Episode 434: The Real Life Dragon

Thanks to Jaxon for suggesting this week’s topic, Coelurosauravus!

Further reading:

Coelurosauravus

New Research Reveals Secrets of First-Ever Gliding Reptile

The modern Draco lizard glides on “wings” made from extended rib bones:

Coelurosauravus glided on wings that were completely different from any other wings known [art from the first link above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about an extinct animal suggested by Jaxon. It’s called Coelurosauravus and it lived around 255 million years ago in what is now Madagascar.

Coelurosauravus was a member of the Weigeltisauridae family, reptiles whose fossils have been found not just in Madagascar but in parts of Europe, and maybe even North America (although we’re not sure yet). They were gliding reptiles that probably lived in trees and ate insects and other small animals, sort of like modern gliding lizards. But while most gliding lizards are very small, Coelurosauravus grew over a foot long, or around 40 cm, and that’s nowhere near the weirdest thing about it.

To explain why Coelurosauravus was so very peculiar, we have to learn a little about other gliding reptiles. Back in episode 255 we learned about kuehneosaurids, and that’s a good place to start.

Kuehneosaurids lived around 225 million years ago in what is now England. This wasn’t all that long after Coelurosauravus lived and not that far away from where some of its relations lived, but the two weren’t related. Kuehneosaurus looked like a big lizard although this was before modern lizards evolved, but it was a reptile and it was even larger than Coelurosauravus. Kuehneosaurus grew about two feet long, or 70 cm, including a long tail, and probably lived in trees and ate insects.

Kuehneosaurus glided on sail-like structures on its sides that were made from extended ribs with skin stretched over them. Its wings weren’t all that big, although they were big enough that they could act as a parachute if the animal fell or jumped from a branch. Another gliding reptile, Kuehneosuchus, had wings that were much longer. In a study published in 2008, a team of scientists built models of kuehneosuchus and tested them in a wind tunnel used for aerospace engineering. It turned out to be quite stable in the air and could probably glide very well.

We don’t know a whole lot about the kuehneosaurids because we haven’t found very many fossils. We’re not even sure if the two species are closely related or not. We’re not even sure they’re not the same species. Individuals of both were uncovered in caves near Bristol in the 1950s, and some researchers speculate they were males and females of the same species. Despite the difference in wings, otherwise they’re extremely similar in a lot of ways.

Generally, researchers compare the kuehneosaurids to modern draco lizards, which we talked about in episode 237, even though they’re not related. Draco lizards are much smaller, only about 8 inches long including the tail, or 20 cm, and live throughout much of southeastern Asia. Many gliding animals, like the flying squirrel, have gliding membranes called patagia that stretch from the front legs to the back legs, but the draco lizard is different. It has greatly elongated ribs that it can extend like wings, and the skin between the ribs acts as a patagium. This skin is usually yellow or brown so that the lizard looks like a falling leaf when it’s gliding. Draco lizards can fold their wings down and extend them, which isn’t something the kuehneosaurids appear to have been able to do.

But now let’s return to Coelurosauravus. It too had wing-like structures on its sides that consisted of skin stretched over bony struts. But in this case, the bones weren’t elongated ribs.

Coelurosauravus had about 30 pairs of long, flexible bones that extended from the sides of its belly, and it could open and close its wings like draco lizards do. Scientists think the bones developed from osteoderms, which are bony structures that many animals have on their skin, that act as a sort of built-in armor. As far as we know, no other animal in the entire history of life on earth has developed what are basically wings from osteoderms.

Coelurosauravus had long, slender legs with sharp claws that it used to climb around in trees, and a long tail to help it keep its balance as it climbed. Its head was decorated with a bony frill that had spikes along the edges. The frill might have been brightly colored, a way to attract mates or intimidate potential predators, and it might also have been an attachment site for strong jaw muscles.

In other words, Coelurosauravus had four legs, two wings, and horns on its head. This little reptile was basically a dragon.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 433: Flamingos and Two Weird Friends

Thanks to Ryder, Alexandria, and Simon for their suggestions this week! Let’s learn about three remarkable wading birds. Two of them are pink!

Bird sounds taken from the excellent website xeno-canto.

The goliath heron is as tall as people [picture by Steve Garvie from Dunfermline, Fife, Scotland – Goliath Heron (Ardea goliath), CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=12223810]:

The roseate spoonbill has a bill shaped like a spoon, you may notice [picture by Photo Dante – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=42301356]:

Flamingos really do look like those lawn ornaments [picture by Valdiney Pimenta – Flamingos, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=6233369]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about three large birds with long legs that spend a lot of time wading through shallow water, suggested by Ryder, Alexandria, and Simon.

Wading birds tend to share traits even if they’re not closely related, because of convergent evolution. In order to wade in water deep enough to find food, a wading bird needs long legs. Then it also needs a long neck so it can reach its food more easily. A long beak helps to grab small animals too. Having big feet with long toes also helps it keep its footing in soft mud.

Let’s start with Ryder’s suggestion, the goliath heron. It’s the biggest heron alive today, standing up to 5 feet tall, or 1.5 meters. That’s as tall as a person! It only weighs about 11 lbs at most, though, or 5 kg, but its wingspan is over 7 ½ feet across, or 2.3 meters. It’s a big, elegant bird with a mostly gray and brown body, but a chestnut brown head and neck with black and white streaks on its throat and chest.

The goliath heron lives throughout much of sub-Saharan Africa, meaning south of the Sahara Desert, anywhere it can find water. It’s happy on the edge of a lake or river, in a swamp or other wetlands, around the edges of a water hole, or even along the coast of the ocean. It usually stands very still in the water, looking down. When a fish swims close enough, the heron stabs it with its bill, pulls it out of the water, and either holds it for a while until the bird is ready to swallow the fish, or sometimes it will even set the fish down on land or floating vegetation for a while. It’s not usually in a big hurry to swallow its meal. Sometimes that means other birds steal the fish, especially eagles and pelicans, but the goliath heron is so big and its beak is so sharp that most of the time, other birds and animals leave it alone.

The goliath heron will also eat frogs, lizards, and other small animals when it can, but it prefers nice big fish. It can catch much bigger fish than other wading birds, and eating big fish is naturally more energy efficient than eating small ones. If a goliath heron only catches two big fish a day, it’s had enough to eat without having to expend a lot of energy hunting.

This is what a goliath heron sounds like:

[goliath heron call]

Alexandria’s suggestion, the roseate spoonbill, is also a big wading bird, but it’s very different from the goliath heron. For one thing, it’s pink and white and has a long bill that’s flattened and spoon-shaped at the end. It’s only about half the size of a goliath heron, with a wingspan over 4 feet across, or 1.3 meters, and a height of about 2 ½ feet, or 80 cm. That’s still a big bird! It mostly lives in South America east of the Andes mountain range, but it’s also found in coastal areas in Central America up through the most southern parts of North America.

Unlike the goliath heron, which is solitary, the roseate spoonbill is social and spends time in small flocks as it hunts for food. It likes shallow coastal water, swamps, and other wetlands where it can find it preferred food. That isn’t fish, although it will eat little fish like minnows when it catches them. It mainly eats crustaceans like crabs and crayfish, along with frogs, aquatic insects, and mollusks, and some seeds and other plant material. Since most of its food lives on the floor of the waterway or hidden in mud or water plants, the spoonbill usually can’t see its prey. It depends on the sensitive nerves in its bill to know the difference between, say, a crab and a crab-shaped rock. It walks through shallow water, sweeping its bill back and forth through the mud at the bottom, and grabs any little animal it can. Other birds like egrets will sometimes follow foraging spoonbills so they can catch any animals that the spoonbills miss.

Baby spoonbills are born with ordinary pointy bills, but as the chicks mature, the ends of their beaks flatten and become more and more spoon-shaped. If the goliath heron’s bill is like a pair of kitchen knives, the spoonbill’s beak is like a set of salad tongs that can scoop up lots of salad and dressing at once.

The roseate spoonbill gets its pink coloration from the food it eats. A lot of crustaceans contain carotenoid pigments, which the spoonbill absorbs and expresses in its feathers.

There are other spoonbills in the world, but the roseate spoonbill is the only one found in the Americas. The other five species live in Africa and Madagascar, Australia and New Zealand, and much of Europe and Asia. All the other species are white with black, yellow, or pink facial markings. Only the roseate spoonbill is all pink.

This is what the roseate spoonbill sounds like:

[roseate spoonbill call]

Simon’s suggestion is another pink bird that you’ve undoubtedly heard of, the flamingo! It lives in parts of South America, Central and southern North America, Africa, southern Europe and the Middle East, and southwest Asia. The two most well-known and widespread species are the greater and lesser flamingos. The greater flamingo is the biggest, standing over 4 ½ feet tall, or 1.4 meters. That’s still not as tall as the goliath heron, although it’s close. Its wingspan can be five feet across, or 1.5 meters.

The flamingo is kind of a weird bird, even by wading bird standards. It rests by standing on one leg, which it can do without falling over and without expending any energy to keep itself upright. It can even sleep while standing on one leg. People are really good at walking on long legs, but it’s a lot harder for us to stand on one leg without swaying and eventually falling over when our muscles tire. On the other hand, we weigh a lot more than a flamingo, which is barely over 7 ½ lbs in weight, or 3.5 kg.

The most unusual aspect of the flamingo is its beak. It’s thick and famously bent downward halfway along its length, so that it’s shaped sort of like a boomerang. There’s really no way to describe it as a type of kitchen implement unless it’s a strainer basket, because that’s how the flamingo uses its beak.

The flamingo eats tiny animals like brine shrimp and other small crustaceans, insect larvae, and even algae, and it catches all these tiny foods by sifting them from the water with its beak. The beak is lined with lamellae, which look like little hairs or the teeth of a comb, and its tongue is rough. It lowers its head on its long neck until its head is actually upside down, scoops its beak back and forth through the water, and uses its tongue to push the water out through the lamellae. Whatever algae or tiny animals are left in its mouth, it swallows.

Flamingos are extremely social and live in huge flocks, sometimes consisting of thousands of birds. The female only lays a single egg in her mud nest, and both parents take care of the baby by feeding it crop milk. This isn’t actually milk but is a nutritious substance produced by glands in the throat and crop. Emperor penguins, pigeons, and doves are the only other birds known that produce crop milk for their babies. Flamingo chicks have ordinary straight beaks that develop the bend as they grow older.

Like the roseate spoonbill, the flamingo’s pink coloration is due to its diet. The algae it eats contains a lot of carotenoids, as do the brine shrimp it eats. The American flamingo tends to be the pinkest overall, but all flamingos are pink if they’re eating enough foods that contain these carotenoids.

This is what an American flamingo flock sounds like:

[flamingo call]

There are lots more wading birds than the ones we’ve covered here, and not all of them have long legs and long necks. Just, you know, the best ones do.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 429: Foxes!

Thanks to Katie, Torin, and Eilee for suggesting this week’s topic, foxes!

Further reading:

Meet the Endangered Sierra Nevada Red Fox

Long snouts protect foxes when diving headfirst in snow

Black bears may play important role in protecting gray fox

The red fox:

A black and gold Sierra Nevada red fox [photo taken from the first link above]:

The extremely fluffy Arctic fox:

The gray fox [photo by VJAnderson – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=115382784]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have an episode about foxes, a suggestion by Katie, and we’ll talk about fox species suggested by Torin and Eilee.

Foxes are omnivorous canids related to dogs and wolves, and just to be confusing, male foxes are sometimes called dogs. Female foxes are vixens and baby foxes are cubs or kits. But even though foxes are related to dogs and wolves, they’re not so closely related that they can interbreed with those other canids. Plus, of course, not every animal that’s called a fox is actually considered a fox scientifically.

The largest species of fox is the red fox, which also happens to be the one most people are familiar with. It’s common throughout much of North America, Eurasia, and the Middle East, and even parts of northern Africa. It’s also been introduced in Australia, where it’s an invasive species. It’s a rusty-red in color with black legs and white markings, including a white tip to the tail. It has large pointed ears and a long narrow muzzle.

There are lots of subspecies of red fox throughout its natural range, including one suggested by Eilee, the Sierra Nevada red fox. It lives in the Sierra Nevada and Oregon Cascades mountain ranges in the western United States, in parts of California, Nevada, and Oregon. It’s smaller than the red fox and some individuals are red, some are black and gold, and some are a mix of red and gray-brown. Its paws are covered with long hair that protects the paw pads from snow, and its coat is thick.

The Sierra Nevada red fox was first identified as a subspecies in 1937, but it took more than half a century until any scientists started studying it. It used to be common throughout the mountain ranges where it lives, but after more than a century of trapping for fur and shooting it for bounty, it’s one of the rarest foxes in the world. Fewer than 100 adults are known to survive in the wild, maybe even fewer than 50.

For a long time, scientists thought the Sierra Nevada red fox had been extirpated from California, and that it might even be completely extinct. Then a camera trap got pictures of one in 2010. It’s fully protected now, so hopefully its numbers will grow.

Torin suggested we learn about the Arctic fox, which lives in far northern areas like Greenland, Siberia, Alaska, and parts of northern Canada. The Arctic fox’s muzzle is relatively short and its ears are rounded, and it also has a rounder body and shorter legs than other foxes. This helps keep it warm, since it has less surface area to lose body heat.

During the summer, the Arctic fox is brown and gray, while in winter it’s white to blend in with the snowy background. There are some individuals who are gray or brown-gray year-round, although it’s rare. The Arctic fox’s fur is thick and layered to keep it warm even in bitterly cold weather, and like the Sierra Nevada red fox, it has a lot of fur on its feet.

The Arctic fox is omnivorous like other foxes, although in the winter it mostly eats meat. In summer it eats bird eggs, berries, and even seaweed along with fish and small animals like lemmings and mice. It also eats carrion from dead animals and what’s left from a polar bear’s meal. It has such a good sense of smell that it can smell a carcass from 25 miles away, or 40 km. Its hearing is good too, which allows it to find mice and other animals that are traveling under the snow. Like other foxes, it will poke its nose into the snow quickly to grab the little animal, an activity called mousing. A study from 2024 revealed that the fox’s snout shape helps keep it from getting injured in deep and compacted snow.

The grey fox lives throughout North and Central America, although it’s less common than it used to be due to habitat loss and hunting by humans. It’s a grizzled gray in color with reddish or tan legs, and a black stripe down its tail ending in a black tail tip.

It’s actually not that closely related to what are called true foxes. Its pupils are rounded like a dog’s instead of slit like other foxes, which have eyes that resemble cats’ eyes. The grey fox also has hooked claws that allow it to climb trees like a cat, and when it’s in a tree it can climb around in it just fine. A vixen may make her den in the hollow part of a tree to have her babies, sometimes as much as 30 feet, or 9 meters, above the ground, although most of the time gray foxes den on the ground, in a burrow, hollow log, or even in an abandoned human building.

The gray fox is small, not much bigger than a domestic cat, and it eats a lot of the same things that coyotes eat. If a coyote feels like a grey fox is encroaching on its territory, the coyote will kill the fox. Naturally, foxes are cautious around coyotes as a result. A study published in 2021 discovered that in areas where black bears live alongside coyotes and gray foxes, the foxes spend a lot of time hanging out near bears. In winter when the bears are hibernating, the foxes leave because coyotes will move into the area until the bears re-emerge in spring. Coyotes are afraid of bears, so the presence of bears protects the foxes as long as the fox doesn’t annoy the bear. I feel like this would make a great basis for a cartoon.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 426 Lots of Little Birds

Thanks to Murilo, Alexandra, and Joel for their suggestions this week!

The bird sounds in this episode come from xeno-canto, a great resource for lots of animal sounds!

A cactus wren [picture by Mike & Chris – Cactus WrenUploaded by snowmanradio, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=15876953]:

The sultan tit [photo by By Dibyendu Ash – CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=72070998]:

A female scarlet tanager [photo by Félix Uribe, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=81340425]. The male is red with black wings:

The Northern cardinal:

The yellow grosbeak [photo by Arjan Haverkamp – originally posted to Flickr as 2008-08-23-15h00m37.IMG_4747l, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=9596644]:

The purple martin isn’t actually purple [photo by JJ Cadiz, Cajay – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=4255626]:

The dusky thrush [photo by Jerry Gunner from Lincoln, UK Uploaded by snowmanradio, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=20762838]:

The European rose chafer, not a bird [photo by I, Chrumps, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2521547]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about a lot of little birds that deserve more attention, because they’re cute and interesting. Thanks to Murilo, Alexandra, and Joel for their little bird suggestions!

All the birds we’ll talk about today are called passerines, because they belong to the order Passeriformes. They’re also sometimes referred to as perching birds or songbirds, even though not all passerines sing. Passerines are common throughout the world, with more than 6,500 species identified. I’ve seen about 150 of those species, so clearly I need to work harder as a birdwatcher.

Passerines are referred to as perching birds because of their feet. A passerine bird has three toes that point forward and another toe pointing backwards, which allows it to wrap its toes securely around a twig or branch to sit. Its legs are also adapted so that the toes automatically curl up tight when the leg is bent. That’s why a sleeping bird doesn’t fall off its branch.

Let’s start with one of Murilo’s suggestions, the wren. Wrens are birds in the family Troglodytidae, and are usually very small with a short tail, a pointy bill that turns slightly downward at the tip, and brown plumage. It mainly eats insects and larvae that it finds in nooks and crannies of trees, and many species will investigate dark places like hollow logs, the openings to caves, or your apartment if you leave the back door open on a warm day. Many sing beautiful songs and have very loud voices for such little bitty birds.

Most wrens are native to the Americas, including the canyon wren that’s native to western North America in desert areas. It’s cinnamon-brown with a white throat and an especially long bill, which it uses to find insects in rock crevices. It lives in canyons and has a more flattened skull than other wrens, which means it can get its head into crevices without hurting itself. No one has ever seen a canyon wren drink water, and scientists think it probably gets all the water it needs from the insects it eats. Where do the insects get the water they need? That’s an episode for another day.

This is what a canyon wren sounds like:

[bird sound]

Not every bird that’s called a wren is actually in the family Troglodytidae. Some just resemble wrens, like an unusual bird that Murilo brought to my attention. It’s called Lyall’s wren but it’s actually in the family Acanthisittidae, and it was once widespread throughout New Zealand. By the time it was scientifically identified and described in 1894, it was restricted to a single island in Cook Strait.

Lyall’s wren was flightless, and only five passerines are flightless as far as we know. All five were island birds who have since gone extinct, which is unfortunately the case with Lyall’s wren too. It was greenish-brown with a yellow eye stripe and its tail was just a little short nub. We don’t know much about it because between 1894 when a lighthouse was built and some families moved to the island to work at the lighthouse, bringing their housecats, and 1925 when the feral cat colony on the island was finally killed off, all the remaining Lyall’s wrens were eaten by cats or killed by people to sell as museum specimens. To be clear, it’s entirely the fault of people that the bird went extinct, because they brought the cats to the island and let them run loose. The bird probably actually went extinct in 1895, just one year after cats were introduced to the island.

Murilo also suggested some little birds called chickadees and tits, which belong to the family Paridae. They’re very small, often brightly colored or with bright white markings, with short bills that help them crack seeds open. They also eat insects. They’re not found in South America or Australia, but they’re very common in North America, Eurasia, and most of sub-Saharan Africa. Many species love to visit bird feeders, and since they’re cute and active little birds, people are happy to have them around.

Some species in this family have crests, which makes them even cuter. The tufted titmouse, which is found in eastern North America, has a little tufted crest on its head, for instance. It’s a soft gray-blue in color with patches of rusty-red under its wings, and white underneath. The gray crested tit lives in western Europe and also has a fluffy crest on its head. It’s gray-brown with a thin black and white ring around its neck and a buff-colored underside. The yellow tit lives only in forests in central Taiwan and is a gorgeous dark blue with bright yellow underneath and on its face, with a darker crest. It’s so beautiful that it’s becoming rare, since people trap the birds to sell to disreputable collectors. The sultan tit is even more spectacular, if that’s possible, since the male is black with bright yellow underparts and a bright yellow crest. It lives in parts of south Asia and some subspecies have a black crest instead.

This is what a sultan tit sounds like:

[bird sound]

Another spectacular bird is one Alexandra suggested, the summer tanager. It’s a common summer visitor in the eastern and southwestern United States that winters in Central and northern South America. The male is a bright, cheerful red all over while the female is yellow. The western tanager is a close relation that lives in western North America, wintering in Mexico. The male has a mostly black back with a yellow rump and yellow underneath, with red and orange on his face. Females are yellowy-green and gray. The scarlet tanager is also similar, although the male is red with black wings and the female is yellowy-green and gray. They eat insects and fruit, and spend a lot of time in the very tops of trees.

This is what a scarlet tanager sounds like:

[bird sound]

Despite their names, all three of these tanagers aren’t actually tanagers. Tanagers are members of the family Thraupidae and are native to central and South America. Many of them are brightly colored and absolutely gorgeous, like the red-legged honeycreeper that’s common in Central and parts of South America. The male has a black back and tail and is bright blue on the rest of his body, except for a black mask over his eyes. His long curved bill is also black, but his legs are bright red. The female has red legs but she’s mostly greeny-yellow.

The North American tanagers are actually more closely related to the cardinal than to other tanagers, and are placed in the family Cardinalidae. The family is named after the northern cardinal, which is common throughout most of the United States and parts of Mexico. The male is bright red with black around his bill, while the female is more of a rosy brown color. Both have red bills and tufted crests. In North America, the cardinal appears on a lot of Christmas cards because its bright red plumage against a snowy background is so cheerful in winter.

This is what a northern cardinal sounds like:

[bird sound]

Alexandra also suggested the blue grosbeak, while Joel suggested the yellow grosbeak. Both are also members of the family Cardinalidae. The blue grosbeak lives in much of the United States in summer and spends the winter in Mexico and Central America. The male is blue with black and rufous markings and a silvery-gray beak, while the female is rufous-brown and gray. The yellow grosbeak lives along the Pacific slope of Mexico and may be the same as the golden grosbeak that lives in western South America, or a very close relation. Scientists aren’t sure yet. The male is a bright golden yellow with black and white wings and a black bill, while females are a less conspicuous green-yellow. The yellow grosbeak is larger than the blue but they’re both pretty big and robust. They eat insects and lots of other small animals like snails and spiders, along with fruit and seeds. Sometimes a yellow grosbeak will show up farther north, in the United States, and birdwatchers lose their minds with excitement.

This is what a yellow grosbeak sounds like:

[bird sound]

Joel also suggested the purple martin, a type of swallow that’s common throughout the Americas. It’s not purple but it is a dark blue-black color with iridescence that reflects light. This makes the bird look anywhere from dark purple to blue depending on the angle of the light. The male is much darker than the female, who is more gray-blue in color. It spends the summer in North America, raising babies and eating lots of insects, then migrates to South America to spend the winter.

This is what a purple martin sounds like:

[bird sound]

Another Joel suggestion is the dusky thrush, which is another passerine that migrates a long distance. It spends the summer in Siberia and nearby areas to nest, then flies south to spend the winter in southern China, Japan, India, Vietnam, Korea, and other nearby areas. It’s mostly brown on its back and white underneath with lots of speckles, and a light stripe over its eye. Males and females look very similar. It eats insects, spiders, worms, seeds, and berries and spends a lot of its time on the ground. Every so often a dusky thrush will get lost during migration and end up in western Europe or Alaska, and again, birdwatchers in those areas go nuts trying to catch a glimpse of it.

This is what a dusky thrush sounds like:

[bird sound]

Let’s finish this episode with another of Joel’s suggestions, the European rose chafer. You may be wondering what kind of bird this is, and that is exactly what I was wondering. It sounds very pretty! Then I looked it up, and it’s not a bird at all, it’s a type of beetle!

The rose chafer is a big metallic-green beetle related to scarabs that grows up to 20 mm long. It’s common in Europe and some parts of southeast Asia, and is often found on rose bushes in summer. It eats flowers, including the petals, nectar, and pollen, and really likes roses.

The female rose chafer lays her eggs in the ground and the larvae eat decaying vegetation. There’s also a related beetle called the rose chafer that lives in parts of North America, but it’s sort of a muddy tan color, and while it likes to eat roses and other flowers, it also likes to eat fruit like peaches and grapes. Its larvae eat roots and can damage plants.

Since the European rose chafer is such attractive beetle, with an iridescent bronze shimmer to its emerald-green carapace, you’d think people who grow roses would like to have them on their rose bushes, but this isn’t actually the case. I guess people who grow roses want to see the roses without them being all chewed up by beetles. To bring it back to birds, birds don’t eat the rose chafer because the beetle contains toxins that make it taste awful. But they’re still really pretty.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 425 Rabbits!

Thanks to Alyx and Richard from NC for their suggestions this week! Let’s learn about rabbits!

Further reading:

Why your pet rabbit is more docile than its wild relative

FOUND: Small enigmatic rabbit with black tail lost to science for more than 120 years rediscovered hopping around mountain range in Mexico

The Omiltemi cottontail rabbit, as caught on a camera trap [photo taken from second article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about bunnies, and also learn about how a wild animal differs from its domesticated counterpart. Thanks to Alyx for suggesting this excellent topic. Thanks also to Richard from NC who alerted me to a rediscovered rabbit we’ll discuss too.

Thanks for all the well wishes in the last few weeks about my surgery. It went just fine and all I have now is a cool-looking new scar, although I was seriously hoarse for about a week. It’s pretty weather here in East Tennessee and officially it’s spring in the northern hemisphere, so let’s talk about some springtime bunnies!

Collectively rabbits and hares are called leporids after their family, Leporidae. Leporids are famous for hopping instead of walking, and they’re able to do so because their hind legs are longer than their front legs and have specialized ankle joints. Ancestors of leporids developed this ankle as much as 53 million years ago, but their legs were much shorter so they probably ran instead of hopped. Hares have longer legs than rabbits and can run faster as a result, but both rabbits and hares are known for their ability to bound at high speeds. When a rabbit or hare runs, it pushes off from the ground with the tips of its long hind toes, and its toes are connected with webbed skin so they can’t spread apart. If the toes did spread apart, they would be more likely to get injured. Rabbits and hares also don’t have paw pads like dogs and cats do. The bottom of its foot is covered with dense, coarse fur that protects the toes from injury. Its long claws help it get a good purchase on the ground so its feet won’t slip.

Leporids eat plants, including grass, weeds, twigs, and bark. Animals that eat grass and other tough plants have specialized digestive systems so they can extract as many nutrients from the plants as possible. Many animals swallow the plants, digest them for a while, then bring up cuds of plants and water to chew more thoroughly. Rabbits and hares don’t chew their cud in that way, but they do have a system that allows them to twice-digest the plants they eat.

After a leporid eats some plants, the plant pieces go into the stomach, naturally, and then travel into the first part of the large intestine, called the cecum. The cecum separates the softer parts of the plants from the harder, less digestible parts. The hard parts are compressed into hard pellets that the rabbit poops out. But the soft parts of the plants, which are most nutritious, develop into softer pellets. These are called cecotropes, and as soon as the rabbit poops out the cecotropes, it immediately eats them again. This allows the digestive system to get a second round to extract more nutrients from the plants.

Hares aren’t domesticated, but rabbits have probably been domesticated many times in different places over the last several thousand years, first for food and fur, and then as pets. The domesticated rabbit we have today is descended from the European rabbit, also called the cony. If other species of rabbit were ever domesticated, we don’t have record of it. The rabbit has also been introduced into the wild in places it has no business to be, like Australia, where it’s an invasive species. You know where else the European rabbit has been introduced? The British Isles. It’s native to mainland Europe, not England, Scotland, Ireland, Wales, and smaller islands nearby. Historians think the rabbit was introduced to England soon after the year 1066, but it got really common a few hundred years later.

We discussed domestication way back in episode 106, mostly in relation to dogs. An interesting thing happens with domestication. Certain physical traits come along with the behavioral traits of reduced aggression and willingness to treat humans as surrogate parents. In the case of dogs, these often include a puppy-like appearance, including floppy ears, curled tail, smaller adult size, and a rounder head with smaller jaws. White patches of fur start to show up too.

This is true in rabbits as well as dogs. Because humans wanted to breed rabbits that weren’t scared of people, domesticated rabbits are less anxious and aggressive in general than their wild counterparts. When traits like white patches, lop ears, and a more rounded face appeared in the domesticated population, people would keep those rabbits to breed because they’re extra cute, which has led to over three hundred different breeds recognized today by rabbit enthusiasts.

Because domesticated rabbits are calmer and more trusting than wild rabbits, they can’t survive long in the wild. A domesticated rabbit doesn’t know how to escape from predators or avoid cars, and it’s not used to cold weather. If you decide to adopt a bunny, make sure you do research ahead of time to know what to expect, and as with most animals it’s best to adopt two so they won’t be lonely. Rabbits are social animals and need a rabbit friend. There are even pet rescues that specialize in rabbits who need homes.

We talked about giant rabbits in episode 115, and the tiny volcano rabbit in episode 356, so let’s finish this episode with a medium-sized rabbit called the Omiltemi cottontail. Cottontail rabbits are native to the Americas and most have fluffy white fur on the underside of their tails. The Omiltemi cottontail doesn’t have any white fur at all, and is reddish-brown and black in color with some lighter gray on its face. It’s large for a wild rabbit, about 18 inches long, or 45 cm, although it’s actually smaller than other rabbits that live in the area. It lives only in Mexico, specifically in a single part of the Sierra Madre del Sur mountain range, in what is now the Omiltemi Ecological State Park.

It was first described in 1904 and then reportedly wasn’t seen again, although the local people knew all about it. Even though it lives in a protected area, poaching is still a big problem. When an expedition to find the rabbit got underway in 2019, local hunters provided pelts to the scientists when they asked about the rabbit, since they didn’t know they weren’t supposed to kill the local rabbits. They certainly didn’t know they had an incredibly rare species of rabbit living in their back yards.

The team used camera traps, drone surveys, and the knowledge of local people to find and identify the Omiltemi cottontail. It turns out that the rabbit is mostly nocturnal and prefers higher elevations, which made it harder to find. We still don’t know how many there are left, but now that scientists are certain that it’s not extinct, it can be better protected.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 423: Pack Rats and Busy Mice

Further reading:

Mouse filmed moving items in man’s shed in Bristol

The pack rat:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week I’m sharing a Patreon episode from last year because I have surgery scheduled. Don’t worry, it’s minor thyroid surgery and I’ll be fine, but my doctor said that a side effect might be hoarseness while I recover. Rather than risk sounding like an old frog, and to allow myself lots of time to rest afterwards, I’ve scheduled Patreon episodes for this week and next week.

At the beginning of this year, in early January 2024, you may have heard about a man in Wales who had an interesting visitor to his work shed. Rodney Holbrook is 75 years old and a retired postal worker, and at the end of 2023 he started noticing something weird. Things in his work shed kept being moved, and not in a way that suggested another person was getting in.

Initially Rodney noticed that some bird food had been moved into an old pair of shoes. This wasn’t just a one-time thing that would suggest an accident, like maybe Rodney had absent-mindedly decided to store the bird food in his shoes, or maybe it just fell there. The bird food kept ending up in the shoes.

Other things kept getting moved too. Small items that Rodney had left out while making and repairing things at his work bench kept getting put into a box, like tools and nuts and bolts. It happened almost every night.

Fortunately, Rodney is also a wildlife photographer, and he just happened to have a night vision camera. He set it up in the shed to find out what on earth was going on.

A mouse was going on, that’s what was going on. This actually wasn’t a huge surprise to Rodney, because years before, in 2019, a friend of his had had the same thing happen.

His friend was Steve Mckears who lived near Bristol, England. Steve kept crushed peanuts in a tub to use as bird food, but he started to notice other things mixed in with the peanuts. First it was just one screw, then it was lots more things that he’d left around his shed. He couldn’t figure out a solution, because he always locked his shed at night.

As Steve said at the time, “I was worried. I’m 72 and you hear of things going wrong with 72-year-old gentlemen in the mind.” Fortunately, Steve’s friend Rodney set up a camera and proved that there was nothing wrong with Steve’s mind or with the shed’s lock. It was just a mouse who was tidying up.

The question is why are these mice tidying up someone else’s shed? Don’t the mice have sheds of their own to clean up? It’s probable that the mice are actually living in the sheds and are wondering why some humans keep barging in every day and making a mess.

Rodents of all kinds do tend to tidy up as part of the foraging and nesting process. Sometimes that means moving debris so the animal can find important items more easily, sometimes it means bringing items back to its nest. House mice and rats will steal small items from humans to make nests, like socks and facecloths. Some rodents are attracted to shiny things and will stash them away or even bury them.

One animal, the pack rat, is so famous for storing items that we call a person who likes to collect things a pack rat. The pack rat lives throughout much of North and Central America and is related to mice and rats. It’s bigger than a mouse but smaller than most rats, and some species have furry tails like ground squirrels. It builds a den out of whatever materials are available where it lives, and its den is complex and usually well hidden. Desert species like to build under a cactus, while others live in cliffs or among rocks, in abandoned buildings or sometimes non-abandoned buildings, under bushes, in the tops of trees, or even in the entrances to caves. The den can be quite large and contains numerous rooms used for food storage, sleeping, and storing all the interesting things the pack rat finds while foraging.

A pack rat constructs a debris pile to hide its den, referred to as a midden. “Midden” is an old-fashioned word used to describe a place where household waste used to be thrown. Archaeologists love middens because you can learn a lot about people by the things they throw away, and other scientists love pack rat middens for the same reason. Some pack rat middens have been discovered preserved for 50,000 years, which has allowed scientists to learn a lot about what plants were growing in the area at the time. Since the middens also contain the pack rat’s fecal pellets, the scientists can also learn a lot about what the rat was eating, how big it was, and so forth.

Pack rats especially like shiny objects and will steal from people. In 2017 when historians were restoring an old home in Charleston, South Carolina dating back to 1808, they discovered several old pack rat middens in the walls of the kitchen. The middens contained buttons, marbles, sewing pins, and even some scraps of paper, including bits of newspaper with a readable date from November 1833. But some of the other bits of paper were torn from a writing primer, a book for people learning how to read or write. That’s not much of a surprise until you remember that this was the early 19th century, that the house was owned by a slave trader, and that the kitchen in particular would have been staffed by enslaved people, who were not supposed to learn how to read. Thanks to the pack rats, we know that at least one person was secretly learning how to read and write. I just hope the rats didn’t do too much damage to their book.

The pack rat is also sometimes called a trader rat, because it can only carry one thing at a time. If it’s carrying an acorn home and it chances upon a shiny gold ring, it will drop the acorn and carry the ring home. But you wanted an acorn, didn’t you, instead of that ring?

As for mice tidying up, we don’t really know why they do it, but it’s probably actually quite common. It just happens at night when people aren’t around, and in the morning they don’t know why all the nails have been moved into the box of nails, but hey, isn’t that handy? It reminds me of the stories of little house spirits called brownies, which were supposed to work at night cleaning and tidying. When the family woke up the next morning, the house or workshop was, ahem, squeaky clean, and all the family had to do was leave out a little cake or cream every night for the brownie.

Thanks for your support, and thanks for listening!

Episode 404: The Kraken and Chessie

Thanks to Ezra and Leo for suggesting these two sea monsters this week! Happy Halloween!

Further reading:

Legend of Chessie alive, well in Maryland

Here be sea monsters: We have met Chessie and…is it us?

Not actually a kraken, probably:

Not actually Chessie but an atmospheric photo of a toy brontosaurus:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Just a few days remain in October, so this is our Halloween episode and the end of monster month for another year! We had so many great suggestions for Halloween episodes that I couldn’t get to them all, but I might just sprinkle some in throughout the other months too. We have two great monsters to talk about this week, suggested by Ezra and Leo, the kraken and Chessie the sea serpent.

First, as always on our Halloween episode, we have a few housekeeping details. If anyone wants a sticker, feel free to email me and I’ll send you one, or more than one if you like. That offer is good all the time, not just now. I don’t have any new stickers printed but I do have lots of the little ones with the logo and the little ones with the capybara.

I also don’t have any new books out this year, but you can still buy the Beyond Bigfoot & Nessie book if you like. I am actually working on another book about mystery animals, tentatively titled Small Mysteries since it’s going to be all about mysteries surrounding small animals like frogs and invertebrates that often get overlooked. I’m hoping to have it ready to publish in early 2026 or so. I don’t know that I’ll do another Kickstarter for it since that was a lot of work, and I just finished a Kickstarter for more enamel pins and just can’t even think about the stress of doing another crowdfunding campaign anytime soon. Also, I hate to keep asking listeners for money.

Anyway, one of the things I don’t like about Beyond Bigfoot & Nessie is that I didn’t cite my sources properly, so for the Small Mysteries book I’m being very careful to have footnotes on pretty much every page so that anyone who wants to double-check my information can do so easily.

But all that is in the future. Let’s celebrate Halloween now with a couple of sea monsters!

We’ll start with Ezra’s suggestion, the kraken. It’s a creature of folklore that has gotten confused with lots of other folklore monsters. We don’t know how old the original legend is, but the first mention of it in writing dates to 1700, when an Italian writer published a book about his travels to Scandinavia. One of the things he mentions is a giant fish with lots of horns and arms, which he called the “sciu-crak.” This seems to come from the Norwegian word meaning sea krake.

“Krake” is related to the English word crooked, and it can refer to an old dead tree with crooked branches, or tree roots, or something with a hook on the end like a boat hook, or an anchor or drag, or various similar things related to hooks or multiple prongs. That has led to people naturally assuming that the kraken had many arms and was probably a giant squid, and that may be the case. But there’s another possibility, because in many old uses of the word krake, it means something weak or misshapen, like a rotten old dead tree. In the olden days in Norway, people thought that if you spoke about an animal by name, the spirit that protected that animal would hear you. Some historians think that whale-hunters referred to whales as krake so the whale’s protective spirit wouldn’t guess that they were planning a whale-hunt. Who would refer to a huge, strong animal like a whale as weak and crooked, after all?

Whatever its origins, the kraken’s modern form is mainly due to a Danish bishop called Erik Pontoppidan. He wrote about the kraken in 1753, and embellished the story by saying the kraken could reach out of the ocean with its long arms to grab sailors or just pull an entire ship down into the water and sink it. He also said the kraken was so big that when it rested at the water’s surface, sailors would mistake it for an island. This is a common story in many cultures, always referring to whales. Pontoppidan suggested the kraken might be a giant octopus, but also thought it might be a giant starfish or even a giant crab. He seemed to think the word kraken should be krabben, and I swear I didn’t make that up.

Either way, the kraken is a monster of folklore, not a real animal. That’s a relief! Now you don’t have anything to worry about in the ocean at all, right?

Next, let’s learn about another water monster, Chessie, suggested by Leo. Leo also suggested we talk about Chesapeake Bay in general.

Chesapeake Bay is located on the east coast of North America, specifically where the states of Virginia, Maryland, and Delaware meet. On the map it looks sort of like a huge crack in the land, but while rivers and streams empty into it like they would a gigantic lake, it’s connected to the Atlantic Ocean. It’s about 200 miles long, or 320 km, and up to 30 miles wide, or 48 km.

It formed about 35 million years ago when a small meteor struck the area. During the Pleistocene, AKA the ice ages, the Susquehanna River flowed through the crater and into the sea. Around 10,000 years ago, ocean levels rose due to melting glaciers, and flooded the river valley that had started out as an impact crater. Now it’s a bay.

Chesapeake Bay isn’t technically a lake, but it’s also not really part of the ocean. Part of the bay is freshwater from the rivers that flow into it, while at the end that connects to the Atlantic Ocean, it’s salty. In between it’s brackish water that’s kind of salty but not nearly as salty as the ocean. It’s home to hundreds of animals, with many more visiting the bay during migration. Sometimes whales are even spotted in the bay.

We could literally talk about the animals and the history of Chesapeake Bay all day and not run out of topics, so I have plans to revisit some of the animals in future episodes. Today we mainly want to focus on the sea monster known as Chessie.

As you may have already guessed, the name Chessie isn’t just short for Chesapeake, it also echoes the name Nessie, the Loch Ness Monster. The first Nessie sighting was in 1933, leading to a lake monster craze in Scotland and many other parts of the world. Suddenly people were seeing monsters everywhere, such as Champ from Lake Champlain, which we talked about in episode 29 along with Nessie.

No one’s sure when the first Chessie sighting happened. Some people say it was as early as 1936, while others claim it wasn’t until 1980. In 1943 two fishermen reported seeing a strange creature in the water about 75 yards from their boat, or 68 meters. At first they thought there was something black floating in the water, with the visible part of it about 12 feet long, or 3 ½ meters. Then they realized it was alive. Its head was shaped like a horse’s but was only about the size of an American football. It’s not clear if it raised its head completely out of the water like a sea serpent in a cartoon, but the men did say that it turned its head almost all the way around several times.

There are also reports from 1977, 1978, 1980, 1982, 1997, and 2014. In 1978 a retired CIA officer saw what looked like a 15-foot, or 4 ½ meter, snake swimming in the water. In 1982 a man named Bob Frew took some grainy videocamera footage of something that he described as “a telephone pole that swims.” The video shows a brown object swimming like a marine snake, with a side to side motion.

In the 1980s people in the state of Maryland tried to get Chessie listed as a protected species. It didn’t work, but it did bring attention to the state of the Chesapeake Bay. The bay was increasingly polluted by industrial and agricultural waste that was allowed to enter the bay untreated, leading to algal blooms that deoxygenated the water and killed everything around them. The once-famous oyster reefs in the bay started to be overharvested too, and since oysters are natural water filters, their absence has caused an extra decrease in water quality. With Chessie acting as a mascot for water quality and ecology, people paid more attention to what was happening to the bay.

Chessie the monster doesn’t have a lot of sightings, and most likely they’re all misidentifications of ordinary animals or items, like whales or floating logs. There are some amazing creatures that live in or visit the bay, including a fish called the sturgeon that can grow up to 15 feet long, or 4.6 meters, bull sharks that can grow up to 13 feet long, or 4 meters, bottlenose dolphins, sea turtles, even manta rays. Most people agree that Chessie probably isn’t an actual sea serpent.

But there is another Chessie that’s definitely real, although you can’t actually call him a monster. A Florida manatee was spotted in the summer of 1994 swimming around in the bay and exploring some of the river mouths. Since Chesapeake Bay is nice and warm in summer, the manatee was fine at first. But by October he was still there, and the water was getting too cold for a manatee to tolerate.

Maryland’s Department of Natural Resources worked with the Coast Guard and a lot of volunteers to find the manatee, capture him safely, and get him back to Florida. He was given a clean bill of health by veterinarians and was tagged and released.

The following summer, he swam back to Chesapeake Bay. But who can blame him? It’s a beautiful place!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 403: Predator X

Thanks to Eesa for suggesting this week’s topic, the pliosaur Predator X!

Further reading:

Predator X / Pliosaurus funkei [you can find lots of interesting pictures here, some artwork and some skeletal diagrams]

Kronosaurus had a big skull with big teeth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’re one week closer to Halloween, and that means the monsters are getting more monster-y, at least in name, although I wouldn’t want to meet this one in person. It’s referred to as Predator X, and thanks to Eesa for suggesting it!

Fortunately for everyone who likes to swim and boat in the ocean, Predator X has been extinct for around 145 million years. It’s a type of marine reptile called a pliosaur, Pliosaurus funkei, but there was nothing funky about it. It was huge, fast, and incredibly strong. Also, the funky part of the name comes from the couple who originally discovered the first specimen, who had the last name of Funke.

We only have two Predator X specimens right now, both of them found in the same rock formation from a Norwegian island. The remains were first discovered in 2004 but the process of recovering them took many years. Because winters in Norway are very cold, the exposed rocks were subject to freezing temperatures that had broken a lot of the fossils into fragments, and some of the fossils crumbled into pieces as they dried out. All told, 20,000 pieces were recovered and painstakingly fit back together like a gigantic jigsaw puzzle made of fossilized bones.

Neither specimen is complete but we have enough bones that scientists can estimate the animal’s size when it was alive—and it was huge! It probably grew up to 39 feet long, or 12 meters, and some individuals would certainly have been bigger. Initial estimates were even longer, up to 50 feet, or over 15 meters, but that was before the specimens were fully studied.

Like other pliosaurs, predator X had a short tail and big teeth in its long jaws. Its head was massive, around 7 feet long, or 2 meters, and its front flippers were probably about the same length. It had four flippers, and researchers think its front flippers did most of the work of swimming, with the rear flippers acting as a rudder, but it could probably use its back flippers for a little extra boost of speed when it needed to. But it was a strong, fast swimmer no matter what, probably as fast as a modern orca, and very maneuverable. It had to be, because it ate other marine reptiles like plesiosaurs that were themselves very fast swimmers. It undoubtedly also ate sea turtles and fish, and probably pretty much anything else it could catch. It didn’t eat whales because this was long, long before whales evolved.

Predator X got its nickname from reporters back when the paleontologists thought it was 50 feet long. It didn’t have a name yet so it got called Predator X because that sounded impressive (and it is), but it isn’t the only giant pliosaur known.

Kronosaurus was originally described in 1924 from fossils discovered in Australia, and current estimates of its size agree that it could probably grow to around 33 feet long, or 10 meters. This may be a low estimate, though, because the size of the biggest skull found might have been over 9 feet long, or 2.85 meters, although the skull isn’t complete so its full size is just an estimate. Pliosaurs do have big heads, but if Kronosaurus’s skull really is longer than predator X’s skull, it was probably a bigger animal overall.

Kronosaurus’s fossils have only been found in an ancient inland sea that covered most of Queensland and Central Australia until about 100 million years ago. It was probably a relatively shallow, cold sea, and although it had all the marine animals you’d expect for the time, like sharks, ammonites, ichthyosaurs, plesiosaurs, lungfish, sea turtles, and lots more, Kronosaurus was the apex predator. It was so big and deadly that a full-grown Kronosaurus didn’t have to worry about anything in the water.

Trying to figure out how big an extinct animal was from its fossil remains isn’t easy. It’s rare that an entire skeleton is discovered, so scientists have to make estimates of how big the missing pieces were, such as how long its tail was. Then they have to deal with the problem of how rare it is to find fossil specimens in the first place. The fewer specimens we have, the harder it is to decide how big a species may have grown overall. If you have 100 fossilized animals, you can measure them all and get a good idea how big most adults of that species got. If you have one fossilized animal, you don’t know if that particular individual was extra small or average or maybe the biggest one that ever lived.

All that aside, some of Kronosaurus’s teeth grew an entire 12 inches long, or 30 cm. Predator X had teeth the same size. So if you somehow invent a time machine and go back to the Cretaceous or Jurassic to look around, you might want to stay out of the water—or just bring an extra strong shark cage.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 399: Bears

Thanks to Anbo, Murilo, Clay, and Ezra for their suggestions this week! Let’s learn about some bears!

Further reading:

Snack attack: Bears munch on ants and help plants grow

Extinct vegetarian cave bear diet mystery unravelled

Ancient brown bear genomes sheds light on Ice Age losses and survival

The sloth bear has shaggy ears and floppy lips [photo from this site]:

An absolute unit of a Kodiak bear in captivity [photo by S. Taheri – zoo, own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1118252]:

A polar bear:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re revisiting a popular topic, bears! We’ll talk about some bears we’ve never covered before, with suggestions from Anbo, Clay, Ezra, and Murilo. We’ll even discuss a small bear mystery which has mostly been solved by science.

To start us off, Anbo wanted to learn about bears in general. We’ve had bear episodes before, but our last episode all about bears was way back in 2017, in episode 42. Some of our listeners weren’t even born back then, which makes me feel super old.

Bears live throughout much of the world today, but they evolved in North America around 38 million years ago. These ancestral bears were small, about the size of a raccoon, but they were successful. They spread into Asia via the land bridge Beringia, where they were even more successful than in North America, so successful that by around 30 million years ago, descendants of those earliest bear ancestors migrated from Asia back into North America. But it wasn’t until the Pleistocene around 2 ½ million years ago that bears really came into their own.

That’s because bears are megafauna, and megafauna evolved mainly as an adaptation to increasingly cold climates. As the ice ages advanced, a lot of animals grew larger so they could stay warm more easily. Predators also had to grow larger as their prey became larger, since if you want to hunt an animal the size of a bison or woolly rhinoceros, you’d better be pretty big and strong yourself.

Bears mostly weren’t hunting animals that big, though. Modern studies suggest that overall, bears are omnivores, not fully carnivorous. Bears eat a lot of plant material even if you don’t count the panda, which isn’t very closely related to other bears. Even when a bear does eat other animals, they’re not usually very big ones.

Let’s take Murilo’s suggestion as an example, the sloth bear. The sloth bear lives in India and is increasingly vulnerable due to habitat loss and poaching. It’s probably most closely related to the sun bear that we talked about in episode 234, which also lives in parts of South Asia. Both the sun bear and the sloth bear have long black hair and a white or yellowish V-shaped marking on the chest. The sloth bear’s hair is especially long on its neck and shoulders, like a mane, and its ears even have long hair.

The sloth bear stands around 3 feet high at the shoulder at most, or 91 cm, and a big male can be over 6 feet tall, or almost 2 meters, when he stands on his hind legs. This isn’t gigantic for bears in general, but it’s not small either. Scientists think the V-shaped marking on its chest warns tigers to leave the sloth bear alone, and tigers mostly do. If tigers think twice about attacking an animal, you know that animal has to be pretty tough.

The sloth bear has massive claws on big paws. The claws can measure 4 inches long, or 10 cm, although they’re not very sharp. The bear has an especially long muzzle but its teeth aren’t very large. Like most bears, it’s good at climbing trees and can run quite fast, and it swims well too. It even has webbed toes.

With all this in mind, what do you think the sloth bear eats? I’ll give you some more hints. It has loose, kind of flappy lips, especially the lower lip. It doesn’t have any teeth in the front of its upper jaw. It mainly uses its huge claws to dig.

If you guessed that the sloth bear eats ants, termites, and other insects, you are right! It digs into termite and ant nests and uses its long, flexible lips to slurp up as many insects as it can, giving them a quick crunch with its back teeth before swallowing them down.

Insects are actually quite nutritious, and the sloth bear isn’t the only bear that eats them. All bears snack on ants and other insects sometimes. You may have heard that bears love honey and will tear open beehives to get it, and while that’s true, the bear is mainly after the larval bees because they’re so nutritious. The honey is just, you know, dessert.

Next, Clay wanted to learn about the Kodiak bear, which may be the largest bear in the world. It’s a subspecies of brown bear and is sometimes called the Alaskan brown bear since it lives on some Alaskan islands called the Kodiak Archipelago. It’s light brown or rusty-red in color.

The Kodiak bear has been restricted to these islands for at least 10,000 years, since the end of the Pleistocene when the sea levels rose as glaciers melted. It demonstrates island gigantism, which is actually quite unusual. Because islands have limited resources, but are relatively protected from large numbers of predators, small animals are the ones that generally adapt to island life by growing larger. Animals that start off large generally adapt by growing smaller, called island dwarfism. That’s why some islands have been home to dwarf elephants but giant rodents.

In the case of the Kodiak bear, it has a source of protein that helps it grow so incredibly large, salmon. Five species of salmon spawn in the freshwater on the islands, and the bears are able to put on lots of weight to survive the harsh winter by eating as much salmon as they can catch. They also have lots of nutritious plants to eat. They actually prefer some plants to eating salmon, which makes sense when you think about it. A wild animal needs to conserve energy, and it can take a lot of energy to catch fish. It’s a lot easier to eat berries, which can’t swim away.

So how big can a Kodiak bear get? A big male can stand up to 10 feet tall on his hind legs, or 3 meters, and be 5 feet tall, or 1.5 meters, when standing on all fours. Bears kept in captivity can grow even larger. That’s much bigger than a grizzly and about the same size as the closely related polar bear, which brings us to Ezra’s suggestion.

Ezra wanted to learn about the polar bear, which lives in the Arctic and areas near the Arctic. It doesn’t live near the Antarctic, or south pole, which means polar bears don’t eat penguins, because penguins live around the Antarctic. The polar bear does eat a whole lot of other animals, though, and is the most carnivorous of all bears. It especially likes eating seals, and will also catch and kill walruses, caribou, and beluga whales. That’s right, the polar bear can actually kill an entire whale. The beluga is fairly small for a whale and relies on breathing holes in the ice, and sometimes when it comes up to breathe, there’s a polar bear waiting for it. Most of the time, though, the polar bear eats much smaller animals.

The polar bear spends a lot of its time on sea ice, and a lot of the time in the sea. It swims incredibly well and spends so much time in the water that some people consider it a marine animal. It’s certainly semi-aquatic. Its kidneys are adapted to filter excess salt out of its blood from seawater, and its small eyes are closer to the top of its head than in other bears. This helps it see above water while swimming.

The polar bear is closely related to the brown bear and will sometimes interbreed with the brown bear where their ranges overlap. The resulting hybrid bear is usually light brown in color. The polar bear is famously white, although its fur becomes yellowish as the year goes on. It sheds its winter coat in the spring and the new hair that grows in is white.

Actually, the polar bear’s fur is transparent, but it looks white because of the way it scatters light. The guard hairs are long and coarse, protecting a shorter, softer undercoat that helps keep the bear warm even on bitterly cold nights. Unlike other bears, the polar bear doesn’t hibernate, except for pregnant females.

There used to be a bear of similar size that lived in Europe and Asia during the Pleistocene and only went extinct about 24,000 years ago. The cave bear gets its name because so many of its remains have been found in caves. It may have hibernated in caves like some bears do today, or it might have used caves as shelters year-round.

Scientists think the cave bear was most closely related to brown bears and polar bears. The males were much larger than females, and a big male was as big as a Kodiak or polar bear. But this giant bear probably wasn’t too much of a problem for our ancient ancestors and Neandertal relations, because it was almost entirely vegetarian.

Scientists have studied the wear pattern on cave bear teeth and determined that it was eating a whole lot of fruit, especially berries. It probably did eat at least some meat, but it’s likely that most of it came from scavenged carcasses. The cave bear didn’t even have all the teeth that other bears have.

All this talk about huge bears brings us to a mystery. It may even be a mystery you were wondering about yourself. How did bears survive the end of the Pleistocene when so many other megafauna went extinct, from the mammoth and giant ground sloth to the dire wolf and sabertooth cat?

A team of scientists from Denmark and Japan decided to examine the genetics of ancient brown bears, to learn how individuals were related and therefore how bears migrated across the world over time. They extracted genetic material from the remains of bears that lived as much as 60,000 years ago and as recently as 3,800 years ago and compared them to each other and to bears alive today.

Scientists already knew that brown bears used to live in more parts of the world than they do today. The prevailing view was that as the climate warmed after the ice ages, the bears retreated into colder parts of the world where they were more comfortable. But the team learned something surprising from the study, which was published in January of 2024.

Brown bears that lived before the end of the Pleistocene, approximately 11,000 years ago, had much broader genetic diversity than the bears that lived more recently. That means that bears that lived as far south as Japan and Ireland during the Pleistocene didn’t move to colder parts of the world, they died out. Each population that went regionally extinct made the brown bear gene pool that much smaller.

Most likely it was a combination of luck and adaptability that allowed bears to survive the end-Pleistocene extinctions. Just think how sad it would be if I ended this episode by saying that bears went extinct 11,000 years ago. Instead, we can still go to the zoo and see all kinds of bears whenever we want to.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 398: Repeating Scientific Names

Thanks to Alexandra, Pranav, Eilee, Conner, and Joel for their suggestions this week!

Velella velella, or by-the-wind-sailor [photo from this page]:

Porpita porpita, or the blue button [photo from this page]:

Cricetus cricetus, or the European hamster, next to a golden hamster:

Nasua nasua, or the South American coati [photo from this page]:

Mola mola, or the ocean sunfish:

Quelea quelea, or the red-billed quelea [photo from this page]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn a little bit about scientific names, and along the way we’re going to learn about several animals. Thanks to Alexandra, Eilee, Conner, Joel, and Pranav for their suggestions!

Alexandra inspired this episode by suggesting two animals, the by-the-wind-sailor and the blue button. Both are marine invertebrates that look superficially like jellyfish, but they’re actually colonial organisms. That means that although they look like a single animal, they’re actually made up of lots of tiny animals that live together and function as one organism.

The blue button is closely related to the by-the-wind-sailor and both are related to siphonophores. Both the blue button and the by-the-wind-sailor spend most of the time near or on the ocean’s surface and have a gas-filled chamber that helps keep them afloat, with stinging tentacles that hang down into the water, but both are made up of a colony of tiny animals called hydroids. Different hydroids have different functions, and all work together to find tiny food that will benefit the entire colony.

The blue button gets its name because its float is round and flat like a button, and often blue or teal in color. It’s quite small, only a little over an inch across, or about 3 cm, and its tentacles are not much longer. The by-the-wind-sailor is a little larger than the blue button, with a blue sail-shaped float that’s only a few inches across, or maybe 7 cm, with stinging tentacles of about the same size. The stings of both organisms aren’t very strong and aren’t dangerous to humans, but they do hurt, so it’s a good idea not to touch one. Since both can be very common in warm ocean waters and they sometimes get blown ashore by the wind in large numbers, it can be hard to avoid them if you’re visiting the beach at the wrong time. They can still sting you if they’re dead, too.

The by-the-wind sailor has the scientific name of Velella velella while the blue button’s scientific name is Porpita porpita. The term for a scientific name that contains the same words is a repeating scientific name, also called a tautonym or tautonymous name, and that’s the subject of this episode.

A scientific name is something we mention a lot but if you’re not sure what it means, it can sound confusing. Every organism with a scientific name has been described by a scientist, meaning it’s been studied and placed somewhere in the great interconnected web of life. The system of giving organisms scientific names is called binomial nomenclature. The first word of the name indicates which genus the organism belongs to, while the second word indicates what species it is. These are called generic and specific names. Some organisms also have a third word in their scientific name which indicates its subspecies.

The reason scientists use a complicated naming system is to make it easier for other scientists to know exactly what organism is being discussed. For example, let’s say a scientist has been studying hamsters in the wild to learn more about them, and publishes a paper about her observations. If she just calls the animal a hamster, someone reading it might assume she was talking about the hamster found in their part of the world, when the paper is actually about a totally different, although closely related, hamster that lives somewhere else. And that brings us to Pranav’s suggestion, the European hamster, whose scientific name is Cricetus cricetus [cry-SEE-tus].

The hamster most of us are familiar with is actually the golden hamster, also called the Syrian hamster, more properly called Mesocricetus auratus. That’s the most common species kept as a pet. We can learn from the different scientific names that the European hamster is in a different genus from the golden hamster, which usually means it’s pretty different in some significant ways.

The European hamster lives throughout parts of Eurasia, especially eastern Europe through central Asia, and used to be extremely common. It’s also called the black-bellied hamster because the fur on its underside is black, while the fur on its upper side is tan or brown with white markings. These days it’s critically endangered due to habitat loss and being killed by farmers who think it hurts their crops. It does eat seeds, vegetables, and some roots, but it also eats grass and many other plants that are considered weeds, as well as insects, including insects that farmers also don’t want in their gardens.

In many respects, the European hamster is a lot like the golden hamster. It carries food home to its burrow in its cheek pouches and stores food in a larder. It hibernates in cold weather but wakes up around once a week to have a snack from its larder, which honestly sounds like the best way to spend the winter. But the European hamster is larger than the golden hamster. Like, a lot larger. The golden hamster is maybe 5 inches long, or 13 cm, which is small enough that you can easily hold it in your hand. The European hamster grows up to 14 inches long, or 35 cm. That’s the size of a small domestic cat, but with a short little hamster tail and short little hamster legs.

Even though an organism’s scientific name only designates genus and species, and subspecies when applicable, it allows scientists to look up a more detailed family tree. Every genus is classified in a family and every family is classified in an order, and every order in a class, and every class in a phylum, and every phylum in a kingdom, and every kingdom in a domain. Almost all of the organisms we talk about in this podcast belong to the kingdom Animalia. The more of these categories an organism shares with another organism, the more closely related they are.

Conner suggested we learn more about the coati, which we talked about in episode 302. The South American coati’s scientific name is Nasua nasua [NAH-sue-uh]. It grows almost four feet long, or 113 cm, which makes it sound enormous, but half of its length is its long ringed tail. It lives in much of South America, especially the northern part of the continent.

The coati is related to the raccoon of North America, and the two animals’ scientific names can help us determine how closely they’re related. The common raccoon’s scientific name is Procyon [PROSE-eon] lotor, so we already know it belongs to a different genus than the coati. But both the genus Procyon and the genus Nasua are classified in the family Procyonidae. So we know they’re closely related, because they belong to the same family, but not as closely related as they’d be if they belonged to the same genus, so we can expect to see some fairly significant differences between the two animals.

The South American coati is diurnal, unlike the nocturnal raccoon. While female raccoons often live in small groups of a few animals that share the same territory, female coatis live in groups of up to 30 animals who forage for food together and are very social. The coati also doesn’t have a set territory. The male coati is completely solitary, while the male raccoon will also live in small groups of three or four animals. Both are omnivorous but the coati eats more fruit and insects than the raccoon does, and the coati doesn’t dunk its food in water the way the raccoon famously does.

The system of binomial nomenclature that we use today was developed by the Swedish botanist Carolus Linnaeus in 1735. We talked about some of his mistakes in episode 123. Linnaeus built on a system developed by a zoologist almost a century before him, but streamlined it and made it easier to use. In the 300 years since Linnaeus came up with his system, many other scientists have made changes to reflect increased knowledge about the natural world and how best to denote it.

I keep saying “organism” instead of “animal,” and that’s because all living organisms may be given a scientific name as they are described. This includes everything from humans to maple trees, from earthworms to harpy eagles, from bumblebees to mushrooms. Linnaeus originally included minerals in his classification system, but minerals don’t evolve the way living organisms do. One group that wasn’t given scientific names until 2021 are viruses. There’s still a lot of controversy as to whether viruses are technically alive or not, but giving them scientific names helps organize what we know about them.

Eilee suggested the ocean sunfish, which has the scientific name Mola mola. Because its scientific name is easy to say, and because there’s also a freshwater sunfish that isn’t related to the ocean sunfish, a lot of people just call it the mola-mola, or just the mola. We talked about it way back in episode 96, so we’re definitely due to revisit it.

The ocean sunfish doesn’t look like a regular fish. It looks like the head of a fish that had something humongous bite off its tail end. It has one tall dorsal fin and one long anal fin, and a little short rounded tail fin that’s not much more than a fringe along its back end. This isn’t even a real tail but part of the dorsal and anal fins. The sunfish uses the tail fin as a rudder and progresses through the water by waving its dorsal and anal fins the same way manta rays swim with their pectoral fins. Pectoral fins are the ones on the sides, while the dorsal fin is the fin on a fish’s back and an anal fin is a fin right in front of a fish’s tail. Usually dorsal and anal fins are only used for stability in the water, not propulsion. The ocean sunfish does have pectoral fins, but they’re tiny.

The ocean sunfish lives mostly in warm oceans around the world, and it eats jellies, small fish, squid, crustaceans, plankton, and even some plants. It has a small round mouth that it can’t close and four teeth that are fused to form a sort of beak. It also has teeth in its throat, called pharyngeal teeth. Its skin is thick and rough like sandpaper with a covering of mucus, and its bones are mostly cartilaginous. It likes to sun itself at the water’s surface, and it will float on its side like a massive fish pancake and let sea birds stand on it and pick parasites from its skin. This also helps it absorb heat from sunlight after it’s been hunting in deeper water.

The female ocean sunfish can lay up to 300 million eggs at a time. That is the most eggs known to be laid by any vertebrate. When the eggs hatch, the larval sunfish are only 2 ½ mm long. Once they develop into their juvenile form, they have little spines all around their thin end, which kind of make them look like tiny stars. If that seems weird, consider that the ocean sunfish is actually related to the pufferfish, although not very closely. The largest adult ocean sunfish ever reliably measured was 14 feet tall, or 4.3 meters, including the long fins, which is a whole lot bigger than 2 ½ mm.

Sometimes after an organism is initially described and named, later scientists learn more about it and determine that it doesn’t actually belong in the genus or family where it was initially placed. If it gets moved to a different genus, its scientific name also needs to change. Some organisms get moved a lot and their scientific names change a lot. But typically, the species name doesn’t change. That’s the case for a little bird from Africa.

Joel suggested a bird called the red-billed quelea [QUEE-lee-ya], whose scientific name is Quelea quelea. When Linnaeus described it in 1758, he thought it was a type of bunting, so he named it Emberiza quelea. Another scientist moved it into a new genus, Quelea, in 1850.

I’d never heard of the red-billed quelea, which is native to sub-Sarahan Africa, but it may actually be the world’s most numerous non-domesticated bird, with an estimated 1.5 billion birds alive at any given moment.

The red-billed quelea mainly eats grass seeds, and unlike the European hamster, it is actually a problem to farmers. The bird doesn’t know the difference between yummy grass seeds and yummy wheat, barley, milt, oats, sunflowers, and other food that humans eat. In fact, some researchers suggest that the bird has become incredibly numerous because it has all this great food to eat that was planted by people.

A flock of red-billed quelea birds can number in the millions. The flock flies until they find grassland or fields with food they like. The first birds land, the birds behind them land a little bit farther along, and so on until all the birds have landed and are eating. But by the time the last birds of the flock land, the first ones have eaten everything they can find, so they fly up and over the rest of the birds until they find fresh grass to land in again. This is happening constantly with the entire flock of millions of birds, so that from a distance the flock’s movement looks like a cloud of smoke rolling across a field.

The red-billed quelea also eats insects, mostly during nesting season. Insects and other small invertebrates like spiders are especially nutritious for nestlings.

The quelea is about the size of a sparrow, which it resembles in many ways, although it’s actually a member of the weaver bird family, Ploceidae. It grows less than five inches long, or about 12 cm, including its tail, and it’s mostly brown and gray. Its beak and legs are orangey-red, and during breeding season the male has a rusty-red head with a black mask on his face.

One subspecies of red-billed quelea is native to western and central Africa. Since it’s a subspecies, it has three words in its scientific name: Quelea quelea quelea.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!