Episode 384: Dragons Revisited

This week we need to thanks a bunch of listeners for their suggestions: Bowie, Eilee, Pranav, and Yuzu!

Further reading:

Elaborate Komodo dragon armor defends against other dragons

Giant killer lizard fossil shines new light on early Australians

A New Origin for Dragon Folklore?

The Wyvern of Wonderland

The Komodo dragon:

The beautiful tree goanna:

The perentie:

Fossilized scale tree bark looks like reptile scales:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to revisit a popular topic we talked about back in episode 53. That episode was about dragons, including the Komodo dragon. Since then, Bowie has requested to learn more about the Komodo dragon and Eilee and Pranav both suggested an updated dragon episode. We also have a related suggestion from Yuzu, who wants to learn more about goannas in general.

We’ll start with the Komodo dragon, which gets its name because it’s a huge and terrifying monitor lizard. It can grow over 10 feet long, or 3 meters, which means it’s the biggest lizard alive today. It has serrated teeth that can be an inch long, or 2.5 cm, and its skin is covered with bony osteoderms that make it spiky and act as armor. Since the Komodo dragon is the apex predator in its habitat, it only needs armor to protect it from other Komodo dragons.

Fortunately for people who like to hike and have picnics in nature, the Komodo dragon only lives on four small islands in Indonesia in southeast Asia, including the island of Komodo. Young Komodo dragons have no armor and spend most of the time in trees, where they eat insects and other small animals. As the dragon gets older and heavier, it spends more and more time on the ground. Its armor develops at that point and is especially strong on the head. The only patches on the head that don’t have osteoderms are around the eyes and nostrils, the edges of the mouth, and over the pineal eye. That’s an organ on the top of the head that can sense light. Yes, it’s technically a third eye!

The Komodo dragon is an ambush predator. When an animal happens by, the dragon jumps at it and gives it a big bite from its serrated teeth. Not only are its teeth huge and dangerous, its saliva contains venom. It’s very good at killing even a large animal like a wild pig quickly, but if the animal gets away it often dies from venom, infection, and blood loss.

Like a lot of reptiles, the Komodo dragon can swallow food that’s a lot bigger than its mouth. The bones of its jaws are what’s called loosely articulated, meaning the joints can flex to allow the dragon to swallow a goat whole, for instance. Its stomach can also expand to hold a really big meal all at once. After a dragon has swallowed as much as it can hold, it lies around in the sun to digest its food. After its food is digested, which can take days, it horks up a big wad of whatever it can’t digest. This includes hair or feathers, horns, hooves, teeth, and so on, all glued together with mucus.

A Komodo dragon eats anything it can catch, and the bigger the dragon is, the bigger the animals it can catch. One thing Komodo dragons are just fine with eating are other Komodo dragons.

As we mentioned a few minutes ago, the Komodo dragon is a type of monitor lizard, and there are lots of monitor lizards that live throughout much of the warmest parts of the earth, including Australia. Yuzu suggested we talk about the goanna, which is the term for monitor lizards in the genus Varanus, although it’s also a term sometimes used for all monitor lizards. Goannas are more closely related to snakes than to other types of lizard.

Like the Komodo dragon, the goanna will eat pretty much any animal it can catch, and will also scavenge already dead animals. Smaller goannas mostly eat insects, especially the tiny goanna often called the short-tailed pygmy monitor or just the pygmy monitor. Its tail is actually pretty long for its size. It only grows about 8 inches long at most, or 20 cm, and babies are less than the length of your pinkie finger. It spends most of its time underground in a burrow, but comes out to hunt for grasshoppers and other insects, spiders, scorpions, and sometimes frogs and small snakes. Many species of goanna spend the hottest part of the day in a burrow, and some species will hibernate in winter.

Most goannas spend all their time on the ground unless they’re actually underground, but some live in trees. The tree goanna, also called the lace monitor or just lacy, can grow up to seven feet long, or over two meters, but is lightly built to climb around on tree branches looking for food. The tree goanna eats a whole lot of bird eggs, along with whatever animals it can catch in trees or on the ground. It eats a lot of carrion and will even get into trash cans if it smells food. When the female is ready to lay her eggs, she digs a hole in the side of a termite nest and lays them in the nest. The termites repair the hole, which hides the eggs, and when the babies hatch, they have lots of termites to eat. The mother goanna keeps watch on the termite nest and once her eggs hatch, she’ll dig into it again to let her babies out.

Genetic testing has discovered that the tree goanna is the closest living relative to the Komodo dragon, but another relative is the biggest goanna alive today in Australia. It’s called the perentie and it can definitely grow up to 8 and a half feet long, or 2.5 meters, and possibly close to 10 feet long, or 3 meters. That’s almost the length of the Komodo dragon.

Long as it is, the perentie isn’t very heavy for its size. It has big claws that allow it to dig quickly, so that if it feels threatened it can dig a burrow and hide in it in only a few minutes. It can also climb trees and is a fast runner. Sometimes it will rear up on its hind legs, propping itself up with its tail, to get a good look around. It’s covered with a maze-like pattern of spots and speckles, and it has a very long neck and a very long tail. Like most monitor lizards, its head is flattened so that it looks a little like a snake’s head. Also like other monitor lizards, it has a long forked tongue that it flicks in and out like a snake to detect the chemical signature of other animals nearby, sort of like smelling but with the tongue.

Also like other monitor lizards, the perentie has a venomous bite. Its venom isn’t all that strong, but you still wouldn’t want to get nipped by one. A big perentie will kill and eat just about anything it can catch, including wombats and small kangaroos. It’s not dangerous to humans, though, and in fact very few people in Australia have ever seen a perentie in the wild. It’s shy and lives in remote areas, mostly in the interior of the country over to the western coast.

There used to be a goanna in Australia that was even bigger than the perentie, but it went extinct around 50,000 years ago. We talked about it briefly in episode 325, but Pranav suggested we learn more about it. It’s called megalania and not only was it bigger than the perentie, it made the Komodo dragon look like a little baby lizard. Megalania may have grown as much as 23 feet long, or 7 meters, although most scientists these days think it wasn’t quite that big. The latest estimates are still pretty big, possibly 18 feet long, or 5.5 meters. It was also heavily built, more like the Komodo dragon than the perentie, so it may have weighed as much as a polar bear. That’s about 1200 pounds, or around 550 kg, but I thought the polar bear comparison was funny. We don’t know for sure how big megalania was because we don’t have a complete skeleton.

Megalania has been classified with the living goannas in the genus Varanus, so it was probably related to the Komodo dragon, although we don’t know exactly how closely. It was probably venomous, and we know its teeth were serrated like the Komodo dragon’s. It lived throughout much of eastern Australia and may have been even more widespread, we just don’t know because we don’t have very many fossils.

Megalania lived alongside another giant monitor lizard in what is now Queensland, the Komodo dragon. That’s right, the Komodo dragon once lived in Australia, although it went extinct there around 300,000 years ago. Megalania went extinct around the time that humans first arrived in Australia, so it’s very possible that the ancestors of today’s Aboriginal Australians encountered it. In 2015, a study was published detailing the discovery of a large goanna osteoderm from a cave system in Queensland. The osteoderm has been dated to about 50,000 years ago and probably belonged to megalania, and some scientists think humans may have been a factor in its extinction, along with climate change.

There are supposedly stories passed down for thousands of years among the Aboriginal Australian peoples that suggest meetings with megalania. I tried hard to find accounts of any of these stories to share, but the sources were always questionable. I did learn that European accounts of the Dreamtime, especially older ones, are inaccurate at best. European colonizers didn’t fully understand the Aboriginal cultures and in many cases weren’t interested in understanding them. They just wanted to collect stories that they would then change to fit the European worldview. This trend continues to the present day, with non-Aboriginal writers changing, misinterpreting, or even straight up inventing Dreamtime stories to fit their own interests. Sometimes that interest is cryptozoology. From what I was able to discover, there really is one aspect of the Dreaming that does apparently include a giant goanna, but that the traditions involved are especially sacred and not meant for outsiders to learn. So it’s none of our business.

As we discussed in episode 53, European stories about dragons were probably inspired by snakes, since early dragons were described as snake-like. Dragon stories in other parts of the world were probably inspired by various local reptiles such as crocodiles. Fossilized bones also played a part, since in the olden days no one knew what dinosaurs were. All anyone knew was that sometimes they found gigantic bones that seemed to be made of stone, and people made up stories to explain them.

Stories about giant reptiles are common throughout much of the world, and in 2020 a study was published suggesting that one of the reasons wasn’t an animal at all. It was a plant, specifically a 300 million year old plant called Lepidodendron, also called the scale tree.

The scale tree wasn’t actually a tree, but it was a really big plant that could grow 160 feet tall, or 50 meters. It’s been extinct for a long time, but it does have living relations called quillworts that kind of look like weird grass.

The scale tree gets its name from the diamond-shaped pattern on its trunk, which looks for all the world like reptile scales. These were just places where leaves once grew, but as the plant got taller, it shed its lower leaves as new ones grew from the top. Different species of the plant had different scale patterns. The study suggests that fossilized pieces of scale tree trunks inspired stories about giant reptiles. Since the plants grew throughout the supercontinent Pangaea and often ended up fossilized in coal beds, their fossils have been found in many different parts of the world.

Let’s finish with a dragon story from England, specifically the village of Sockburn in County Durham. It’s referred to as the Sockburn Worm, since “worm” used to mean any creature that was snakey or worm-shaped in appearance. It’s closely related to the story of the Lambton Worm that we talked about in episode 53.

Once upon a time in the olden days, maybe around 750 years ago, maybe longer ago, Sockburn and the farmland around it were terrorized by a dragon. The dragon had a poisonous breath and would eat anyone it came across, and killed and ate all the livestock it could find. No one could kill it.

Sir John Conyers was a knight who lived in the area and he decided he had to do something. He got dressed in his armor and went to the local church to pray, and said he would give up his only son’s life if it meant killing the dragon. Then he set out to find the dragon.

He didn’t so much find the dragon as the dragon found him. Instead of getting eaten, Sir John drew his magical sword and battled the dragon until finally he lopped its head off with one massive chop. Sir John survived and so did his son.

Centuries later, in 1855, a writer was inspired by the story and wrote a poem based on it. He eventually included the poem in a book called Alice Through the Looking-Glass, the sequel to Alice in Wonderland. You may know the poem “The Jabberwock,” and now you know the dragon story that inspired it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 382: Smilodon, the Sabertoothed Cat

Thanks to Luke for suggesting this week’s topic: Smilodon, the saber-toothed cat, AKA the sabertooth tiger!

Further reading:

Did sabertooth tigers purr or roar?

The double-fanged adolescence of saber-toothed cats

We don’t know for sure what Smilodon looked like, but it might have been something like this:

An artist’s rendition of an adolescent Smilodon with doubled fangs [picture from second link above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about an animal suggested by Luke, the sabertooth tiger, also called the sabertooth cat since it wasn’t actually a tiger, also called smilodon after its scientific name. We’ve talked about it before, way back in episode 34, but a lot of new studies have been published since then and we know a lot more about this terrifying-looking animal!

The genus of the saber-toothed cat is Smilodon, so that’s mostly what I’m going to call it in this episode. It’s classified as a member of the family Felidae, which is the same family where you find domestic cats, wildcats, big cats, and lots of extinct animals like the cave lion, but Smilodon wasn’t closely related to what we think of as cats. There were at least three species of saber-tooth cats in the genus Smilodon that we know of, but it had many other similar-looking relatives.

Smilodon is best known from the La Brea tar pits in Los Angeles, California, where the remains of hundreds of individuals have been discovered. That’s a big reason why we know so much about Smilodon, especially the species Smilodon fatalis that lived in North America and parts of South America. An even bigger species lived exclusively in South America, while both were probably descended from a smaller species that also lived in South America.

S. fatalis is estimated to have grown up to 39 inches tall at the shoulder, or 99 cm, while S. populator stood at an estimated 47 inches tall, or 119 cm. That’s almost four feet tall. Some full-grown humans are that height! Smilodon was so stocky and heavily muscled that it probably looked more like a bear than a cat. Its had a broad head and jaws that could open much wider than most modern animals, which allowed it to deploy its most deadly weapon, its saber teeth, without its jaw getting in the way.

Smilodon’s saber teeth were as much as 11 inches long, or 28 cm, although S. fatalis typically had teeth around 8 inches long, or 20 cm. Big as they were, the saber teeth were also relatively delicate. A young Smilodon didn’t start growing its big teeth until it was about a year old, and even then it had to learn how to use them so they wouldn’t break. Luckily for adolescent smilodons, they didn’t lose their baby fangs until they were fully grown.

Most mammals only grow two sets of teeth in our lifetimes. The first set is usually called baby teeth or milk teeth. As the baby grows up, its adult teeth start growing in one at a time. The adult tooth pushes at the baby tooth until it gets loose and either comes out on its own or, in the case of me in second grade, I asked to go to the bathroom and then spent half an hour twisting at a loose baby tooth until it finally came out, along with some blood. But I got a quarter that night from the tooth fairy. (Kids, maybe don’t do that.)

In the case of a young smilodon’s saber teeth, they grew in just next to the baby fangs. Instead of pushing the baby fangs out, the new teeth grew alongside them and even had a groove for the baby teeth to fit into. When scientists first discovered preserved jaws with these double fangs, they thought it was a fluke, that sometimes the new teeth came in wrong and didn’t push the old teeth out. That happens in humans sometimes too and then you have to go to the dentist to get the old baby teeth taken out. But paleontologists kept finding these double toothed jaws, and only in adolescent smilodons.

Finally a team of scientists studied the teeth carefully and made a surprising discovery. The baby fang stayed in place next to the saber tooth until the animal was about two and a half years old, at which time the baby fang finally fell out. In early 2024 the team published their study, which concluded that these double teeth acted sort of like a set of training wheels. Training wheels on a bicycle keep a new rider from tipping over sideways, and the doubled fangs kept the saber teeth from getting bent sideways until they broke. By the time the baby fang fell out, the smilodon had lots of experience hunting properly and no longer needed training wheels.

Smilodon legs are relatively short, which suggests it didn’t do a lot of running after prey. It was probably an ambush hunter and may have hunted in groups, sort of like lions do today. Some scientists think that instead of big groups, smilodon lived in small family groups of a mated pair and their offspring, which they took care of for several years. There’s even some evidence that adult animals with debilitating injuries or congenital issues that meant they couldn’t hunt were taken care of by other adults.

Smilodon ate large animals like ground sloths, horses, deer, camelids, and glyptodonts. It went extinct about 11,000 years ago, the same time that a lot of its prey went extinct too. We don’t know what color it was, but modern cats that hunt in forested areas generally have spots while cats that hunt in open areas generally have plain coats. Since smilodon lived in a variety of habitats, from forests to deserts, its coat pattern and coloration may have varied from region to region. It also had a short tail like a bobcat instead of a long tail like most modern cats.

Let’s finish with one last important detail about smilodon. Did it purr or did it roar? Remember that modern cats can either do one or the other, not both. A tiger can’t purr, while a wildcat can’t roar. In modern cats, the difference appears to be due to the number of hyoid bones in the throat. Humans have a single hyoid bone, which anchors the larynx in place, but cats have a whole row of them. Cats that can roar have seven of these tiny bones, while cats that can purr have nine of them.

Smilodon had seven hyoid bones. Therefore, scientists assumed, smilodon could roar but not purr. But a study from 2023 suggests it’s not that simple. The hyoid bones in purring cats are shaped differently from those in roaring cats. Smilodon only had seven hyoid bones, but some of them were shaped like really big purring hyoid bones, big even for the animal’s large size. Scientists aren’t sure if that means smilodon was able to purr in a deep register, if it could roar instead but with a really deep voice compared to modern cats, or if it made some other sound that we can’t even guess at.

In other words, I’m sorry, we don’t know if smilodon roared or purred, and we probably won’t know for sure until someone invents a time machine. Personally, I like to think that smilodon could purr and roar, and that it could also meow, but in a really deep voice. MEOW.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 378: Ichthyotitan

Thanks to Nathan-Andrew for suggesting giant ichthyosaurs!

Further reading:

Paleontologists unearth what may be the largest known marine reptile

Ruby and some other scientists with the ichthyotitan fossils [photos taken from this page]:

How the pieces fit together:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some of the biggest animals that have ever swum through the oceans of this planet we call Earth, a suggestion from Nathan-Andrew.

We talked about ichthyosaurs way back in episode 63, but we haven’t really discussed these giant marine reptiles since. Ichthyosaurs and their close relations were incredibly successful, first appearing in the fossil record around 250 million years ago and last appearing around 90 million years ago. Most ichthyosaurs grew around 6 and a half to 11 feet long, or 2 to 3.3 meters, depending on species, so while they were pretty big animals, most of them weren’t enormous. They would have been fast, though, and looked a lot like fish or dolphins.

Even though ichthyosaurs were reptiles, they were warm-blooded, meaning they could regulate their body temperature internally without relying on outside sources of heat. They breathed air and gave birth to live babies the way dolphins and their relations do. They had front flippers and rear flippers along with a tail that resembled a shark’s except that the lower lobe was larger than the upper lobe. Some species had a dorsal fin too. They had huge eyes, which researchers think indicated they dived for prey. Not only were their eyes huge, they were protected by a bony eye ring that would help the eyes retain their shape even under deep-sea pressures.

We know a lot about what ichthyosaurs ate, both from coprolites, or fossilized poops, and from the fossilized remains of partially digested food preserved in the stomach area. Most ichthyosaurs ate cephalopods like squid and ammonites, along with fish, turtles, and pretty much any other animals they could catch. Ichthyosaurs also ate smaller ichthyosaurs.

Nathan-Andrew specifically suggested we look at Shastasaurus and Shonisaurus, two closely related genera that belong to the ichthyosaur family Shastasauridae. Both genera contained species that were much larger than the average dolphin-sized ichthyosaur. The biggest species known until recently was Shonisaurus sikanniensis, which grew to almost 70 feet long, or 21 meters.

Scientists are divided as to whether S. sikanniensis should be considered a species of Shonisaurus or if it should be placed in the genus Shastasaurus. The main difference is that species in the genus Shastasaurus were more slender and had a longer, pointier rostrum than species in the genus Shonisaurus. Either way, S. sikanniensis was described in 2004 and at the time was the largest ichthyosaur species ever discovered.

But in May of 2016 a fossil enthusiast came across five pieces of what he suspected was an ichthyosaur bone along the coast of Somerset, England. He sent pictures to a couple of marine reptile experts, who verified that it was indeed part of an ichthyosaur’s lower jawbone, called a surangular. Studies of the fossil pieces compared it to S. sikanniensis, and it was similar enough that the new fossil was tentatively placed in the family Shastasauridae. Based on those comparisons, scientists estimated that this new ichthyosaur might have grown to around 72 feet long, or 22 meters, or even longer.

Almost exactly four years after the 2016 discovery, in May of 2020, an 11-year-old named Ruby Reynolds was looking for fossils with her father on the beach at Somerset. She discovered two big chunks of a fossil bone that she thought might be important. Ruby’s father contacted a local paleontologist, who in turn reached out to the man who had found and helped study the 2016 surangular bone. They studied the 2020 fossil and determined that it too was a surangular bone, and looked a lot like the one found in 2016. Not only was it better preserved and more complete, it was bigger.

Ruby and her father joined the team of paleontologists searching for more pieces of the surangular, and they actually found them. The pieces fit together like jigsaw puzzle pieces.

The bone has been dated as being about 202 million years old, from right before the end-Triassic extinction event and 13 million years after the other most recent ichthyosaur fossils from this era. It was described in early 2024 and named Ichthyotitan, and I’m happy to report that Ruby and her father helped with the research and are both included in the list of authors in the paper describing it. They also helped name it.

The estimated size of this specific Ichthyotitan specimen is about 25 meters, or 82 feet. That’s incredibly huge, rivaling the biggest whales alive today. But one other detail about this ichthyotitan bone is even more stunning. When the animal died, it was still growing. It hadn’t reached its full size yet.

As a comparison, the biggest animal ever known to have lived is the blue whale. A blue whale can grow up to 98 feet long, or 30 meters. Until now, scientists thought that no other animal had ever reached the size of a blue whale. Now, some paleontologists suspect that a full-grown ichthyotitan might have been at least as long or even longer than a blue whale.

The next step, of course, is to find more of the fossils. Ichthyotitan’s only fossils so far have been found in Somerset, England, but fossils of closely related ichthyosaurs have been found in parts of California, Nevada, British Columbia, China, Italy, Switzerland, and Tibet. In other words, they might be found just about anywhere with rocks dating to about 200 million years ago. The next time you’re out for a walk, keep a look-out just in case you spot a bone belonging to the biggest animal that ever lived.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 377: The Giant-est Snake Ever

Thanks to Max for suggesting Titanoboa!

Further reading:

Largest known madtsoiid snake from warm Eocene period of India suggests intercontinental Gondwana dispersal

This Nearly 50-Foot Snake Was One of the Largest to Slither on Earth

Meet Vasuki indicus, the ‘crocodile’ that was a 50ft snake

Titanoboa had really big bones compared to its modern relatives:

Vasuki had big bones too:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Almost exactly two years ago now, Max emailed to suggest we talk about titanoboa. The problem was that we had covered titanoboa in episode 197, and even though there’s always something new to learn about an animal, in this case since titanoboa is extinct there wasn’t much more I could share until new studies were published about it. But as the years passed I felt worse and worse that Max was waiting so long. A lot of listeners have to wait a long time for their suggested episode, and I always feel bad. But still there were no new studies about titanoboa!

Why am I telling you all this? Because we’re finally going to talk about titanoboa today, even though by now Max is probably old and gray with great-grandkids. But we’re only going to talk about titanoboa to compare it to another extinct snake. That’s right. Paleontologists have discovered fossils of a snake that was even longer than titanoboa!

Let’s start with Titanoboa, because it’s now been a really long time since episode 197 and all I remember about it is that it’s extinct and was way bigger than any snake alive today. Its discovery is such a good story that I’m going to include it too.

In 1994, a geologist named Henry Garcia found an unusual-looking fossil in Colombia in South America, in an area that had been strip-mined for coal. Fifty-eight million years ago the region was a hot, swampy, tropical forest along the edge of a shallow sea.

Garcia thought he’d found a piece of fossilized tree. The coal company in charge of the mine displayed it in their office along with other fossils. There it sat until 2003, when palaeontologists arranged an expedition to the mine to look for fossil plants. A researcher named Scott Wing was invited to join the team, and while he was there he poked around among the fossils displayed by the mining company. The second he saw the so-called petrified branch he knew it wasn’t a plant. He sent photos to a colleague who said it looked like the jawbone of a land animal, probably something new to science.

In 2007, the fossil was sent for study, labeled as a crocodile bone. But the palaeontologists who examined the fossil in person immediately realized it wasn’t from a crocodile. It was a snake vertebra—but so enormous that they couldn’t believe their eyes. They immediately arranged an expedition to look for more of them, and they found them!

Palaeontologists have found fossilized remains from around 30 individual snakes, including young ones. The adult size is estimated to be 42 feet, or 13 meters. The largest living snakes are anacondas and reticulated pythons, with no verified measurements longer than about 23 feet long, or 7 meters. Titanoboa was probably twice that length.

Because titanoboa was so bulky and heavy, it would be more comfortable in the water where it could stay cool and have its weight supported. It lived in an area where the land was swampy with lots of huge rivers. Those rivers were full of gigantic fish and other animals, including a type of lungfish that grew nearly ten feet long, or 3 meters. Studies of titanoboa’s skull and teeth indicate that it probably mostly ate fish.

So if titanoboa was so huge that until literally a few days ago as this episode goes live, we thought it was the biggest snake that had ever existed, how big was this newly discovered snake? It’s called Vasuki indicus and while it wasn’t that much bigger than titanoboa, estimates so far suggest it could grow almost 50 feet long, or over 15 meters. It’s named after a giant serpent king called Vasuki from Hindu folklore, who symbolizes strength and prosperity.

Vasuki indicus was discovered in a mine in India in 2005. The original discovery consisted of 27 vertebrae, including some that were still articulated. That means they remained in place after the rest of the body decayed and were preserved that way, which helps palaeontologists better estimate the snake’s true size.

Like titanoboa, the fossils were misidentified at first. They were labeled as a known giant crocodile and set aside in the discoverer’s lab for decades. In 2022, paleontologist Debajit Datta joined the lab, and one of the things he wanted to study were these giant crocodile fossils. He started preparing them for study by removing the rock matrix from around them, and almost immediately realized they belonged to a snake, not a crocodile.

The fossils have been dated to about 47 million years ago in what is now India, in Asia. Titanoboa lived about 58 million years ago in what is now Colombia, in South America. The two snakes are related, although not closely, and this helps scientists determine how snakes spread across the world as the continents moved into their current positions.

Both snakes lived in what were then very similar habitats, a tropical, swampy area near the coast. The researchers think Vasuki spent most of its time on land, unlike titanoboa. It wasn’t as bulky as titanoboa and could probably maneuver on land a lot more easily.

Until titanoboa was described in 2009, a snake called Gigantophis was thought to be the largest snake that ever lived. It lived around 40 million years ago in what is now the northern Sahara desert and could grow over 35 feet long, or almost 11 meters. It turns out that Vasuki was closely related to gigantophis.

As it stands now, until more fossils are found and more studies are conducted and published, Vasuki is estimated to be slightly longer than titanoboa at maximum, making it the longest snake known, but titanoboa is still estimated to be the heaviest snake known. So they both win the largest snake award, but the real winner is us.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 373: The Tasmanian Devil and the Thylacine

Thanks to Carson, Mia, Eli, and Pranav for their suggestions this week!

Further reading:

RNA for the first time recovered from an extinct species

Study finds ongoing evolution in Tasmanian Devils’ response to transmissible cancer

Tasmanian devil research offers new insights for tackling cancer in humans

The Tasmanian devil looks really cute but fights all the time [picture by JJ Harrison (https://www.jjharrison.com.au/) – Own work, CC BY-SA 3.0]:

The Thylacine could opens its jaws verrrrrrry wide:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to cover two animals that a lot of people have suggested. Carson and Mia both want to learn about the Tasmanian tiger, and Eli and Pranav both want to hear about the Tasmanian devil. We talked about the Tasmanian tiger, AKA the thylacine, in episode 1, and I thought we’d had a Tasmanian devil episode too but it turns out I was thinking of a March 2019 Patreon bonus episode. So it’s definitely time to learn about both!

The thylacine was a nocturnal marsupial native to New Guinea, mainland Australia, and the Australian island of Tasmania, and the last known individual died in captivity in 1936. But thylacine sightings have continued ever since it was declared extinct. It was a shy, nervous animal that didn’t do well in captivity, so if the animal survives in remote areas of Tasmania, it’s obviously keeping a low profile.

The thylacine was yellowish-brown with black stripes on the back half of its body and down its tail. It was the size of a big dog, some two feet high at the shoulder, or 61 cm, and over six feet long if you included the long tail, or 1.8 meters. It had a doglike head with rounded ears and could open its long jaws extremely wide. Some accounts say that it would sometimes hop instead of run when it needed to move faster, but this seems to be a myth. It was also a quiet animal, rarely making noise except while hunting, when it would give frequent double yips.

A 2017 study discovered that the thylacine population split into two around 25,000 years ago, with the two groups living in eastern and western Australia. Around 4,000 years ago, climate change caused more and longer droughts in eastern Australia and the thylacine population there went extinct. By 3,000 years ago, all the mainland thylacines had gone extinct, leaving just the Tasmanian population. The Tasmanian thylacines underwent a population crash around the same time that the mainland Australia populations went extinct—but the Tasmanian population had recovered and was actually increasing when Europeans showed up and started shooting them.

Because the thylacine went extinct so recently and scientists have access to preserved specimens less than a hundred years old, and since the thylacine’s former habitat is still in place, it’s a good candidate for de-extinction. As a result, it’s been the subject of many genetic studies recently, to learn as much about it as possible. It’ll probably be quite a while before we have the technology to successfully clone a thylacine, but in the meantime people in Australia keep claiming to see thylacines in the wild. Maybe they really aren’t extinct.

The Tasmanian devil is related to the thylacine. It’s about the size of a small to average dog, maybe a bulldog, which it resembles in some ways. It’s compact and muscular with a broad head, relatively short snout, and a big mouth with prominent lower fangs. It’s not related to canids at all, of course, and if you just glanced at a Tasmanian devil, your first thought wouldn’t be “dog” or “thylacine,” it would probably be “giant mouse.”

The Tasmanian devil is black or grayish-brown, usually with patches of white on the chest and rump. It also has rounded pinkish ears, long whiskers, paws with relatively long toes, and a long tail. Since the devil stores fat in its tail, a fat-tailed devil is a happy, healthy devil.

It’s mainly a scavenger and will eat roadkill and other dead animals, although it will also kill and eat small or even large animals, and will also eat plant material and insects. It often eats every trace of a carcass, including bones and fur. This is good for other animals and for ranchers, since it reduces the presence of insects attracted to dead animals and reduces the spread of disease. Its digestion is extremely fast and efficient, and its jaws are extremely strong.

The Tasmanian devil is usually solitary, but it does get together with other devils to socialize and fight while eating. When a devil finds a carcass, it will make extremely loud calls to alert other devils to come share its meal. Then, because they’re called devils and not angels for a reason, the animals will fight over the food.

Tasmanian devils fight a lot. Researchers think the white markings help direct other devils to attack parts of the body that are less vulnerable to injury. The white fur is more visible in the dark, giving other devils a target. The white markings are usually on the devil’s chest, sides, and rump, with none on the face or legs. Males fight each other during breeding season, and the females pick the winners to mate with. If a female doesn’t like a male, she’ll fight him.

Devils are marsupials, which means babies are born very early and finish developing in their mother’s pouch. The Tasmanian devil’s pouch is rear-facing and contains four teats. The problem is, the mother has 20 or even 30 babies at a time. They’re born about the size of a jellybean and the only part that’s developed at that point is the forelegs so it can crawl into the mother’s pouch. The legs have claws and—you guessed it—the little squidge babies fight for a teat. Once one gets to a teat, it clamps on and doesn’t let go for the next three months. Babies that don’t get a teat die.

Like the thylacine, the Tasmanian devil once lived on mainland Australia but is now restricted to the island of Tasmania. Also like the thylacine, it shows low genetic diversity and was once killed for bounty by early settlers. It’s affected by habitat loss like many other animals, and it’s especially vulnerable to being run over by cars because it eats so much roadkill.

But the devil’s biggest issue today is a disease called devil facial tumor disease, or DFTD. DFTD is spread when an infected animal bites another one, which causes cancerous growths in and around the mouth. After a few months the tumors get so big that the devil can no longer eat and starves to death. Since devils bite each other all the time, the disease spreads quickly throughout a population.

In 2019 some researchers predicted the Tasmanian devil would be extinct by 2024. But here it is 2024 and not only is the devil not extinct, it’s actually doing a lot better now than it was just a few years ago.

Part of that is due to conservation efforts, where healthy devils are quarantined from infected ones in captive breeding programs. But part of it is natural. In 2018 a small population of devils was discovered that appeared to have developed a natural resistance to DFTD. Genetic studies done since then revealed some surprises. Not only are younger devils showing a genetic resistance to DFTD, there’s evidence that resistance to other transmissible cancers has developed in the past. Researchers think the Tasmanian devil might be especially prone to transmissible cancers but is also able to develop resistance relatively quickly. The devils with this resistance start growing tumors, but then the tumors stop growing and soon just disappear. Naturally, scientists are looking at the genetics of this trait to see if it can be applied to humans with certain types of cancer.

While Tasmanian devils fight each other, they don’t actually fight humans. Scientists report that it’s actually quite easy to work with. This makes it a lot easier to check the health of a captured animal. Hopefully it won’t be long before the entire population of Tasmanian devils is healthy and its numbers start to increase again.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 368: The Bison

Thanks to Jason for suggesting this week’s topic, the bison!

Further reading:

New research documents domestic cattle genetics in modern bison herds

Higgs Bison: Mysterious Hybrid of Bison and Cattle Hidden in Ice Age Cave Art

A cave painting of steppe bison and other animals:

An American bison [photo by Kim Acker, taken from this site]:

Some European bison [photo by Pryndak Vasyl, taken from this site]:

The bison sound in this episode came from this site.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about the bison, a suggestion from Jason. There are two species of bison alive today, the American bison and the European bison. Both are sometimes called buffalo while the European bison is sometimes called the wisent. I’m mostly going to call it the wisent too in this episode so I only have to say the word bison 5,000 times instead of 10,000.

Bison are herd animals that can congregate in huge numbers, but these big herds are made up of numerous smaller groups. The smaller groups are made up of a lead female, called a cow, who is usually older, other cows, and all their offspring, called calves. Males, called bulls, live in small bachelor groups. The American bison mostly eats grass while the European bison eats a wider selection of plants in addition to grass.

The bison is a big animal with horns, a shaggy dark brown coat, and a humped shoulder. The American bison’s shoulder is especially humped, which allows for the attachment of strong neck muscles. This allows the animal to clear snow from the ground by swinging its head side to side. The European bison’s hump isn’t as pronounced and it carries its head higher. The bison looks slow and clumsy, but it can actually run up to 35 mph, or 55 km/hour, can swim well, and can jump obstacles that are 5 feet tall, or 1.5 meters.

The American bison can stand over six and a half feet high at the shoulder, or 2 meters, while the European bison stands almost 7 feet tall at the shoulder, or 2.1 meters. This is massively huge! Bison are definitely ice age megafauna that once lived alongside mammoths and woolly rhinos, so we’re lucky they’re still around. Both species almost went extinct in recent times and were only saved by a coordinated effort by early conservationists.

The American bison in particular has a sad story. Before European colonizers arrived, bison were widespread throughout North America. Bison live in herds that migrate sometimes long distances to find food, and many of the North American tribes were also migratory to follow the herds, because the bison was an important part of their diet and they also used its hide and other body parts to make items they needed. The colonizers knew that, and they knew that by killing off the bison, the people who depended on bison to live would starve to death. Since bison were also considered sacred, the emotional and societal impact of colonizers killing the animals was also considerable.

In the 19th century, colonizers killed an estimated 50 million bison. A lot of them weren’t even used for anything. People would shoot as many bison as possible from trains and just leave the bodies to rot, and this practice was actually encouraged by the railroads, who advertised these “hunting” trips. The United States government also encouraged the mass killing of bison and even had soldiers go out to kill as many bison as possible. Bison that escaped the coordinated slaughter often caught diseases spread by domestic cattle, and the increased plowing and fencing of prairie land reduced the food available to bison. By 1900, the number of American bison in the world was probably only about 300.

As early as the 1860s people started to sound the alarm about the bison’s impending extinction. Some ranchers kept bison, partly as meat animals and partly to just help stop them from all dying out. The Yellowstone National Park had been established in 1872, and 25 bison survived there, although many others were poached by hunters. Members of various Plains tribes, who had been forced onto reservations by the United States government so the government could give their land to colonizers, collected as many bison as they could to keep them safe.

These days the American bison is out of immediate danger, although its numbers are still very low. Because there were so few bison when conservation efforts started, the genetic diversity is also low. Bison will also hybridize with domestic cattle and the resulting female calves are fertile, so the main goal of modern conservationists is to genetically test herds to determine which bison have a larger percentage of cattle genes, and mainly only breed the ones that have the least. A 2022 study determined that there is no population of American bison alive today that doesn’t have at least a small percentage of cattle genes. Cattle are domesticated animals, and it’s never a good thing when a wild animal ends up with the DNA of a domestic counterpart. Bison need their wildness in order to survive and stay safe.

There are two living subspecies of American bison, the wood bison and the plains bison. I’m happy to report that the scientific name of the plains bison is Bison bison bison. The wood bison mainly lives in Canada, where it’s classified as threatened.

As for the European bison, or wisent, it was once common throughout much of Europe and Asia. As the human population increased after the ice age, the wisent’s numbers decreased until it was mostly restricted to a few areas of Russia, Transylvania, Poland, and Lithuania. Even as early as the 16th century, people were aware it was endangered. Local rulers declared it a protected animal in most of its range.

During World War I, German troops occupying Poland killed hundreds of wisents, and as the troops retreated at the end of the war, they shot as many of the bison as they could find and left them to rot. Only nine individuals remained alive and by 1921 they had died too. By 1927, the very last wisent in the wild was killed by a poacher.

But 12 animals remained, kept in various zoos. In 1923 a preservation society was set up, modeled after the one in the United States that had helped save the American bison from extinction. Poland in particular worked hard to increase the wisent’s numbers and re-introduce it to its forest home, although its efforts were interrupted by World War II. These days the wisent is out of danger of extinction, although like the American bison its numbers are still relatively low.

American and European bison are related and can crossbreed, but they’re not as closely related genetically as was once thought. Genetic studies are ongoing, but it appears that the wisent is most closely related to domestic cattle while the American bison is most closely related to the yak.

We recently talked about the steppe bison in episode 357, which is about mammoth meat. The steppe bison is an ancestor of the American bison and lived throughout Europe and Asia across to North America, during the Pleistocene when Asia and North America were connected by the land bridge Beringia. It only went extinct around 3,000 years ago. It had much larger horns than modern bison, with a horn spread of almost seven feet across, or over 2 meters.

About 17,000 years ago, in a cave in what is now France, an ancient artist picked up a stick of charcoal and made a drawing of a bison alongside many other bison drawings made by many artists over the years. According to a study published in 2016, there are two different types of bison depicted in the cave. One type is the steppe bison, but the other is distinctly different. After a genetics study of bison in Europe, researchers made a surprising discovery. The second type of bison depicted in the cave is actually a hybrid animal. Hybrids come about when two species of closely related animals interbreed. The more closely related the species are, the more likely they are to interbreed where their territories overlap, and the more likely that the offspring will be fertile. This is exactly what happened toward the end of the Pleistocene, when climate change made it harder for the steppe bison to survive. Instead, a hybrid of steppe bison and the aurochs, the wild ancestor of the domestic cow, not only became common throughout much of Europe, eventually the hybrid species was so numerous that it became a distinct species of its own.

This hybrid bison had small horns and a smaller hump than the steppe bison, although it was still a really big animal. Eventually it gave rise to the modern European bison while the steppe bison gave rise to the antique bison, which itself is the direct ancestor of the American bison. So many bison!

This is what a bison sounds like, specifically an American bison recorded in Yellowstone National Park:

[bison sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 365: A New Temnospondyl

Let’s take a look at some new findings about the temnospondyls this week!

Further reading:

Ancient giant amphibians swam like crocodiles 250 million years ago

Fossil of Giant Triassic Amphibian Unearthed in Brazil

Kwatisuchus rosai was an early amphibian [picture taken from article linked above]:

Koolasuchus was a weird big-headed boi:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to revisit an animal we talked about way back in episode 172, the temnospondyl. That’s because a new species of temnospondyl has been named that lived about 250 million years ago, and some other new information has been published about temnospondyls in general.

In case you haven’t listened to episode 172 in a while, let’s brush up on some history. The temnospondyls arose about 330 million years ago during the Carboniferous period. Ocean levels were high, the continents were coming together slowly to form the supercontinent Pangaea, and much of the land was flooded with warm, shallow water that created enormous swampy areas full of plants. Naturally, a whole lot of animals evolved to live in the swamps, and the temnospondyls were especially successful.

Temnospondyls were semi-aquatic animals that probably looked a lot like really big, really weird salamanders. This was before modern amphibians evolved, and scientists still aren’t sure if the temnospondyls are the direct ancestors of modern amphibians or just cousins that died out with no living descendants. Temnospondyls do share many traits with modern amphibians, but they still had a lot in common with their fish ancestors.

Most temnospondyls had large heads that were broad and flattened in shape, often with a skull that was roughly triangular. Some had smooth skin but many had scales, including some species with scales that grew into armor-like plates. The earliest species had relatively small, weak legs and probably spent most of their time in the water, but it wasn’t long before species with stronger legs developed that probably lived mostly on land.

Many temnospondyls were small, but some grew really big. The biggest found so far is Prionosuchus, which is only known from fragmentary specimens discovered in Brazil in South America. It had an elongated snout something like a ghavial’s, which is a type of crocodilian that mostly eats fish, and a similar body shape. That’s why its name ends in the word “suchus,” which refers to a crocodile or an animal that resembles a crocodilian. Inside, though, prionosuchus probably had more in common with its fish ancestors than with modern crocodiles, and of course it wasn’t a reptile at all. It was an amphibian, possibly the largest one that’s ever lived. The biggest specimen found so far had a skull that measured just over 5 feet long, or 1.6 meters. That was just the skull! The whole animal, tail and all, might have measured as much as 30 feet long, or about 9 meters, although most paleontologists think it was probably more like 18 feet long, or 5-1/2 meters. That’s still incredibly big, as large as the average saltwater crocodile that lives today.

The resemblance of many temnospondyls to crocodilians is due to convergent evolution, since researchers think a lot of temnospondyls filled the same ecological niche as modern crocodiles. If you’re an ambush predator who spends a lot of time hiding in shallow water waiting for prey to get close enough, the best shape to have is a long body, short legs, a long tail that’s flattened side to side to help you swim, and a big mouth for grabbing, preferably with a lot of teeth. A study published in March of 2023 examined some trace fossils found in South Africa that scientists think were made about 255 million years ago by a temnospondyl. The fossils were found in what had once been a tidal flat or lagoon along the shore of the ancient Karoo Sea. You didn’t need to know it was called the Karoo Sea but I wanted to say it because it sounds like something from a fantasy novel. Truly, we live in a wonderful world. Anyway, there aren’t very many footprints but there are swirly marks made by a long tail and body impressions where the animal settled onto the floor to rest.

From those trace fossils, scientists can learn a lot about how the animal lived and moved. The swirly tail marks show that it used it tail to swim, not its legs. Since there are hardly any footprints, it probably kept its legs folded back against its body while it was swimming. When it stopped to rest, it may have been watching for potential prey approaching from above, since its eyes were situated on the top of its head to allow it to see upward easily. All these traits are also seen in crocodiles even though temnospondyls aren’t related to crocodilians at all.

Other big temnospondyls that filled the same ecological niche as crocodiles were species in the family Benthosuchidae. Some grew over 8 feet long, or 2.5 meters. That may not seem very big compared to a dinosaur or a whale, but this is your reminder that it was an early amphibian, and that amphibians are usually little guys, like frogs and newts.

The newly discovered fossil I mentioned at the beginning of this episode has been identified as a member of the family Benthosuchidae. It’s been named Kwatisuchus rosai and was discovered in Brazil in 2022. That’s a big deal, because while temnospondyl fossils have been found throughout the world, until Kwatisuchus, benthosuchids have only been found in eastern Europe. It was five feet long, or 1.5 meters, and it was probably an ambush predator that mostly ate fish.

Kwatisuchus lived only a few million years after the end-Permian extinction event, also called the Great Dying, which we talked about in episode 227. That extinction event wiped out entire orders of animals and plants. Temnospondyls in general survived the Great Dying and hung on for another 100 million years afterwards.

The last temnospondyl that lived, as far as the fossil record shows, was Koolasuchus. It lived in what is now Australia and went extinct about 120 million years ago. This is a lot more recent than most temnospondyls, so much so that when it was first discovered, scientists at first didn’t think it could be a temnospondyl. It was only described in 1997, although it was first discovered in 1978.

Not only was Koolasuchus the most recently living temnospondyl, it was also big and heavy and very weird-looking. It was about 10 feet long, or about 3 meters, and might have weighed as much as 1,100 lbs, or 500 kg. It lived in fast-moving streams and filled the same ecological niche as crocodiles, which eventually replaced it after it went extinct.

Like its relations, Koolasuchus had a roughly crocodile-shaped body with short legs and a fairly long tail, but its head was almost as big as its body. Most temnospondyls had big heads, and Koolasuchus’s was broad and rounded with a blunt nose. It also had what are called tabular horns that projected from the rear of the skull, which gave its head a triangular appearance. Its body was relatively slender compared to the chonky head, which made it look kind of like a really really big tadpole.

Remember, as an amphibian, Koolasuchus would have laid eggs that hatched into a larval form the same way frogs do today. We have a lot of larval temnospondyl fossils and even some fossilized eggs that paleontologists think were laid by a temnospondyl, which were attached to water plants the same way many species of frog do today. Larval temnospondyls did look a lot like tadpoles. In other words, Koolasuchus looked like a tadpole in shape but its larval form was also probably tadpole-like. Extra, extra tadpole-shaped.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 363: The Dodo and Friends

Thanks to Wilmer and Carson for suggesting we revisit the dodo!

Further reading:

Dodos and spotted green pigeons are descendants of an island-hopping bird

On the possible vernacular name and origin of the extinct Spotted Green Pigeon Caloenus maculata

Giant, fruit-gulping pigeon eaten into extinction on Pacific islands

A taxidermied dodo:

The Nicobar pigeon, happily still alive [photo by Devin Morris – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=110541928]:

The 1823 illustration of the spotted green pigeon:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to revisit a bird that everyone’s heard of but no one has seen alive, because it’s famously extinct. We talked about the dodo way back in episode 19, so it’s definitely time we talked about it again. Thanks to Wilmer and Carson for suggesting it! We’re also going to learn about some of the close relations of the dodo.

The first report of a dodo was in 1598 by Dutch sailors who stopped by the island of Mauritius in the Indian Ocean. Mauritius is east of Madagascar, which is off the eastern coast of Africa. The last known sighting of a dodo was in 1662, just 64 years later. The dodo went extinct so quickly, and was so little known, that for a couple of centuries afterwards many people assumed it was just a sailor’s story. But there were remains of dodos, and in the 19th century scientists gathered up everything they could find to study the birds. More remains were found on Mauritius.

In the wild, the dodo was a sleek bird that could run quite fast. It may have eaten crabs and other small animals as well as roots, nuts, seeds, and fruit. It was also probably pretty smart. People only thought it was dumb because it didn’t run away from sailors—but it had no predators on Mauritius so never had to worry about anything more dangerous than an occasional egg-stealing crab before.

When humans arrived on Mauritius, they killed and ate dodos and their eggs. What the sailors didn’t eat, the animals they brought with them did, like pigs and rats. It was a stark and clear picture of human-caused extinction, shocking to the Victorian naturalists who studied it.

A lot of the drawings and paintings we have of dodos were made from badly taxidermied birds or from overfed captive birds. At least eleven live dodos were brought to Europe and Asia, some bound for menageries, some intended as pets. The last known captive dodo was sent to Japan in 1647.

The dodo grew over three feet tall, or almost a meter, with brown or gray feathers, a floofy tuft of gray feathers as a tail, big yellow feet, and a weird head. The feathers stopped around the forehead, making it look sort of like it was wearing a hood. Its face was bare and the bill was large, bulbous at the end with a hook, and was black, yellow, and green. The dodo looks, in fact, a lot like what you might expect pigeons to evolve into if pigeons lived on an island with no predators, and that’s exactly what happened.

The dodo’s closest living relation is the Nicobar pigeon, which can grow 16 inches long, or over 40 cm. Like other pigeons, the dodo’s feathers probably had at least some iridescence, but the Nicobar pigeon is extra colorful. Its head is gray with long feathers around its shoulders like a fancy collar, and the rest of its body is metallic blue, green, and bronze with a short white tail. Zoos love to have these pigeons on display because they’re so pretty. It’s a protected animal, but unfortunately it’s still captured for sale on the pet black market or just hunted for food. It only lays one egg a year so it doesn’t reproduce very quickly, and all this combined with habitat loss make it an increasingly threatened bird. Scientists are trying to learn more about it so it can be better protected.

The Nicobar pigeon lives on a number of islands in the South Pacific and it can fly. Sometimes an errant individual is discovered in Australia, often after storms. Imagine going into your back yard one day and seeing a 40-centimeter-long bird whose feathers shine like jewels! The Nicobar pigeon lives in small flocks and eats seeds, fruit, and other plant material.

An even closer relative to the dodo is also the most mysterious. We don’t even know for sure if it’s extinct, although that’s very likely. It’s the spotted green pigeon and we only have one specimen–and we don’t even know where it was collected, just that it was an island somewhere in the South Pacific. There used to be two specimens, but no one knows what happened to the second one.

For a long time researchers weren’t even sure the spotted green pigeon was a distinct species or just a Nicobar pigeon with weird-colored feathers, but in 2014, DNA testing on two of the remaining specimen’s feathers showed it was indeed a separate species. Researchers think the spotted green pigeon, the dodo, and another extinct bird, the Rodrigues solitaire, all descended from an unknown pigeon ancestor that liked to island hop. Sometimes some of those pigeons would decide they liked a particular island and would stay, ultimately evolving into birds more suited to the habitat.

The specimen we have of the spotted green pigeon is 13 inches long, or 32 cm. Its feathers are dark brown with green iridescence and it has long neck feathers like the Nicobar pigeon. It also has little yellowish spots on its wings and a yellow tip to its bill. Researchers think it was probably a fruit-eating bird that lived in treetops.

The only reason we know there were once two specimens of this mystery bird is from a book about birds published in 1783, where the author mentions having seen two specimens. There was also an 1823 book about birds with an illustration of the spotted green pigeon that differs from the known specimen in some details. Researchers think the illustration might have been painted from the now-missing specimen.

There’s more to this mystery, though, because in 2020 an ornithologist studied a 1928 book about Tahiti that mentioned a bird that sounds a lot like the spotted green pigeon. It was even called a pigeon in the book. Since the author of that book had drawn on studies made by her grandfather almost a hundred years before, and since her grandfather had interviewed Tahitians about their history and traditions and they told him about the pigeon, the ornithologist suggested the spotted green pigeon might actually be from Tahiti. Now that scientists have a clue about where to start looking for remains of the bird, we might learn more about it soon.

Also in 2020, a study was published about another pigeon from the Pacific Islands. Fossils of it were found on the island of Tonga, and the scientists determined that the bird probably went extinct soon after humans first arrived on the island 2,850 years ago. The pigeon has been named Tongoenas burleyi. It grew about 20 inches long, or 50 cm, not counting its tail. It could fly and probably spent a lot of its time in trees, eating fruit. There are lots of different trees on the island that produce really big fruit, some of it as big as a tennis ball. Scientists think the pigeon was adapted to swallow these huge fruits whole, digest them, and poop out the seeds. The trees still exist but they’re in decline and scientists think it may be because no birds remain on the island that can spread their seeds effectively.

We don’t have any feathers from the newly described pigeon, but it was probably colorful. We do have a lot of bones, because many charred bones have been discovered in cooking pits excavated by archaeologists.

We don’t know yet how or if Tongoenas is related to the dodo. The Pacific islands are home to at least 90 living species of pigeon, and many of them we don’t know much about. There are undoubtedly many more waiting to be discovered by scientists, whether living or extinct.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 361: The New Hominin

Welcome to 2024! Let’s learn about some exciting new discoveries in our own family tree!

Further reading:

476,000-Year-Old Wooden Structure Unearthed in Zambia

Mysterious 300,000-year-old skull could be new species of human, researchers say

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s time to start the new year off with an episode that has me really excited. I was initially going to include this in the updates episode that usually comes out around summertime, but I just can’t wait. In 2023, scientists discovered what they think might be a new lineage of extinct human ancestors!

We’ll come back to that in a moment, but first I want to highlight another amazing human-relateded discovery from 2023.

And just to let you know, I am going to be using the words “humans” and “people” and “hominins” more or less interchangeably. I try to make it clear when I’m talking about Homo sapiens versus other species of ancient hominin, but these are all our ancestors–in many cases our direct ancestors–so they’re all people as far as I’m concerned.

As you may know, especially if you’ve listened to previous episodes where we’ve discussed ancient human ancestors, the ancestors of all humans evolved in Africa. Specifically, we arose in the southern part of Africa, in areas that had once been dense forest but gradually changed to open woodland and savanna. Because there weren’t very many trees, our far-distant hominin ancestors, the australopiths, no longer needed to be able to climb trees as well as their ape cousins. Instead, they evolved an upright stance and long legs to see over tall grasses, and the stamina to run after the animals they hunted until the animal was exhausted and couldn’t run anymore. Once our ancestors were walking on two legs all the time, their hands were free to carry babies and food and anything else they wanted.

Being fully bipedal meant that women had a harder time giving birth, since the pelvis had to change position to allow them to walk and run, so babies started being born when they were smaller. This meant the babies needed a whole lot more care for a lot longer, which meant that family groups became even more important and complicated. One thing we’ve learned about sociability in animals is that it leads to increased intelligence, and that’s definitely what happened with our long-distant ancestors. As their brains got bigger, they became more creative. They made lots of different types of tools, especially weapons and items that helped them process food, but eventually they also made artwork, baskets, clothing, jewelry, and everything else they needed.

All this took a long time, naturally. We know Australopithecus used stone tools over three million years ago, but we don’t have evidence of human ancestors using fire until a little over 1.5 million years ago. Homo sapiens was once thought to have only evolved around 100,000 years ago, maybe less, but as scientists find more remains and are able to use more sophisticated techniques to study those remains, the date keeps getting pushed back. Currently we’re pretty certain that actual humans, if not the fully modern humans alive today, arose about 300,000 years ago and maybe even earlier. Homo sapiens evolved from Homo erectus, which arose about two million years ago and went extinct about 100,000 years ago. They were probably the first hominin to use fire, which allowed humans to start migrating longer distances into colder climates. They might also have communicated with language. Basically, Homo erectus was a lot like us but not quite us yet.

The modern-day country of Zambia is in the middle of south-central Africa, and naturally it’s been home to humans and our ancestors for as long as humans have existed. One especially important part of Zambia is also one of its most beautiful places, Kalambo Falls, which is really close to the equally important and beautiful country of Tanzania. Scientists have known that humans of one kind or another have lived around Kalambo Falls for at least 447,000 years, long before Homo sapiens actually evolved.

When a team of archaeologists excavated a sandbar near the falls in 2019, they were surprised to find wooden artifacts. Wood doesn’t usually preserve for very long and the site they were excavating was quite old. In addition to wooden tools, they found two logs that had been shaped and notched to allow them to fit together securely. The researchers thought the logs had once been part of a structure like a walkway that would keep people’s feet out of the mud and water, or possibly the floor of a wooden structure used to store food. It might even have been the floor of a little house.

Wood can be dated with simple tests to find out its age, but the test is only useful for trees that died within the last 50,000 years. Anything older than that is just, you know, older than 50,000 years. The tools and logs tested as older, which the scientists expected. Fortunately there are other ways to date older wood, but the results of those tests were surprising even to the scientists. The tools were at least 324,000 years old, possibly as much as 390,000 years old, but the logs were even older, about 476,000 years old.

Remember, Homo sapiens didn’t even evolve until about 300,000 years ago. That means humans didn’t make those tools or build anything with those shaped logs. Some other hominin did, although we’re not sure who. Even more exciting, close examination of the logs suggests that they may have been subjected to fire at some point. That might mean a natural fire or it might mean that the people who were building with the logs were also using fire as much as two million years before we thought people were using fire.

Obviously scientists are going to look carefully for more clues about who might have shaped these logs and when. Hopefully we’ll learn more soon.

Around the same time that scientists uncovered the wooden items in southern Africa, another discovery was made in 2019, this one in East China. A team found a jaw, skull, and leg bones of a hominin that didn’t match up to any known human ancestor. The bones were dated to 300,000 years ago, at the dawn of Homo sapiens. Other hominins had migrated to eastern Asia long before this, however, including populations of Homo erectus.

The newly discovered bones don’t belong to Homo erectus, though. They don’t belong to Homo sapiens either, or any other known hominin. They represent a completely new hominin, and at the moment scientists don’t know where exactly they fit in our own family tree.

The bones show traits found in modern humans, like a flat face, but lack other uniquely human traits, most notably a chin. Homo sapiens have chins, unlike every other hominin, and no one’s sure why. It might have something to do with speech or maybe early humans with chins were just considered more attractive, and now everyone has a chin.

The mystery hominin is still being studied, but preliminary findings indicate that we might have discovered the ancestor of a very close relation. The bones show some traits also found in Neandertals, our very closest evolutionary cousins, even though they’re extinct. There’s a possibility that this new hominin gave rise to another line of very close human relations, one we don’t have any fossils of yet.

I know there are a lot of excited scientists wanting to learn more about the hominin bones. Hopefully more bones will turn up soon so we can get a better idea of who this distant relative is. It’s a little too early to throw them a welcome home party, but maybe we can start planning it now.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 357: When Scientists Ate Mammoth Meat

This week we’re going to talk about stories of scientists, explorers, and other modern people eating meat from long-dead extinct animals. Did it ever really happen?

Check out the great new podcast Herbarium of the Bizarre! I highly recommend it even though they don’t eat any mammoth meat.

Further reading:

Was frozen mammoth or giant ground sloth served for dinner at The Explorers Club?

Study Proves the Explorers Club Didn’t Really Eat Mammoth at 1950s New York Dinner

Company Serves World’s First ‘Mammoth’ Meatball, but Nobody Is Allowed to Eat It

Don’t eat me bro:

Blue Babe, a steppe bison mummy found in Alaska:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’ve talked about mammoths and other ice age megafauna plenty of times before, but this week we’re going to learn something specific and really weird about these animals, although it’s more accurate to say we’re going to learn how weird humans are.

You may have heard this story before, or something similar to this story. A group of scientists in Siberia or Alaska have unearthed a mammoth carcass that’s been frozen in permafrost for at least 25,000 years. It’s in such good shape that the meat looks as fresh as a fancy restaurant steak that’s ready to go on the grill. At the end of a long day of using pickaxes to dig the mammoth out of ground frozen as solid as rock, the scientists are so hungry that when someone suggests they actually grill some mammoth meat, they all think it’s a good idea. The meat turns out to taste as good as it looks. Everyone has a big steak dinner, even the camp dogs, and when the expedition ends they not only have a mammoth to put on display in their museum, they have a great story to tell about a meal no human has eaten for thousands of years.

You may even have come across an event that inspired this particular story. The incredibly well preserved 44,000 year old Berezovsky mammoth was discovered in Russia in 1900 and excavated in 1901, and it’s now on display in the Zoological Museum in Saint Petersburg. Rumors persisted for years that the expedition members ate some of the mammoth meat, but while we don’t know exactly what happened, definitely no one actually sat down to have a yummy meal of mammoth steak.

It turns out that the meat did look appetizing when thawed, but stank like old roadkill. The expedition erected a big tent over the dig site as they excavated the carcass, which was a slow process in 1901, and the smell became so bad that the expedition members had to take frequent breaks and leave the tent for fresh air.

Apparently the scientists got drunk one night and dared each other to try a bite of the meat, but even after they practically covered it in pepper to disguise the taste, no one could force any down. One man might have managed to eat a single bite, but reports vary. They fed the meat to the camp dogs instead, who were just fine. Dogs and wolves have short, fast digestive tracts and can tolerate eating foods that would make humans very sick.

But that’s not the only story of modern humans eating meat from frozen mammoth carcasses. It supposedly happened on January 13, 1951 at the Roosevelt Hotel’s grand ballroom in New York City. A group called the Explorers Club met for their annual fancy dinner that evening, and as always, the menu contained lots of exotic foods. The main course has gone down in history as being slices of mammoth meat from a 250,000-year-old carcass found in Alaska.

That’s where things get confusing, though, because supposedly the main course was megatherium meat found in Alaska. Megatherium was a giant ground sloth that hasn’t ever been found frozen in permafrost at all, certainly not in Alaska. It lived in South America. However, the Christian Science Monitor magazine thought megatherium was another word for mammoth and reported that the group was served mammoth meat.

Some of the Explorers Club members genuinely thought they were dining on megatherium. Some may have thought it was mammoth. The club’s press release just said “prehistoric meat,” which doesn’t sound very appetizing.

An Explorers Club member who couldn’t attend the dinner asked that his portion be saved for him in a bottle of formaldehyde that he provided. This was done, and the promoter himself, Wendell Phillips Dodge, better known as Mae West’s one-time film agent, filled out the supplied specimen card as “megatherium meat.” The club member put his bottled meat on display at the Bruce Museum in Greenwich, Connecticut, where he worked.

There the bottle stayed until 2001, when it ended up at the Yale Peabody Museum of Natural History. In 2014, a couple of Yale students ran DNA tests on the meat.

As you may have already guessed, the meat wasn’t from a mammoth or a giant ground sloth. It’s meat from the decidedly not extinct green sea turtle, although the green sea turtle is endangered and protected these days, so don’t eat it. Since green sea turtle soup was also served at the meal, it’s probable that the leftover turtle meat was called megatherium meat as a sort of joke. Dodge even published a statement after the dinner that he’d discovered how to turn green sea turtle into giant sloth meat. But by then the story of mammoth meat being served at the dinner had already passed into history.

But while we don’t know if anyone in modern times has eaten frozen mammoth meat, we do know for certain that a group of scientists did eat the meat of a mummified steppe bison that died around 36,000 years ago.

The bison was discovered in 1979 in Alaska and was nicknamed Blue Babe, both from the folktales of the giant lumberjack Paul Bunyon and his pet, Babe the Blue Ox, and because the mummy was coated in crystals of vivianite, which turns blue when exposed to oxygen. Eventually Blue Babe was taxidermied and put on display in the University of Alaska Museum at Fairbanks.

At some point, the team in charge of the specimen decided to try some of its meat in a stew, which from all accounts turned out okay and didn’t make anyone sick. The scientists examined the meat carefully before deciding to cook and eat it, and decided that it was basically freezer-burned but not actually rotten.

Dale Guthrie was part of the Blue Babe excavation team. I’ll quote the relevant paragraph from page 29 of her booklet Blue Babe. The Bjorn Kjurten mentioned in the quote is the man who helped preserve the mummy, and he was also the guy who interviewed one of the Russian scientists who tried to eat mammoth meat with pepper.

“To celebrate Eirich’s work and the new Blue Babe, we decided to cook a bison stew. A marvelous bit of luck had brought Bjorn Kjurten to Fairbanks for guest lectures, and we invited other friends who were game enough to try the stew. Spring was underway. With a good burgundy to brave the rather muddy tone of the dish, we toasted the past and present in the long evening twilight, a taste of the Pleistocene with friends who shared and added to it with their talents and imagination. It was a special evening.”

Guthrie reported that the meat wasn’t very good, but that anything is edible if you use enough onions.

In March of 2023, a company that produces lab-grown meat for human consumption made a giant meatball grown from mammoth DNA. They displayed it as a way to advertise the possibilities of lab-grown meat, but because this particular meat hasn’t been tested to make sure it’s safe for people to eat, no one was allowed to eat it. But maybe in the future, you’ll be able to order a mammoth steak from your local restaurant. Let me know what it tastes like.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!