edge of the road, she stopped the car and took a photo right before it ran away.

It’s not clear how the photo got into the newspapers. Stories vary. Either Martin took it to the local paper herself or she sent a copy to her cousin and he took it to the paper. Either way, it caused a brief sensation and has been debated ever since.

The original photograph and negative was lost long ago. The picture we have these days is a scan of the newspaper article, which is why it looks pixelated. When I first saw it, I assumed it had been taken through a window screen, but that’s just an artefact of how newspapers printed photos back then.

There’s a copy of the picture in the show notes. It shows a long-bodied animal, doglike but with short legs, a long tail, and erect ears. The neck is thick, the chest deep. The lower legs and paws are hidden behind brush and a dead log. The animal’s forebody is dark with broad pale stripes, while the haunches are pale without stripes and the tail is pale with thin ringed stripes.

In some ways it looks similar to a thylacine, which you might remember from episode one. Martin herself said that the animal was about the size of a dog, specifically a Labrador, and it had a piglike snout.

My first thought on seeing the photo was that it was a fakey-fake-fake. The stripes look painted, the eye definitely looks painted. In a 2010 blog post, Darren Naish noted a structure just visible in front of the hind limbs that he thinks might be a support of some kind for an animal cut-out.

Suggestions as to what the animal might be include a marsupial lion or a thylacine, both most likely extinct, or a hoax. Thylacine sightings had been made in the area before the photo was taken, which is why the photo is usually referred to as the Ozenkadnook tiger. That’s what the locals called the mystery animal they’d seen.

Then today, March 24, 2017, a column appeared in the Weekend Australian. The paper’s editorial cartoonist, Bill Leak, died on March 10, and the column is a tribute to him. It’s mostly a reminiscence of the ongoing battle of practical jokes between Leak and another cartoonist, but it mentions an interesting event in the 1960s. Leak’s father and a friend were aware of the thylacine sightings near Goroke. One day they cut a thylacine-shaped animal out of cardboard, painted it, and propped it up in the scrub to take a picture.

It was only meant to be a joke among friends, according to the column, but the photo made its way to the papers. Bill Leak was quite young at the time and remembered his father told him he must never reveal the prank to anyone. Leak kept the secret until his father’s death.

That’s all the column says about the hoax. I hit a paywall with the Australian every time I tried to read Leak’s obituary. I love my listeners, but not enough to pay $4 to read an obituary that likely wouldn’t have told me anything Wikipedia couldn’t. Bill Leak was born in January 1956, so he would have been around eight when the photo was taken. His father was apparently named Reg Leak, but Wikipedia’s citation linked to the Australian article was, you guessed it, behind a paywall. An AusLit biography of Leak is also behind a paywall. Googling “Reg Leak” gets me a lot of information about leaking radiators and what I should do about them.

Googling Rilla Martin brings up umpteen near-identical articles about the photo, but nothing about the woman who took it. According to the articles, Martin was from Melbourne. The only mention I could find of a Rilla Martin from Melbourne was in a 1946 wedding announcement in the Argus, which mentions a flower girl named Rilla Martin. It’s not that I don’t believe Martin exists, I just wanted to tie her to Bill Leak’s father, but I’ve had no luck. (I was also at work, so I didn’t have time to do as much as I should have.)

Bill Leak was a known practical joker. This can cut both ways in this situation. On the one hand, he might have invented the story about the cardboard thylacine to see if anyone would believe him. On the other hand, it might have shaken out just as he said and people around him remembered it as just another goofy thing that Bill was involved in.

Here’s another point in favor of the story being true. If the animal is a fake, and I personally think it is, it took a great deal of artistic skill to make it look so realistic. Bill Leak was an artist and it’s quite possible his father was too.

That’s all I have for the moment. With luck I can get this extra episode uploaded tonight. If you have any comments, or if you can dig up a connection between Reg Leak and Rilla Martin, drop me an email at strangeanimalspodcast@gmail.com. This has been your host, Kate Shaw, bringing you all the hot takes in the world of cryptozoology.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes for as little as one dollar a month.

Thanks for listening!

Episode 001: The Thylacine and the Quagga

Re-recorded after two years, yesss! Episode one now has decent audio quality and has been slightly updated to reflect new findings about the thylacine.

The Thylacine (commonly called the Tasmanian tiger) and the quagga, a type of zebra, have two important things in common. They’re both partially striped and they’re both extinct. Sort of. The first episode of Strange Animals Podcast discusses what sort of animals both were, and why we can’t say with 100% certainty that they’re extinct. Even though we know the date the last individuals died.

The Thylacine. Look at those jaws! How does it open its mouth that wide?

Watch the 2008 thylacine (maybe) video for yourself.

The Quagga, old and new:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

If you’re wondering why episode one is suddenly appearing in your feed after more than two years, it’s because I’ve rerecorded it. Quite often people who are interested in a podcast download the first episode to check it out, and our first episode sounded TERRIBLE. So here’s a fresh new version with a little bit of extra information included.

If you’re already a Strange Animals Podcast listener, I hope you don’t mind this redone episode showing up in your feed. Don’t worry, there will be a new episode next Monday as usual! If you’re a new listener, I hope you like the podcast and stick around!

The first episode of Strange Animals Podcast is about the thylacine and the quagga. Both animals are kinda-sorta extinct and both are partially striped. So they go together!

You may know the thylacine as the Tasmanian tiger or wolf, or you may be confused and think I’m talking about the Tasmanian devil. The Tasmanian devil is a different animal although it does live in the same part of the world.

The thylacine was a nocturnal marsupial native to Australia, New Guinea, and Tasmania, but it went extinct early in the 20th century. The last known individual died in captivity in 1936. But in 2008, footage of a long-tailed doglike animal was caught on film near Perth in Western Australia.

Thylacine sightings have been going on for years—basically ever since it was declared extinct. It was a shy, nervous animal that didn’t do well in captivity and sometimes died of shock when captured, so if the animal survives in remote areas of Australia or Tasmania, it’s obviously keeping a low profile.

The thylacine was as big as a good-sized dog, some two feet high at the shoulder, or 61 cm, and over six feet long if you included the tail, or 1.8 meters. It wasn’t very fast, seldom traveling faster than a stiff trot or an awkward canter. I’ve read accounts that it would sometimes hop instead of run when it needed to move faster, but this seems to be a myth. If thylacines are wandering around outside of Perth or anywhere else, it’s surprising no one has accidentally hit one with a car. The Tasmanian devil is in such steep decline that it’s projected to be extinct in the wild by 2024 at the latest, and in 2014 over 400 of them were killed by cars.

No other animal in Australia and Tasmania looks like the thylacine. It was yellowish-brown with black stripes on the back half of its body and ringing the length of its tail. Its head was heavy and doglike, with long jaws and erect, rounded ears. Its legs were relatively short while the body and especially the tail were long. It could open its jaws startlingly wide although it didn’t have a very strong bite. It was also a quiet animal, rarely making noise except while hunting, when it would give frequent double yips.

Not a lot is known of the thylacine in the wild. Tasmanian Aborigines would build little structures over thylacine bones, since letting the bones get rained on was supposed to bring on bad weather. I still love this so much.

The thylacine was killed by British colonists who thought it preyed on livestock, but it was actually a weak hunter that probably couldn’t kill prey much larger than a chicken. In fact, some researchers think the thylacine’s primary source of food was the native hen, and once that bird went extinct in the mid-19th century, thylacine numbers started to decline. It certainly didn’t help that bounties for dead adults were as much as a pound—big money in the 19th century. Captive animals were prone to a distemper-like disease and only one pair successfully bred in captivity.

So what about all those sightings? Is it possible that small populations of the thylacine survived loss of both habitat and prey animals, bounty hunting, and competition with introduced dingos? There have been numerous organized searches for signs of the thylacine, with nothing to show except blurry photos and grainy film footage. But we don’t have anything concrete: no bodies, no clear photos, not even any good footprints.

As for the 2008 video, the Thylacine Awareness Group of Australia released it in September of 2016, eight years after it was recorded. The person who took the footage states that she had seen the animal repeatedly over a matter of weeks, and had also seen a female with two pups. She says they were all striped and did not look anything like foxes.

The footage isn’t very clear, but it shows a foxlike animal with a long tail. The recording is too grainy to make out any markings. Certainly the animal doesn’t appear to have the vivid stripes seen in old photos taken before the thylacine went extinct.

To me, the animal in the footage looks a lot like a fox with an injured leg or paw, which makes its gait seem odd. Its legs are much too long for a thylacine, the body is too short, and the hocks are too far up the leg. As for the long tail, I’ve seen foxes with mange and the tails look just like this one’s.

There’s another issue against the survival of the thylacine too. According to a 2012 study conducted by Andrew Pask of the University of Connecticut, the thylacine had a very low genetic diversity to start with. Isolated breeding populations would further limit the gene pool and eventually lead to a population that couldn’t survive due to physical issues associated with inbreeding.

That study only sampled from 14 different skins and skeletons, so it’s possible the situation wasn’t as bad as its results suggest. On the other hand, the Tasmanian devil is another species with low genetic diversity, and its numbers are declining steeply despite conservation efforts.

Since this original episode one went live in February 2017, there’s been a more comprehensive DNA study of thylacines that changes what we know about their past. A September 2017 study conducted by the University of Adelaide generated 51 DNA sequences from thylacine fossils and museum specimens.

The study discovered that the thylacine population split into two around 25,000 years ago, with the two groups living in eastern and western Australia. Around 4,000 years ago, climate change caused more and longer droughts in eastern Australia and the thylacine population there went extinct. By 3,000 years ago, all the mainland thylacines had gone extinct, leaving just the Tasmanian population. The Tasmanian thylacines underwent a population crash around the same time that the mainland Australia populations went extinct—but the Tasmanian population had recovered and was actually increasing when Europeans showed up and started shooting them.

It would be fantastic if a population of thylacines was discovered still alive somewhere. But it doesn’t look good right now. On the other hand, you can still see the Tasmanian devil. Just please try not to run over one. There aren’t many left.

[goat call, because why not]

When I was maybe twelve years old I read about the quagga for the first time, probably in a library book about animals. I remember being so moved at the thought of this fascinating zebra driven to extinction that I wrote a poem about it. Unfortunately for all of us, I remember the first two lines of the poem. Yes, I’m going to recite it again. I’m sorry.

“Dear quagga, once running

O’er field and o’er plain…”

It went on and on for two entire pages of notebook paper. Thank goodness I don’t remember any more of it.

Ever since that awful, awful poem, I’ve had a soft spot for the quagga. It really was an interesting-looking creature. The head and forequarters were striped and clearly those of a zebra, but if you were to see only its hindquarters you’d swear you were looking at a regular old donkey.

The quagga was a subspecies of plains zebra, and was common in south Africa until white settlers decided they didn’t want any wild animals eating up their cattle’s grass. By 1878 the quagga was extinct in the wild; the last captive individual died in 1883. Thanks a bunch, white settlers. You made twelve-year-old me cry, and I didn’t even know about Apartheid yet.

Locals in some areas still refer to all zebras as quaggas, supposedly as an imitation of the zebra’s call. I don’t know what variety of zebra this call is from, but I’m going to guess that all zebras kind of sound the same.

[zebra call]

That really is awesome.

It’s interesting to note that still-living plains zebras show less and less striping the farther south they live. The quagga lived in the southernmost tip of Africa, south of the Orange River in South Africa’s Western Cape region, an even more southerly range than the plains zebra’s. And as a reminder, the quagga was a subspecies of the plains zebra—so closely related that it’s sometimes impossible to tell stuffed specimens of the two varieties apart. Where their ranges overlapped, researchers think plains zebras and quaggas frequently interbred.

You can see where this is going, I hope.

In 1987, the Quagga Project in South Africa started with 19 plains zebras that showed reduced striping and had genetic markers most like quaggas. After five generations of selective breeding, the project has produced six foals as of 2016 that look like the extinct quaggas. The project calls them Rau Quaggas after Reinhold Rau, the project’s founder. Rau was inspired by the work of Lutz Heck, who was the guy responsible for breeding the heck horse to imitate the extinct tarpan. If you want to know more about the tarpan and the heck horse, check out episode 47 about mystery horses.

Eventually the group hopes to have 50 Rau quaggas that will live as a herd on reserve land in South Africa. Eric Harley, a genetics professor at Cape Town University and one of the founding members of the project, points out that while the Rau quagga isn’t an exact genetic match for the extinct quagga, it’s pretty darn close.

Of course there are people who criticize the group’s efforts for various reasons. Some say that since it’s impossible to reproduce the extinct quagga exactly, there’s no point in even trying. Others say that the resources spent trying to reproduce the quagga should be spent on conserving endangered animals instead.

But the Quagga Project is actually doing something useful for South Africa: working to reintroduce a type of zebra adapted to the colder environment, which can live in groups with ostriches and other animals that typically herd with zebras. When the Dutch exterminated the quagga, they messed up the balance of species in the area. Whether or not you think the Rau quaggas are analogous to actual quaggas, they’re going to be a good addition to the wildlife preserve.

And look, here’s the thing. Everyone gets to participate in the project they love, whether or not someone else thinks that project is worth it. We all have limited time in this world. One person wants to spend their energy recreating the quagga in South Africa, another wants to set trail cams up in Tasmania to look for thylacines, and a third person might happen to want to record a podcast about those people instead of washing the dishes. And that is OKAY.

Do what you love.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a Facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!