Episode 327: The Humble Marmot

Thanks to Dean for suggesting this week’s topic, the marmot!

Thanks also to Al-Ka-Lines Studio for the beautiful bat pin! You should definitely visit their online shop, because all their jewelry is hand-made by the two of them.

Further reading:

The secret to longevity? Ask a yellow-bellied marmot

The yellow-bellied marmot doing a sit [By Inklein, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2675916]:

A groundhog keeping an eye out for danger:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to have a short little episode about a short little animal suggested by Dean, although I don’t know if Dean is short and/or little. Probably not. The name Dean makes me think of a tall person, probably someone who plays sports and can run really fast, so basically completely unlike a marmot. Dean suggested the marmot, specifically the yellow-bellied marmot.

Before we get started, two quick notes. First, thanks so much to Kathi and Alex of Al-Ka-Lines Studio for the gorgeous bat pin! They make hand-crafted leather jewelry and while they usually sell wholesale to shops, I checked with Kathi to see if it was okay to link to their shop and they said that yes, they sometimes sell to individuals too. I’ve put a link in the show notes in case you’re interested in seeing what they have for sale. They recently started listening to the podcast in order from the first episode and so far they’re not sick of my voice yet.

Second, I’ll be at Furry Weekend Atlanta this coming weekend, assuming you’re listening to this episode when it comes out on May 8, 2023. If you’re going to be there too, let me know and we can meet up. I went to way too many conventions last year so this one and Dragon Con at the end of August are the only ones I have planned this year, and I’m not on any programming on either. I just plan to look at people’s amazing costumes and attend interesting panels and have fun dancing in the evenings. Also, I’ll probably eat a lot of pizza.

Now, on to the marmots!

If you live in North America, you may have seen a marmot without realizing it. I didn’t realize that the groundhogs that are pretty common where I live in the eastern United States are a type of marmot. Similarly, if you live in the western part of North America, especially in mountainous areas, you may have seen the yellow-bellied marmot. Other species of marmot live in Asia, Europe, and other parts of North America. One interesting thing is that the groundhog of eastern North America is actually more closely related to the marmots of Europe and Asia than it is to the other North American marmot species.

Marmots are big rodents related to squirrels, and in fact they’re considered a type of ground squirrel along with the closely related chipmunks and prairie dogs. They dig burrows and mostly eat plant material, and can grow quite large. The largest species is probably the Olympic marmot that only lives in the state of Washington in the Pacific Northwest of North America, which can weigh up to 18 lbs, or 8 kg. That’s its summer weight, though, when it’s had time to eat lots of food. All marmots hibernate and during that time they survive on the fat reserves they build up in warm weather. Basically all marmots are about the size of a cat, but they’re big chonks with short legs, short tails, little round ears, and a blunt muzzle. Its thick fur makes it look even larger than it really is.

The yellow-bellied marmot mostly lives in higher elevations and, like all marmots, it’s well adapted to cold weather. It’s a social animal that lives in small colonies and spends most of its time underground when it’s not out finding food. It’s mostly brown with yellowish markings underneath and a spot of white between its eyes. It usually digs its burrow among rocks and can have multiple burrows in its territory, so if it spots a predator it doesn’t have far to run to get safely underground. It digs an especially deep burrow to hibernate in, sometimes as much as 23 feet deep, or 7 meters. Since it spends as much as eight months hibernating every year, it needs to stay comfortable. It lines its sleeping chamber with dried leaves and even digs a little side burrow that acts as a latrine.

In a study released in March of 2022, a team of scientists studying yellow-bellied marmots discovered that when it hibernates, an adult marmot’s body basically stops aging. The marmot exhibits true hibernation where its body temperature drops almost to the air temperature and its breathing and heart rate slow dramatically. It will hibernate for a week or two, wake up slightly for about a day so it can stretch and rearrange itself more comfortably, and then will go back into hibernation for another few weeks. This goes on for almost three-quarters of the year and during that time, the yellow-bellied marmot doesn’t eat or drink anything. It just lives off its fat reserves, and because its metabolic rate is so low it hardly uses any energy on any given day, only burning about a gram of fat. A small paperclip weighs about a gram, to give you a comparison. As a side effect, the marmot basically only ages during the summer when it’s active. The scientists think this may be the case for all animals that hibernate.

Like other marmots, the yellow-bellied marmot starts its mating season as soon as it emerges from hibernation around May. Males may have several mates and they all live together with him. Females give birth to around four babies during the summer, which like kittens and puppies are born without fur and with their eyes still sealed shut. They stay in the mother’s nesting burrow for the next six weeks, at which point they can see and have grown fur, so they can go outside with their mother. The babies stay with their mother for up to two years.

Most marmot species are social like the yellow-bellied marmot, but the groundhog is different. It’s mostly solitary, although it’s still part of a complex social network of all the groundhogs in a particular area, and sometimes it will share a burrow with other groundhogs. It also prefers lower elevations while most marmots prefer high elevations. It lives throughout most of the eastern United States and throughout much of Canada.

Because the marmot is a relatively big, common animal, it’s an important food source for many animals. Bears will sniff out marmot burrows and dig them open, and badgers, foxes, coyotes, and mountain lions eat lots of marmots in North America. In Europe and Asia, marmots are frequently eaten by foxes, wolves, snow leopards, and hawks. People will eat them too. In parts of Mongolia where marmots are common, it’s been a food source for thousands of years, traditionally prepared on special occasions by putting hot stones into the dead animal’s body cavity and letting the heat cook the meat slowly. But the marmot can carry diseases that humans can catch, including the plague, so these days a dead goat is often used instead of a marmot.

After I learned this, I naturally got distracted and started reading about other traditional Mongolian foods, and now I suddenly remember that I haven’t eaten anything today but trail mix and toast. So I’ll leave you with a final marmot fact. When a marmot sees a predator, it will whistle to warn other marmots, and the whistle sounds like this:

[marmot whistle]

Now I’m going to go make myself dinner. But it won’t be marmot.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 321: Archaeopteryx

We have merch available again!

Thanks to Eilee for suggesting this week’s topic, Archaeopteryx!

Further reading:

Dinosaur feather study debunked

Archaeopteryx fossil provides insights into the origin of flight

An Archaeopteryx fossil [By H. Raab (User: Vesta) – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=8066320]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’ve had a lot of mammal episodes lately, so this week let’s learn about a reptile…uh, a bird. Not quite a bird, not exactly a reptile. That’s right, it’s an episode about archaeopteryx, a suggestion by Eilee!

A quick note before we start to say that I finally got around to setting up merch again if you want to order a t-shirt or water bottle or whatever with the podcast’s logo on it. I’m using Redbubble this time because they have a lot more items available than our previous vendor. There’s a link in the show notes.

We also have new stickers and those are free, so if you want one, just drop me an email and let me know what your mailing address is. The new sticker is a drawing of a capybara made by me. Anyway, on to the archaeopteryx!

The first archaeopteryx fossils were discovered in Germany in 1861. Before the first skeleton of an archaeopteryx was discovered, though, a single feather impression was found in a limestone quarry that has produced a lot of spectacularly well-preserved fossils. When the full specimen turned up later that same year, palaeontologists decided the feather came from the same animal.

That decision has been questioned repeatedly over the years. A study conducted with laser imaging determined that the single feather was different from the feathers of other archaeopteryx specimens. Results of that study were published in 2019, but in October of 2020 results of a study conducted with a specialized electron microscope determined that the feather did come from an archaeopteryx. The 2020 study also found that the feather was black.

Archaeopteryx lived around 150 million years ago in what is now Europe. It was about the size of a crow but while it looked a lot like a bird, it also looked a lot like a little dinosaur. It had small teeth and a long lizard-like tail. Of the twelve Archaeopteryx fossils found so far, all but one have feather impressions that indicate it had flight feathers on its arms, or rather wings, but at least one specimen also had flight feathers on its legs, which are sometimes referred to as hind wings. These hind wings would have helped it maneuver through branches even though its front wings were limited in their range of motion. It was probably a slow flyer that ate whatever small animals it could catch.

The wing feathers of archaeopteryx were very similar to those of modern birds, and a study published in late 2020 discovered another similarity. Birds molt their feathers and replace them the same way mammals shed hairs and regrow them, but it’s a little trickier for birds. A bird that loses too many feathers from its wings can’t fly until new feathers grow in. Modern birds solve this issue by molting only one pair of wing feathers at a time, and once the replacement grows in, the next pair is shed. The study examined fossilized archaeopteryx wings using a process called laser-stimulated fluorescence imaging, which can reveal details that aren’t otherwise visible. It discovered feather sheaths hidden under what would have been the skin of the wings, ready to grow new feathers. The feather sheaths were the same on both wings and resembled the molting pattern seen in modern falcons.

Archaeopteryx also had feathers on the rest of its body, but they aren’t well preserved so paleontologists can’t determine too much about them. They might have been more fluffy than sleek, like the soft downy feathers in young modern birds, or it might be that the fluffy feathers just happened to be the ones that were most preserved.

Palaeontologists study archaeopteryx because it gives us so much information about how birds evolved from dinosaurs. Archaeopteryx was still very much a dinosaur even though it looked superficially like a bird. Microscopic examination of the fossilized cells and blood vessels inside its bones show that it actually grew very slowly. Modern birds grow extremely quickly when they’re young. One scientist pointed out that when you watch a flock of pigeons, you can’t really tell which ones are fully grown and which ones are still quite young, because baby pigeons grow to an adult size so quickly. Dinosaurs grew to their adult size much more slowly, even the small carnivorous dinosaurs that were ancestral to modern birds. The study determined that Archaeopteryx would probably have taken almost three years to grow to its adult size.

The Archaeopteryx fossil called “specimen number eight” was determined to be a different species from the others, in a study published in 2018. It’s about half a million years younger than the other known specimens and has characteristics found in modern birds that the others don’t have. Its adaptations would have made it a better, more efficient flyer. The differences weren’t noticed before because it’s not a very good specimen and many of the bones are damaged and still embedded in the rock where they can’t be seen. The study used a process called synchrotron microtomography to basically take a 3D scan of the fossil and its rock matrix so scientists can study the scan without breaking the rock open and destroying parts of the fossil.

At the time that archaeopteryx lived, the sea levels were much higher than they are now and Europe was mostly a series of large islands in a shallow sea. The part of Europe that’s now Germany was subtropical but fairly dry, without much rain. All the archaeopteryx specimens have been found in limestone that was once mud at the bottom of a placid lagoon, protected from ocean currents and waves by small islands covered with shrubby vegetation. Archaeopteryx probably lived on these small islands, and while we don’t know how it behaved, many paleontologists think it may have hunted both by running on its long hind legs and by flying, just like a lot of birds do today. We have fossilized remains of little lizards and insects that would have made good meals for a hungry archaeopteryx.

What we do know is that sometimes an archaeopteryx had a very bad day and ended up drowning in the lagoon. On rare occasions, the body floated around until it decomposed enough that it sank into the mud at the bottom. Over millions of years, this mud turned into fine-grained limestone that preserved the fossil archaeopteryx remains in incredible detail.

For a long time, people thought archaeopteryx was a so-called missing link between dinosaurs and birds, and that it was the first bird. We now know that isn’t true. There were other bird-like dinosaurs that could fly before archaeopteryx evolved, although archaeopteryx was a very early flying avian dinosaur.

More importantly, we now know that birds are basically very derived dinosaurs. Dinosaurs had so many features we associate with birds, and birds still have so many features we associate with dinosaurs, that it’s hard to decide whether an animal like archaeopteryx was a bird-like dinosaur or a dinosaur-like bird. I guess it was sort of both.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 318: The Mysterious Malagasy Hippo

Thanks to the Tracing Owls podcast for this week’s suggestion. I’m a guest on that podcast so make sure to check it out (but while my episode is appropriate for younger listeners, most episodes are not, so be warned).

Further reading:

Huge Hippos Roamed Britain One Million Years Ago

Kenyan fossils show evolution of hippos

The Kilopilopitsofy, Kidoky, and Bokyboky: Accounts of Strange Animals from Belo-sur-mer, Madagascar, and the Megafaunal “Extinction Window”

A sort-of Malagasy hippo:

Actual hippo (not from Madagascar, By Muhammad Mahdi Karim – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=121282994):

A modern hippo skull. There’s a reason the hippo is more dangerous to humans than sharks are [By Raul654 – Darkened version of Image:Hippo skull.jpg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=242785]:

A pygmy hippo and its calf!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about a topic suggested by the host of the podcast Tracing Owls, because I’m actually a guest on that podcast in an upcoming episode! I think the episode releases later this week. I’ll put a link in the show notes, but be aware that while the podcast is interesting and often very funny, with topics that focus on weird stuff related to science, most episodes are not appropriate for younger listeners. (I think my episode should be okay.)

Several years ago now there was a movie called Madagascar, which is about a group of zoo animals that end up shipwrecked on the island of Madagascar. I love this movie, especially the lemur King Julian, but one of my favorite characters is a hippopotamus named Gloria, voiced by Jada Pinkett Smith. The island country of Madagascar is off the southeastern coast of Africa, but as we talked about in episode 77, it’s been separated from the continent of Africa for millions of years and the animals of that country have mostly evolved separately from the animals of Africa. That’s part of why the movie Madagascar is so funny, since the main characters in the movie are all native to Africa—a lion, a zebra, a giraffe, and Gloria the hippo—and don’t know anything about the animals they encounter on Madagascar. Like this guy:

[King Julian clip]

But it turns out that hippos did once live on Madagascar, and that’s what we’re going to learn about today.

We’re not sure when the first humans visited Madagascar, but it was at least 2500 years ago and possibly as much as 9500 years ago or even earlier. By 1500 years ago people were definitely living on the island. It’s likely that hunting parties would travel to Madagascar and stay there for a while, then return home with lots of food, but eventually people decided it would be a nice place to live.

Madagascar is a really big island, the fourth largest island in the world. It’s been separated from every other landmass for around 88 million years, and has been separated from Africa for about 165 million years. Many of the animals and plants that live on Madagascar are very different from the ones living anywhere else in the world as a result.

To put this into perspective, here’s your reminder that the closest living relative of the hippopotamus is the whale, and 60 million years ago the common ancestor of both hippos and whales was a small semi-aquatic animal. That was about 28 million years after Madagascar was on its own in the big wide ocean, and 105 million years after the landmass that we call Africa broke off from the supercontinent Gondwana and began moving very slowly into the position it’s in today. When Madagascar finally broke free of the landmass we now call India, dinosaurs were still the dominant land animal.

So why are there remains of small hippos on Madagascar? How did the hippos get to Madagascar and why aren’t they still around? Did the hippo originate in Africa or in some other place? So many questions!

The ancestors of modern cetaceans, which includes whales and dolphins and their close relations, are found in the fossil record about 52 million years ago, although it might have been 53 or even 54 million years ago depending on which scientist you ask. That’s when the whale side of the suborder Whippomorpha started developing separately from the hippo side. The “morpha” part of Whippomorpha just means “resembling,” and I’m happy to report that the “whippo” part is actually a combination of the words whale and hippo. Truly, it gave me great joy when I learned this fact, because I assumed “whippo” was something in Greek or Latin, or maybe referred to an animal with a whip-like tail. Nope, whale+hippo=whippo.

Anyway, while we know a fair amount about the evolution of cetaceans from their semi-aquatic ancestors, we don’t know much at all about the hippo’s evolution. There’s still a lot of controversy about whether hippos really are all that closely related to whales after all. They share a lot of similarities both physically and genetically, so they’re definitely relations, but whether they’re close cousins is less certain. The confusion is mainly due to not having enough fossils of hippopotamus ancestors.

The modern hippo, the one we’re familiar with today, usually called the common hippo, first appears in the fossil record about six million years ago. We have fossils of animals that were pretty obviously close relations to the common hippo, if not direct ancestors, that date back about 20 million years. But it’s the gap between the hypothesized shared ancestor of both hippos and cetaceans that lived around 60 million years ago, and the first ancestral hippos 20 million years ago, that is such a mystery.

What we do know, though, is that while the common hippo is native to Africa, its ancestors weren’t. Hippo relations once lived throughout Europe and Asia, and probably migrated to Africa around 35 million years ago. In fact, hippos were common throughout Eurasia until relatively recent times. In 2021, a fossilized hippopotamus tooth was found in a cave in Somerset, England that probably lived only one million years ago. That was well before humans migrated into the area, which was a good thing for the humans because this hippo was humongous. It probably weighed around 3 tons, or 3200 kg, while the common hippo is about half that on average.

This particular huge hippo, Hippopotamus antiquus, lived throughout Europe and only went extinct around 550,000 years ago as far as we know. This was during a time that Europe was a lot warmer than it is today and hippos migrated north from the Mediterranean as far as southern England. The common hippo, H. amphibius, the one still around today, also migrated back into Eurasia during this warm period and its fossilized remains have been found in parts of England too.

These days, there are only two living species of hippo, the common hippo and the pygmy hippo. We talked about the pygmy hippo briefly in episode 135, including the astonishing fact that it only grows around 3 feet tall, or 90 cm, and lives in deep forests in parts of west Africa. There also used to be some other small hippos that evolved on islands and exhibited island dwarfism, and which probably weren’t closely related to the pygmy hippo. These include the Cretan dwarf hippopotamus that lived on the Greek island of Crete until around 300,000 years ago and maybe much more recently, and the Cyprus dwarf hippopotamus that lived on the island of Cyprus until only around 10,000 years ago. The Cyprus hippo was the smallest hippo found so far, only about 2.5 feet tall, or 75 cm. There are dogs larger than that! But the small hippo we’re interested in is the Malagasy pygmy hippopotamus.

There actually wasn’t just one hippo species that lived on Madagascar. Scientists have identified three species, although this may change as more studies take place and as new remains are found. The different species probably didn’t all live on the island at the same time, and some researchers think they might have resulted from three different migrations of hippos to the island.

But how did they get to the island? Madagascar is 250 miles away from Africa, or 400 km, way too far for a hippo to swim. The Malagasy hippos were well established on the island, too, not just a few individuals who accidentally reached shore. That means there must have been some way for hippos to reach Madagascar fairly easily at different times.

The best hypothesis right now is that at times when the ocean was overall shallower than it is now, such as during the Pleistocene glaciations, there are enough small islands between Africa and Madagascar that hippos could travel between them pretty easily. Since those islands would be far underwater now, we don’t have any way to know for sure. We can’t exactly dive down and look for hippo fossils, unfortunately.

The really big question, of course, is whether any hippos still survive on Madagascar. We know they were around as recently as 1,000 years ago, because we have subfossil remains. (Just a reminder that subfossil means that the remains are either not fossilized, or only partially fossilized.) Not only that, the bones show butchering marks so we know people killed and ate the hippos. Right now scientists think the hippos were hunted to extinction by the humans who settled on Madagascar, but there’s some evidence that it happened much more recently than 1,000 years ago.

Over the last several hundred years, European colonizers of Madagascar collected stories from Malagasy natives about animals that resemble hippos. More recently, some stories have also been collected by scientists.

In 1995, a biologist named David Burney, who was studying recently extinct animals on Madagascar, interviewed some elderly residents in various villages. He wasn’t actually trying to learn about mystery animals, he was mostly just trying to find the paleontological sites scientists had found decades before. He figured the older residents would remember those scientists’ visits, and he was right. But the residents also had other stories to tell about the bones dug up by scientists. Some of them said those bones belonged to animals they had seen alive.

In one village, several different people told a story about a cow-sized animal that had occasionally entered the village at night. It was dark in color and made distinctive grunting sounds, and had large floppy ears. When some people approached it too closely, it ran back to the water and submerged.

Dr. Burney thought the residents might have seen pictures of an elephant and transferred some of its details to the mystery animal, especially the large size and floppy ears. But when he showed a picture of an elephant to them, they were clear that it wasn’t the same animal. They chose a picture of a hippo instead, but said the animal they’d seen had larger ears. Various witnesses also said the animal had a large mouth with really big teeth, that its feet were flat, and that it was the size of a cow but didn’t have horns. One man even imitated the animal’s call, which Burney reported sounded like a hippopotamus even though the man had never seen or heard a hippo.

Burney was cautious about publishing his findings, and in fact in his article he mentions that even at the time, he and his team of scientists were cautious about even pursuing information about living Malagasy hippos. They didn’t want to be seen as acting like cryptozoologists, which says a lot about how cryptozoologists conduct their research. Cryptozoology isn’t a scientific field of study despite its name. Biologists, paleontologists, and other experts research mystery animals all the time. That’s just part of their job; they don’t have to call themselves something special. It’s unfortunately common that people who call themselves cryptozoologists don’t have a scientific background and may not know how to conduct proper field research. Very often, cryptozoologists also don’t know very much about the animals that definitely exist, and how can you determine what a true mystery animal is if you don’t know about non-mystery animals?

Luckily, Dr. Burney and his team decided to pursue this particular mystery animal, along with some others they learned about. The last hippo-like animal sighting they could pin to a particular date happened in 1976. If the animal in question was a hippo, and it really was alive only about 50 years ago, it might have gone extinct since then. Or it might still be alive and hiding deep in the forests of Madagascar.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

This is what a hippo sounds like, and you hear it all the time on this podcast because I like it:

[hippo sound]

Episode 317: Wild Ponies

Thanks to Leo for suggesting this week’s topic, the ponies of Assateague Island!

Further reading:

Assateague Wild Ponies

Some ponies running free on Assateague Island [photo taken from the site linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about the feral horses of Assateague! Thanks to Leo for the suggestion! That’s the grown-up Leo; we also have a young Leo who’s sent some great suggestions, including one we’re hopefully going to get to pretty soon.

Before we talk about Assateague ponies, though, we need to start somewhere else. The kelpie is a Scottish water spirit that’s supposed to appear as a pony wandering by itself, but if someone tries to catch the pony or get on its back to ride it, suddenly it drags the person into the water and either drowns them or eats them. It’s said that the only way to tell that the pony isn’t really a pony is to examine its feet. A real pony has hooves, but a kelpie has claws.

The story comes from the olden days when it was common to see ponies wandering around loose in Scotland and other parts of the UK. Some of the ponies in these areas were semi-feral, meaning they lived a lot of the time like wild animals. Some ponies were kept in stables and farmyards as working animals, but others were allowed to roam around and feed themselves as they liked. Every so often the wild ponies would be rounded up and any young ones branded by their mother’s owner. Sometimes the owner would need another pony to pull a cart or something, and they’d catch one of their ponies and bring it home to train. Sometimes the owner needed money so would catch some of their ponies to sell. The ponies that lived this way had to be tough and hardy to survive almost without human care, but luckily ponies are famously tough.

Ponies are a type of small horse, but they’re still horses. They’re generally sturdy, with a thicker coat than a full-sized horse, and usually stand around 14 hands high at the withers at most. The withers is the little bump of shoulder at the base of a horse’s neck, and the horse’s back starts behind the withers. A hand is an old horse measurement that has been standardized to four inches, or just over 10 cm, roughly the width of an adult person’s hand. 14 hands is equivalent to about 4 and a half feet tall, or 1.4 meters.

One of the best-known pony breeds is the Shetland pony, which also happens to be one of the smallest. It only stands 42 inches tall at most, or 107 cm. That’s about 3 and a half feet tall. It’s mostly used as a child’s mount but originally the Shetland was used to pull carts and plows and carry heavy loads, since despite its small size the Shetland pony is incredibly strong.

The Shetland comes from the Shetland Isles off the northeastern coast of Scotland, where it’s lived for at least two thousand years and probably more like 3,000. The islands get very cold in winter and there isn’t a lot of food, so over time the ponies evolved to be small and tough to survive.

On the other side of the Atlantic Ocean, there are feral horses living on an island called Assateague. Assateague Island is off the eastern coast of the United States, closest to the states of Virginia and Maryland. They’re actually not technically ponies except that they’re small, since ponies actually share certain traits that differentiate them from horses, even though these differences aren’t enough to call ponies a subspecies of horse. But because the Assateague horses rarely grow taller than 4 and a half feet tall, or 140 cm, people call them ponies.

I’m going to stop here and tell you a personal story, because I’ve actually seen the Assateague ponies myself. I lived in Pennsylvania for a little while after I finished grad school, and at the time I had an awesome dog named Jasper, a Newfoundland I got through Newf rescue. Newfies are bred to be water dogs in the harsh coastal regions of Newfoundland, Canada, but Jasper had never seen the ocean. I knew he didn’t know or care, but it mattered to me that he got to experience the ocean at least once in his life. I had also wanted to see the Assateague ponies since I was a little girl and read Misty of Chincoteague and its sequels approximately 10,000 times, books by Marguerite Henry.

So I planned a trip to Assateague Island, which is a wildlife refuge these days. I decided to go over a weekend in October, when it wouldn’t be crowded. At the time I was working in a sales office while I tried to find a job I actually liked, and I mentioned my trip to my boss. He said he’d been to the island, and of course I asked if he’d seen the ponies. He said yes, and said, “We brought a picnic and put all the food on a picnic table while we looked around, and when we came back to our table the ponies had eaten all our food. I cried. As a grown man, I cried.”

That’s literally what he said, and he wasn’t kidding. He was genuinely mad at those ponies for eating his picnic, which I find hilarious even though at the same time, yes, getting your picnic eaten by wild ponies is no fun. I’m sorry I laughed. Still, it’s really funny. Also, you’re not supposed to leave food out where the ponies can find it so it was his fault.

Anyway, I took Jasper to Assateague Island not knowing what to expect, except that if I left any food out, ponies would eat it. This was the first time I’d visited the ocean so far north and so late in the year, so I was surprised that the water was actually chilly. It was beautiful, though, and I enjoyed walking along the beach with Jasper. I thought he might have fun chasing waves, but he was quite an old dog at this point and was happy just to walk with me, although what he really wanted to do was go home to his regular routine. So we didn’t stay long, but we did see ponies! (Unfortunately I have lost all the pictures I took of the ponies and of Jasper, since this was before I got my first smartphone and all I had was a terrible little camera.)

About 75 ponies live in the northern part of Assateague, which is controlled by the state of Maryland, with about 150 more living in the southern part of the island, which is controlled by the state of Virginia. It gets confusing here because the Virginia part of Assateague is the Chincoteague National Wildlife Refuge, but Chincoteague is actually a neighboring island that’s smaller than Assoteague but has a town, also named Chincoteague.

These islands are really very small. They’re barrier islands not far from the mainland coast, and while they change shape over time since they’re mostly just formed of sand, Assateague is only about 37 miles long, or 60 km, and only about 7 miles wide, or 11 km. Chincoteague is separated from Assateague by a small bay. The ponies in the Chincoteague National Wildlife Refuge are taken care of by the Chincoteague Volunteer Fire Department, and if you’ve read Misty of Chincoteague you probably already know what I’m about to tell you.

There are too many ponies on the island to thrive, no matter how small they are, because the island is so small. There’s just not enough food. The ponies eat whatever plants they can find in the salt marshes that make up large parts of the island, and they eat brush and seaweed and sometimes people’s picnics. Its small stature is mainly from its poor diet, since the foals don’t get enough nutrition when they’re growing.

In the early 19th century, the people of Chincoteague periodically rounded up some of the ponies and captured them, bringing them home to train and use as farm and riding animals. Hey, free horses! In 1924, the Chincoteague Volunteer Fire Department took over the task of pony penning, making it into an annual event in July that attracts thousands of tourists.

The ponies are rounded up and made to swim across the bay, which sounds horrible but it’s a short swim, only five or maybe ten minutes long. Mounted riders swim alongside to help any foals who have trouble. When the horses arrive on Chincoteague, they’re given a good feed and a veterinarian checks them over and treats them if needed. Then the older foals are separated from the herd to auction off. The proceeds of the auction fund the fire department, the ponies are saved from starving to death by keeping their numbers down, and the ponies that aren’t sold are allowed to return home. To solve the same issue in the northern part of the island, members of the Maryland herd are given contraceptives that stop them from having very many babies.

More recently, starting in 1990, veterinarians have started treating the Virginia ponies twice a year to vaccinate them and treat any injuries or illnesses. This helps keep the herd healthy since so many of the foals born will eventually go on to live on the mainland around other horses, so it’s important that the ponies don’t carry diseases.

Another reason to keep the number of ponies low is because ponies aren’t the only animals that live on Assateague Island. Whitetail deer live on the island along with a whole lot of birds, some of which are endangered. Sika deer also live in marshy areas of the island, although it’s not native to North America. It was introduced to the island from Asia in 1923, although I have no idea why. The sika is mostly dark brown but it retains its white fawn spots into adulthood, and it’s a large, attractive animal.

The ponies have been on Assateague for several hundred years, and by the 1920s they were in genetically poor shape overall. To reduce the effects of inbreeding, Shetland and Welsh ponies were added to the herd, and later twenty mustangs were released on the island too. Arabian stallions were also allowed to mate with some of the Assateague mares who were captured and later returned to the island when they were in foal. This helped the Assateague pony survive with improved genetic health, but it also made it harder to determine where the ponies came from in the first place.

The big mystery about the Assateague ponies is how they got to the island. No one knows. Some historians think white colonists set their horses loose on the island in the 17th century so they wouldn’t have to pay livestock taxes, and this is very likely. Many colonists were from parts of the UK where letting your ponies roam free until you needed them was a normal practice. Other animals were allowed to roam free on the island at the time too, including cattle and sheep, but there’s another possibility.

A local legend claims that the ponies originated from horses brought by Spanish Conquistadors traveling to Peru. When one of the Spanish ships wrecked nearby, the horses swam to Assateague Island and survived there. There are plenty of shipwrecks along that part of the coast, including Spanish galleons. Maybe one of those ships had tough little horses aboard, and now we have tough little horses on Assateague Island. Just be glad they’re not kelpies, and hide your picnics.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 313: The Wolverine and the Kakapo

This week we learn about two interesting animals from opposite parts of the world! Thanks to Felix and Jaxon for suggesting the wolverine and the kakapo.

Further reading:

Study: Wolverines need refrigerators

Kakapo Comeback [this article has some fantastic pictures!]

The wolverine likes cold weather:

So many young kakapos!

The kakapo is a really big bird:

(Photo by Matu Booth)

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to cover two animals suggested by listeners who spell their names with an X. I had already picked out these topics from the list and just now noticed both suggesters have X’s in their names. Thanks to Jaxon and Felix for these suggestions!

First, Felix suggested we learn about the wolverine. We’ve talked about it before in episode 62, but there’s a whole lot more to learn about this uncommon animal.

The wolverine is a mustelid, which is a family that includes weasels, ferrets, and other small, long, skinny animals with short legs. But the wolverine is big and broad, although its legs are pretty short. It kind of looks like a small bear and stands about 18 inches tall at the shoulder, or 45 cm. It’s light brown with darker brown or black legs, muzzle, tail, and back, and some have silvery-gray markings too. Its tail is short but fluffy. It lives in cold, mountainous areas, including northern Canada and Alaska, Siberia, and parts of Norway, Sweden, and Finland.

The wolverine is mainly a scavenger of animals that are already dead, but it will also kill and eat pretty much anything it can catch. This includes rabbits, mice, rats, porcupines, geese, and other small or relatively small animals, but it sometimes kills animals a lot bigger than it is, like deer. It will also eat eggs, berries, seeds, and anything else it can find. It’s not a picky eater.

The wolverine nearly went extinct in the 19th century due to overhunting for its fur, which is mostly waterproof and frost-proof. People used it to line winter clothes. The wolverine is also vulnerable to habitat loss and climate change, since it needs deep snow and cold temperatures to survive.

Because the wolverine lives where winters are harsh, when it finds a lot of food, it will sometimes bury it in snow to eat later. It chooses a protected area between boulders or a natural crevice in rocks to put the dead animal, then covers it with deep snow to keep it fresh for longer, just like putting meat in a freezer. Females in particular need this stored food, because they give birth in winter and need lots of food so they can produce milk for their babies.

But if you’ve ever taken food out of the freezer, you know it’s hard as a rock. How does the wolverine eat meat that’s frozen solid? Not only does the wolverine have strong jaws and teeth, it actually has a special tooth in the back of the mouth that points inward, one on each side of the upper jaw. The inward-pointing tooth allows the wolverine to tear off chunks of frozen meat more easily. Other mustelids have this arrangement of teeth too.

A male wolverine roams widely through a large territory, which can sometimes be hundreds of square miles. Pairs often mate for life although they don’t spend a lot of time together, and sometimes a male will have two or three mates. In winter, the female digs a den deep into the snow to have her babies, and while she mostly takes care of them by herself, the father wolverine will visit from time to time and bring everyone food. The babies stay with their mother for up to a year, and sometimes the half-grown wolverines will go traveling with their dad for a while.

The wolverine is sometimes called the nasty cat because it has a strong smell, which it uses to mark its territory. “Nasty cat” is the funniest name for an animal I’ve ever heard.

Next, Jaxon suggested the kakapo, which is a weird and adorable bird. It’s flightless and nocturnal, lives only in New Zealand, and is a type of parrot. A flightless, nocturnal parrot!

The kakapo is really big even for a parrot. It can grow over two feet long, or 64 cm, but since it’s flightless its wings and tail aren’t very big. Its legs are relatively short considering it has to walk everywhere. It has green feathers with speckled markings, blue-gray feet, and discs of feathers around its eyes that make its face look a little like an owl’s face. That’s why it’s sometimes called the owl parrot. Males are almost twice the size of females on average.

The kakapo evolved on New Zealand where it had almost no predators. A few types of eagle hunted it during the day, which is why it evolved to be mostly nocturnal. Its only real predator at night was one type of owl. As a result, the kakapo was one of the most common birds throughout New Zealand when humans arrived.

The Maori discovered New Zealand around 700 years ago. They killed the kakapo to eat and to use its feathers in clothing, and they also brought dogs and the Polynesian rat that also liked to kill and eat the kakapo. Then a few hundred years ago Europeans arrived, bringing all sorts of invasive animals with them, and they also chopped down forests to create more farmland.

By the end of the 19th century, the kakapo was becoming increasingly rare everywhere. When Resolution Island was declared a nature reserve in 1891, early conservationists brought kakapos and kiwis to the island in an attempt to save them. But stoats and feral cats killed them all. Attempts to establish captive breeding programs weren’t successful either. By 1970, scientists worried that the kakapo was already extinct.

Fortunately, a few of the birds survived in remote areas. By now conservationists understood that they had to provide a safe environment for the birds, and that took a lot of effort. Several islands were chosen as kakapo refuges, and then all the introduced mammals on the islands had to be eradicated or relocated. This included animals like deer that ate the same plants that the kakapo relied on, as well as predators. Then native plants and trees had to be transplanted to the islands since they’d been mostly killed off by deer and other introduced animals.

Then, finally, all the kakapos scientists could find were relocated to the islands. There weren’t very many, and most of them were males. 65 birds were introduced to four islands and monitored carefully, both to make sure they settled in well and to make sure no predators found their way to the islands.

Kakapo females only lay eggs when they have plenty of high-protein food, especially the fruit of the rimu tree that only ripens every four or five years, so the females were given extra food to encourage them to breed more often. The extra food helped, but it turns out that when the females were allowed to eat as much as they wanted, most of the eggs they laid hatched male chicks. That was the opposite of what the kakapo needed, so conservationists experimented with the amounts of extra food they gave the birds until finally the eggs were hatching equal numbers of females and males.

Many parrot species mate for life and both parents help take care of the eggs and babies, but the kakapo handles things differently. Males gather on hilltops during breeding season and each male digs out a shallow bowl well apart from other males, sometimes several bowls connected with little trails. If a male gets too close to another male, they’ll fight. Each male stands in his bowl and makes a booming call by inflating a special sac in his throat. The bowl helps amplify the sound and often the male will construct his bowl near a surface that reflects sound, like rock. His calls can be heard three miles away in good conditions, or 5 km, and the sound attracts females.

This system of males competing in one area to attract females is called lekking, spelled L-E-K. We’ve actually talked about lekking before but I don’t remember if I specifically mentioned the term. The area where the males gather is called a lekking ground or an arena or sometimes just a lek. The females walk around inspecting each male, who booms and struts to show how strong and fit he is. If a female is especially interested in one male, she’ll approach him and he starts his courtship dance. This sounds fancy but for the kakapo, it basically means he turns his tail with his wings spread, then walks backwards towards the female. Weird dance, but the female kakapo thinks it’s cool.

After a female chooses a male, they mate and then the female leaves him and walks home. She builds a nest in a hollow tree or in a hidden crevice among roots or rocks, and lays one to four eggs. She takes care of the eggs and the babies by herself, and may continue to feed the babies until they’re around six months old.

The kakapo eats nuts, seeds, fruit, leaves, and other plant material. Its legs are short but strong, and it will jog for long distances to find food. It can also climb really well, right up into the very tops of trees. It uses its strong legs and its large curved bill to climb. Then, to get down from the treetop more efficiently, the kakapo will spread its wings and parachute down, although its wings aren’t big enough or strong enough for it to actually fly. A big heavy male sort of falls in a controlled plummet while a small female will land more gracefully.

While the kakapo is doing a lot better now than it has in decades, it’s still critically endangered. The current population is 249 individuals according to New Zealand’s Department of Conservation. Scientists and volunteers help monitor the birds, especially newly hatched chicks. If a mother bird is having trouble finding enough food for all her babies, or if any of the babies appear sick or injured, a team of conservationists will decide if they need to help out. They sometimes move a chick from a nest where the mother bird has a lot of other babies to one where there are only one or two babies. Some chicks are raised in nurseries if necessary and reintroduced to the wild when they’re old enough.

The kakapo can live for a long time. This isn’t unusual for parrots, which can live as long as a human, but the kakapo is especially long-lived. There are reports of individuals who have reached 120 years old. This means that potentially, only six kakapo generations ago, the first East Polynesian sailors, ancestors of the modern Maori, became the first humans ever to set foot on the shores of New Zealand. And there were some weird parrots there.

This is what the male kakapo sounds like when it’s booming:

[booming call]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 305: The Chamois and the Cave Goat

Thanks to Isaac for suggesting the chamois, our main topic this week!

Further reading:

The chamois in New Zealand

Extinct goat was cold-blooded

Myotragus balearicus: Extinction of mouse-goats

A chamois in its summer coat:

A chamois in its winter coat:

Myotragus, the “cave goat,” may have looked something like this museum restoration:

Nuralagus’s femur (left) compared to a regular rabbit femur:

Show Transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to talk about an animal suggested by Isaac, the chamois, along with a few other animals. I realize we’ve talked about a lot of mammals lately so I’ll try to switch it up for the last few episodes of the year.

The chamois is a species of what are called goat-antelopes. Its name is French and is spelled c-h-a-m-o-i-s, but in English a lot of people pronounce it “shammy.” Shammy is also what people call polishing cloths of various types, because it’s short for chamois. If you ever heard those commercials on TV for something called the sham-wow, that’s a paper towel thingy that’s based on the shammy cloth. The reason for all this confusion between an animal and a cloth is that the original shammy cloth was a piece of leather from the animal that was used to polish high-quality items like fancy cars since it’s very soft and won’t scratch anything. Most shammy cloths you buy these days are likely to be made from plush cloth or the skin of domestic goats or sheep.

As for the animal, it’s native to mountainous parts of Europe, including the Alps. It’s also been introduced to New Zealand’s South Island where it’s an invasive species that threatens many native plants. Since chamois meat is considered a delicacy, commercial hunters in New Zealand travel into the mountains by helicopter, kill as many of the animals as possible, and bring the meat back to sell to restaurants. This is encouraged by the New Zealand government in an attempt to protect native plants, although red deer, feral goats, and hares are also introduced animals that do a lot of damage to the delicate mountain environment.

The chamois is small, only about two and a half feet tall at the shoulder, or 80 cm. It has cloven hooves and both males and females have small black horns. The horns are mostly straight but bend backwards at the tips into a sort of hook shape, and while males have thicker horns, they aren’t usually that much longer than the female’s. Horns grow up to 11 inches long, or 28 cm.

In summer the chamois’s fur is light brown with a darker stripe on each side of the face that runs from the nostrils, over the eyes, and up to the horns. In winter its fur grows very thick to keep it warm in its mountainous habitat, and it’s a much darker brown, almost black. It still has the dark band on its face with lighter colored fur on its cheeks and jaw, though. Its tail is very short and isn’t usually visible.

Female chamois live in small groups along with their offspring. Males are solitary most of the year, but during mating season in autumn and early winter, called the rut, males fight each other for the attention of females. The female gives birth to a single kid in late spring. In the winter the chamois migrates to lower elevations where there’s more food, but in summer it migrates to high elevations above the treeline where it’s safer from predators. It can run extremely fast, up to about 30 miles per hour, or 50 km/hour, and can jump as much as 20 feet, or 6 meters. It can even jump over six and a half feet high, or 2 meters, straight up. It’s very bouncy.

I mentioned that the chamois is a goat-antelope, so let’s go back to that term. The goat-antelope isn’t actually a type of antelope, although it is an antelope relation. Goat-antelopes are bovids, along with antelopes, actual goats, sheep, cows, and many others. The goat-antelopes are members of the subfamily Caprinae, which includes goats, sheep, musk ox, mountain goats, takins, and many other interesting animals that we need to talk about one day. One of these is the extinct Myotragus, called the mouse goat or the Balearic Islands cave goat because the first fossils were found in a cave. It didn’t actually live in caves, although it was weird in other ways.

The cave goat was a small animal, only about 18 inches tall, or 46 cm, and both males and females had small horns that probably looked like a goat’s horns. Like most other goat-antelopes, researchers think the cave goat was a browser that ate lots of different kinds of plants, although its ancestors had probably been grazers that ate mostly grass. But its eyes were oriented for binocular vision like a predator’s eyes, instead of being on the sides of its head as in most herbivores, which allows an animal a much wider range of vision to watch for predators. Since the cave goat had lived on islands for several million years and didn’t need to worry about large predators, it didn’t need the adaptations that other prey animals have. For instance, it probably was a slow walker and couldn’t jump at all, sort of the opposite of the chamois.

An analysis of the rate of growth in the cave goat’s bones discovered something really weird. Most mammals grow quickly and steadily throughout their youth and then stop growing when they reach adulthood. The cave goat grew very slowly and sometimes stopped growing completely for a while, and didn’t reach full maturity where growth stopped until it was about 12 years old. Most goat-antelope species reach their full size within a year or two. This pattern resembles that of a reptile, not a mammal, and researchers think it was an adaptation to its restricted habitat. An island only has so much food available at any given time, so being able to slow or stop growing for a while when food is scarce, then resume growing when there’s more food to convert to energy, is an efficient way to deal with scarcity. When the finding was published in 2009, a lot of articles called the cave goat cold-blooded, or ectothermic, but we don’t actually know if this was the case.

The cave goat went extinct around 3,000 years ago when humans arrived on the islands where it lived. But instead of ending on that sad note, let’s look very quickly at another animal that lived on the same islands before the cave goat. It was a gigantic weird rabbit called Nuralagus rex.

Nuralagus was a rabbit but due to island gigantism, it was way larger than an ordinary rabbit and would have looked very different. It was about 20 inches tall at the highest point of its back, or 50 cm. Like the cave goat but unlike other rabbits, it couldn’t jump. Its spine was stiff and there weren’t very many predators to worry about, so it could just walk around and find plants and other giant bunnies and that’s all it needed. It didn’t have very good hearing compared to most rabbits, so its ears were probably much shorter in relation to its body. It was only described in 2011, which just goes to show how many weird animal discoveries are still waiting to be found.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 303: Weird and Mysterious Animal Sounds

Thanks to Emory for suggesting this week’s topic, mysterious animal sounds!

Further reading/watching:

The Story of Elk in the Great Smoky Mountains

Terrifying Sounds in the Forests of the Great Smoky Mountains

Evidence found of stingrays making noise

This New AI Can Detect the Calls of Animals Swimming in an Ocean of Noise

The wapiti [pic from article linked above]:

The stingray filmed making noise [stills from video linked to above]:

The tawny owl makes some weird sounds:

The fox says all kinds of things:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Emory suggested we do a new episode about strange and mysterious animal sounds a while back, which is one of my favorite topics. The problem is, it’s hard to find good audio clips to share. It’s taken me a while, but I think I’ve found some good ones.

In late September 2018, in the Great Smoky Mountains in North Carolina, some hikers recorded a terrifying animal sound. The sound wasn’t a mystery for long, though, because they soon saw the animal making it. Here’s what it sounded like:

[elk bugle]

It’s the bugle of a male elk, which I’m going to call wapiti to avoid confusion. It’s a sound that wasn’t heard in the Smoky Mountains for at least a century. The eastern wapiti was once common throughout eastern North America but was driven to extinction in the late 19th century, although the last wapiti in North Carolina was killed almost a century earlier than that. All North American wapiti almost went extinct by about 1900, and hunters and conservationists worked to get nature preserves set aside to save it and its habitat. Starting in the 1990s, wapiti from western North American subspecies were reintroduced in the southeast, with reintroductions in the Smokies starting in 2001. There are now at least 200 wapiti living in the mountains, probably more. I’ve seen them myself and they’re beautiful animals!

The wapiti is a type of deer. We talked about it way back in episode 30 along with the moose. Various species of wapiti live throughout Europe and Asia as well as North America, although it’s been hunted to extinction in many areas. As we mentioned in episode 30, the name elk is used for the moose in parts of Europe, which causes a lot of confusion, which is why I’ve chosen to call it by its Algonquin name of wapiti.

The wapiti is a really big animal, one of the biggest deer alive today. Only the moose is bigger. It’s closely related to the red deer of Eurasia but is bigger. A male, called a bull, can stand about 5 feet tall at the shoulder, or 1.5 meters, with an antler spread some four feet wide, or 1.2 meters. Females, called cows, are smaller and don’t grow antlers. Males grow a new set of antlers every year, which they use to wrestle other males in fall during mating season. At the end of mating season the wapiti sheds its antlers.

The bugling sound males make during mating season is extremely loud. The sound tells females that the bull is strong and healthy, and it tells other bulls not to mess with it.

[elk bugle]

Our next sound is from an animal that scientists didn’t realize could even make sounds. There’ve been reports for a long time of stingrays making clicking noises when they were alarmed or distressed, but it hadn’t been documented by experts. A team of scientists recently decided to investigate, with their report released in July of 2022. They filmed stingrays of two different species off the coasts of Indonesia and Australia making clicking sounds as divers approached. They think it may be a sound warning the diver not to get too close. This is what it sounds like:

[Stingray making clicking sounds]

One exciting new technological development is being used to detect underwater sounds and hopefully help identify them. It’s called DeepSqueak, because it was originally developed to record ultrasonic calls made by mice and rats. This is an example of a mouse sound slowed down enough that humans can hear it, specifically a male mouse singing to attract a mate, which we talked about in episode 8:

[mouse song]

But DeepSqueak also works really well to detect sounds made by whales and their relatives, and researchers are currently using it to determine whether offshore wind farms cause problems for whales.

With DeepSqueak and other listening software, it turns out that a lot of animals we thought were silent actually make noise. For instance, this sound:

[Pelochelys bibron]

That’s a grunting sound made by the southern New Guinea giant softshell turtle.

And here’s a caecilian, a type of burrowing reptile that we talked about in episode 82:

[Typhlonectes compressicauda]

Let’s finish with a strange and mysterious sound heard on land. In January and February of 2021, some residents of London, England started hearing a weird sound at night.

[mystery sound]

Because the animal making the sound moved around so much, some people thought it must be a bird. One suggestion is that it was a tawny owl, especially the female tawny owl who makes a chirping sort of sound to answer the male’s hoot. This is what the male and female tawny owl sound like:

[owl sounds]

The tawny owl also sometimes makes an alarm call that sounds like this:

[tawny owl alarm call]

But the sound didn’t really match up with what residents were hearing. Here it is again:

[mystery sound]

Finally someone pointed out that red foxes make a lot of weird sounds, mostly screams and sharp barks, but occasionally this sound:

[fox sound]

That seems to be a pretty good match for what people were hearing in early 2021, although since no one got a look at the animal they heard, we can’t know for sure. So it’s still a mystery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 299: Entombed in Stone!

This week’s episode rates one out of five ghosts on the spookiness scale. It’s not too spooky unless the thought of being ENTOMBED IN STONE creeps you out! Which it might, if you are a frog.

Further reading:

A Tenacious Pterodactyl

Further watching:

“One Froggy Evening”

A frog supposedly found mummified in a stone:

The Texas horned lizard kind of looks like a pointy toad with a tail:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’re getting really close to Halloween and our 300th episode, and it’s going to be a spooky one! This week, though, I rate this episode as one ghost out of five on our spookiness scale, meaning it’s not very spooky at all…unless you’re a frog!

Most of us know this story. A worker helping to demolish a building finds a mysterious box hidden in the building’s cornerstone. He opens the box and discovers a living frog—a frog that can sing and dance! But only when no one else is looking!

That’s the classic Looney Tunes cartoon “One Froggy Evening,” and while it’s really funny, it’s also based on many stories about frogs, toads, and other animals supposedly discovered entombed but alive, or only recently dead, in clay, bricks, tree trunks, coal, and even rocks.

For example, in 1782, the American politician and naturalist Benjamin Franklin was living in France, and while he was there he heard about some workmen in a quarry who had found some living toads encased in stone. I’ll quote from Franklin’s writing:

“At Passy, near Paris, April 6th, 1782, being with M. de Chaumont, viewing his quarry, he mentioned to me, that the workmen had found a living toad shut up in the stone. On questioning one of them, he told us, they had found four in different cells which had no communication; that they were very lively and active when set at liberty; that there was in each cell some loose, soft, yellowish earth, which appeared to be very moist. We asked, if he could show us the parts of the stone that formed the cells. He said, No; for they were thrown among the rest of what was dug out, and he knew not where to find them. We asked, if there appeared any opening by which the animal could enter. He said, No. […] We asked, if he could show us the toads. He said, he had thrown two of them up on a higher part of the quarry, but knew not what became of the others.

“He then came up to the place where he had thrown the two, and, finding them, he took them by the foot, and threw them up to us, upon the ground where we stood. One of them was quite dead, and appeared very lean; the other was plump and still living. The part of the rock where they were found, is at least fifteen feet below its surface, and is a kind of limestone. A part of it is filled with ancient seashells, and other marine substances. If these animals have remained in this confinement since the formation of the rock, they are probably some thousands of years old.”

Since limestone generally takes about a million years to form, and requires considerable pressure and lots of chemical reactions to do so, we can be certain that the toads were not in the limestone for all that long. But limestone is porous, and the mention of damp yellow earth inside the capsules of stone suggests that there were significant fissures in the stones where the toads were found. Limestone dissolves in water, although it takes a long time. That’s how caves form. Maybe over many years, tiny cracks and holes had formed in the limestone, large enough for some well developed tadpoles or young toads to end up in the holes, maybe during a rainstorm or flood.

Then again, the whole thing might have been a mistake. The toads might not have actually been inside the stones, only nearby when the stones were broken open. The workers might have thought they were inside. Or it might just have been a hoax made up by a bored quarry worker.

Stories of animals found encased in stone or other impossible conditions go back hundreds of years, in many parts of the world, but for some reason they got really popular around the mid-19th century in England. Suddenly people were finding toads and other animals in all sorts of weird places, or said they had. The Rev. Robert Taylor of St. Hilda’s Church, Hartlepool, for instance, exhibited a toad and the stone it was found in, with the chamber inside the stone being exactly the size and shape of the toad before it was broken open and freed in April 1865. But a geologist who examined the stone found obvious chisel marks where it had been hollowed out and shaped to look like the toad had been inside.

It wasn’t just toads found in rocks, of course, although those were the most popular. A mouse was supposedly found in a rock in 1803, three salamanders of a presumed extinct species were supposedly found in a rock sometime before 1818, and a horned toad was supposedly found in a building cornerstone in 1928. The horned toad is actually a lizard, in this case a Texas horned lizard that lives in various parts of the south-central United States and northeastern Mexico.

The Texas horned lizard does actually resemble a toad in some ways. Its body is broad and rounded and its face has a blunt, froglike snout. A big female grows about 5 inches long, or almost 13 cm, not counting its tail, while males are smaller. It’s covered with little pointy scales, and if it feels threatened, it will puff up its body so that the scales stick out even more. It also has true horns on its head, little spikes that are formed by projections of its skull.

The Texas horned lizard eats insects, especially a type of red ant called the harvester ant. The harvester ant is venomous but the horned lizard is resistant to the venom and is specialized to eat lots and lots of the ants. Its esophagus produces lots of mucus when it’s eating, which collects around the ants and stops them from being able to bite before they die.

The horned lizard supposedly found in a cornerstone of a building was nicknamed Ol’ Rip after Rip Van Winkle, the main character in a short story by Washington Irving who fell asleep and woke up 20 years later. Ol’ Rip the Texas horned lizard was supposedly placed into the hollow cornerstone brick as part of a time capsule when the Eastland County Courthouse was being built in 1897.

In 1928, the courthouse was torn down and a newspaper reporter advertised the opening of the time capsule, including the story about the horned lizard. Sure enough, a live horned lizard was removed from the cornerstone when it was opened, which by the way was the inspiration for the “One Froggy Evening” cartoon.

Ol’ Rip became a celebrity and was displayed all over the United States, and the Texas horned lizard became such a popular pet that the population declined severely, since people went out and caught them to sell as pets. Since the horned lizard eats a lot of insects that damage crops, its decline in numbers actually led to farmers losing money to insect damage. The Texas horned lizard is still endangered, for that matter, and is now a protected species that isn’t allowed to be kept as a pet. Ol’ Rip died less than a year after he was supposedly discovered in the cornerstone.

Even at the time, a lot of people were skeptical that Ol’ Rip had really been in the cornerstone brick for 31 years. It’s much more likely that one of the officials presiding over the time capsule’s opening brought a horned lizard with him and pretended to find it in the brick.

For one thing, the Texas horned lizard needs bright sunshine to survive. Its body can only produce vitamin D when it gets a lot of sunshine, and without vitamin D it will eventually die. It spends a lot of time sunbathing and while it does dig a burrow to sleep in at night, as soon as the sun’s out in the morning, the lizard comes out to bask in the sunshine. A Texas horned lizard trapped in a brick without food, water, air, or sunshine wouldn’t survive long.

The weirdest animal ever supposed to have been found in a stone was reported in the Illustrated London News in 1856. According to the article, during the construction of a railway tunnel in France, a huge block of stone was dislodged with dynamite. The workers were breaking it into smaller pieces when they exposed a chamber inside the rock. A creature emerged that looked something like an enormous bat, but was obviously not a bat. It had a long neck, sharp teeth in its mouth, four long legs with long claws on its talons, and its front and hind legs were connected with flying membranes. It was black with bare skin.

The animal shook its wings but promptly dropped dead, and was sent to a naturalist who identified it as Pterodactylus anas, which had died 64 million years before. Its wingspan was measured as 10 feet, 7 inches across, or 3 meters, 22 cm.

There is no species of pterodactyl named Pterodactylus anas, but anas is Latin for duck. The word for duck in French is canard, which in English means something more like “a hoax or tall tale.”

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 291: The Ediacaran Biota

This week let’s find out what lived before the Cambrian explosion!

A very happy birthday to Isaac!

Further reading:

Some of Earth’s first animals–including a mysterious, alien-looking creature–are spilling out of Canadian rocks

Say Hello to Dickinsonia, the Animal Kingdom’s Newest (and Oldest) Member

Charnia looks like a leaf or feather:

Kimberella looks like a lost earring:

Dickinsonia looks like one of those astronaut footprints on the moon:

Spriggina looks like a centipede no a trilobite no a polychaete worm no a

Glide reflection is hard to describe unless you look at pictures:

Trilobozoans look like the Manx flag or a cloverleaf roll:

Cochleatina looked like a snail:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the last week of August 2022, so let’s close out invertebrate August with a whole slew of mystery fossils, all invertebrates.

But first, we have a birthday shoutout! A humongous happy birthday to Isaac! Whatever your favorite thing is, I hope it happens on your birthday, unless your favorite thing is a kaiju attack.

We’ve talked about the Cambrian explosion before, especially in episode 69 about some of the Burgess shale animals. “Cambrian explosion” is the term for a time starting around 540 million years ago, when diverse and often bizarre-looking animals suddenly appear in the fossil record. But we haven’t talked much about what lived before the Cambrian explosion, so let’s talk specifically about the Ediacaran (eedee-ACK-eron) biota!

I was halfway through researching this episode when I remembered I’d done a Patreon episode about it in 2021. Patrons may recognize that I used part of the Patreon episode in this one. You’d think that would save me time but surprise, it did not.

The word Ediacara comes from a range of hills in South Australia, where in 1946 a geologist noticed what he thought were fossilized impressions of jellyfish in the rocks. At the time the rocks were dated to the early Cambrian period, and this was long before the Cambrian explosion was recognized as a thing at all, much less such an important thing. But since then, geologists and paleontologists have reevaluated the hills and determined that they’re much older than the Cambrian, dating to between 635 to 539 million years ago. That’s as much as 100 million years before the Cambrian. The Ediacaran period was formally designated in 2004 to mark this entire period of time, although fossils of Ediacaran animals generally start appearing about 580 million years ago.

Here’s something interesting, by the way. During the Ediacaran period, every day was only 22 hours long instead of 24, and there were about 400 days in a year instead of 365. The moon was closer to the earth too. And life on earth was still sorting out the details.

Fossils from the Ediacaran period have been discovered in other places besides Australia, including Namibia in southern Africa, Newfoundland in eastern Canada, England, northwestern Russia, and southern China. Once the first well-preserved fossils started being found, in Newfoundland in 1967, paleontologists started to really take notice, because they turned out to be extremely weird. The fossils, not the paleontologists.

Many organisms that lived during this time lived on, in, or under microbial mats on the sea floor or at the bottoms of rivers. Microbial mats are colonies of microorganisms like bacteria that grow on surfaces that are either submerged or just tend to stay damp. Microbial mats are still around today, usually growing in extreme environments like hot springs and hypersaline lakes. But 580 million years ago, they were everywhere.

One problem with the Ediacaran biota, and I should explain that biota just means all the animals and plants that live in a particular place, is that it’s not always clear if a fossil is actually an animal. Many Ediacaran fossils look sort of plant-like. At this stage, the blurry line between animals and plants was even more blurry than it is now, with the added confusion that sometimes non-organic materials can resemble fossils, and vice versa.

For instance, the fossil Charnia, named after Charnwood Forest in England where it was first discovered. In 1957, a boy named Roger, who was rock-climbing in the forest, found a fossil that looked like a leaf or feather. He took a rubbing of the fossil and showed his father, who showed it to a geologist. The year before, in 1956, a 15-year-old girl named Tina saw the same fossil and told her teacher, who said those rocks dated to before the Cambrian and no animals lived before the Cambrian, so obviously what she’d found wasn’t a fossil.

Tina’s teacher was wrong about that, of course, although he was correct that the rocks dated to before the Cambrian, specifically to about 560 million years ago. But while Charnia looks like a leaf, it’s not a plant. This was about 200 million years before plants evolved leaves, and anyway Charnia lived in water too deep for plants to survive. It anchored itself to the sea floor on one end while the rest of the body stuck up into the water, and some specimens have been found that were over two feet long, or 66 cm. Some researchers think it was a filter feeder, but we have very little evidence one way or another.

One common animal found in Australia and Russia is called Kimberella, which lived around 555 million years ago and might have been related to modern mollusks or to gastropods like slugs. It might have looked kind of like a slug, at least superficially. It grew up to 6 inches long, or 15 cm, 3 inches wide, or 7 cm, and an inch and a half high, or 4 cm, which was actually quite large for most animals that lived back then. It was shaped roughly like an oval, with one thin end that stuck out, potentially showing where its front end was, although it didn’t have a head the way we think of it today. The upper surface of its body was protected by a shell, but not the type of shell you’d find on the seashore today. This was a flexible, non-mineralized shell, basically just thick, toughened tissue with what may be mineralized nodules called sclerites embedded in it. All around its body was a frill that might have acted as a gill. The underside of Kimberella was a flat foot like that of a slug.

We know Kimberella lived on microbial mats on the sea floor, and it might have had a feeding structure similar to a radula. That’s because it’s often found associated with little scratches on its microbial mat that resemble the scratches made by a radula when a slug or related animal is feeding on a surface. The radula is a tongue-like organ studded with hard, sharp structures that the animal uses to scrape tiny food particles from a surface.

Kimberella displays bilateralism, meaning it’s the same side to side. That’s the case with a lot of modern animals, including all vertebrates and a lot of invertebrates too, like insects and arachnids. But other Ediacarans showed radically different body plans. Charnia, for instance, exhibits glide reflection, where both sides are the same as in bilateralism, but the sides aren’t exactly opposite each other. If you walk along a beach and make footprints in the sand, your trail of footprints actually demonstrates glide reflection. If you stand on the sand and jump forward with both feet together, your footprints demonstrate bilateralism since the prints are side by side. (This is confusing to describe, sorry.) Pretty much the only living animals with this body pattern are some sea pens, which get their name because they resemble old-fashioned quill pens. Many sea pens look like plants, and for a long time researchers thought Charnia might be an ancient relation to the sea pen. These days most researchers are less certain about the relationship.

A similar-looking animal that lived around the same time as Charnia was Dickinsonia. It looks sort of like a leaf too, but a more broad oval-shaped leaf instead of a long thin one like Charnia. It’s also not a leaf. Some are only a few millimeters long, but some are over 4 1/2 feet long, or 1.4 meters.

Dickinsonia may be related to modern placozoans, a simple squishy creature only about one millimeter across. It travels very slowly across the sea floor and absorbs nutrients from whatever organic materials it encounters. But we don’t know if Dickinsonia was like that or if it was something radically different. Until a few years ago a lot of paleontologists thought Dickinsonia might be some kind of early plant or algae. Then, in 2016, a graduate student discovered some Dickinsonia fossils that were so well preserved that researchers were able to identify molecular information from them. They found cholesteroids in the preserved cells, and since only animals produce cholesteroids, Dickinsonia was definitely an animal. But that’s still about all we know about it so far.

Spriggina is another animal that at first glance looks like a leaf or feather. Then it sort of resembles a trilobite, or a segmented worm, or a possible relation to Dickinsonia. It looks like all sorts of animals but doesn’t really fit with anything known. It grew up to two inches long, or 5 cm, and had what’s referred to as a head shield although we don’t know for sure if it was actually its head. The head shield might have had eyes and might have had some kind of antennae, and some fossils seem to show a round mouth in the middle of the head, but it’s hard to tell. The rest of its body was segmented in rings. What Spriggina didn’t have was legs, or at least none of the fossils found so far show any kind of legs. Some species of Spriggina show a glide reflection body plan, while others appear to show a more ordinary bilateral body plan.

Three Ediacaran animals have such a weird body plan that they’ve been placed in their own phylum, Trilobozoa, meaning three-lobed animals. They show tri-radial symmetry, meaning that they have three sections that are identical radiating out from the center. They lived on microbial mats and were only about 40 mm across at most, which is about an inch and a half. Tribrachidium was roughly round in shape although its relations looked more like tiny cloverleaf rolls. Cloverleaf rolls are made by putting three little round pieces of dough together and baking them so that the roll has three lobes, although Trilobozoans probably didn’t taste as good. Also, Trilobozoans were covered with little grooves from center to edge and had three curved ridges, one on each lobe. The ridges were originally interpreted as arms or tentacles, but they seem to have just been ridges. Researchers think the little grooves directed water over the body’s surface and the ridges acted as tiny dams that slowed the water down just enough that particles of food carried in the water would fall onto the body so that the animal could absorb the nutrients, although we don’t know how that worked.

Many other Ediacaran animals had radial symmetry like modern echinoderms and jellyfish, including the ancestors of jellyfish. Some Ediacaran animals even had shells of various kinds, and they’re generally referred to as small shelly fossils. They were rarely more than a few millimeters across at most and are sometimes found mixed in with microbial mats. Cochleatina, for instance, is less than a millimeter across and all we know about it is that it had a ribbon-like spiral shell like a really simple snail’s shell. It wasn’t a snail, though. We don’t even know if it was an animal. It might have been some kind of algae or it might have been something else. Unlike most small shelly fossils, Cochleatina survived into the Cambrian period.

We’re also not sure why most Ediacaran organisms went extinct at the beginning of the Cambrian, but it’s probable that most were outcompeted by newly evolved animals. There may also have been a change in the chemical makeup of the ocean and atmosphere that caused an extinction event of old forms and allowed the rapid expansion of new animal forms that we call the Cambrian explosion.

We can also learn a lot about what we don’t find in the Ediacaran rocks. Pre-Cambrian animals didn’t appear to burrow into the sea floor, or at least we haven’t found any burrows, just tracks on the surface. Most Ediacaran animals also didn’t have armored bodies or claws or so forth. Researchers think that predation was actually pretty rare back then, with most animals acting as passive filter feeders to gather nutrients from the water, or they ate the microbial mats. It wasn’t until the Cambrian explosion that we see evidence that some animals evolved to kill and eat other animals exclusively.

With every new Ediacaran fossil that’s found and studied, we learn more about this long-ago time when multi-cellular life was brand new.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 280: Lesser-Known Sharks

Thanks to Tobey and Janice this week for their suggestions of lesser-known sharks!

Further reading/watching:

CREATURE FEATURE: The Spinner Shark [this site has a great video of spinner sharks spinning up out of the water!]

Acanthorhachis, a new genus of shark from the Carboniferous (Westfalian) of Yorkshire, England

150 Year Old Fossil Mystery Solved [note: it is not actually solved]

The cartoon-eyed spurdog shark:

The spinner shark spinning out of the water:

The spinner shark not spinning (photo by Andy Murch):

A Listracanthus spine:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about three sharks you may have never heard of before! The first was suggested by my aunt Janice and the second by listener Tobey. The third is a mystery from the fossil record.

You may have heard about the findings of a study published in November of 2021, with headlines like “Venomous sharks invade the Thames!” My aunt Janice sent me a link to an article like this. Nobody is invading anything, though. The sharks belong where they are. It was their absence for decades that was a problem, and the study discovered that they’re back.

The Thames is a big river in southern England that empties into the North Sea near London. Because it flows through such a huge city, it’s pretty badly polluted despite attempts in the last few decades to clean it up. It was so polluted by the 1950s, in fact, that it was declared biologically dead. But after a lot of effort by conservationists, fish and other animals have moved back into the river and lots of birds now visit it too. It also doesn’t smell as bad as it used to. One of the fish now found again in the Thames is a small shark called the spurdog, or spiny dogfish.

The spurdog lives in many parts of the world, mostly in shallow water just off the coast, although it’s been found in deep water too. A big female can grow almost three feet long, or 85 cm, while males are smaller. It’s a bottom dweller that eats whatever animals it finds on the sea floor, including crabs, sea cucumbers, and shrimp, and it will also eat jellyfish, squid, and fish when it can catch them. It’s even been known to hunt in packs.

It’s gray-brown in color with little white spots, and it has large eyes that kind of look like the eyes of a cartoon shark. It also has a spine in front of each of its two dorsal fins, which can inject venom into potential predators. The venom isn’t deadly to humans but would definitely hurt, so please don’t try to pet a spurdog shark. If the shark feels threatened, it curls its body around into a sort of shark donut shape, which allows it to jab its spines into whatever is trying to grab it.

The spurdog used to be really common, and was an important food for many people. But so many of them were and are caught to be ground into fertilizer or used in pet food that they’re now considered vulnerable worldwide and critically endangered around Europe, where their numbers have dropped by 95% in the last few decades. It’s now a protected species in many areas.

The female spurdog retains her fertilized eggs in her body like a lot of sharks do. The eggs hatch inside her and the babies develop further before she gives birth to them and they swim off on their own. It takes up to two years before a pup is ready to be born, and females don’t reach maturity until they’re around 16 years old, so it’s going to take a long time for the species to bounce back from nearly being wiped out. Fortunately, the spurdog can live almost 70 years and possibly longer, if it’s not killed and ground up to fertilize someone’s lawn. The sharks like to give birth in shallow water around the mouths of rivers, where the water is well oxygenated and there’s lots of small food for their babies to eat, which is why they’ve moved back into the Thames.

Next, Tobey suggested we talk about the spinner shark. It’s much bigger than the spurdog, sometimes growing as much as 10 feet long, or 3 meters. It lives in warm, shallow coastal water throughout much of the world. It has a pointy snout and is brown-gray with black tips on its tail and fins, and in fact it looks so much like the blacktip shark that it can be hard to tell the two species apart unless you get a really good look. It and the blacktip shark also share a unique feeding strategy that gives the spinner shark its name.

The shark eats a lot of fish, especially small fish that live in schools. When the spinner shark comes across a school of fish, it swims beneath it, then upward quickly through the school. As it swims it spins around and around like an American football, but unlike a football it bites and swallows fish as it goes. It can move so fast that it often shoots right out of the water, still spinning, up to 20 feet, or 6 meters, before falling back into the ocean. The blacktip shark sometimes does this too, but the spinner shark is an expert at this maneuver.

There’s a link in the show notes to a page where you can watch a video of spinner sharks spinning out of the water and flopping back down. It’s amazing and hilarious. Tobey mentioned that the spinner shark is an acrobatic shark, and it certainly is! It’s like a ballet dancer or figure skater, but with a lot more teeth. And fewer legs.

Because spinner sharks mainly eat fish, along with cephalopods, they almost never attack humans because they don’t consider humans to be food. Humans consider the spinner shark food, though, and they’re listed as vulnerable due to overhunting and habitat loss.

We’ll finish with a mystery shark. I’ve had Listracanthus on my ideas list for a couple of years, hoping that new information would come to light, but let’s go ahead and talk about it now. It’s too awesome to wait any longer.

We know very little about Listracanthus even though it was around for at least 75 million years, since it’s an early shark or shark relative with a cartilaginous skeleton. Cartilage doesn’t fossilize very well compared to bone, so we don’t have much of an idea of what the shark looked like. What we do have are spines that grew all over the fish and that probably made it look like it was covered with bristles or even weird feathers. The spines are a type of denticle that could be up to 4 inches long, or 10 cm. They weren’t just spines, though. They were spines that had smaller spines growing from their sides, sort of like a feather has a main shaft with smaller shafts growing from the sides.

The spines are fairly common in the fossil record from parts of North America, dating from about 326 million years ago to about 251 million years ago. Listracanthus was closely related to another spiny shark-like fish, Acanthorhachis, whose spines have been found in parts of Europe and who lived around 310 million years ago, but whose spines are less than 3 inches long at most, or 7 cm.

Some researchers think the spines were only present on parts of the shark, maybe just the head or down the back, but others think the sharks were covered with the spines. Many times, lots and lots of the spines are found together and probably belong to a single individual whose body didn’t fossilize, only its spines. Some researchers even think that the flattened denticles from a shark or shark relation called Petrodus, which is found in the same areas at the same times as Listracanthus, might actually be Listracanthus belly denticles.

The spines probably pointed backwards toward the tail, which would reduce drag as the fish swam, and they might have been for display or for protection from predators, or of course both. The main parts of the spine were also hollow and there’s evidence there were capillaries inside, so they might have had a chemosensory or electrosensory function too.

Modern sharks have denticles that make their skin rough, sort of like sandpaper. One modern shark, the sandy dogfish, Scyliorhinus canicula, which is common in shallow water off the coasts of western Europe and northern Africa, and in the Mediterranean, has especially rough denticles on its tail. They aren’t precisely spines, but they’re more than just little rough patches. The sandy dogfish is a small, slender shark that barely grows more than about three feet long, or about a meter, and it eats anything it can catch. Young dogfish especially like small crustaceans, and sometimes they catch an animal that’s too big to swallow whole. In that case, the shark sticks the animal on the denticles near its tail, which anchors it in place so it can tear bite-sized pieces off. Some other sharks do this too, so it’s possible that Listracanthus and its relations may have used its spines for similar behavior.

We don’t know much about these sharks because all we have are their spines. Only one probable specimen has been found, by a paleontologist named Rainer Zangerl. Dr. Zangerl found the remains of an eel-like shark in Indiana that was covered in spines, but unfortunately as the rock dried out after being uncovered, the fossil literally disintegrated into dust.

In August of 2019, a fossil hunter posted on an online forum for fossil enthusiasts to say he’d found a Listracanthus specimen. He posted pictures, although since the fossil hasn’t been prepared it isn’t much to look at. It’s just an undulating bump down a piece of shale that kind of looks like a dead snake. Fortunately, the man in question, who goes by RCFossils, knew instantly what he’d found. He also knew better than to try to clean it up himself. Instead, he’s been working on trying to find a professional interested in taking the project on. In May of 2022 he posted again to say he’d managed to get an X-ray of the fossil, which shows a backbone but no sign of a skull. He’s having trouble finding anyone who has the time and interest in studying the fossil, but hopefully he’ll find someone soon and we’ll all learn more about this mysterious pointy shark.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!