Episode 412: Whales and Dolphins

Thanks to Elizabeth, Alexandra, Kimberly, Ezra, Eilee, Leon, and Simon for their suggestions this week!

Further reading:

New population of blue whales discovered in the western Indian Ocean

An Endangered Dolphin Finds an Unlikely Savior–Fisherfolk

The humpback whale:

The gigantic blue whale:

The tiny vaquita:

The Indus river dolphin:

The false killer whale:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to have a big episode about various dolphins and whales! We’ve had lots of requests for these animals lately, so let’s talk about a bunch of them. Thanks to Elizabeth, Alexandra, Kimberly, Ezra, Eilee, Leon, and Simon for their suggestions.

We’ll start with a quick overview about dolphins, porpoises, and whales, which are called cetaceans. All cetaceans alive today are carnivorous, meaning they eat other animals instead of plants. This includes the big baleen whales that filter feed, even though the animals they eat are tiny. Cetaceans are mammals that are fully aquatic, meaning they spend their entire lives in the water, and they have adaptations to life in the water that are simply astounding.

All cetaceans alive today belong to either the baleen whale group, which filter feed, or the toothed whale group, which includes dolphins and porpoises. The two groups started evolving separately about 34 million years ago and are actually very different. Toothed whales are the ones that echolocate, while baleen whales are the ones that have extremely loud, often beautiful songs that they use to communicate with each other over long distances. It’s possible that baleen whales also use a limited type of echolocation to navigate, but we don’t know for sure. There’s still a lot we don’t know about cetaceans.

Now let’s talk about some specific whales. Ezra wanted to learn more about humpback and blue whales, so we’ll start with those. Both are baleen whales, specifically rorquals. Rorquals are long, slender whales with throat pleats that allow them to expand their mouths when they gulp water in. After the whale fills its mouth with water, it closes its jaws, pushing its enormous tongue up, and forces all that water out through the baleen. Any tiny animals like krill, copepods, small squid, small fish, and so on, get trapped in the baleen. It can then swallow all that food and open its mouth to do it again. The humpback mostly eats tiny crustaceans called krill, and little fish.

The humpback grows up to 56 feet long, or 17 meters, with females being a little larger than males on average. It’s mostly black in color, with mottled white or gray markings underneath and on its flippers. Its flippers are long and narrow, which allows it to make sharp turns.

The humpback is closely related to the blue whale, which is the largest animal ever known to have lived. It can grow up to 98 feet long, or 30 meters, and it’s probable that individuals can grow even longer. It can weigh around 200 tons, and by comparison a really big male African elephant can weigh as much as 7 tons. Estimates of the weight of various of the largest sauropod dinosaurs, the largest land animal ever known to have lived, is only about 80 tons. So the blue whale is extremely large.

The blue whale only eats krill and lots of it. To give you an example of how much water it can engulf in its enormous mouth in order to get enough krill to keep its massive body going, this is how the blue whale feeds. When it finds an area with a lot of krill floating around, it swims fast toward the krill and opens its giant mouth extremely wide. When its mouth is completely full, its weight—body and water together—has more than doubled. Its mouth can hold up to 220 tons of water. Since the whale is in the water, it doesn’t feel the weight of the water in its mouth.

Blue whales live throughout the world’s oceans, but a few years ago scientists analyzing recordings of whale song from the western Indian Ocean noticed a song they didn’t recognize. It was definitely a blue whale song, but one that had never been documented before. Not long after, one of the same scientists was helping analyze humpback whale recordings off the coast of Oman and recognized the same unusual blue whale song.

After the finding was announced, other scientists checked their recordings from the Indian Ocean and a few realized they had the mystery blue whale song too. The recordings come from a population of blue whales that hadn’t been documented before, and which may belong to a new subspecies of blue whale.

Elizabeth, Alexandra, and Leon all wanted to learn about dolphins. Kimberly also specifically wanted to learn about the Indus River dolphin and Leon about the vaquita porpoise. Dolphins and porpoises are considered toothed whales, but they’re also relatively small and can swim very fast. Orcas are actually dolphins even though they’re often called killer whales.

Even a small cetacean is really big, but the exception is the vaquita. It’s the smallest cetacean alive today, not even five feet long, or 1.5 meters. It lives only in the upper Gulf of California and is gray above and white underneath, with black patches on its face.

The vaquita spends very little time at the surface of the water, so it’s hard to spot and not a lot is known about it. It mostly lives in shallow water and it especially likes lagoons with murky water, since that’s where it can find lots of the small animals it eats, including small fish, squid, and crustaceans.

The vaquita is critically endangered, mostly because it often gets trapped in illegal gillnets and drowns.  There may be as few as ten individuals left alive. Attempts at keeping the vaquita in captivity have failed, but it’s strictly protected by both the United States and Mexico. Some scientists worry that even though vaquita females are still having healthy calves, there are so few of the animals left that they might not recover and are functionally extinct. But only time will tell, so the best thing everyone can do is what we’re already doing, keeping the vaquita and its habitat as safe as possible.

Another small cetacean is the Indus River dolphin, which grows up to 8 and a half feet long, or 2.6 meters. As you can probably guess from its name, it actually lives in fresh water instead of the ocean, specifically in rivers in Pakistan and India. It’s pinkish-brown in color and has a long rostrum, or beak-like nose, which turns up slightly at the end and is filled with sharp teeth that it uses to catch fish and other small animals. Because the rivers where it lives are murky, the dolphin doesn’t have very good eyesight. It probably can’t see anything except light and dark with its tiny eyes, but it can sense its surroundings just fine with echolocation.

Like most cetaceans, the Indus River dolphin is endangered, but it’s doing a lot better these days than it was just a few decades ago. In the 1970s only about 150 of the little dolphins were left alive, and by 2001 there were a little over 600. Today there are around 2,000. Habitat loss, pollution, and accidental drowning in fishing nets are still ongoing problems, but these days the fishing families that live along the river are helping it whenever they can. The fishers rescue dolphins who get stranded in shallow water and irrigation canals, and the government encourages this by paying the fishers a small amount for their help. Since this part of the country is very poor, a little bit of extra money can mean a big difference for the families, and of course their help means a lot to the dolphins too.

One interesting thing is that the Indus River dolphin often swims on its side. That is, it just tips over sideways and swims around as though that’s the most normal thing in the world. Scientists think this helps it navigate shallow water. And the Indus River dolphin isn’t very closely related to other dolphins and whales.

Quite a while ago now, Simon brought the false killer whale to my attention. In 1846 a British paleontologist published a book about British fossils, and one of the entries was a description of a dolphin. The description was based on a partially fossilized skull discovered three years before and dated to 126,000 years ago. It was referred to as the false killer whale because its skull resembled that of a modern orca. Scientists thought it was the ancestor of the orca and that it was extinct.

Or maybe not, because in 1861, a dead but very recently alive one washed up on the coast of Denmark.

The false killer whale is dark gray and grows up to 20 feet long, or 6 meters. It mostly eats squid and fish, including sharks. It’s not that closely related to the orca and actually looks more like a pilot whale. It will sometimes hang out with dolphins, including occasionally hybridizing with bottlenose dolphins, but then again sometimes it will eat dolphins. Watch out, dolphins.

Finally, Eilee wanted to learn about little-known whales, and that definitely means beaked whales. There are 24 known species of beaked whale, but there may still be species unknown to science. We know very little about most of the known species, because they live in remote parts of the ocean. They prefer deep water and are extremely deep divers, with the Cuvier’s beaked whale recorded as diving as deep as 1.8 miles, or almost 3 km, and staying underwater without a breath for 222 minutes. That’s approximately 220 minutes longer than a human can hold their breath.

Let’s finish with Sato’s beaked whale, which was only described in 2019. It’s black with a chunky body and small flippers and dorsal fin. It also has a short beak. It lives in the north Pacific Ocean and was thought to be a darker population of Baird’s beaked whale, which is gray, but genetic studies and a careful examination of dead beached individuals proved that it was a completely different species. It grows up to 23 feet long, or 7 meters, but since no female specimens have ever been found, we don’t know if the female is larger or smaller than the male.

We basically know nothing about this whale except that it exists, and the fact that it is alive and swimming around in the ocean right now, along with other whales, is an amazing, wonderful thing.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 400: Four no wait Five Mysteries!

To donate to help victims of Hurricane Helena:

Day One Reliefdirect donation link

World Central Kitchendirect donation link

It’s the big 400th episode! Let’s have a good old-fashioned mystery episode! Thanks to Richard from NC for suggesting two of our animal mysteries today.

Further reading:

A 150-Year-Old Weird Ancient Animal Mystery, Solved

The Enigmatic Cinnamon Bird: A Mythical Tale of Spice and Splendor

First ever photograph of rare bird species New Britain Goshawk

Scientists stumbled onto toothy deep-sea “top predator,” and named it after elite sumo wrestlers

Bryde’s whales produce Biotwang calls, which occur seasonally in long-term acoustic recordings from the central and western Pacific

A stylophoran [drawing by Haplochromis – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=10946202]:

A cinnamon flycatcher, looking adorable [photo by By https://www.flickr.com/photos/neilorlandodiazmartinez/ – https://www.flickr.com/photos/neilorlandodiazmartinez/9728856384, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=30338634]:

The rediscovered New Britain goshawk, and the first photo ever taken of it, by Tom Vieras:

The mystery fish photo:

The yokozuna slickhead fish:

The Biotwang maker, Bryde’s whale:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’ve made it to the big episode 400, and also to the end of September. That means monster month is coming up fast! To celebrate our 400th episode and the start of monster month, let’s have a good old-fashioned mysteries episode.

We’ll start with an ancient animal called a stylophoran, which first appears in the fossil record around 500 million years ago. It disappears from the fossil record around 300 million years ago, so it persisted for a long time before going extinct. But until recently, no one knew what the stylophoran looked like when it was alive, and what it could possibly be related to. It was just too weird.

That’s an issue with ancient fossils, especially ones from the Cambrian period. We talked about the Cambrian explosion in episode 69, which was when tiny marine life forms began to evolve into much larger, more elaborate animals as new ecological niches became available. In the fossil record it looks like it happened practically overnight, which is why it’s called the Cambrian explosion, but it took millions of years. Many of the animals that evolved 500 million years ago look very different from all animals alive today, as organisms evolved body plans and appendages that weren’t passed down to descendants.

As for stylophorans, the first fossils were discovered about 150 years ago. They’re tiny animals, only millimeters long, and over 100 species have been identified so far. The body is flattened and shaped sort of like a rectangle, but two of the rectangle’s corners actually extend up into little points, and growing from those two points are what look like two appendages. From the other side of the rectangle, the long flat side, is another appendage that looks like a tail. The tail has plates on it and blunt spikes that stick up, while the other two appendages look like they might be flexible like starfish arms.

Naturally, the first scientists to examine a stylophoran decided the tail was a tail and the flexible appendages were arm-like structures that helped it move around and find food. But half a billion years ago, there were no animals with tails. Tails developed much later, and are mainly a trait of vertebrates.

That led to some scientists questioning whether the stylophoran was an early precursor of vertebrates, or animals with some form of spinal cord. The spikes growing from the top of the tail actually look a little bit like primitive vertebrae, made of calcite plates. That led to the calcichordate hypothesis that suggested stylophorans gave rise to vertebrates.

Then, in 2014, scientists found some exceptionally well preserved stylophoran fossils in the Sahara Desert in Africa. The fossils dated to 478 million years ago and two of them actually had soft tissue preserved as the mineral pyrite. Pyrite is also called fool’s gold because it looks like gold but isn’t, so these were shiny fossils.

When the soft tissue was observed through electron microscopes in the lab, it became clear that the tails weren’t actually tails. Instead, they were more like a starfish arm, with what may be a mouth at the base. The arm was probably the front of the animal, not the back like a tail, and the stylophoran probably used it to grab food and maybe even to crawl around.

Most scientists today agree that stylophorans are related to modern echinoderms like starfish and urchins, but there is one big difference. Echinoderms show radial symmetry, but no stylophoran found so far does. It doesn’t really even show bilateral symmetry, since the two points aren’t really symmetrical to each other. We’re also not sure what the points were for and how such an unusual body plan really worked, so there are still a lot of mysteries left regarding the stylophoran.

Next let’s talk about a mythical bird, called some variation of the word cynomolgus, or just the cinnamon bird. Naturalists from the ancient world wrote about it, including Pliny the Elder and Aristotle, and it appeared in medieval bestiaries. It was said to be from Arabia and to build its nest of cinnamon sticks in the tops of very tall trees or on the sides of cliffs.

Cinnamon comes from the inner bark of cinnamon trees, various species of which are native to southern Asia and Oceania. It’s an evergreen tree that needs a tropical or subtropical climate to thrive, and it smells and tastes really good to humans. You might have seen cinnamon sticks, which are curled-up pieces of dried cinnamon bark, and that’s the same type of cinnamon people used in the olden days. Ground cinnamon is just the powdered bark. Like many other spices, it was highly prized in the olden days and cost a fortune for just a little bit of it. Ancient Egyptians used it as part of the embalming process for mummies, ancient Greeks left it as offerings to the sun god Apollo, ancient Romans burnt it during the funerals of nobility, and it was sought after by kings throughout the world.

One interesting thing is that if you live in the United States, the cinnamon in your kitchen cupboard is probably actually cassia, also called Chinese cinnamon because it’s native to southern China. Cassia is often mentioned alongside cinnamon in old writings, because they’re so similar, but true cinnamon comes from a tree native to Sri Lanka. It’s usually marketed as Ceylon cinnamon and is more expensive, but cassia is actually better for baking. True cinnamon has a more subtle flavor that’s especially good with savory dishes, but it loses a lot of its flavor if you bake with it.

Anyway, back in the olden days, no one outside of subtropical Asia and Oceania knew where cinnamon came from. The traders who bought it from locals to resell definitely weren’t going to tell anyone where it was from. They made up stories that highlighted just how hard cinnamon was to find and harvest, to discourage anyone from trying to find cinnamon on their own and to keep prices really high. As Pliny the Elder pointed out 2,000 years ago, the cinnamon bird was one of those stories.

The cinnamon bird was supposedly the only animal that knew where cinnamon trees grew, and it would peel pieces of the bark off with its beak, then carry them to the Arabian desert or somewhere just as remote, where it would build a nest of the bark. The birds were supposed to be enormous, sometimes so big that their open wings stretched from horizon to horizon. Their nests were equally large, but so hard to reach that no human could hope to climb up and collect the cinnamon. Instead, cinnamon hunters left dead oxen and other big animals near the area where the birds had nests. The birds would swoop down and carry the oxen back to their nests to eat, and the extra weight would cause the nests to fall. In other stories, cinnamon hunters would shoot at the nests with arrows with ropes attached. Once several arrows were lodged into a nest, the hunters would pull the ropes to dislodge the nest and cause it to fall, so they could collect the cinnamon.

Of course none of that is true. Some scholars think the cinnamon bird is probably the same mythical bird as the phoenix, but without any magical abilities. Others agree with Pliny the Elder that it was just a way for traders to raise their prices for cinnamon even more. Either way, the cinnamon bird is probably not a real animal.

There are birds with cinnamon in their name, but that’s just a reference to their coloration. Cinnamon is generally a reddish-brown in color, and in animals that color is often referred to as rufous, chestnut, or cinnamon. For example, the cinnamon flycatcher, which lives in tropical and cloud forests along the Andes Mountains in South America. It’s a tiny round bird, only about 5 inches long including its tail, or 13 cm. It’s dark brown and red-brown in color with black legs and beak, and a bright cinnamon spot on its wings. It eats insects, which you could probably guess from the name.

This is what a cinnamon flycatcher sounds like:

[tiny bird sound]

Next, we need to talk about the New Britain goshawk, which Richard from NC told me about recently. It lives in tropical forests of Papua New Guinea, and is increasingly threatened by habitat loss. In fact, it’s so rare that it was only known from four specimens, and it hadn’t been officially spotted since 1969 and never photographed—until March of 2024.

During a World Wide Fund for Nature expedition, a wildlife photographer named Tom Vierus took lots of pictures of birds. One bird he photographed was a hawk sitting in a tree. He didn’t realize it was a bird that hadn’t been seen by scientists in 55 years, until later when he and his team were going through his photographs.

The goshawk is large, and is gray and white with an orange face and legs. We know very little about the bird, naturally, but now that scientists know it’s alive and well, they can work with the local people to help keep it safe. It’s called the keango or kulingapa in the local languages.

Next, we have a bona fide mystery animal, and a deep-sea mystery animal at that—the best combination!

In 1965, the U.S. Navy teamed up with Westinghouse to build a submersible designed by the famous diver and naturalist Jacques Cousteau. The craft was called Deepstar 4000 and between 1965 and 1972 when it was retired, it conducted hundreds of dives in different parts of the world, allowing scientists to learn a lot about the ocean. It could safely dive to 4000 feet, or 1200 meters, which isn’t nearly as deep as many modern submersibles, but which is still impressive.

This was long before remotely operated vehicles, so the submersible had to have a crew inside, both scientists and pilots. One of the pilots of Deepstar 4000 was a man named Joe Thompson. In 1966 Thompson maneuvered the craft to the ocean floor off the coast of California to deploy water sensors, in an area called the San Diego Trough. They touched down on the ocean floor and Thompson looked out of the tiny porthole, only to see something looking in at him.

Thompson reported seeing a fish with mottled gray-black skin and an eye the size of a dinner plate. He estimated it was 25 feet long, or over 7 ½ meters, which was longer than the Deepstar 4000 itself. Within seconds, the fish swam away into the darkness.

But that’s not the end of the story, because the water sensors the craft had already placed sensed the animal’s movement. There was definitely something really big near the craft. Even more interesting, an oceanographer had placed some underwater cameras in the area, and soon after Thompson’s sighting, the cameras took pictures of a huge gray fish.

While Thompson was positive the fish had scales, which he described as being as big around as coffee cups, the photo shows a more shark-like skin criss-crossed with scars. The oceanographer consulted with an ichthyologist, who identified the fish as a Pacific sleeper shark. We’ve talked about other sleeper sharks in episode 74. We don’t know a lot about these sharks, but they are gray, live in deep water, and can grow over 23 feet long, or 7 meters.

But Thompson was never satisfied with the identification of his mystery fish as a big Pacific sleeper shark. He was adamant that his fish had scales, a much larger eye than sharks have, and a tail that was more reminiscent of a coelacanth’s lobed tail than a shark’s tail.

One suggestion is that Thompson saw a new species of slickhead fish. Slickheads are deep-sea fish that can grow quite large, but we don’t know much about them since they live in such deep waters. The largest known species grows at least 8 feet long, or 2.5 meters, and possibly much longer. That’s the yokozuna slickhead, which was only discovered in 2021 by a scientific team studying cusk eels off the coast of Japan.

Most slickheads are small and eat plankton. This one was purplish in color, had lots of small sharp teeth, and was a strong, fast swimmer. When it was examined later, its stomach contents consisted of other fish, so it’s definitely a predator. Its eyes are also proportionately larger than a shark’s eyes. The slickhead gets its name because it doesn’t have scales on its head, but it does have scales on the rest of its body.

The yokozuna slickhead was discovered in a bay that’s well-known to both scientists and fishers, so the team didn’t believe at first that they could possibly have found a new species of fish there, especially one that was so big. But it definitely turned out to be new to science. More individuals have since been spotted, but they live very deep in the ocean, which explains why no one had seen one before. Interestingly, when the scientists first pulled the slickhead out of the water, they thought it looked a little like a coelacanth.

This episode was going to end there, but Richard from NC sent me another article about a whale mystery I’ve been talking about for years! It’s the so-called biotwang that we covered way back in episode 27.

In 2016 and early 2017, NOAA, the U.S. Coast Guard, and Oregon State University dropped a titanium-encased ceramic hydrophone into Challenger Deep. To their surprise, it was noisy as heck down there in the deepest water on earth. The hydrophone picked up the sounds of earthquakes, a typhoon passing over, ships, and whalesong—including the call of a whale researchers couldn’t identify. This is what it sounds like:

[biotwang whale call]

Well, as of September 2024, we now know what animal produces the biotwang call. It’s a whale, and one already known to science, although we don’t know much about it. It’s Bryde’s whale, a baleen whale that can grow up to 55 feet long, or almost 17 meters. The calls have all been associated with groups of Bryde’s whales, or a mother with a calf, so the scientists think the whales might use the unusual call to communicate location with its podmates. Bryde’s whales make lots of other sounds, and the scientists also think they might be responsible for some other mystery whale calls.

If you remember episode 193, about William Beebe’s mystery fish, he reported spotting a massive dark fish from his bathysphere a few decades before the Deepstar 4000 was built. He didn’t see it well enough to identify it and never saw it again. It just goes to show that there are definitely mystery animals just waiting to be discovered, whether it’s in the deep sea or perched in a treetop.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 364: Animals Who Will Outlive Us All

Thanks to Oz from Las Vegas for suggesting this week’s topic!

Further reading:

Bobi, the supposed ‘world’s oldest dog’ at 31, is little more than a shaggy dog story

Greenland sharks live for hundreds of years

Scientists Identify Genetic Drivers of Extreme Longevity in Pacific Ocean Rockfishes

Scientists Sequence Chromosome-Level Genome of Aldabra Giant Tortoise

Giant deep-sea worms may live to be 1,000 years old or more

A Greenland shark [photo by Eric Couture, found at this site]:

The rougheye rockfish is cheerfully colored and also will outlive us all:

An Aldabra tortoise all dressed up for a night on the town:

Escarpia laminata can easily outlive every human. It doesn’t even know what a human is.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a great suggestion by Oz from Las Vegas. Oz wanted to learn about some animals that will outlive us all, and gave some suggestions of really long-lived animals that we’ll talk about. We had a similar episode several years ago about the longest lived animals,where for some reason we talked a lot about plants, episode 168, but this is a little different.

But first, a quick correction! Last week we talked about the dodo and some of its relations, including the Nicobar pigeon. I said that the Nicobar pigeon lived in the South Pacific, but Pranav caught my mistake. The Nicobar pigeon lives in the Indian Ocean on the Nicobar Islands, which I should have figured out because of the name.

Anyway, back in the olden days when I was on Twitter all the time, I came across a tweet that’s still my absolute favorite. Occasionally I catch myself thinking about it. It’s by someone named Everett Byram who posted it in January 2018. It goes:

“DATE: so tell me something about yourself

“ME: I am older than every dog”

Not only is it funny, it also makes you thoughtful. People live a whole lot longer than dogs. The oldest living dog is a chihuahua named Spike, who is 23 years old right now. A dog who was supposed to be even older, 31 years old, died in October of 2023, but there’s some doubt about that particular dog’s actual age. Pictures of the dog taken in 1999 don’t actually look like the same dog who died in 2023.

The oldest cat who ever lived, or at least whose age is known for sure, died in 2005 at the age of 38 years. The oldest cat known who’s still alive is Flossie, who was born on December 29th, 1995. If your birthday is before that, you’re older than every cat and every dog.

The oldest human whose age we know for sure was Jeanne Calment, who died in 1997 at the age of 122 years. We talked about her in episode 168. The oldest human alive today, as far as we know, is Maria Branyas, who lives in Spain and will turn 117 years old on her next birthday in March 2024.

It’s not uncommon for ordinary people to live well into their 90s and even to age 100, although after you reach the century mark you’re very lucky and people will start asking you what your secret for a long life is. You might as well go ahead and make something up now to tell people, because it seems to mainly be genetics and luck that allow some people to live far beyond the lives of any dog or cat or most other humans. Staying physically active as you age also appears to be an important factor, so keep moving around.

But there are some animals who routinely outlive humans, animals who could post online and say “I am older than every human” and the others of its species would laugh and say, “Oh my gosh, it’s true! I’m older than every human too!” But they don’t have access to the internet because they are, for instance, a Greenland shark.

We talked about the Greenland shark in episode 163. It lives in the North Atlantic and Arctic Oceans where the water is barely warmer than the freezing point. It can grow up to 23 feet long, or 7 meters, with females being larger than males. Despite getting to such enormous sizes, it only grows one or two centimeters a year, and that was a clue for scientists to look into how old these sharks can get.

In 2016, a team of scientists published a study about how they determined the age of Greenland sharks that had been accidentally caught by fishing nets or that had otherwise been discovered already dead. The lenses inside vertebrate eyeballs don’t change throughout an animal’s life. They’re referred to as metabolically inactive tissue, which means they don’t grow or change as the animal grows. That means that if you can determine how old the lens is, you know when the animal was born, or hatched in the case of sharks.

In the past, scientists have been able to determine the age of dead whales using their eye lenses, but the Greenland shark was different. It turns out that the shark can live a whole lot longer than any whale studied, so the scientists had to use a type of carbon-14 dating ordinarily used by archaeologists.

The Greenland shark may be the oldest-living vertebrate known. Its life expectancy is at least 272 years, and probably closer to 500 years. Individual sharks can most likely live much longer than that. It’s not even mature enough to have babies until it’s about 16 feet long, or 5 meters, and scientists estimate it takes some 150 years to reach that length. Females may stay pregnant for at least 8 years, and maybe as long as 18 years. Babies hatch inside their mother and remain within her, growing slowly, until they’re ready to be born.

The Greenland shark is so big, so long-lived, and lives in such a remote part of the ocean that taking so long to reproduce isn’t a problem. Its body tissues contain chemical compounds that help keep it buoyant so it doesn’t have to use very much energy to swim, and which have a side effect of being toxic to most other animals. Nothing much wants to eat the Greenland shark. But it is caught by accident by commercial fishing boats, with an estimated 3,500 sharks killed that way every year. Scientists hope that by learning more about the Greenland shark, they can bring more attention to its plight and make sure it’s protected. There’s still a lot we don’t know about it.

At least one species of whale does live much longer than humans. In 2007, researchers studying a dead bowhead whale found a piece of harpoon embedded in its skin. It turned out to be a type of harpoon that was manufactured between 1879 and 1885. After that, scientists started testing other bowhead whales that were found dead. The oldest specimen studied was determined to be 211 years old when it died, and it’s estimated that the bowhead can probably live well past 250 years if no one harpoons it and it stays healthy. It may be the longest-lived mammal. It has a low metabolic rate compared to other whales, which may contribute to its longevity.

Most small fish don’t live very long even if nothing eats them. Rockfish, for instance, only live for about 10 years even if they’re really lucky. Well, most rockfish. There is one species, the rougheye rockfish, that lives much, much longer. Its lifespan is at least 200 years old.

The rougheye rockfish has a lot of other common names. Its scientific name is Sebastes aleutianus. It can grow over 3 feet long, or 97 cm, and is red or orangey-red. It lives in cold waters of the Pacific, where it usually stays near the sea floor. It eats other fish along with crustaceans.

Naturally, scientists are curious as to why the rougheye rockfish lives so long but its close relations don’t. In 2021 a team of scientists published results of a genetic study of the rougheye rockfish and 87 other species. They discovered a number of genes associated with longevity, along with genes controlling inflammation that may help the fish stay healthy for longer.

The rougheye rockfish only evolved as a separate species of rockfish about ten million years ago. Because the longest-living females lay the most eggs, the genes for longevity are more likely to be passed on to the next generation, which means that as time goes on, lifespans of the fish overall get longer and longer. The rougheye also isn’t the only species of rockfish that lives a long time, it’s just the one that lives longest. At least one other species can live over 150 years and quite a few live past 100 years.

Another animal that can easily outlive humans is the giant tortoise, which we talked about in episode 95. Giant tortoises are famous for their longevity, routinely living beyond age 100 and sometimes more than 200 years old. The oldest known tortoise is an Aldabra giant tortoise that may have been 255 years old when it died in 2006. The Aldabra giant tortoise is from the Aldabra Atoll in the Seychelles, a collection of 115 islands off the coast of East Africa.

Scientists studied the Aldabran tortoise’s genetic profile in 2018 and learned that in addition to genes controlling longevity, it also has genes that control DNA repair and other processes that keep it healthy for a long time.

Oz also suggested the infinite jellyfish, also called the immortal jellyfish. An adult immortal jelly that’s starving or injured can transform itself back into a polyp, its juvenile stage. We talked about it in episode 343 in some detail, which was recent enough that I won’t cover it again in this episode. Scientists are currently studying the jelly to learn more about how it accomplishes this transformation and how long it can really live.

So far all the animals we’ve talked about, except the immortal jellyfish, are vertebrates. It’s when we get to the invertebrates that we find animals with the longest lifespans. The ocean quahog, a type of clam that lives in the North Atlantic Ocean, grows very slowly compared to other clams, and populations that live in cold water can live a long time. Sort of like tree rings, the age of a clam can be determined by counting the growth rings on its shell, and a particular clam dredged up from the coast of Iceland in 2006 was discovered to be 507 years old. Its age was double-checked by carbon-14 dating of the shell, which verified that it was indeed just over 500 years old when it was caught and died. Researchers aren’t sure how long the quahog can live, but it’s a safe bet that there are some alive today that are older than 507 years, possibly a lot older.

The real long-lived animals are very simple ones, especially sponges and corals. Some species of both can live for thousands of years. Various kinds of mollusks and at least one urchin can live for hundreds of years.

It’s probable that there are lots of other animals that routinely outlive humans, we just don’t know that they do. Scientists don’t always have a way to check an animal’s age, or they don’t think to do so while studying an organism. There are also plenty of animals that we just don’t know exist, especially ones that live in the ocean. For example, a species of tube worm named Escarpia laminata wasn’t even discovered until 1985, and it wasn’t until 2017 that scientists realized it lived for hundreds or even thousands of years.

The tube worm doesn’t have a common name, since it lives in the deepest parts of the Gulf of Mexico around what are called cold seeps, so no one ever needed to refer to it until it was discovered by scientists. A cold seep isn’t actually cold, it just isn’t as hot as a hydrothermal vent. In a cold seep, oil and methane are released into the ocean from fissures in the earth’s crust. Life forms live around these areas that live nowhere else in the world.

Many tube worms can grow quite long and can live over 250 years, with the giant tube worm growing almost 10 feet long, or 3 meters. Escarpia laminata is smaller, typically only growing about half that length. In a study published in 2017, a team of scientists estimated that it routinely lives for 250 to 300 years and potentially much, much longer. A tube worm doesn’t actually eat; instead, it forms a symbiotic relationship with bacteria that live in its body. The bacteria have a safe place to live and the tube worm receives energy from the bacteria as they oxidize sulfur released by the cold seeps. The tube worm, in other words, lives a stress-free life with a constant source of energy, and nothing much wants to eat it. The limit to its life may be the limit of the cold seeps where it lives. Cold seeps don’t last forever, although many of them remain active for thousands of years.

Humans are probably the longest-living terrestrial mammal. This may not seem too impressive compared to the animals we’ve talked about in this episode, but our lives are a whole lot more interesting than a tube worm’s.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 340: Whale Lice and Sea Lice

Thanks to Eilee for suggesting the sea louse this week!

Further reading:

Secrets of the Whale Riders: Crablike ‘Whale Lice’ Show How Endangered Cetaceans Evolved

Parasite of the Day: Neocyamus physeteris

A whale louse [By © Hans Hillewaert, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=19259257]:

The salmon sea louse [By Thomas Bjørkan – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7524020]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s now officially August, so we’re officially kicking off Invertebrate August with two invertebrates with the word louse in their names, even though neither of them are technically lice. Thanks to Eilee for suggesting sea lice, and thanks to our patrons because I used some information from an old Patreon episode for the first part of this episode.

That would be the whale louse. The whale louse isn’t actually a louse, although it is a parasite. Lice are insects adapted for a parasitic lifestyle on the bodies of their hosts, but whale lice are crustaceans—specifically, amphipods specialized to live on whales, dolphins, and porpoises.

There are many species of whale louse, with some only living on a particular species of whale. In the case of the sperm whale, one species of whale louse lives on the male sperm whale while a totally different species of whale louse lives on the female sperm whale and on calves. This was a fact I found on Wikipedia and included in the Patreon episode, but at the time I couldn’t find out more. It’s puzzled me ever since, which is one of the reasons I wanted to revisit this topic. I couldn’t figure out how the male calves ended up with male sperm whale lice, and I couldn’t figure out why males and females would have different species of lice. I’m happy to report that I now know the answers to both questions, or at least I can report what experts hypothesize.

Male sperm whales spend more time in polar waters while females spend more time in warmer waters to raise their calves. Sperm whales are actually host to three different whale lice species, but one species prefers colder water and is much more likely to live on males, while another species prefers warmer water and is much more likely to live on females and calves. Any sperm whale might have lice from any of the three species, though, and whale lice are spread when whales rub against each other. This happens when the whales mate, but it also happens when males fight or when whales are just being friendly.

The whale louse has a flattened body and legs that end in claws that help it cling to the whale. Different species are different sizes, from only five millimeters up to an inch long, or about 25 mm. Typically the lice cling to areas where water currents won’t sweep them away, including around the eyes and genital folds, ventral pleats, blowholes, and in wounds. Barnacles also grow on some whales and the lice live around the barnacles. But even though all that sounds horrible, the lice don’t actually harm the whales. They eat dead skin cells and algae, which helps keep wounds clean and reduces the risk of infection.

The right whale is a baleen whale that can grow up to 65 feet long, or almost 20 meters. Right whales have callosities on their heads, which are raised patches of thickened, bumpy skin. Every whale has a different pattern of callosities. Right whales are dark in color, but while the callosities are generally paler than the surrounding skin, they appear white because that’s where the whale lice live, and the lice are white. This allows whales to identify other whales by sight. It’s gross but it works for the whales. Right whales also usually host one or two other species of louse that don’t live on the callosities.

Dolphins typically have very few lice, since most dolphins are much faster and more streamlined than whales and the lice have a harder time not getting washed off. Some dolphins studied have no lice at all, and others have less than a dozen. Almost all whales have lice.

Scientists study whale lice to learn more about whales, including how populations of whales overlap during migration. Studies of the lice on right whales helped researchers determine when the whales split into three species. But sometimes what researchers learn from the lice is puzzling. In 2004 researchers found a dead southern right whale calf and examined it, and were surprised to find it had humpback whale lice, not southern right whale lice. Researchers hypothesize that something had happened to the calf’s birth mother and it was adopted by a humpback whale mother. Another study determined that a single southern right whale crossed the equator between one and two million years ago and joined up with right whales in the North Pacific. Ordinarily right whales can’t cross the equator, since their blubber is too thick and they overheat in warm water. Researchers suggest that the right whale in question was an adventurous juvenile who crossed in an unusually cool year. The lice that whale carried interbred with lice the North Pacific whales carried, leaving a genetic marker to tell us about the whale’s successful adventure.

Some animals do eat whale lice, including a little fish called topsmelt. Topsmelt live in shallow water along the Pacific coast of North America. It grows up to around 14 inches long, or 37 cm, and has tiny sharp teeth that it uses to eat zooplankton. But in mid-winter through spring, gray whales arrive in the warm, shallow waters where the topsmelt live to give birth. Then schools of topsmelt will gather around the whales, eating lice and barnacles from the whale’s skin. Good for those little fish. That makes me feel better for the whales.

Eilee suggested the sea louse a while back, and when I looked it up initially I was horrified. Sea lice is another name for a skin condition called seabather’s eruption that consists of intense itching and welts on the skin, that occurs after someone has been swimming in some parts of the world. That includes around parts of New Zealand, off the coast of Queensland, Australia, off the eastern coast of Africa, parts of south Asia, the Caribbean and Gulf of Mexico, and many other places. It usually shows up a few hours after a swimmer gets out of the water, and since it almost always shows up in people who keep wearing their bathing suit for a while after swimming, or wear their suit into a shower to rinse off, people used to think the itching was due to a type of louse that got caught in the suit. They were half-right, because it is due to a microscopic animal that gets trapped against a person’s skin by their bathing suit. It isn’t a louse, though, but the larvae of some species of jellyfish. The larvae aren’t dangerous to humans or anything else, but they do each have a single undeveloped nematocyst. That’s a stinging cell, the same kind that adult jellyfish have. In the case of the larvae, the sting only activates when a larva dies, and it dies if it dries out or gets soaked in fresh water. Fortunately, seabather’s eruption isn’t a very common occurrence and while it’s uncomfortable for a few days, it’s not dangerous and can be treated with anti-itch cream.

There is a type of animal called the sea louse, of course, but it doesn’t want anything to do with humans and wouldn’t bite a human even if it could. It’s a parasitic crustacean like the whale louse, but it only lives on fish. It’s also not related to the whale louse and doesn’t look anything like the whale louse. The whale louse looks kind of like a flattened shrimp without a tail, while the sea louse is hard to describe. It has a flattened shield at the front, with a thinner tail-like section behind, although it’s actually not a tail but the louse’s abdomen. Its legs are underneath its body and are short and hooked so it can keep hold of its host fish, although the shape of its shield acts as a sort of suction cup that also helps it remain attached.

Like the whale louse, different species of sea louse live on different species of fish. It’s usually quite small, less than 10 mm long, although at least one species can grow twice that length. Males are much smaller than females. It eats the mucus, skin, and blood of its host fish, and its mouthparts form a sharp cone that it uses to stab the fish and suck fluids out. Naturally, this isn’t good for the fish.

Most of the time a fish only has a few sea lice, if any, but sometimes when conditions are right a fish can have a much heavier infestation. This can lead to the fish dying in really bad cases, sometimes due to diseases spread by the lice, infected wounds caused by the lice, or just from anemia if the lice drink too much of the fish’s blood.

Conditions are right to spread sea lice when fish are crowded in a small space, and this happens a lot in farmed fish. It’s especially bad in salmon, so while we don’t know a lot about most sea lice, we know a whole lot about the species of sea louse that parasitizes salmon. It’s called Lepeophtheirus salmonis and it’s the sea louse that grows bigger than most others. Salmon are big fish, with the largest growing over 6 ½ feet long, or 2 meters.

The salmon sea louse has a complicated life cycle and only lives on fish part of the time, which is probably true of all sea lice. The female louse develops a pair of egg strings that hang down from the rear of her body, and each string has around 150 eggs. The eggs hatch into tiny larvae that mostly just drift along through the water, although they can swim. A larva molts its exoskeleton every few days as it transforms into new stages of development, and all the time it’s looking for a host fish.

Once it finds a salmon, the sea louse grabs hold and stays put until it molts again and reaches the next stage of its development, which doesn’t take long. Then it’s able to walk around on the fish and it can swim too if it needs to.

The sea louse can’t survive very long in fresh water, but that’s weird if you know anything about salmon. Salmon are famous for migrating from the ocean into rivers to spawn, and after spawning, most adult salmon die. Some Atlantic salmon will survive and return to the ocean, but most salmon die within a few days or weeks of spawning. Because all the sea lice die once the salmon enter fresh water, the new generation of salmon don’t get sea lice until they make their way into the ocean.

That’s a natural way that sea lice populations are kept under control. The salmon sea louse will also live on a few other species of fish, including the sea trout. But people like eating salmon, and farming salmon is an important industry. Unfortunately, as I mentioned earlier, having lots of fish in one place means the sea louse can also increase in numbers easily.

Salmon farmers have tried all kinds of things to get rid of sea lice, from underwater lasers that zap the lice to kill them, to putting cleaner fish among the salmon to eat the lice. Scientists are even trying to breed a variety of salmon that’s much more resistant to sea lice infestation, although this is controversial since it makes use of genetic modification. Not all countries allow genetically modified fish to be sold as human food.

For the most part, though, wild fish generally don’t have a lot of sea lice—and if they do, they can just visit a cleaner fish. Thank goodness for cleaner fish!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 308: Rescuing Stranded Whales

Yay, we’re at the end of the year and looking forward to 2023! Boo, I caught covid and I’m still recovering, so here’s a repurposed Patreon episode about whale strandings and how people help the whales!

A minke whale calf being transferred via rescue pontoon to a boat to tow her farther out to sea than the pontoon could manage for such a big whale (photo from this article, which explains that she rejoined her mother and swam away safely):

Pilot whales being rescued after stranding:

Show transcript:

Welcome to Strange Animals Podcast! I’m your host, Kate Shaw.

It’s the last episode of 2022, and…I’ve got Covid. I’m fully vaccinated and fortunate enough to be a basically healthy person, so my symptoms were mostly quite mild and I’m feeling much better although I’m still quarantining. Because my voice isn’t really at 100% due to coughing, and because I haven’t had the energy to do any research, I decided to run an old Patreon episode this week. I always feel bad for my awesome patrons when I do this, but I really like this episode and it’s several years old now. It’s about mass whale strandings but I focused on how people help whales, so even though it’s a sad topic I hope you find it hopeful and interesting.

With the end of 2022, we also say goodbye to the birthday shout-outs since it was only for 2022. I hope I didn’t miss anyone. Let’s have one final birthday shout-out, though. This one’s for everyone! You’re having a birthday in 2023 so I hope it’s the best birthday you’ll have had so far!

Now, let’s learn about mass whale strandings.

[little intro sound to help hide the fact that the audio changes a whole lot here]

This is a sad phenomenon where whales swim onto shore and get beached, and if they don’t get help they die. A whale breathes air, sure, but it’s evolved to be in the water full-time. As soon as it’s on land, the weight of its own body starts to smother it and it also starts to overheat.

Sometimes just one or two whales strand themselves, sometimes it’s a whole pod. We’re still not completely sure of the causes except that there’s undoubtedly more than one cause. Navy sonar may play a part, disorienting and frightening whales, even deafening them. Water pollution, disturbances of the earth’s geomagnetic field, extreme weather, injuries, disease, the whales fleeing predators or pursuing prey, and all sorts of other issues may be causes or partial causes.

Most whales that strand themselves are toothed whales, which rely on echolocation to navigate. Many researchers think that some coastlines that slope very gently can confuse the whales, who think the seafloor is level when the water is actually getting shallower and shallower. Certain areas with gently sloping beaches have mass strandings of whales and dolphins almost every year.

Some species of whale are more prone to stranding than others, too, especially pilot whales, which are actually dolphins despite their name. The largest mass stranding known was of pilot whales, with over a thousand of them beached in 1918 on Chatham Island in New Zealand. Pilot whales can grow more than 23 feet long, or over 7 meters, and live throughout much of the world’s oceans. They mostly eat squid but will eat fish too, and sometimes dive deeply to find food.

Chatham Island is one of those areas where whales get stranded repeatedly, as are several other islands and bays around New Zealand. The coastal waters are shallow with a number of sandbars, and the whales apparently get disoriented and don’t realize they’re coming up onto the beach instead of just crossing another sandbar. Almost every summer some pilot whales become stranded, sometimes hundreds of them.

One species of whale that almost never gets stranded is the killer whale, or orca. Orcas frequently hunt seals, which flee onto land. Orcas learn how to navigate beaches, and will sometimes beach themselves on purpose while attempting to catch a seal, then wriggle back into the sea. But most whales never approach the shore that closely under ordinary circumstances so they never learn how to avoid getting stranded permanently.

When people find stranded whales, our first impulse is to help them. But whales are big and heavy, so much so that most of the time even a group of people can’t lift them. But humans are smart and social, and we’ve worked out a system to help stranded whales.

First, the whales need to be kept as cool as possible until more help arrives. People pour water over stranded whales to help cool them down, but make sure that their blowholes remain clear of sand and water so they can continue to breathe. Wet bed sheets draped over the whales help too, again making sure to keep the blowholes clear.

Next, as the tide comes in and the water rises around the whales, it’s important to help turn the whales onto their bellies. The whales usually can’t do it themselves, especially if they’ve been stranded for hours and are exhausted and having difficulty breathing. If they aren’t turned upright, they may drown as the water covers their blowholes before it’s deep enough to float the whales.

Sometimes, frustratingly, as soon as a stranded whale is floated out to sea so it can swim away, it will turn around and beach itself again. No one’s sure why. It may be responding to the same confusion or anomaly that caused it to strand itself in the first place, or it may be responding to the distress calls of other whales that are still stranded.

Rescuers have used the sociability of whales to help them too. In one case in New Zealand, in 1984, almost 150 pilot whales became stranded in Tryphena Harbour. As the tide rose, the helpers floated the whales out to sea—but so many of them returned to beach themselves again that when they floated a mother whale and her calf out to sea, the rescuers made sure to keep her in place. She and the baby called to the other whales, which made them come to her instead of return to the beach. 67 of the whales were saved and ultimately swam out to sea.

In 1991, 14 pilot whales stranded near Shipwreck Bay in New Zealand were rescued by truck. The surf was too dangerous to refloat them at the beaching site and something had to be done. 18 whales had already died. Hundreds of volunteers turned out to help, including local businesses who donated the use of trucks and other items. The whales were lifted by log-loader onto three big trucks, their beds lined with hay, and hay bales were used to keep the whales propped up during the ride. People rode with them to douse them with water too. The police escorted the trucks as they drove 90 minutes to the mouth of a river, where the whales were lowered into the water and floated out to sea.

Two of the whales promptly turned around and beached themselves again, but the volunteers had brought Rescue Pontoons designed to refloat beached whales. The two whales were brought back out to sea where they rejoined the rest of the rescued whales, which then swam off together.

The rescue pontoons were designed in 1984 by New Zealander Steve Whitehouse after he saw the damage ropes did to whales as rescuers tried to pull them back out to sea. They’re made up of inflatable cylinders with handles and quick release clips. After the first one was made it was tested by moving a huge concrete pipe filled with sandbags into the ocean and back repeatedly. It was first used to rescue a whale in 1986 when a Southern Bottlenose whale was stranded among rocks that would have kept it from being moved by ordinary means. But Steve and his team traveled to the whale, rolled it onto the pontoon and inflated it, then refloated it into the sea. The whale was saved and the rescue pontoon proved it could do the job it was designed for.

Since then, the rescue pontoon has saved hundreds, probably thousands, of whales and dolphins throughout the world. It’s also been used to rescue stranded manta rays, sunfish, and even grounded boats. So hooray for Steve and his rescue pontoon! Best invention ever.

Humans aren’t the only ones who want to help stranded whales. Sometimes other whales or dolphins help, usually local populations of dolphins who know the area well. In 2008 a New Zealand bottlenose dolphin named Moko, well-known to swimmers, helped a pair of pygmy sperm whales. The pair were a mother and calf, and every time they were refloated they would get disoriented and beach themselves again on a sandbar that blocked their way out of the harbor. Then Moko showed up.

One of the rescuers, Juanita Symes, said, “Moko just came flying through the water and pushed in between us and the whales. She got them to head toward the hill, where the channel is.” Moko escorted the whales all the way out to sea, where they successfully swam away.

[little outro sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 281: The Humpback Whale

Thanks to Clay for suggesting the topic of this week’s episode, the humpback whale!

Happy birthday to Emry!

Further reading:

How humpback whales catch prey with bubble nets

Study: Humpback whales aren’t learning their songs from one another

Stanford researchers observe unexpected flipper flapping in humpback whales

Ancient baleen whales had a mouthful

The humpback’s long, thin flippers help it maneuver:

Humpbacks are active, jumpy whales:

A humpback whale’s big mouth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Thanks to Clay for suggesting this week’s topic, the humpback whale!

But first, we have a birthday shout-out! A great big happy birthday to Emry! I hope your birthday is so epic that in the future, when people look up birthday in the dictionary, your name is listed there.

I’m amazed we haven’t talked about the humpback whale before because when I was little, it was my favorite whale until I learned about the narwhal. Sorry, humpback, you’re now my second favorite whale.

The humpback is a baleen whale, specifically a rorqual, which is a group of related baleen whales. I don’t think I’ve mentioned the term rorqual before because I find it really hard to pronounce. Rorquals are long, slender whales with throat pleats that allow them to expand their mouths when they gulp water in. We talked about this in episode 211 about the fin whale, which is another rorqual. I’ll quote from that episode to explain again what the throat pleats are.

A baleen whale eats tiny animals that it filters out of the water through its baleen plates, which are keratin structures in its mouth that take the place of teeth. The baleen is tough but thin and hangs down from the upper jaw. It’s white and looks sort of like a bunch of bristles at the end of a broom. The whale opens its mouth wide while lunging forward or downward, which fills its huge mouth with astounding amounts of water. As water enters the mouth, the skin stretches to hold even more, until the grooves completely flatten out.

After the whale fills its mouth with water, it closes its jaws, pushing its enormous tongue up, and forces all that water out through the baleen. Any tiny animals like krill, copepods, small squid, small fish, and so on, get trapped in the baleen. It can then swallow all that food and open its mouth to do it again. This whole operation, from opening its mouth to swallowing its food, only takes six to ten seconds.

The humpback mostly eats tiny crustaceans called krill, and little fish. Since gulp feeding takes a lot of energy, finding a lot of food in a relatively small space is important to the whale. Many little fish that live in schools will form what are called bait balls when they feel threatened, where the fish swim closer together and keep moving around. Any given individual fish has a good chance of avoiding being eaten when behaving this way. Think about last week’s episode, where the spinner shark swims straight up through a bait ball, biting biting biting. It eats some fish, but most are fine. But a big filter feeder like the humpback can gulp a whole lot of fish at once, so it really likes bait balls.

To help maneuver prey animals into a small area, groups of humpbacks sometimes employ a strategy called bubble-net feeding. The whales will dive below the fish or krill and swim in a ring, blowing bubbles the whole time. The bubbles startle the animals, who move away from them. But since the bubbles are all around them, and the whales swim closer and closer together so that the ring of bubbles shrinks, eventually the fish or krill are all clustered in a small space as though they’re caught in a net. Then the whales open their mouths and gulp in lots of food. This is actually a simplified explanation of how bubble-net feeding works, which requires several different types of bubbles and various actions by the whales to make it work right.

The humpback is closely related to the fin whale and the blue whale. In episode 211 we learned that fin and blue whales sometimes interbreed and produce offspring, and in at least one case a marine biologist identified a whale that appeared to be the hybrid of a blue whale and a humpback.

The humpback grows up to 56 feet long, or 17 meters, with females being a little larger than males on average. It’s mostly black in color, with mottled white or gray markings underneath and on its flippers. Its flippers are long and narrow, which allows it to make sharp turns. It also has tubercles on its jaws and the fronts of its flippers which are probably sensory organs of some kind, since they contain nerves attached to a very thin hair in the middle that’s about an inch long at most, or almost 3 cm.

This is a good time to remind you that even though they look very different from other mammals, all whales are mammals. Mammals are warm-blooded animals that produce milk for their babies. Mammals also have hair, unless they don’t have hair, except that the humpback whale does have hairs in its tubercles. So there you go, humpback whales have hair.

Despite its huge size, the humpback is an active whale. It frequently breaches, meaning it rises up out of the water almost its full length, then crashes back down into the water with a huge splash. It also often slaps its flippers or its tail on the surface. Some researchers think these behaviors may have something to do with communication with other whales, or that the whale is trying to get rid of parasites, or that the whale is just having fun.

Humpback whales are famous for their elaborate songs, which are produced by males. The whales breed in winter, and the males start singing as winter gets closer, so the songs must have something to do with mating season. Scientists aren’t sure what, though. Females don’t seem to be very interested in individual males who are singing, but they will sometimes be attracted to a group of singing males. Some researchers suggest that singing might be a general call to attract all whales in the area to the breeding grounds. Then again, sometimes a male will interrupt another male who is singing and the two will fight.

The songs vary and new song elements can spread quickly through a population. Generally, researchers think males hear a new element and incorporate it into their own songs, but results of a study published in 2021 found that similar new song elements often show up in whales that could not have heard other whales sing it. This indicates that instead of copying other songs, each whale modifies his own song individually and sometimes the changes are similar. That’s just one study, though. It’s probable that the way males change their songs depends on many factors, only one of which is hearing and imitating other songs.

The study suggests that the way we think about whale songs might be wrong to start with. Researchers generally think that a whale probably sings for the same reasons that birds sing: to stake out a territory, to advertise to potential mates that it’s healthy enough to spend energy singing, and to warn rivals away. But because whales live in an environment so different from birds, and so different from what we as humans understand, it’s possible that whalesong carries meanings and intentions that we can’t interpret. A different study published in 2019 discovered that male humpbacks sometimes sing in feeding grounds, especially when a population of whales decides to overwinter at their feeding grounds instead of migrating, as sometimes happens.

What, precisely, a whale’s song means to other whales is something that only the whales know for sure. This is what a humpback song sounds like:

[humpback song]

Humpbacks make other sounds other than songs, though. Mothers and calves need to communicate so that the calves get the care they need and don’t stray too far away, but since any sounds could attract predators, they have to communicate very quietly. They make little grunting sounds to each other.

The main predator of the humpback whale is the orca, which will attack and kill calves and sometimes even adults. As a result, the humpback really does not like orcas. Humpbacks will sometimes protect seals and other animals from orca attacks.

Humpbacks migrate from their summer habitats in either the Antarctic or the Arctic, depending on what hemisphere they live in, to their winter breeding grounds in tropical waters. Then they return to colder waters in summer where there’s more food, since krill is a cold-water species. These migrations can be as long as 5,000 miles, or 8,000 kilometers. Unlike some animals that migrate in huge herds, humpbacks mostly travel in small groups that are often widely spaced.

The humpback was almost driven to extinction by commercial whaling, but after it was declared a protected species, its numbers have increased. It still has the same human-caused dangers that many other marine animals face, including habitat loss and water pollution, climate change, drowning after being entangled in nets, and noise pollution that can keep whales from communicating.

There’s always a lot we don’t know about any given species of whale, since whales are hard to study. For instance, a 2017 study discovered that humpbacks sometimes swim in a way never documented in whales before. Whales swim by flexing their massively powerful tails, and use their flippers to maneuver. Think of the tail as the engine of a car and the flippers as the power steering system. The humpback’s flippers are uniquely shaped, which as we mentioned earlier means it can maneuver skillfully, turning much more quickly than a great big whale would otherwise be able to turn. But in video studies of whales in the wild, very rarely a whale would flap its flippers like a bird flapping its wings—or, more accurately, like a seal or sea lion swimming with its flippers. The researchers who analyzed the videos suggest that the flapping is used for accelerating quickly, and because it takes a lot of energy, the whales don’t do it often. The researchers also think the humpback may be the only whale species that can accelerate using the motion of its flippers, since other whales have much smaller flippers relative to their size.

As far as we know, baleen whales don’t use sonar the way toothed whales do. Their songs and sounds are for communication, not navigation. But while humpbacks mostly hunt for food near the surface of the water where there’s plenty of light, they do occasionally dive deeper and hunt for food near the bottom. They especially like an eel-like fish called the sand lance, which spends a lot of time buried in the sand on the sea floor. In 2014, a study of humpbacks diving to find these fish indicated that when a whale dives alone, it remains silent, but when it dives to hunt with some friends, they communicate with a sound described as a tick-tock. Not the app, just a sound like the ticking of a clock. Sometimes more humpbacks come to join the whales when they hear their tick-tock sounds. But we still don’t know how the whales find the fish in the first place, since there’s no light for them to hunt by. It’s possible they can detect the fish’s chemical signature in the water when they’re close enough to one.

Baleen whales don’t have teeth, although when a baby whale is developing in its mother’s womb it does grow teeth. But at some point during its development, these embryonic teeth are reabsorbed and baleen plates form instead.

The extinct ancestors of modern baleen whales still had teeth. One genus was called Aetiocetus, which lived between about 34 and 23 million years ago in the north Pacific Ocean. It probably wasn’t directly related to modern whales, since baleen whales do actually appear in the fossil record before Aetiocetus. It was a small whale that probably only grew about 11 feet long, or 3.5 meters, although some species might have grown twice that length. The first Aetiocetus fossils were discovered in the 1960s and it was initially described as a toothed whale, since it had teeth.

But not everyone agreed. Aetiocetus showed some adaptations to filter feeding seen in modern baleen whales. For instance, its lower jaw bones weren’t fused at the chin end as they are in toothed whales. Modern baleen whales don’t have connected lower jaw bones, and in fact they have a sensory organ at that spot that scientists think helps the whale keep from engulfing too much water and hurting itself.

Recently, a team of scientists examined a CT image of a skull of Aetiocetus weltoni and discovered something surprising. Baleen is made of keratin, and keratin is only preserved in fossils very rarely, but in baleen whale fossils, the upper jawbones do show grooves where the baleen once connected. These grooves were present in the Aetiocetus skull, even though it also had teeth.

Researchers think Aetiocetus may have used its teeth to filter larger fish from the water the way some animals like crab-eater seals do today. Its teeth interlocked, which would allow it to trap fish in its mouth while pushing water out between its teeth. Its baleen probably helped catch smaller fish and other animals. The baleen was far enough away from the teeth that the whale would have still been able to bite at fish and other prey without accidentally biting its own baleen. But, as the researchers mention in their 2021 paper, Aetiocetus had a really crowded mouth.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 262: Animals Discovered in 2021

It’s the second annual discoveries episode! Lots of animals new to science were described in 2021 so let’s find out about some of them.

Further reading:

First description of a new octopus species without using a scalpel

Marine Biologists Discover New Species of Octopus

Bleating or screaming? Two new, very loud, frog species described in eastern Australia

Meet the freaky fanged frog from the Philippines

New alpine moth solves a 180-year-old mystery

Meet the latest member of Hokie Nation, a newly discovered millipede that lives at Virginia Tech

Fourteen new species of shrew found on Indonesian island

New beautiful, dragon-like species of lizard discovered in the Tropical Andes

Newly discovered whale species—introducing Ramari’s beaked whale (Mesoplodon eueu)!

Scientists describe a new Himalayan snake species found via Instagram

The emperor dumbo octopus (deceased):

The star octopus:

New frog just dropped (that’s actually the robust bleating tree frog, already known):

The slender bleating tree frog:

The screaming tree frog:

The Mindoro fanged frog:

Some frogs do have lil bitty fangs:

The hidden Alpine moth, mystery solver:

The Hokie twisted-claw millipede:

One of 14 new species of shrew:

The snake picture that led to a discovery:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This episode marks our 5th year anniversary! I also finally got the ebook download codes sent to everyone who backed the Kickstarter at that level. The paperback and hardback books will hopefully be ready for me to order by the end of February and I can get them mailed out to backers as soon as humanly possible. Then I’ll focus on the audiobook! A few Kickstarter backers still haven’t responded to the survey, either with their mailing address for a physical book or for names and birthdays for the birthday shout-outs, so if that’s you, please get that information to me!

Anyway, happy birthday to Strange Animals Podcast and let’s learn about some animals new to science in 2021!

It’s easy to think that with all the animals already known, and all the people in the world, surely there aren’t very many new animals that haven’t been discovered yet. But the world is a really big place and parts of it, especially the oceans, have hardly been explored by scientists.

It can be confusing to talk about when an animal was discovered because there are multiple parts to a scientific discovery. The first part is actually finding an animal that the field scientists think might be new to science. Then they have to study the animal and compare it to known animals to determine whether it can be considered a new species or subspecies. Then they ultimately need to publish an official scientific description and give the new animal a scientific name. This process often takes years.

That’s what happened with the emperor dumbo octopus, which was first discovered in 2016. Only one individual was captured by a deep-sea rover and unfortunately it didn’t survive being brought to the surface. Instead of dissecting the body to study the internal organs, because it’s so rare, the research team decided to make a detailed 3D scan of the octopus’s body instead and see if that gave them enough information.

They approached a German medical center that specializes in brain and neurological issues, who agreed to make a scan of the octopus. It turned out that the scan was so detailed and clear that it actually worked better than dissection, plus it was non-invasive so the preserved octopus body is still intact and can be studied by other scientists. Not only that, the scan is available online for other scientists to study without them having to travel to Germany.

The emperor dumbo octopus grows around a foot long, or 30 cm, and has large fins on the sides of its mantle that look like elephant ears. There are 45 species of dumbo octopus known and obviously, more are still being discovered. They’re all deep-sea octopuses. This one was found near the sea floor almost 2.5 miles below the surface, or 4,000 meters. It was described in April of 2021 as Grimpoteuthis imperator.

Oh, and here’s a small correction from the octopus episode from a few years ago. When I was talking about different ways of pluralizing the word octopus, I mispronounced the word octopodes. It’s oc-TOP-uh-deez, not oc-tuh-podes.

Another octopus discovered in 2021 is called the star octopus that has a mantle length up to 7 inches long, or 18 cm. It lives off the southwestern coast of Australia in shallow water and is very common. It’s even caught by a local sustainable fishery. The problem is that it looks very similar to another common octopus, the gloomy octopus. The main difference is that the gloomy octopus is mostly gray or brown with rusty-red on its arms, while the star octopus is more of a yellowy-brown in color. Since individual octopuses show a lot of variation in coloration and pattern, no one noticed the difference until a recent genetic study of gloomy octopuses. The star octopus was described in November 2021 as Octopus djinda, where “djinda” is the word for star in the Nyoongar language of the area.

A study of the bleating tree frog in eastern Australia also led to a new discovery. The bleating tree frog is an incredibly loud little frog, but an analysis of sound recordings revealed that not all the calls were from the same type of frog. In fact, in addition to the bleating tree frog, there are two other really loud frog species in the same area. They look very similar but genetically they’re separate species. The two new species were described in November 2021 as the screaming tree frog and the slender bleating tree frog.

This is what the slender bleating tree frog sounds like:

[frog call]

This is what the screaming tree frog sounds like:

[another frog call]

Another newly discovered frog hiding in plain sight is the Mindoro fanged frog, found on Mindoro Island in the Philippines. It looks identical to the Acanth’s fanged frog on another island but its mating call is slightly different. That prompted scientists to use both acoustic tests of its calls and genetic tests of both frogs to determine that they are indeed separate species.

Lots of insects were discovered last year too. One of those, the hidden alpine moth, ended up solving a 180-year-old scientific mystery that no one even realized was a mystery.

The moth was actually discovered in the 1990s by researchers who were pretty sure it was a new species. It’s a diurnal moth, meaning it’s active during the day, and it lives throughout parts of the Alps. Its wingspan is up to 16mm and it’s mostly brown and silver.

Before they could describe it as a new species and give it a scientific name, the scientists had to make absolutely sure it hadn’t already been named. There are around 5,000 species of moth known to science that live in the Alps, many of them rare. The researchers narrowed it down finally to six little-known species, any one of which might turn out to be the same moth as the one they’d found.

Then they had to find specimens of those six species collected by earlier scientists, which meant hunting through the collections of different museums throughout Europe. Museums never have all their items on display at any given time. There’s always a lot of stuff in storage waiting for further study, and the larger a museum, the more stuff in storage it has. Finding one specific little moth can be difficult.

Finally, though, the scientists got all six of the other moth species together. When they sat down to examine and compare them to their new moth, they got a real surprise.

All six moths were actually the same species of moth, Dichrorampha alpestrana, described in 1843. They’d all been misidentified as new species and given new names over the last century and a half. But the new moth was different and at long last, in July 2021, it was named Dichrorampha velata. And those other six species were stricken from the record! Denied!

You don’t necessarily need to travel to remote places to find an animal new to science. A professor of taxonomy at Virginia Tech, a college in the eastern United States, turned over a rock by the campus’s duck pond and discovered a new species of millipede. It’s about three quarters of an inch long, or 2 cm, and is mostly a dark maroon in color. It’s called the Hokie twisted-claw millipede.

Meanwhile, on the other side of the world on the island of Sulawesi, a team of scientists discovered FOURTEEN different species of shrew, all described in one paper at the end of December 2021. Fourteen! It’s the largest number of new mammals described at the same time since 1931. The inventory of shrews living on Sulawesi took about a decade so it’s not like they found them all at once, but it was still confusing trying to figure out what animal belonged to a known species and what animal might belong to a new species. Sulawesi already had 7 known species of shrew and now it has 21 in all.

Shrews are small mammals that mostly eat insects and are most closely related to moles and hedgehogs. Once you add the 14 new species, there are 461 known species of shrew living in the world, and odds are good there are more just waiting to be discovered. Probably not on Sulawesi, though. I think they got them all this time.

In South America, researchers in central Peru found a new species of wood lizard that they were finally able to describe in September 2021 after extensive field studies. It’s called the Feiruz wood lizard and it lives in the tropical Andes in forested areas near the Huallaga River. It’s related to iguanas and has a spiny crest down its neck and the upper part of its back. The females are usually a soft brown or green but males are brighter and vary in color from green to orangey-brown to gray, and males also have spots on their sides.

The Feiruz wood lizard’s habitat is fragmented and increasingly threatened by development, although some of the lizards do live in a national park. Researchers have also found a lot of other animals and plants new to science in the area, so hopefully it can be protected soon.

So far, all the animals we’ve talked about have been small. What about big animals? Well, in October 2021 a new whale was described. Is that big enough for you? It’s not even the same new whale we talked about in last year’s discoveries episode.

The new whale is called Mesoplodon eueu, or Ramari’s beaked whale. It’s been known about for a while but scientists thought it was a population of True’s beaked whale that lives in the Indian Ocean instead of the Atlantic.

When a dead whale washed ashore on the South Island of New Zealand in 2011, it was initially identified as a True’s beaked whale. A Mātauranga Māori whale expert named Ramari Stewart wasn’t so sure, though. She thought it looked different than a True’s beaked whale. She got together with marine biologist Emma Carroll to study the whale and compare it to True’s beaked whale, which took a while since we don’t actually know very much about True’s beaked whale either.

The end result, though, is that the new whale is indeed a new species. It grows around 18 feet long, or 5.5 meters, and probably lives in the open ocean where it dives deeply to find food.

We could go on and on because so many animals were discovered last year, but let’s finish with a fun one from India. In June of 2020, a graduate student named Virender Bhardwaj was stuck at home during lockdowns. He was able to go on walks, so he took pictures of interesting things he saw and posted them online. One day he posted a picture of a common local snake called the kukri snake.

A herpetologist at India’s National Centre for Biological Sciences noticed the picture and immediately suspected it wasn’t a known species of kukri snake. He contacted Bhardwaj to see where he’d found the snake, and by the end of the month Bhardwaj had managed to catch two of them. Genetic analysis was delayed because of the lockdowns, but they described it in December of 2021 as the Churah Valley kukri snake.

The new snake is stripey and grows over a foot long, or 30 cm. It probably mostly eats eggs.

It just goes to show, no matter where you live, you might be the one to find a new species of animal. Learn all you can about your local animals so that if you see one that doesn’t quite match what you expect, you can take pictures and contact an expert. Maybe next year I’ll be talking about your discovery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Kickstarter bonus! The Ningen

THE KICKSTARTER IS LIVE AND I’M SO EXCITED!

The Kickstarter campaign is HERE! If you’re not sure how Kickstarter works, that’s what we talk about at the beginning of this episode. I then go over the different rewards available and finally we have a very short chapter from the audiobook.

Kickstarter FAQ

I talk about the Kickstarter for way too long, so if you don’t care you can jump ahead to 9:56 to listen to the actual chapter. Also, I am definitely going to re-record that chapter for the actual audiobook because I recorded it before I made adjustments to my mic.

One of the pictures of a ningen you’ll find online. It’s art, not a photograph:

Show transcript:

Welcome to a special bonus episode of Strange Animals Podcast. I’m your host, Kate Shaw.

The Kickstarter funded successfully so there’s no need to have a ten-minute explanation of the Kickstarter tiers. I’ve cut all that out so anyone who wants to listen to this little bonus episode about the Ningen can do so without fast-forwarding a lot first. This is one of the new chapters from the book Beyond Bigfoot & Nessie: Lesser-Known Mystery Animals from Around the World, although I will be re-recording it for the audiobook version now that I’ve learned a little more about making the audio sound good.

The Ningen

The seas around Antarctica are cold and stormy. To humans it seems unhospitable, a deadly ocean surrounding an icy landmass. But the Antarctic Ocean is home to many animals, from orcas and penguins to blue whales and colossal squid, not to mention the migratory birds, cold-adapted fish, and many small animals that live in the depths. New animals are constantly being discovered, but it’s also not very well explored.

Stories from Japanese whalers who visit the area supposedly tell of a strange creature called the ningen, which is occasionally seen in the freezing ocean. It’s usually white and can be the size of a big person or the size of a baleen whale. It’s long and relatively slender, and while details vary, it’s generally said to have a human-like face, or at least large eyes and a slit-like mouth. It also has arms instead of flippers and either a whale-like tail or human-like legs.

These stories don’t come from long ago, though. The first post about the ningen appeared in 2002 in a Japanese forum thread about giant fish. Interest in the topic died down within a few months, until 2007 when the ningen was the subject of both a manga and a magazine article.

The ningen didn’t start appearing in English language sites until 2010. While it’s never been as well-known as many so-called cryptids, it has been the subject of short stories and books, creepy art, a J-pop song, and lots of speculation.

The question, of course, is whether the ningen is a real animal or a hoax. The initial post was made by an anonymous woman who claimed to be repeating something an unnamed whaler friend told her he’d experienced, and her friend also said that the Japanese government was baffled, and that the government was engaged in a cover-up so no one else would learn about the mystery animal. This has all the hallmarks of a modern urban legend. I don’t think the ningen is a real animal.

Just for fun, though, if it was a real animal, what might it be? The beluga whale is the first thing I thought of, since it’s white, grows around 18 feet long, or 5.5 meters, and has a small rounded head with features that look sort of human-like. But the beluga whale only lives in the Arctic, not the Antarctic. That’s the opposite side of the world.

Of the whales that do live around the Antarctic for at least part of the year, none are white all over and most are dark gray or black. Very rarely, though, a whale is born with albinism, which means its skin lacks pigment. As a result, it looks white or very pale gray. An albino humpback whale called Migaloo has been spotted off the coast of Australia repeatedly since 1991, for instance.

An albinistic bowhead or right whale living in the Antarctic might be seen occasionally by whalers who don’t realize they’re all seeing the same individual. Both the bowhead and right whales have deep, rounded rostrums that could potentially look like a human-like face—slightly, if you were looking at it through fog or darkness, and were already aware of the story of the ningen.

Then again, if the ningen is a real animal, it might be a whale that’s completely unknown to science. There are still a lot of beaked whales we know almost nothing about, and new species of beaked whale are occasionally discovered. The ningen might not even be a whale at all but something else entirely.

Still, while it’s a fun story, it’s probably not real. You can’t believe everything you read on the internet.

Thanks for supporting the podcast and the Kickstarter! When we reach 100 backers on the Kickstarter, we’ll have a second bonus episode with another of the new chapters from the audiobook, even if all 100 pledges are just for a dollar.

Thanks for listening!

Episode 225: Talking Animals

Talking animals! It’s not what you’re thinking about. No parrots here, just mammals.

Our new logo is by Susanna King of Flourish Media! If you’d like to JOIN OUR MAILING LIST!, I’ll be sending out a discount code soon for merch with our logo on it–but only for people on the mailing list (and patrons).

Further listening:

The MonsterTalk episode about Gef the Talking Mongoose (this episode has no swearing that I recall but some other episodes may have a little bit of salty language)

Mongolian Throat Singing

Further reading:

‘Talking’ seals mimic sounds from human speech, and validate a Boston legend

How do marine mammals produce sounds?

Elephant communication

Hoover the talking seal:

Janice, a gray seal who learned to mimic human speech and song:

Wikie, the orca who mimics human speech:

Kosik, an elephant who mimics human speech:

Gef the “talking mongoose”:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Before we get started, I have some announcements! First, you may have noticed we have a new logo! It’s by Susanna King of Flourish Media, who did a fantastic job! Susanna is also a listener, which is awesome. I’ve put a link to Flourish Media in the show notes if you have a company or something that needs professional graphic design.

If you’re interested in getting a shirt or mug with the new Strange Animals Podcast logo on it, I’m figuring out the best company to use for merch. If you sign up to our mailing list, as soon as merch is available I’ll be sending an email out about it, and I’ll include a discount code you can use to save some money! I’ve linked to the mailing list in the show notes, and it’s also linked on the website and my social media, but if you can’t find it, just send me a message and I’ll reply with the link.

The final announcement is that my cat Poe is finally home and recovering from a scary illness. He developed what’s called pyothorax, which is an infection in the chest, and in Poe’s case we still don’t know what caused it. After a week in the veterinary intensive care unit, he’s finally home and getting better all the time. That’s why last week’s episode was so short, and if you messaged me this week about something and I seemed impatient when I replied, that’s why. I just haven’t had any mental energy to concentrate on anything but Poe. Thank you to everyone at the Animal Emergency and Specialty Center of Knoxville for taking such good care of him.

We’ve got something fun and a little different this time, inspired by two things. First, I saw a tweet about a captive beluga whale who had apparently learned to mimic human speech and one night told a diver in his pool to get out. Then the awesome podcast BewilderBeasts had a segment about a harbor seal in Maine who was rescued by a fisherman as a pup, which reminded me of a similar situation with another harbor seal in Maine, Hoover the Talking Seal. That’s right, it’s an episode about mammals that can talk, including one of my favorite cryptozoological mysteries ever.

Before we learn about talking animals, we need to learn a little bit about how humans talk. Humans produce most vocal sounds using our larynx, which is sometimes called a voicebox. The human larynx is situated at the top of the throat, and it helps us breathe, helps keep food from going down the wrong tube and into the lungs, and enables us to make sounds. It consists of cartilage, small muscles, and flaps of tissue called vocal folds or vocal cords. There are two kinds of vocal folds: the true vocal folds that are connected to muscles and actually produce sound, and the false vocal folds that don’t have any connected muscles and just help with resonance.

Usually resonance just makes the sound louder, but humans have learned to do amazing things with our voices. Some cultures use the false vocal folds to create a secondary tone. It’s called overtone singing, throat singing, or harmonic singing. I’m still completely in love with the Mongolian folk metal band the Hu and am now delighted that I can mention them again, because they use throat singing in their music. Throat singing produces overtones with various different sounds, depending on the technique used, but it can be hard to pick them out of a song if you’re not sure what you’re hearing. So instead of playing a clip of a Hu song, here’s a clip of a musician demonstrating various kinds of throat singing while also playing along on the morin khuur, or horsehead fiddle. The morin khuur only has two strings so the drone and whistle sounds you’re hearing are not from that instrument, they’re made by the musician’s voice. [Musician is Zagd Ochir AKA Sumiyabazar.]

[clip of throat singing]

When you think of animals that could potentially talk in human language, naturally you’d assume our closest relatives, the great apes, could learn to talk. But while apes have larynxes that are similar to ours, they don’t have the fine control over their vocal cords that humans do. But the larynx isn’t the only part of the body involved in human speech, it’s just the part that makes noise. We use the tongue and lips to form sounds into words, which takes a lot of fine control over very small muscles. Apes don’t have that kind of control of the mouth muscles. More importantly, they don’t have the same language centers in the brain that humans do. Apes can learn to use very simple versions of sign language or indicate words on a computer, but they aren’t able to use speech and language the way we do. In the wild, apes communicate with sounds, but they also communicate a lot more with gestures and body language, so they don’t need to speak words.

In the 1940s and 50s, a human couple who were both primate biologists worked with a young chimpanzee named Viki, trying to teach her spoken language as well as signs. While Viki was a quick learner and showed high intelligence, she only managed to ever speak seven words, and only four of those clearly. Those four words were mama and papa, cup, and up. I found a clip of Viki saying the word ‘cup,’ and while the audio was really bad, I don’t think she was actually vocalizing the word, just making the consonant sounds with her mouth.

But there are other animals that can mimic human speech, even if they don’t necessarily understand what they’re saying. Parrots and some other birds are the prime examples, of course, but we’re talking about talking mammals today.

Back in episode 23 I mentioned Hoover the talking seal and played this clip of his voice, one of only a few recordings we have of him.

[talking seal recording]

That may sound like a gruff man with a strong accent, but it’s a seal. In spring of 1971, in Cundy’s Harbor, Maine, which is in the extreme northeastern United States, a man found a baby harbor seal. He and his brother-in-law George Swallow hunted around for the seal pup’s mother, but sadly they found her dead body. George Swallow decided to take the baby seal home and see if he could keep him alive.

The baby seal ate so fast that Swallow and his wife named him Hoover, after the vacuum cleaner brand. Hoover stayed in a pond in the back of their house, and he not only survived, he did really well. Swallow basically treated Hoover like a dog and the two hung out together all the time. If Swallow had to go somewhere, Hoover rode along in the car. Before long, Hoover started imitating Swallow’s speech.

Finally, though, Hoover got so big and was eating so much fish that the Swallows couldn’t keep him. The New England Aquarium in Boston, Massachusetts agreed to take him in, and there Hoover stayed, happy and healthy until he died in 1985. When Swallow brought Hoover to the aquarium, he mentioned that the seal could talk. No one believed him. I wish I could have seen the keepers’ faces when Hoover first said, “Hello there!” in a voice that sounded just like George Swallow’s.

Here’s another clip of Hoover talking:

But if a chimpanzee can’t manage to speak human words, how can a seal? Seals of all kinds have a larynx that’s very similar to the human larynx, which allows a seal to physically imitate human vowel sounds. It also has the mental drive to imitate sounds and the mental flexibility to do a good job imitating sounds that aren’t normal seal noises. Seals are highly social animals and communicate with each other with a complex range of sounds.

A study published in 2019 focused on a trio of young gray seals, named Janice, Zola, and Gandalf, who learned to imitate vocal tones, even tunes, proving that Hoover’s ability to imitate his caregiver wasn’t just a fluke. The seals were released into the wild after a year. This is a clip of one of them singing in response to a computerized tune:

[clip of seal singing]

It’s not a coincidence that animals learn to imitate human speech while in captivity. Seals and other animals who communicate with sound learn to imitate what they hear most often. In wild animals, that’s almost always the calls of other animals of their own species, but animals in captivity often hear humans most of the time.

In the case of Wikie, an orca, or killer whale, she was taught to imitate human sounds by researchers. Wikie was born in captivity in 2001 and in 2018, researchers reported that they had taught her to imitate several words, including hello.

Whales and other cetaceans have very different anatomy from seals. They make lots of sounds, from clicks and whistles used for communication and navigation, to the incredibly loud, complex songs that some baleen whales use to attract mates. But they don’t always make those sounds with their larynx.

Toothed whales, including dolphins, make a lot of sounds with the blowhole, which is the specialized nostril at the top of the whale’s head that allows it to take a breath without having to stop moving or put its head out of the water. Toothed whales have specialized air sacs near the blowhole that allow a whale to make high-frequency sounds for echolocation, and it uses its larynx to make whistles and other noises. It may also clap its jaws together and slap the water with its tail or flippers to make sounds, especially ones that signal aggression.

Baleen whales have an inflatable pouch called the laryngeal sac that allows a whale to make extremely loud sounds with its larynx. Many animals have something similar to the laryngeal sac, including some primates. If you remember episode 76, where we talked about the siamang, a type of gibbon, it has a throat pouch called a gular sac that increases the resonance and loudness of its voice.

Orcas in particular imitate sounds made by other orcas, so much so that when an orca pod moves into new territory, it will adopt the sounds made by the local orcas. They will also imitate the sounds made by sea lions and bottlenose dolphins. It’s not surprising, then, that Wikie was able to learn to imitate human words. Here’s some audio of Wikie saying hello (sort of):

[orca speech]

Another mammal that can learn to imitate human speech, at least occasionally, is the elephant! One famous talking elephant is Kosik [koh-shik], an Indian elephant in South Korea who has learned to say yes, no, sit, and several other words, in Korean of course. Kosik puts the tip of his trunk in his mouth and exhales while moving his trunk around to produce the sounds.

The elephant does use its larynx to make sounds, but it also has the option to use its trunk as a resonant chamber to make the sounds deeper. Some of the sounds an elephant makes are below the range of human hearing, as are many sounds baleen whales make. The elephant’s larynx is especially flexible too compared to most mammals, and as if its trunk wasn’t enough, it also has a pharyngeal pouch at the base of the tongue that it uses to produce low frequency calls.

This pharyngeal pouch is different from the baleen whale’s laryngeal sac and the siamang’s gular sac, although all three are used for similar purposes. The elephant actually stores water in the pouch, several liters of water. If an elephant can’t find water and is thirsty, it will stick its trunk deep into its mouth and into the pouch, then constrict the muscles around the pouch to push the water up. Then it can drink the water. It’s like having a built-in water bottle that also allows you to make deep noises.

Batyr was another elephant who reportedly learned to imitate some words and phrases, these in Russian and Kazakh. He lived in a zoo in Kazakhstan until his death in 1993. Like Kosik, Batyr produced the words by sticking his trunk in his mouth, with one keeper reporting that he actually moved his tongue into place with his trunk to make the right sounds. It’s possible that’s exactly what he was doing, since an elephant’s trunk is much more dexterous than an elephant’s tongue. He would also sometimes imitate other animals heard in the zoo.

All the animals we’ve discussed so far were only imitating human words. While they may have learned to use the words appropriately, for instance saying the word water when they wanted a drink, there’s no evidence that any of these animals truly understood the meaning of the words they learned to imitate. But there is one talking animal that was supposed to understand every word he said, a strange and elusive animal only seen by a few people but heard by many more. He’s called Gef the talking mongoose, and he’s one of my very favorite cryptids.

Gef’s story starts in 1931 on the Isle of Man, a British island in the Irish Sea. A family lived in a remote farmhouse near the village of Darby: James Irving (who went by Jim), his wife Margaret, and their twelve-year-old daughter Voirrey. They also had a sheepdog named Mona. The house was a big stone one with wood paneling inside, but with a gap between the stone and wood. These days that would be where the insulation would go to keep the house warmer, but this was before modern insulation and as far as I’ve read the gap was empty. The house didn’t have electricity either.

One night in 1931 the family heard an animal rustling and scratching around inside the gap. This probably wasn’t an unusual occurrence, since there are mice and rats on the Isle of Man along with stoats and ferrets. Any of those might decide to investigate the house and make a little home in the gap between the outer and inner walls.

In this case, though, the animal started out making little animal sounds but soon started trying to talk. At first it sounded like a baby babbling, but within a few weeks it was speaking clearly in English.

The family didn’t know what to think. At first they actually tried to poison the animal, but before long they made peace with it and named him Gef. They rarely saw Gef, just talked to him through the walls. Occasionally they’d see a bright eye peering at them through a knothole or see Gef outside, whisking across the fields. He wasn’t very big, only about a foot long, or 30 cm, including his bushy tail. He was yellowish in color with a slender ferret-like body, and his tail had a black tip. But he wasn’t a ferret, and apparently his front feet were shaped more like tiny human hands than like an animal’s paws. Gef described himself as a mongoose, specifically, “a little extra, extra clever mongoose.”

The weird thing is, there were mongooses on the Isle of Man at the time even though the mongoose is native to Africa, southern Asia, and southern Europe—but only where it’s warm most of the time. They certainly don’t live on the Isle of Man ordinarily. A man who owned a neighboring farm had imported some to kill rabbits, since there are no foxes on the island to keep the rabbit population down. There are even occasional sightings of what might be mongooses on the island today. The mongoose resembles mustelids like weasels and ferrets, but isn’t very closely related to them, and some species are yellowish in color. But the mongoose is much larger than Gef and has a more tapered tail. Also, mongooses don’t actually talk.

The meerkat is a type of mongoose, so if you ever watched Meerkat Manor you know a lot about mongooses already.

Anyway, Gef was clearly not actually a mongoose. The question is whether he was a real animal at all. In many ways, he had more in common with supernatural entities like poltergeists and brownies than with ordinary animals. He sometimes seemed to know about things before they happened, he seemed able to vanish when he didn’t want to be seen, and he made fantastic claims about his history. He also sprinkled words and phrases from other languages into his speech.

At the time, most people on the island thought Voirrey had invented Gef for attention, or maybe in an attempt to get her family to move somewhere more comfortable. She didn’t like living on a farm where the nearest neighbor was two miles away. But Voirrey claimed to the very end of her life—and she lived until 2005—that she hadn’t invented Gef and in fact Gef had ruined her life in some ways. She was teased about him in school and hated all the attention surrounding him, so much so that when she grew up and moved away, she actually changed her name to try and avoid any further publicity. She almost never gave interviews about Gef, and her family certainly never made any money off their resident talking animal even though they were very poor.

These days, a lot of suspicion focuses on Voirrey’s father, Jim Irving. Almost all of the information we have about what Gef said and did comes from Jim’s diaries and letters. He wrote a lot about Gef and apparently planned to write a book about the family’s experiences. The famous investigator of mysterious phenomena, Harry Price, told Jim there was no money in a book about Gef—and then promptly published his own book about Gef, which was a mean trick. Harry Price thought Voirrey was speaking as Gef by somehow throwing her voice, probably by using the acoustic properties of the double-walled house.

It’s possible, of course, that Gef was invented by Jim as a way to make Voirrey happier about having little animals scrabbling about in the walls. It might have started as a family joke that got out of control when people outside the family heard about it. Jim sounds like he was a little bit of a showman and had big dreams. He might have decided that his little family in-joke about Gef the talking mongoose would make a good book, and started spreading the story around as though it was real. Before long, people were swarming to his farmhouse to listen for Gef, Voirrey was being teased and blamed for the phenomenon, and people were demanding proof that Gef was real. Jim couldn’t admit he’d made the whole thing up and risk everyone getting angry.

Jim had traveled widely when he was younger and knew a smattering of words from other languages—the same words that Gef sprinkled into his speech. And remember, Jim is the main source of information about Gef. I wonder if Voirrey understood that her father had painted himself into a corner by telling people about Gef, because she tried to help prove the talking mongoose was real. She produced some hairs she said came from Gef, but when analyzed they were found to be identical to Mona the sheepdog’s fur. Voirrey produced some footprints and tooth prints supposedly made by Gef in plasticine, but they look a lot like they were made by someone poking designs into the plasticine with a sharp stick.

Gef became less and less active over the years, disappearing for months at a time, and by 1939 he was pretty much gone. Voirrey was grown by then and probably long tired of the joke. Jim died in 1945.

Whatever or whoever was behind the talking mongoose story, it’s definitely fun to think about. Gef was snarky, clever, sometimes funny, always weird. For instance, when Jim told Gef “We are having a dictaphone to record your voice,” Gef replied, “Who’s we? Is it that spook man Harry Price? Why, I won’t speak into it. I’ll go and smash his windows. I’ll drop a brick on him as he lies in bed. Me, at the age of 83?” Gef claimed he was born in India on June 7, 1852. Sometimes he said he was an earthbound spirit, sometimes he said he was not a spirit, just a mongoose. Once he said, “I am a ghost in the form of a weasel, and I shall haunt you with weird noises and clanking chains.” Mostly, though, he just recounted village gossip and demanded treats. Occasionally he killed a rabbit and left it for Voirrey like a pet cat leaving a mouse for its owner.

If my cats could speak, I’m pretty sure Poe would be complaining nonstop about having to be in the hospital for a whole week. Actually, he is complaining nonstop about it, just not in actual words. But I understand him anyway.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 211: The Magnificent Fin Whale

This week let’s venture into the ocean and learn about the fin whale!

Further reading:

The songs of fin whales offer new avenue for seismic studies of the oceanic crust

Fin whales’ big gulp

The fin whale can hold a whole lot of water in its mouth (illustration from the second article linked above):

A fin whale underwater. Look at that massive tail. That’s pure muscle:

A fin whale above water. It’s like a torpedo:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s been too long since we had an episode about whales. Yes, okay, two weeks ago we talked about a couple of newly discovered whales, but I want to really learn about a particular whale. So this week, let’s look at the fin whale.

The fin whale is a baleen whale that’s only a little less enormous than the blue whale. The longest fin whale ever reliably measured was 85 feet long, or just a hair shy of 26 meters, but there are reports of fin whales that are almost 90 feet long, or a bit over 27 meters. An average American school bus is half that length, so a fin whale is as long as two school buses. Even a newborn fin whale calf is enormous, as much as 21 feet long, or 6.5 meters. Females are on average larger than males.

It’s a long, slender whale that’s sometimes called “the greyhound of the sea,” because it’s also really fast. It can swim up to 29 mph, or 46 km/hour, and possibly faster. If that doesn’t sound too fast, consider that the Olympic gold-medal swimmer Michael Phelps topped out at about 4.7 miles per hour, or 7.6 km/h.

Like other baleen whales, the fin whale has a pair of blowholes instead of just one. On its underside, it has up to 100 grooves that extend from its chin down to its belly button. Yes, whales have belly buttons. They’re placental mammals, and all mammals have belly buttons because that’s where the umbilical cord is attached when a developing baby is in its mother’s womb. I don’t know what a whale’s belly button looks like. Also, the proper term for belly button is navel, and if you’re wondering, that’s where navel oranges get their name, because they have that weird thing on one end that looks like a belly button. It’s not, though. I don’t know what it is. You’ll have to find a podcast called Strange Plants to explain it.

Anyway, the grooves on the fin whale’s underside act as pleats, or accordion folds. Other baleen whales have these pleats too. A baleen whale eats tiny animals that it filters out of the water through its baleen plates, which are keratin structures in its mouth that take the place of teeth. The baleen is tough but thin and hangs down from the upper jaw. It’s white and looks sort of like a bunch of bristles at the end of a broom. The whale opens its mouth wide while lunging forward or downward, which fills its huge mouth with astounding amounts of water. As water enters the mouth, the skin stretches to hold even more, until the grooves completely flatten out. The water it can hold in its mouth is about equal to the size of a school bus.

Technically, though, a lot of that water isn’t in the whale’s mouth. It’s in a big pocket between the body wall and the blubber underneath the skin. The ballooning out of the pocket stretches the nerves in the mouth and tongue to more than twice their length, and then the nerves have to fold back up tightly after the water is pushed out. The nerves fold in a complicated double layer to minimize damage during all this stretching.

After the whale fills its mouth with water, it closes its jaws, pushing its enormous tongue up, and forces all that water out through the baleen. Any tiny animals like krill, copepods, small squid, small fish, and so on, get trapped in the baleen. It can then swallow all that food and open its mouth for another big bite. Even more amazing, this whole operation, from opening its mouth to swallowing the food, only takes six to ten seconds.

Because it only eats small animals, the fin whale’s esophagus (which is the inside part of the throat) is actually quite narrow considering what a huge animal it is. In other words, it could not possibly swallow a human, in case you were worried. I was worried. If you did end up in a fin whale’s mouth, it would just spit you back out.

Baleen whales have a sensory organ on the chin that’s found in no other animal. It’s about the size of a grapefruit and situated between the tips of the jaws. It probably helps the whale determine how much potential food is in the water, which saves it from wasting time and energy gulping in water and filtering it out when there’s nothing much to eat.

The fin whale looks a lot like the blue whale and the two species are closely related, so much so that they sometimes interbreed and produce hybrid babies. It usually lives in small groups of up to around 10 individuals and a female fin whale has one baby every two or three years. It probably migrates seasonally to new feeding grounds, but we don’t actually know a whole lot about where it goes and whether all fin whales migrate.

Fin whales have extremely loud vocalizations, but most humans would barely be able to hear them, or wouldn’t be able to hear them at all, because they’re at the very bottom or below the range of sounds that the human ear can detect. The calls can be up to 188 decibels, a measure of loudness, which may be the loudest sounds made by any animal alive today. Technically the blue whale is louder, at 190 decibels, but on average the fin whale is louder. In comparison, a jet plane taking off is measured at 150 decibels. Of course, sound through water is different from sound through air, because water is much denser. A better comparison is with an offshore drill rig at 185 decibels or a supertanker ship at 190 decibels. The fin whale is about as loud as both, although of course the fin whale doesn’t make those noises all the time like drill rigs and ships do. The male fin whale makes short pulses of sound that last a second or two in specific patterns, which he repeats sometimes for days. Since the sounds travel long distances underwater, researchers think a female can hear a male’s calls and follow the sound so she can find him to mate. Of course, this means that females may have trouble finding a male these days since the ocean is full of noise from human-made things like offshore drill rigs and supertanker ships.

The fin whale is not only one of the loudest animals known, its vocalizations are among the lowest in frequency of any animal ever recorded. It turns out that this combination has a surprising benefit to human knowledge in a very specific way.

In an article published in Science just a few days ago as this episode goes live in February of 2021, a team of scientists discovered that fin whale vocalizations can help with seismic imaging of the oceanic crust.

The oceanic crust isn’t just the sea floor but what the earth below the sea floor is made up of. Scientists measure the reflections of a sound wave, and since sound waves travel at different speeds through different materials, and bounce off various types of rocks and other structures at different speeds and angles, the reflections can tell us a lot. Scientists use sensitive seismometers on the ocean floor to read the reflections. The problem is how to get the sound wave in the first place. Researchers usually use a giant air gun to make sound waves, but not only can this be dangerous to ocean life because it’s so loud, it’s also expensive and can’t be used in all areas.

But the fin whale does almost as good a job as an air gun. A pair of researchers studying earthquakes off the Oregon coast in North America noticed that when fin whales were around, their seismometers picked up extra signals. They figured out that the signals were actually from the fin whales’ vocalizations, and were surprised to find that the reflections matched those from the air gun sound waves. As an added benefit, the researchers could pinpoint exactly where each whale was since its signals were picked up by multiple seismometers.

Fin whale vocalizations are at the perfect frequency and strength for sound waves to travel through the ocean floor and be picked up by the seismometers. Best of all, fin whales live throughout almost all of the world’s oceans, including places where air guns can’t be used. Researchers just have to put the seismometers in place and the whales produce as many sound waves as the scientists need.

Because the fin whale makes such low-frequency noises, its hearing is different from other animals’. Big as a fin whale is, the low-frequency vocalizations it makes actually form a sound wave that’s longer than its body, which means the whale actually can’t hear it through its ears. But for a long time, scientists weren’t sure how the fin whale and other big baleen whales could hear those sounds.

Then, in 2003, a fin whale beached in California and died despite attempts to save it. Scientists were allowed to collect the body for research, and they took the head to an X-ray CT scanner designed for rocket motors to get a 3D image they could study. It turns out that the fin whale’s skull has acoustic properties that makes it sensitive to low frequency sounds and actually amplifies the sound waves as the bones of the skull vibrate. So fin whales hear each other with their skull bones instead of their ears.

Absolutely nothing can top that amazing fact, so that’s the end of this episode.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!