Episode 240: The End of the Dinosaurs

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Here we go. It’s the big one, the Cretaceous-Paleogene extinction event!

Further reading:

How Birds Survived the Asteroid Impact That Wiped Out the Dinosaurs

How an asteroid ended the age of dinosaurs

Extinction event that wiped out dinosaurs cleared way for frogs

How life blossomed after the dinosaurs died

66-million-year-old deathbed linked to dinosaur-killing meteor

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Here it is, the extinction event episode that everyone’s been waiting for, or at least that everyone knows about. It’s the one that killed off the dinosaurs and ushered in the age of mammals. It’s probably the one we know most about and it’s certainly the one we have the most paintings of, usually of a T. rex staring into the sky at an approaching comet.

In episode 227 we talked about the end-Permian extinction event, which took place about 250 million years ago. The Cretaceous-Paleogene extinction event, or end-Cretaceous, took place just over 66 million years ago, which means that for almost 200 million years there was more or less smooth sailing in the world. Dinosaurs evolved during that time, and I think we can all agree that dinosaurs are fascinating animals.

The largest terrestrial animals ever to live were dinosaurs, specifically the sauropods. Sauropods were just unimaginably huge. They were like walking buildings that ate plants, and even that doesn’t give a good idea of their size. Some sauropods had extremely long tails as well as very long necks, which increased their length. Right now the largest sauropod known was probably Argentinosaurus that might have grown as long as 118 feet, or 36 meters, but paleontologists keep finding bigger and bigger sauropods. Some sauropods had extremely long necks that they held up like a giraffe. The tallest was probably Barosaurus, estimated as being 72 feet tall, or 22 meters. And we won’t even get into estimates of how much these massive animals weighed. They make the biggest elephant that ever lived look like a toy elephant.

Sauropods ate plants, with the low-necked species eating low-growing plants and the high-necked species eating tree leaves, although even saying that much is controversial. There’s a lot we don’t know about sauropods in general, since most sauropod fossils are incomplete and many species are only known from one or a few bones. But we do know some surprising things about sauropods. We have a lot of sauropod tracks, which helps us understand how their feet looked and whether they had claws, but it also tells us that some species of sauropod traveled in herds. Paleontologists do generally agree that many sauropods migrated, since animals that big would soon exhaust all the food in one area if they didn’t.

Sauropods were extremely successful and lived all over the world. There were plenty of sauropods alive 66 ½ million years ago, and then…there were no sauropods alive ever again.

These days, there’s so much evidence that a massive asteroid killed off the dinosaurs that pretty much everyone agrees, but when the idea was first proposed in 1980, it was extremely controversial. When I was a kid I remember reading dinosaur books that still said the extinction of the dinosaurs was a mystery but that many scientists thought it was due to disease or volcanoes.

The asteroid strike hypothesis was proposed by the physicist Luis Alvarez and his son, Walter. They worked with a small team of other scientists, including two chemists, Helen Michel and Frank Asaro, to investigate a strange anomaly in rock strata. Rocks dating to the end of the Cretaceous period and the beginning of the Paleogene period are separated by a thin layer of clay that’s visible throughout the world, or at least wherever the rocks remain and can be examined. It’s called the Cretaceous-Paleogene boundary, or K-Pg boundary, although in older books and websites it’s called the K-T boundary. It occurred just over 66 million years ago. The Alvarezes were curious about this layer, and during their investigations they found out that the clay is full of an element called iridium.

Iridium is a silvery-white metal chemically related to platinum, and it’s rare. At least, it’s rare on Earth. It’s a common component of asteroids, which was one of the main reasons why the Alvarezes came to their hypothesis that the K-Pg boundary was the result of a massive asteroid impact. Other scientists had made similar suggestions in the decade or so leading up to the Alvarezes’ theory, but the iridium discovery provided the proof everyone wanted.

Iridium wasn’t the only thing found in the K-Pg boundary layer, either. There were other platinum-group metals present in high concentrations—much higher than found on Earth, and in fact these elements are referred to as rare-earth metals for that reason. In some places, the K-Pg boundary contains grains of shocked quartz and microtektites. We’ll discuss those in a minute.

As we’ve discussed before in various episodes, the earth’s surface is always moving around. It’s slow to us, with continents moving around at the same dizzying speed that our fingernails grow, but over millions of years that adds up. Continents move around and crash into each other, forming new mountain ranges that then wear down to plains, and where continental plates pull apart or push together the crust can weaken and allow magma to erupt through as volcanoes. Ocean levels rise and fall. In other words, a crater made 66 million years ago might have disappeared as all this geologic activity goes on.

But then, we found the crater. The crater.

The Chicxulub crater is in Mexico, specifically the Yucatán Peninsula at the southern portion of the Gulf of Mexico. You can’t see it when you’re walking around because it’s buried under 2,000 feet of soil, or 600 meters, that has built up over the last 66 million years. Two geophysicists found it in the 1970s while surveying for petroleum, but it wasn’t until 1990 that they were able to verify that it was a crater. Asteroid impacts leave clues behind that the geophysicists recognized.

The first clue is shocked quartz. Quartz is a common crystalline mineral throughout the world, and it has a certain structure that’s familiar to geologists. In shocked quartz, that structure has been deformed by intense pressure, but not high temperature. It was first noticed after nuclear bomb tests, and after that scientists recognized it in meteor craters.

The second clue is little pieces of glass called tektites. They’re different from obsidian, which is a type of glass formed by volcanic activity. Tektites are usually shaped like droplets or little blobs, but sometimes they’re round. They’re only found around big impact sites and only for relatively recent meteor impacts, because they don’t last forever.

The Chicxulub crater is actually kind of old for its tektites to still be around, except for two things. First, the tiniest tektites, the microtektites, ended up in the K-Pg boundary layer, as I mentioned earlier. Second, we actually have a fossil site in North Dakota, in the middle of North America up near Canada, that seems to date to literally the day of the asteroid impact, and there are tektites all over the site, including clogging the gills of fish. The tektites match the chemical signatures of the Chicxulub crater so we know that’s where they came from.

Before we talk about the North Dakota fossil bed, let’s discuss what exactly happened on the day the asteroid hit the earth. Because we’ve found the asteroid’s crater, we know a lot about the asteroid itself. Most researchers estimate that it was about 6 miles across, or 10 km. It approached the earth at an angle, traveling about 12 km a second. That’s 7.5 miles per second. It hit the earth right on the coast, partly in the ocean, partly on land, forming a crater about 110 miles across, or 180 km, and 12 miles deep, or 19 km.

The asteroid smashed into the Earth so fast that it was completely buried in about the time it takes you to blink. There really wasn’t time for any dinosaurs to look up and wonder what that bright light was, because the time between the asteroid entering earth’s atmosphere and smashing into the earth was maybe five seconds.

The megatsunami resulting from the impact would have been unbelievably huge. Waves may have been a mile high, or over 1.5 km. The initial impact would have thrown water more than 7.5 miles into the air, or 12 km, and when that water fell back down it would have set up another megatsunami. Not only that, the impact actually shook the whole earth like a massive earthquake, which caused landslides all over the place and set up even more tsunamis. It’s like shaking a snowglobe to watch the fake snow swirl around and around, only instead of fake snow it was ocean.

At the same time, everything near the impact site was instantly on fire. It was on fire because the asteroid was traveling so fast that it was glowing white-hot with incandescent heat just from pushing against air molecules, and when it hit the Earth, all that heat had to go somewhere. Also, everything exploded. The water exploded up and outward, the land exploded up and outward. A lot of water turned instantly to steam. The asteroid itself disintegrated and tiny bits of it were carried high into the atmosphere along with ash, dust, molten glass created by the blast, and anything else that was nearby and not instantly incinerated.

The shockwaves from the impact acted as a magnitude 12 earthquake, with follow-up shocks estimated at about magnitude 9 occurring across the entire planet. Volcanoes erupted as a result, pumping even more ash and gases into the atmosphere. All the trees were flattened for about 930 miles around the impact, or 1500 km.

Within a few hours of the impact, fireballs of molten rock and glass were falling across the world, setting fires on land and heating the surface of the ocean to boiling temperature in many areas. And it was already getting really dark as the massive amounts of debris and dust and ash and smoke and everything else spread across the earth.

Okay, deep breath. This happened a long, long time ago and most animals died so quickly they didn’t feel anything. Look out the window if you’re feeling stressed and see how calm it is? Maybe it’s raining where you live or maybe it’s night-time and you can hear frogs or crickets calling, maybe an owl if you’re lucky. It might be daytime and you can hear cars passing by, or a dog barking somewhere, people talking. Whew. Okay, back we go to that awful day 66 million years ago, back to the fossil site found in North Dakota.

Back then, the middle of North America was a shallow sea. The first tsunami wave was probably 30 feet tall, or 9 meters, when it reached the mouth of a river emptying into the sea. It pushed the river backwards and washed hundreds of freshwater fish onto a sand bar. To add insult to injury, or just injury to injury, while the fish were stranded and flopping around trying to get back in the water, globs of molten glass and rocks rained down on them. Then another wave pushed up the river and covered the dead and dying fish with a lot of sand and sediment, which preserved them.

The site was discovered in 2013 and the findings were published in 2019. It’s not just fish at the site, although there are unbelievable numbers of fish. There are also tree trunks and branches that show evidence of burning, ammonites and other marine animals that were washed up the river, even part of a triceratops and a hadrosaur. One charred trunk is covered in amber, which is fossilized tree resin. The amber is full of tektites, which were caught in the resin when it was soft.

Every time I say tektite I think of those spidery things in Zelda, which makes this whole situation seem even worse.

None of the animals at the site show evidence of being eaten by anything. Some researchers estimate that the event took place less than an hour after the asteroid impact. There’s also a layer of clay on top of the sediment that contains high levels of iridium.

In all, roughly 75% of all life on earth went extinct following the asteroid impact. Many animals that survived the immediate aftermath of the impact died out months or years later, and many more scraped along for hundreds or thousands of years before finally going extinct. The massive amounts of dust and ash in the atmosphere blocked sunlight for the next several years or even longer, which means plants died throughout the world. Poisonous gases in the atmosphere led to acid rain that killed more plants and animals. The ocean temperature dropped considerably, as did the overall temperature of the earth, leading to freezing temperatures that would have killed off even more animals. Deep-sea animals fared better than most, but many plankton went extinct very soon after the impact and that meant animals that ate the plankton also went extinct.

But, of course, not everything went extinct. If it had, I wouldn’t be recording this episode and you wouldn’t be listening to it. Awful as it sounds, the Cretaceous-Paleogene extinction event wasn’t nearly as bad as the end-Permian extinction. Full recovery is estimated to have taken as much as 9 million years, when it took 50 million years for the earth to fully recover from the end-Permian extinction.

One thing that isn’t generally known is that things had been getting rough on earth for a couple of million years before the asteroid hit. Some species were already in decline due to climate change. The asteroid just made everything intensely worse.

The first plants to recolonize the blasted wastelands were ferns, lots and lots and lots of ferns. Ferns are tough plants and thrive in areas where nothing else can grow, and ferns grow quickly and provide food for lots of animals. Within a hundred years of the impact the world was carpeted with ferns.

Some dinosaurs did survive, of course, but we call them birds. They would have looked very birdlike even 66 million years ago. Most birds that survived were ones that lived on the ground instead of in trees. Researchers think many birds survived because they were able to eat seeds, which would have remained as a food source even after the plants that dropped the seeds had all died. Insects and other invertebrates that eat rotting leaves would have been just fine, and many birds could find and eat them too.

Mammals also survived the asteroid impact, of course. Look, here we are! We’ve done quite well for ourselves. 66 million years ago most mammals were small and rodent-like, and the ones that survived probably mostly lived in burrows and ate seeds and other plant material or small animals like insects.

Surprisingly, frogs did really well after the asteroid impact. Frogs are small and can survive in small microhabitats. While most of the frogs in North America went extinct, plenty of frogs survived in other parts of the world that weren’t so close to the impact site, and as soon as conditions improved, more species evolved than ever before. That’s why frogs across the world look so similar. They may not all be closely related, but they all faced the same environmental pressures at the same time.

Once plants started to recover, things took a turn for the better as birds, fish, mammals, reptiles, amphibians, insects, and other animal groups suddenly didn’t have to watch out for dinosaurs or the other big predators that had gone extinct. Sauropods and other giant herbivores weren’t eating up all the plants. Life evolved rapidly to fill the available ecological niches, and animals started getting bigger and bigger.

In late 2019, scientists released details of a fossil site found in Colorado, in the western United States. It has an unbroken record of rocks dating from before the asteroid impact to about a million years afterwards. It gives us an excellent record of the changes that took place.

In the years after the impact, there’s not a lot to see, just lots of ferns and some rat-sized mammals. Within 200,000 years palm forests had replaced the ferns and cat-sized mammals were common. By 400,000 years after the impact, plants and trees with nuts evolved and many mammals were the size of dogs. By 700,000 years after, the relatives of modern bean and pea plants appeared, forests were varied and healthy, and the mammals were the size of wolves or bigger. There were animals other than mammals too, including a five-foot-long crocodilian, or 1.5 meters, with teeth adapted to crush turtle shells.

The ancestors of whales evolved about 50 million years ago around what is now India and its neighbors, when a little animal called Indohyus spent a lot of time in the water. It was about the size of a raccoon, which it resembled in some ways, except that its bones were unusually heavy for its size. This helped it stay underwater without effort. The hippopotamus has the same kind of heavy bones for the same reason, and Indohyus was actually related to the hippo’s distant ancestor. Within five million years, descendants of animals like Indohyus were fully aquatic and looked a lot like dolphins with small legs. As whales got bigger and faster, predators evolved too, including the largest shark that ever lived, Megalodon. The first baleen whales evolved around 25 million years ago and ultimately grew to the gigantic sizes of some of the whales alive today.

Every time you feel sad that you’ll never see a real live dinosaur like a sauropod, remember that you live at the same time as the undisputed largest animal that has ever lived, the blue whale. It can grow up to 98 feet long, or 30 meters, and possibly longer. That’s as long as a ten-story building is high. It’s twice the length of Megalodon! If you have the money and time, you can actually charter a boat that will take you out to look at blue whales because they’re still alive!

I guarantee you that millions upon millions of years from now, in some far-distant future that we can’t even imagine, there will be scientists who study whales and write whatever those future people use as books, and there will be young people who read those books and look longingly at drawings of whales. They’ll know about dinosaurs, sure, and those will always be popular, but it’ll be the whales that really catch people’s imagination. There will be the far-future equivalent of movies where people successfully clone whales or bring them back from the past, and the details will be all wrong but no one will know because no one in that far future time will actually know what whales really look like! But you know, and that is the most amazing fact I can ever share with you.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 212: The River of Giants

Thanks to Pranav for his suggestion! Let’s find out what the river of giants was and what lived there!

Further reading:

King of the River of Giants

Spinosaurus was a swimming dinosaur and it swam in the River of Giants:

A modern bichir, distant relation to the extinct giants that lived in the River of Giants:

Not actually a pancake crocodile:

A model of Aegisuchus and some modern humans:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

A while back, Pranav suggested we do an episode about the river of giants in the Sahara. I had no idea what that was, but it sounded interesting and I put it on the list. I noticed it recently and looked it up, and oh my gosh. It’s amazing! It’s also from a part of the world where it’s really hot, as a break for those of us in the northern hemisphere who are sick of all this cold weather. I hope everyone affected by the recent winter storms is warm and safe or can get that way soon.

The Sahara is a desert in northern Africa, famous for its harsh climate. Pictures of the Sahara show its huge sand dunes that stretch to the horizon. This wasn’t always the case, though. Only about 5,500 years ago, it was a savanna with at least one lake. Lots of animals lived there and some people too. Before that, around 11,000 years ago, it was full of forests, rivers, lakes, and grasslands. Before that, it was desert again. Before that, it was forests and grasslands again. Before that, desert.

The Sahara goes through periodic changes that last around 20,000 years where it’s sometimes wet, sometimes dry, caused by small differences in the Earth’s tilt which changes the direction of the yearly monsoon rains. When the rains reach the Sahara, it becomes green and welcoming. When it doesn’t, it’s a desert. Don’t worry, we only have 15,000 more years to wait until it’s nice to live in again.

This wet-dry-wet pattern has been repeated for somewhere between 7 and 11 million years, possibly longer. Some 100 million years ago, though, the continents were still in the process of breaking up from the supercontinent Gondwana. Africa and South America were still close together, having only separated around 150 million years ago. The northern part of Africa was only a little north of the equator and still mostly attached to what is now Eurasia.

Near the border of what is now Morocco and Algeria, a huge river flowed through lush countryside. The river was home to giant animals, including some dinosaurs. Their fossilized remains are preserved in a rock formation called the Kem Kem beds, which run for at least 155 miles, or 250 km. A team of paleontologists led by Nizar Ibrahim have been working for years to recover fossils there despite the intense heat. The temperature can reach 125 degrees Fahrenheit there, or 52 Celsius, and it’s remote and difficult to navigate.

For a long time researchers were confused that there were so many fossils of large carnivores associated with the river, more than would be present in an ordinary ecosystem. Now they’ve determined that while it looks like the fossils were deposited at roughly the same time from the same parts of the river, they’re actually from animals that lived sometimes millions of years apart and in much different habitats. Bones or even fossils from one area were sometimes exposed and washed into the river along with newly dead river animals. This gives the impression that the river was swarming with every kind of huge predator, but it was probably not quite so dramatic most of the time.

Then again, there were some really fearsome animals living in and around the river in the late Cretaceous. One of the biggest was spinosaurus, which we talked about in episode 170. Spinosaurus could grow more than 50 feet long, or 15 m, and possibly almost 60 feet long, or 18 m. It’s the only dinosaur known that was aquatic, and we only know it was aquatic because of the fossils found in the Kem Kem beds in the last few years.

Another dinosaur that lived around the river is Deltadromeus, with one incomplete specimen found so far. We don’t have its skull, but we know it had long, slender hind legs that suggests it could run fast. It grew an estimated 26 feet long, or 8 meters, including a really long tail. At the moment, scientists aren’t sure what kind of dinosaur Deltadromeus was and what it was related to. Some paleontologists think it was closely related to a theropod dinosaur called Gualicho, which lived in what is now northern Patagonia in South America. Remember that when these dinosaurs were still alive, the land masses we now call Africa and South America had been right in the middle of a supercontinent for hundreds of millions of years, and only started separating around 150 million years ago. Gualicho looked a lot like a pocket-sized Tyrannosaurus rex. It grew up to 23 feet long, or 7 meters, and had teeny arms. Deltadromeus’s arms are more in proportion to the rest of its body, though.

Some of the biggest dinosaurs found in the Kem Kem beds are the shark-toothed dinosaurs, Carcharodontosaurus, nearly as big as Spinosaurus and probably much heavier. It grew up to 40 or 45 feet long, or 12 to almost 14 meters, and probably stood about 12 feet tall, or 3 ½ meters. It had massive teeth that were flattened with serrations along the edges like steak knives. The teeth were some eight inches long, or 20 cm.

Researchers think that Carcharodontosaurus used it massive teeth to inflict huge wounds on its prey, possibly by ambushing it. The prey would run away but Carcharodontosaurus could take its time catching up, following the blood trail and waiting until its prey was too weak from blood loss to fight back. This is different from other big theropod carnivores like T. rex, which had conical teeth to crush bone.

Dinosaurs weren’t the only big animals that lived in and around the River of Giants, of course. Lots of pterosaur fossils have been found around the river, including one species with an estimated wingspan of as much as 23 feet, or 7 meters. There were turtles large and small, a few lizards, early snakes, frogs and salamanders, and of course fish. Oh my goodness, were there fish.

The river was a large one, possibly similar to the Amazon River. In the rainy season, the Amazon can be 30 miles wide, or 48 km, and even in the dry season it’s still two to six miles wide, or 3 to 9 km. The Amazon is home to enormous fish like the arapaima, which can grow up to 10 feet long, or 3 m. Spinosaurus lived in the River of Giants, and that 50-foot swimming dinosaur was eating something. You better bet there were big fish.

The problem is that most of the fish fossils are incomplete, so paleontologists have to estimate how big the fish was. There were lungfish that might have been six and a half feet long, or 2 meters, a type of freshwater coelacanth that could grow 13 feet long, or 4 meters, and a type of primitive polypterid fish that might have been as big as the modern arapaima. Polypterids are still around today, although they only grow a little over three feet long these days, or 100 cm. It’s a long, thin fish with a pair of lungs as well as gills, and like the lungfish it uses its lungs to breathe air when the water where it lives is low in oxygen. It also has a row of small dorsal fins that make its back look like it has little spikes all the way down. It’s a pretty neat-looking fish, in fact. They’re called bichirs and reedfish and still live in parts of Africa, including the Nile River.

There were even sharks in the river of giants, including a type of mackerel shark although we don’t know how big it grew since all we have of it are some teeth. Another was a type of hybodont shark with no modern descendants, although again, we don’t know how big it was.

The biggest fish that lived in the River of Giants, at least that we know of so far, is a type of ray that looked like a sawfish. It’s called Onchopristis numidus and it could probably grow over 26 feet long, or 8 meters. Its snout, or rostrum, was elongated and spiked on both sides with sharp denticles. It was probably also packed with electroreceptors that allowed it to detect prey even in murky water. When it sensed prey, it would whip its head back and forth, hacking the animal to death with the sharp denticles and possibly even cutting it into pieces. Modern sawfish hunt this way, and although Onchopristis isn’t very closely related to sawfish, it looked so similar due to convergent evolution that it probably had very similar habits.

The modern sawfish mostly swallows its prey whole after injuring or killing it with its rostrum, although it will sometimes eat surprisingly large fish for its size, up to a quarter of its own length. A 26-foot long Onchopristis could probably eat fish over five feet long, or 1.5 meters. It wouldn’t have attacked animals much larger than that, though. It wasn’t eating fully grown Spinosauruses, let’s put it that way, although it might have eaten a baby spinosaurus from time to time. Spinosaurus might have eaten Onchopristis, though, although it would have to be pretty fast to avoid getting injured.

But there was one other type of animal in the River of Giants that could have tangled with a fully grown spinosaurus and come out on top. The river was full of various types of crocodylomorphs, some small, some large, some lightly built, some robust. Kemkemia, for instance, might have grown up to 16 feet long, or 5 meters, but it was lightly built. Laganosuchus might have grown 20 feet long, or 6 meters, but while it was robust, it wasn’t very strong or fast. It’s sometimes called the pancake crocodile because its jaws were long, wide, and flattened like long pancakes. Unlike most pancakes, though, its jaws were lined with lots and lots of small teeth that fit together so closely that when it closed its mouth, the teeth formed a cage that not even the tiniest fish could escape. Researchers think it lay on the bottom of the river with its jaws open, and when a fish swam too close, it snapped it jaws closed and gulped down the fish. But obviously, the pancake crocodile did not worry spinosaurus in the least.

Aegisuchus, on the other hand, was simply enormous. We don’t know exactly how big it is and estimates vary widely, but it probably grew nearly 50 feet long, or 15 meters. It might have been much longer, possibly up to 72 feet long, or 22 meters. It’s sometimes called the shield crocodile because of the shape of its skull.

We don’t have a complete specimen of the shield crocodile, just part of one skull, but that skull is weird. It has a circular raised portion called a boss made of rough bone, and the bone around it shows channels for a number of blood vessels. This is unique among all the crocodilians known, living and extinct, and researchers aren’t sure what it means. One suggestion is that the boss was covered with a sheath that was brightly colored during the mating season, or maybe its shape alone attracted a mate. Modern crocodilians raise their heads up out of the water during mating displays.

The shield crocodile had a flattened head other than this boss, and its eyes may have pointed upward instead of forward. If so, it might have rested on the bottom of the river, looking upward to spot anything that passed overhead. Then again, it might have floated just under the surface of the water near shore, looking up to spot any dinosaurs or other land animals that came down to drink. Watch out, dinosaur! There’s a crocodilian!

Could the shield crocodile really have taken down a fully grown spinosaurus, though? If it was built like modern crocodiles, yes. Spinosaurus was a dinosaur, and dinosaurs had to breathe air. If the shield crocodile hunted like modern crocs, it was some form of ambush predator that could kill large animals by drowning them. You’ve probably seen nature shows where a croc bursts up out of the water, grabs a zebra or something by the nose, and drags it into the water, quick as a blink. The croc can hold its breath for up to an hour, while most land animals have to breathe within a few minutes or die. The shield crocodile and spinosaurus also lived at the same time so undoubtedly would have encountered each other.

Then again, there’s a possibility that the shield crocodile wasn’t actually very fearsome, no matter how big it was. It might have been more lightly built with lots of short teeth like the pancake crocodile’s to trap fish in its broad, flattened snout. Until we have more fossils of Aegisuchus, we can only guess.

Fortunately, palaeontologists are still exploring the Kem Kem beds for more fossils from the river of giants. Hopefully one day soon they’ll find more shield crocodile bones and can answer that all-important question of who would win in a fight, a giant crocodile or a giant swimming dinosaur?

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way and get twice-monthly bonus episodes as well as stickers and things.

Thanks for listening!

Episode 181: Updates 3 and a lake monster!

It’s our annual updates and corrections episode, with a fun mystery animal at the end!

Thanks to everyone who contributed, including Bob, Richard J. who is my brother, Richard J. who isn’t my brother, Connor, Simon, Sam, Llewelly, Andrew Gable of the excellent Forgotten Darkness Podcast, and probably many others whose names I didn’t write down!

Further reading:

Northern bald ibis (Akh-bird)

Researchers learn more about teen-age T. rex

A squid fossil offers a rare record of pterosaur feeding behavior

The mysterious, legendary giant squid’s genome is revealed

Why giant squid are still mystifying scientists 150 years after they were discovered (excellent photos but you have to turn off your ad-blocker)

We now know the real range of the extinct Carolina parakeet

Platypus on brink of extinction

Discovery at ‘flower burial’ site could unravel mystery of Neanderthal death rites

A Neanderthal woman from Chagyrskyra Cave

The Iraqi Afa – a Middle Eastern mystery lizard

Further watching/listening:

Richard J. sent me a link to the Axolotl song and it’s EPIC

Bob sent me some more rat songs after I mentioned the song “Ben” in the rats episode, including The Naked Mole Rap and Rats in My Room (from 1957!)

The 2012 video purportedly of the Lagarfljótsormurinn monster

A squid fossil with a pterosaur tooth embedded:

A giant squid (not fossilized):

White-throated magpie-jay:

An updated map of the Carolina parakeet’s range:

A still from the video taken of a supposed Lagarfljót worm in 2012:

An even clearer photo of the Lagarfljót worm:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This is our third annual updates and corrections episode, where I bring us up to date about some topics we’ve covered in the past. We’ll also talk about an interesting mystery animal at the end. There are lots of links in the show notes to articles I used in the episode’s research and to some videos you might find interesting.

While I was putting this episode together, I went through all the emails I received in the last year and discovered a few suggestions that never made it onto the list. I’m getting really backed up on suggestions again, with a bunch that are a year old or more, so the next few months will be all suggestion episodes! If you’re waiting to hear an episode about your suggestion, hopefully I’ll get to it soon.

Anyway, let’s start the updates episode with some corrections. In episode 173 about the forest raven, I mentioned that the northern bald ibis was considered sacred by ancient Egyptians. Simon asked me if that was actually the case or if only the sacred ibis was considered sacred. I mean, it’s right there in the name, sacred ibis.

I did a little digging and it turns out that while the sacred ibis was associated with the god Thoth, along with the baboon, the northern bald ibis was often depicted on temple walls. It was associated with the ankh, which ancient Egyptians considered part of the soul. That’s a really simplistic way to put it, but you’ll have to find an ancient history podcast to really do the subject justice. So the northern bald ibis was important to the ancient Egyptians and sort of considered sacred, but in a different way from the actual sacred ibis.

In episode 146 while I was talking about the archerfish, I said something about how I didn’t fully understand how the archerfish actually spits water so that it forms a bullet-like blob. Bob wrote and kindly explained in a very clear way what goes on: “Basically, the fish spits a stream of water, but squeezes it so that the back end of the stream is moving faster than the front. So it bunches up as it flies and hits the target with one big smack. Beyond that, the water bullet would fall apart as the back part moves through the front part of the stream, but the fish can apparently judge the distance just right.” That is really awesome.

In another correction, Sam told me ages ago that the official pronouns for Sue the T rex are they/them, because that’s what Sue has requested on their Twitter profile. I forgot to mention this last time, sorry.

While we’re talking about Tyrannosaurus rex, researchers have IDed two teenaged T rex specimens found in Montana. Originally paleontologists thought the specimens might be a related species that grew to a much smaller size, Nanotyrannus, but the team studying them have determined that they were juvenile T rexes. To learn how old the specimens were and how fast they grew, they cut extremely thin slices from the leg bones and examined them under high magnification.

The study of fossil bone microstructure is called paleohistology and it’s a new field that’s helped us learn a lot about long-extinct animals like dinosaurs. We know from this study that T rex grew as fast as modern warm-blooded animals like birds and mammals, and we know that the specimens were 13 and 15 years old when they died. T rex didn’t reach its adult size until it was about twenty, and there are definite differences in the morphology of the juvenile specimens compared to an adult. The young T rexes were built for speed and had sharper teeth to cut meat instead of crush through heavy bones the way adults could. This suggests that juvenile T rexes needed to outrun both predators and smaller prey.

In other fossil news, Llewelly sent me a link about a pterosaur tooth caught in a squid fossil. We know pterosaurs ate fish because paleontologists have found fossilized fish bones and scales in the stomach area of pterosaur remains, but now we know they also ate squid. The fossil was discovered in Bavaria in 2012 and is remarkably well preserved, especially considering how few squid fossils we have. One of the things preserved in the fossil is a sharp, slender tooth that matches that of a pterosaur. Researchers think the pterosaur misjudged the squid’s size and swooped down to grab it from the water, but the squid was about a foot long, or 30 cm, and would have been too heavy for the pterosaur to pick up. One of its teeth broke off and remained embedded in the squid’s mantle, where it remains to this day 150 million years later.

And speaking of squid, the giant squid’s genome has been sequenced. Researchers want to see if they can pinpoint how the giant squid became so large compared to most other cephalopods, but so far they haven’t figured this out. They’re also looking at ways that the giant squid differs from other cephalopods and from vertebrates, including humans, to better understand how vertebrates evolved. They have discovered a gene that seems to be unique to cephalopods that helps it produce iridescence.

The Richard J. who is my brother sent me an article about giant squid a while back. There’s a link in the show notes. It has some up-to-date photos from the last few years as well as some of the oldest ones known, and lots of interesting information about the discovery of giant squid.

The Richard J. who is not my brother also followed up after the magpies episode and asked about the magpie jay. He said that the white-throated magpie jay is his favorite bird, and now that I’ve looked at pictures of it, I see why.

There are two species of magpie jay, the black-throated and the white-throated, which are so closely related that they sometimes interbreed where their ranges overlap. They live in parts of Mexico and nearby countries. They look a little like blue jays, with blue feathers on the back and tail, white face and belly, and black markings. Both species also have a floofy crest of curved feathers that looks like something a parrot would wear. A stylish parrot. Like other corvids, it’s omnivorous. It’s also a big bird, almost two feet long including the long tail, or 56 cm.

In other bird news, Connor sent me an article about the range of the Carolina parakeet before it was driven to extinction. Researchers have narrowed down and refined the bird’s range by researching diaries, newspaper reports, and other sightings of the bird well back into the 16th century. It turns out that the two subspecies didn’t overlap much at all, and the ranges of both were much smaller than have been assumed. I put a copy of the map in the show notes, along with a link to the article.

One update about an insect comes from Lynnea, who wrote in after episode 160, about a couple of unusual bee species. Lynnea said that some bees do indeed spin cocoons. I’d go into more detail, but I have an entire episode planned about strange and interesting bees. My goal is to release it in August, so it won’t be long!

In mammal news, the platypus is on the brink of extinction now more than ever. Australia’s drought, which caused the horrible wildfires we talked about in January, is also causing problems for the platypus. The platypus is adapted to hunt underwater, and the drought has reduced the amount of water available in streams and rivers. Not only that, damming of waterways, introduced predators like foxes, fish traps that drown platypuses, and farming practices that destroy platypus burrows are making things even worse. If serious conservation efforts aren’t put into place quickly, it could go extinct sooner than estimated. Conservationists are working to get the platypus put on the endangered species list throughout Australia so it can be saved.

A Neandertal skeleton found in a cave in the foothills of Iraqi Kurdistan appears to be a deliberate burial in an area where many other burials were found in the 1950s. The new skeleton is probably more than 70,000 years old and is an older adult. It was overlooked during the 1950s excavation due to its location deep inside a fissure in the cave. The research team is studying the remains and the area where they were found to learn more about how Neandertals buried their dead. They also hope to recover DNA from the specimen.

Another Neandertal skeleton, this one from a woman who died between 60,000 and 80,000 years ago in what is now Siberia, has had her DNA sequenced and compared to other Neandertal DNA. From the genetic differences found, researchers think the Neandertals of the area lived in small groups of less than 60 individuals each. She was also more closely related to Neandertal remains found in Croatia than other remains found in Siberia, which suggests that the local population was replaced by populations that migrated into the area at some point.

Also, I have discovered that I’ve been pronouncing Denisovan wrong all this time. I know, shocker that I’d ever mispronounce a word.

Now for a lizard and a couple of corrections and additions to the recent Sirrush episode. Last year, Richard J. and I wrote back and forth about a few things regarding one of my older episodes. Specifically he asked for details about two lizards that I mentioned in episode 21. I promised to get back to him about them and then TOTALLY FORGOT. I found the email exchange while researching this episode and feel really bad now. But then I updated the episode 21 show notes with links to information about both of those lizards so now I feel slightly less guilty.

Richard specifically mentioned that the word sirrush, or rather mush-khush-shu, may mean something like “the splendor serpent.” I totally forgot to mention this in the episode even though it’s awesome and I love it.

One of the lizards Richard asked about was the afa lizard, which I talked about briefly in episode 21. Reportedly the lizard once lived in the marshes near the Tigris and Euphrates rivers in what is now Iraq. Richard wanted to know more about that lizard because he wondered if it might be related to the sirrush legend, which is how we got to talking about the sirrush in the first place and which led to the sirrush episode. Well, Richard followed up with some information he had learned from a coworker who speaks Arabic. Afa apparently just means snake in Arabic, although of course there are different words for snake, and the word has different pronunciations in different dialects. He also mentioned that it’s not just the water monitor lizard that’s known to swim; other monitors do too, including the Nile monitor. I chased down the original article I used to research the afa and found it on Karl Shuker’s blog, and Shuker suggests also that the mysterious afa might be a species of monitor lizard, possibly one unknown to science. We can’t know for certain if the afa influenced the sirrush legend, but it’s neat to think about.

Next up, in cryptid news, Andrew Gable of the excellent Forgotten Darkness podcast suggested that some sightings of the White River Monster, which we talked about in episode 153, might have been an alligator—especially the discovery of tracks and crushed plants on the bank of a small island. This isn’t something I’d thought about or seen suggested anywhere, but it definitely makes sense. I highly recommend the Forgotten Darkness podcast and put a link in the show notes if you want to check it out.

And that leads us to a lake monster to finish up the episode. The Lagarfljót [LAH-gar-flote] worm is a monster from Iceland, which is said to live in the lake that gives it its name. The lake is a pretty big one, 16 miles long, or 25 km, and about a mile and a half wide at its widest, or 2.5 km. It’s 367 feet deep at its deepest spot, or 112 m. It’s fed by a river with the same name and by other rivers filled with runoff from glaciers, and the water is murky because it’s full of silt.

Sightings of the monster go back centuries, with the first sighting generally thought to be from 1345. Iceland kept a sort of yearbook of important events for centuries, which is pretty neat, so we have a lot of information about events from the 14th century on. An entry in the year 1345 talks about the sighting of a strange thing in the water. The thing looked like small islands or humps, but each hump was separated by hundreds of feet, or uh let’s say at least 60 meters. The same event was recorded in later years too.

There’s an old folktale about how the monster came to be, and I’m going to quote directly from an English translation of the story that was collected in 1862 and published in 1866. “A woman living on the banks of the Lagarfljót [River] once gave her daughter a gold ring; the girl would fain see herself in possession of more gold than this one ring, and asked her mother how she could turn the ornament to the best account. The other answered, ‘Put it under a heath-worm.’ This the damsel forthwith did, placing both worm and ring in her linen-basket, and keeping them there some days. But when she looked at the worm next, she found him so wonderfully grown and swollen out, that her basket was beginning to split to pieces. This frightened her so much that, catching up the basket, worm and ring, she flung them all into the river. After a long time this worm waxed wondrous large, and began to kill men and beasts that forded the river. Sometimes he stretched his head up on to the bank, and spouted forth a filthy and deadly poison from his mouth. No one knew how to put a stop to this calamity, until at last two Finns were induced to try to slay the snake. They flung themselves into the water, but soon came forth again, declaring that they had here a mighty fiend to deal with, and that neither could they kill the snake nor get the gold, for under the latter was a second monster twice as hard to vanquish as the first. But they contrived, however, to bind the snake with two fetters, one behind his breast-fin, the other at his tail; therefore the monster has no further power to do harm to man or beast; but it sometimes happens that he stretches his curved body above the water, which is always a sign of some coming distress, hunger, or hard times.”

The heath worm is a type of black slug, not a worm or snake at all, and it certainly won’t grow into a dragon no matter how much gold you give it. But obviously there’s something going on in the lake because there have been strange sightings right up to the present day. There’s even a video taken of what surely does look like a slow-moving serpentine creature just under the water’s surface. There’s a link in the show notes if you want to watch the video.

So let’s talk about the video. It was taken in February of 2012 by a farmer who lives in the area. Unlike a lot of monster videos it really does look like there’s something swimming under the water. It looks like a slow-moving snake with a bulbous head, but it’s not clear how big it is. A researcher in Finland analyzed the video frame by frame and determined that although the serpentine figure under the water looks like it’s moving forward, it’s actually not. The appearance of forward movement is an optical illusion, and the researcher suggested there was a fish net or rope caught under the water and coated with ice, which was being moved by the current.

So in a way I guess a Finn finally slayed the monster after all.

But, of course, the video isn’t the only evidence of something in the lake. If those widely spaced humps in the water aren’t a monstrous lake serpent of some kind, what could they be?

One suggestion is that huge bubbles of methane occasionally rise from the lake’s bottom and get trapped under the surface ice in winter. The methane pushes against the ice until it breaks through, and since methane refracts light differently from ordinary air, it’s possible that it could cause an optical illusion from shore that makes it appear as though humps were rising out of the water. This actually fits with stories about the monster, which is supposed to spew poison and make the ground shake. Iceland is volcanically and geologically highly active, so earthquakes that cause poisonous methane to bubble up from below the lake are not uncommon.

Unfortunately, if something huge did once live in the lake, it would have died by now. In the early 2000s, several rivers in the area were dammed to produce hydroelectricity, and two glacial rivers were diverted to run into the lake. This initially made the lake deeper than it used to be, but has also increased how silty the water is. As a result, not as much light can penetrate deep into the water, which means not as many plants can live in the water, which means not as many small animals can survive by eating the plants, which means larger animals like fish don’t have enough small animals to eat. Therefore the ecosystem in the lake is starting to collapse. Some conservationists warn that the lake will silt up entirely within a century at the rate sand and dirt is being carried into it by the diverted rivers. I think the takeaway from this and episode 179 is that diverting rivers to flow into established lakes is probably not a good idea.

At the moment, though, the lake does look beautiful on the surface, so if you get a chance to visit, definitely go and take lots of pictures. You probably won’t see the Lagarfljót worm, but you never know.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 170: Spinosaurus

This week let’s find out what has paleontologists so excited about this dinosaur!

Further reading:

The Nature article that kicked this all off (you can only read the abstract for free but it’s full of good information)

Paleontologist Who Uncovered Prehistoric River Monster’s Tail Explains Why It’s Such a Game Changer (Newsweek)

Further watching:

A good video about the new findings

Spinosaurus’s updated look:

This trackway from a swimming animal may have been made by a Spinosaurus (photo by Loic Costeur):

A male Danube crested newt, with a tail that somewhat resembles that of Spinosaurus:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

If you follow any paleontologists on social media, you’ve probably heard them talking about the new spinosaurus article just published in Nature. It sounds like the sort of discovery that makes other paleontologists take a closer look at fossils of dinosaurs related to spinosaurus, so this week let’s find out what the discovery is and what it means!

I could swear we’ve talked about Spinosaurus before, but a quick search revealed that we actually learned about its relative, Baryonyx, in episode 151. Baryonyx grew at least 33 feet long, or 10 meters, and lived around 125 million years ago. It had a skull similar to Spinosaurus’s but otherwise didn’t resemble it that much, and as far as we know it waded in shallow water to catch fish and other aquatic animals.

Spinosaurus was a therapod dinosaur that lived in the Cretaceous, roughly 112 to 93 million years ago. It lived in what is now North Africa and the species we’re talking about today is Spinosaurus aegyptiacus, which as you can probably guess was first discovered in Egypt.

Spinosaurus was as big as Tyrannosaurus rex, possibly larger depending on what measurements you’re looking at. It could probably grow some 52 feet long, or 16 meters, possibly as much as 59 feet long, or 18 meters. But it didn’t look very much like a T. rex. For one thing, its front legs were large and strong. Instead of T. rex’s massive skull and jaws, Spinosaurus had a more slender, narrow skull that was shaped something like a crocodile’s. It also had long neural spines on its back that may have formed a type of sail similar to Dimetrodon’s, although of course Spinosaurus and Dimetrodon weren’t related at all. Dimetrodon wasn’t a dinosaur or even technically a reptile, as we learned in episode 119.

Spinosaurus’s neural spines could grow almost five and a half feet long, or 1.65 meters, and if they did form a sail, it was roughly squared off instead of shaped like a half-circle. Some researchers think it wasn’t a sail at all but a fatty hump on its back something like a buffalo’s shoulder hump or a camel’s humps. The neural spines would help give the hump structure. Other researchers think it was a sail used for display, while one team of paleontologists suggested as early as 2014 that it was a sail that acted as a dorsal fin in the water, since it’s shaped like a sailfish’s dorsal fin.

Spinosaurus probably ate both meat and fish, so it makes sense that it lived in swampy areas like mangrove forests and tidal flats where it could hunt both terrestrial and water animals. Its hind legs were short, its feet were flat with long toes, and its toes may have been webbed. Its hind feet actually share features found in modern shorebirds, which suggests it spent a lot of time walking on soft ground like sand, marsh, and shallow water.

Despite its body length and short legs, Spinosaurus walked on its hind legs. Its tail was very long to balance the front of its body. And it’s the tail that is the focus of the Nature article everyone’s talking about right now.

See, despite Spinosaurus’s fish-eating, almost no one thought it was an aquatic dinosaur. No one thought any dinosaur swam around routinely to catch fish. The big predators that lived in oceans and fresh water at the same time as the dinosaurs were not dinosaurs, but were reptiles like the crocodile and Mosasaurus.

A few paleontologists, like the team that suggested Spinosaurus’s neural spines formed a sort of dorsal fin, had started suggesting Spinosaurus and its close relations were semi-aquatic. But almost no one agreed. Most scientists pointed out that Spinosaurus looked like an ordinary wading animal, not a swimming animal.

Then, in an article published in Nature on April 29, 2020, a new study revealed that Spinosaurus’s tail isn’t the ordinary long, skinny dinosaur tail. Instead, new physical models of its tail show “unambiguous evidence of [the tail acting as] an aquatic propulsive structure”. In other words, Spinosaurus could not only swim, it could probably swim quite well.

Its tail had tall neural spines like the ones on its back, some of them two feet long, or 61 cm, which gave it more surface area to push against the water. It was flexible and strong too.

So how come no one had noticed this before? Well, no one had the right fossils. Most of the tail bones studied were only found in 2018 and 2019 in Morocco by a team of Italian paleontologists. And guess what! The team of paleontologists were the same ones who suggested a few years ago that the neural spines on Spinosaurus’s back acted as a dorsal fin, led by a man named Nizar Ibrahim. While we still don’t know for sure, it’s looking more and more like they were correct. A dorsal fin provides stability in the water, and of course it could also act as a display feature to attract mates.

We don’t have very many Spinosaurus fossils. The only good specimen ever found was destroyed by a bomb in World War II, and it didn’t have a tail anyway. Until the 2018 expedition started turning up Spinosaurus vertebrae, no one knew what the tail looked like at all. The expedition found most of its tail and a lot of the rest of its bones, including part of the skull. While the fossils were found in the Sahara, back when Spinosaurus was alive the area was swampy and full of rivers, home to lots of large animals, including coelacanths and crocodiles. But Spinosaurus was probably the largest.

There is an animal that has a similar body plan to Spinosaurus’s, an amphibian called the Danube crested newt. It lives in parts of central Europe. It grows to about 7 inches long, or 18 cm, although males are smaller. It’s dark brown with black and white spots and an orange belly with larger black spots. During breeding season, the male develops a crest on its back and tail that does look a little bit like Spinosaurus’s sails. During the fall and winter it lives in the forest, but the rest of the year it lives in water. It eats small animals like insects and tadpoles.

The paleontologists studying Spinosaurus’s tail made a model of the Danube crested newt’s tail and some other animal tails and tested them to see which tail worked best to provide thrust underwater. The newt’s tail won.

That doesn’t mean Spinosaurus was necessarily a fast swimmer. The tail alone would allow it to move forward at around five miles an hour, or 1.6 km per hour. You can walk faster than that with a little effort. But if Spinosaurus also had webbed feet, it could have used them for extra propulsion in the water. It may have cruised through the water at a leisurely pace and ambushed unwary fish and other animals. In shallow water it could have used its hind feet to push off the bottom while it remained buoyant, and in fact we even have fossilized underwater tracks that may be made by Spinosaurus.

Other Spinosaurids were probably at least semi-aquatic too, although they don’t seem to be as well adapted to the water as Spinosaurus was. But now that they know what to look for, it could be that paleontologists will discover more evidence of aquatic dinosaurs soon.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 151: Fossils with other fossils inside

Thanks to Pranav who suggested this week’s amazing topic, animals that fossilized with the remains of their last meal inside!

Indrasaurus with a lizard inside. Yum!

Baryonyx:

Rhamphorhynchus (left, with long wing bones) and its Fish of Doom (right):

The fish within a fish fossil is a reminder to chew your food instead of swallowing it alive where it can kill you:

The turducken of fossils! A snake with a lizard inside with a bug inside!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a listener suggestion from Pranav, who has sent me so many amazing suggestions that he has his own page on the ideas spreadsheet. When he emailed me about this one, he just suggested cool fossils, but the links he provided had a really interesting theme that I never would have thought about on my own. This week we’re going to learn about some fossil animals that have fossils of their last meal inside them!

We’ll start with a recent discovery of a new microraptor species, Indrasaurus wangi, which lived about 120 million years ago. It was an interesting animal to start with, because it had arms that were very similar to bird wings, although with claws, but its hind legs also had long feathers that made it almost like a four-winged animal. It was found in 2003 in northeastern China, but when researchers were studying it in 2019 they found something amazing. Not only did it have an entire lizard skeleton where its stomach once was, showing us that it swallowed its prey whole, the lizard itself was a species new to science.

We know what else Indrasaurus ate because more Indrasaurus fossils have been found in the area, many of them so well preserved that its fossilized stomach contents have been preserved too. It ate mammals, birds, lizards, and fish—basically anything it could catch.

Another species that was similar to Indrasaurus, called Anchiornis, also called a four-winged bird-like dinosaur, was found with what appears to be a gastric pellet in its throat. The pellet contains the bones of more than one lizard and was probably ready to be horked up the way many carnivorous birds still regurgitate pellets made up of the indigestible parts of their prey, like bones, scales, and fur.

The fossilized remains of food inside a fossilized organism has a term, of course. It’s called a consumulite. It’s a type of bromalite, which is a broader term for any food or former food found in a fossilized organism’s digestive tract. The term bromalite also includes coprolites, which are fossilized poops.

Naturally, it requires a high degree of preservation for consumulites to form, and a high degree of skill to reveal the often tiny and delicate preserved details. And consumulites are important because they let us know exactly what the animal was eating.

Consumulites aren’t limited to prey animals, either. A small armored dinosaur, a type of ankylosaur, called Kunbarrasaurus, which lived around 115 million years ago in what is now Australia, was a herbivore. The type specimen of the species, which was described in 2015, was incredibly well preserved—almost the entire skeleton, most of its body armor, and the contents of its stomach. Paleontologists can determine not just what kinds of plants it had eaten—which include ferns and seeds—but how it was processing its food. Most herbivorous dinosaurs swallowed leaves and other plant parts whole, then crushed the food in a powerful gizzard or gizzard-like organ along with rocks or grit. The rocks helped break up the plant material, and we have lots of these rocks associated with fossilized dinosaurs. The rocks are called gastroliths and are usually worn smooth. But Kunbarrasaurus didn’t have any gastroliths, and the plant material was so well preserved that researchers could see the cut ends of the plants where Kunbarrasaurus had bitten them. And all the pieces were small. Kunbarrasaurus therefore probably chewed its food, which meant it also probably had lips and cheeks of some kind to help keep the food in its mouth while it was chewing.

Another example of an animal with a consumulite that helped solve a mystery about its diet is Baryonyx. Baryonyx is a type of spinosaurid, a theropod dinosaur that grew at least 33 feet long, or 10 meters. It was discovered in 1983 in Surrey, England, and was described in 1986. It lived around 125 million years ago. It walked on its hind legs and probably used its arms to tear its prey into bite-sized pieces, because its first finger had a huge claw 12 inches long, or 31 cm.

But its skull was the real puzzle. Most theropods are meat-eaters, although a few evolved to eat plants. But Baryonyx had a long, relatively slender snout with a lot of close-growing teeth, and a sort of bulb at the end of its snout called a rosette. It looks more like the skull of a crocodilian called a gharial than a theropod. But as far as anyone knew when Baryonyx was discovered, there were no fish-eating theropods.

Until 1997, that is, when paleontologists studying Baryonyx spotted some overlooked details. In addition to a gastrolith in its belly area, they found some fish scales and teeth that showed evidence of being damaged by digestive acids. It probably hunted by wading through shallow water like a heron, catching fish and other animals with its long toothy snout.

It’s not just dinosaurs that are found with consumulites. Animals of all kinds eat all the time, so as long as the conditions are right to fossilize the remains of an animal, there’s a chance that whatever food was in the digestive tract might fossilize too. For instance, the same part of China that has yielded amazingly well preserved feathered dinosaurs has also produced other animals—including a carnivorous mammal called Repenomamus that grew more than three feet long, or one meter. I think we’ve talked about Repenomamus before, because we have evidence that it actually ate dinosaurs—at least baby ones, or it might have scavenged already dead dinosaurs. Either way, it lived around 125 million years ago and was shaped sort of like a badger with a long tail, although it wasn’t related at all to badgers or any other modern mammal. It probably laid eggs like monotremes still do. The reason we know what Repenomamus ate is because one specimen was found with pieces of a young Psittacosaurus in its stomach.

In at least one case it’s hard to tell which animal should be considered the eater and which should be considered the eaten. A fossil slab found in Southern Germany and described in 2012 contains a Rhamphorhynchus associated with two different fish.

Rhamphorhynchus lived around 150 million years ago and was a type of pterosaur with a long tail. Its wingspan was about six feet across, or 1.8 meters. It mostly ate fish, which it probably caught not by flying down to grab fish out of the water, like eagles do, but by floating like a goose and diving for fish. It had large feet and short legs, which would have helped it take off from the water just like a goose.

A fish that lived at the same time as Rhamphorhynchus was called Aspidorhynchus, and it grew up to two feet long, or 60 cm. It had long jaws filled with teeth, with the upper jaw, or rostrum, extending into a pointy spike.

In the fossil found in Germany, a Rhamphorhynchus has a small fish in its throat that it had probably just caught. While it was still swallowing it, an Aspidorhynchus fish attacked! But things obviously went wrong for everyone involved. Researchers suggest that the fish’s rostrum cut right through the flying membrane of Rhamphorhynchus’s left wing. The fish bit down but its teeth became tangled in the tissue. It started thrashing to free itself and Rhamphorhynchus was thrashing around too trying to get away, which only got them more tangled up together. The fish dived, drowning Rhamphorhynchus, and the weight of its body dragged Aspidorhynchus into deep water where there wasn’t enough oxygen for it to survive. It died too, and its heavier body lay partially across Rhamphorhynchus, holding it down so it wouldn’t drift away. The fossil shows Rhamphorynchus, Aspidorhynchus, and the tiny fish that Rhamphorhynchus never did get to finish swallowing.

Another fish, Cimolichthys, lived around 75 or 80 million years ago and grew a little over six feet long, or two meters. Its body was heavily armored by large scutes and it had several rows of teeth. It may have been related to modern salmon. It lived in what is now North America and Europe, and ate fish and squid. We know it ate fish and squid because, of course, we have the remains of various last meals found with preserved fossil Cimolichthys. For instance, one specimen was found with the internal shell of a cephalopod lodged in its throat. Researchers suspect the fish had tried to swallow a Tusoteuthis that was too big to fit down its throat. The Tusoteuthis got stuck and blocked the flow of water over the fish’s gills, basically drowning it. Tusoteuthis, by the way, could possibly grow up to 36 feet long, or 11 meters, although that depends on whether it had long feeding tentacles like modern squid or not. If it didn’t have long feeding tentacles, it was probably only about 19 feet long, or 6 meters, which is pretty darn big anyway. I wouldn’t want to have to swallow that thing whole. Not even if it was deep-fried first.

Another fish called Xiphactinus, which grew up to 20 feet long, or 6 meters, lived in the late Cretaceous period. It died out at the same time as the non-avian dinosaurs. It had massive fangs and was a terrifying predator, but sometimes that backfires. The fossil of a 13 foot, or 4 meter, Xiphactinus was found with a 6 foot long, or 1.8 meter, fish called Gillicus inside it. Paleontologists think Xiphactinus swallowed its prey whole, which thrashed around so much inside it that it ruptured an organ and killed the predator fish. Both fish sank to the bottom of the shallow Western Interior Seaway in North America until it was discovered in 1952.

Let’s finish with two even more incredible fossils. In 2008 paleontologists found a fossilized freshwater shark they dated to 250 million years ago. Right before it died, it had eaten two animals called temnospondyls. Temnospondyls were common animals, with many species found throughout the world, and researchers still aren’t sure if they were the ancestors of modern amphibians or a similar type of animal that died out without any descendants. One of the temnospondyls that the shark ate had the well digested remains of a spiny fish in its stomach.

But a few years later researchers in Germany found something even better. It’s a fossilized snake called a Palaeopython, related to boas. It was about three feet long, or one meter, and was still young. If it had lived to grow up, it would have doubled in size. It lived in trees but also hunted along the edges of rivers and lakes. About 48 million years ago, this particular snake caught a lizard that’s related to modern basilisk lizards. It swallowed the lizard headfirst. But then the snake died, possibly asphyxiated by a cloud of carbon dioxide from the volcanic lake nearby. We have a lot of incredibly detailed fossils from that lake, known as the Messel Pit.

Researchers aren’t sure how the snake made it into the lake. Maybe it was already in the shallow water when it died, or on the bank, and a wave washed it into the water. Maybe the wave was actually what killed the snake, washing it into the lake where it drowned. However it died, it sank into deep water and was covered in sediment that preserved it. Then, 48 million years later, paleontologists found it.

When the fossil was cleaned and prepared for study, researchers found that the lizard was preserved inside it. But there was another surprise inside the lizard! Right before it had been eaten by the snake, the lizard had eaten an insect. And the insect was so well preserved that researchers could tell it had an iridescent exoskeleton.

If I was fossilized right now, paleontologists from the far future would find a lot of chocolate in my stomach. Happy holidays to everyone, whatever your reason for celebrating at this time of year!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 132: Paleontological Frauds

Ever heard of the Piltdown Man? What about Missourium or Archaeoraptor? They’re all frauds! Let’s learn about them and more this week.

Further reading:

The Chimeric Missourium and Hydrarchos

Investigation of a claim of a late-surviving pterosaur and exposure of a taxidermic hoax: the case of Cornelius Meyer’s dragon

Missourium was literally an extra mastodon:

Hydrarchos (left) was a lot more, um, exciting than its fossil donors, six Basilosauruses (right):

Piltdown man’s suspicious skull:

A lot of people were excited about Archaeoraptor:

Not a pterosaur:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Last week we learned about some mistakes paleontologists made while working out what an extinct animal looked like using only a few fossilized bones. Mistakes are a normal part of the scientific method, no matter how silly they seem once we know more about the animal. But this week we’re going to look at some frauds and hoaxes in the paleontology world.

We really need to start with a man named Albert Koch. He was from Germany but moved to the United States in 1835, and was something of a cut-rate PT Barnum. He called himself Dr. Koch although he hadn’t earned a doctorate. A lot of the so-called curiosities he displayed were fakes.

Back in the mid-19th century, fossils had only recently been recognized as being from animals that lived millions of years before. People were still getting their heads around that concept, and around the idea that animal species could even go extinct. Then the fossils of huge animals started to be discovered—and not just discovered, but displayed in museums where the public could go look at them. Naturally they were big hits.

Sometimes these fossil exhibits weren’t free. For example, the mounted fossil skeleton of a mastodon was exhibited by the naturalist Charles Peale starting in 1802—one of the first fossil exhibits open to the public. Peale and his workers had mounted the skeleton to seem even larger than it really was by putting wooden discs between some of the bones. But the exhibit was primarily meant to educate, not just bring in money. It cost 50 cents to see the mastodon and lots of people wanted to. These days Peale’s mastodon is on display in Germany, without the wooden discs.

Albert Koch knew about Peale’s mastodon, and more to the point he knew how much money Peale had made off his mastodon. Koch wanted one for himself.

In 1840 he heard about a farmer in Missouri who had dug up some huge bones. Koch bought the bones and assembled them into a mastodon. But Koch wasn’t a paleontologist, he didn’t care about educating the public, and when he looked at those fossils, he just saw dollar signs. And he had ended up with bones from more than one mastodon, so, you know, he used them all. And he added wooden discs between the bones to make the animal bigger. A lot bigger. Between the wooden discs and the extra bones, Koch’s skeleton was twice the size of a real mastodon. Plus, he turned the tusks around so that they pointed upward, either because he didn’t know any better or because he thought that looked more exciting.

He called his mastodon Missourium and displayed it at his exhibit hall in St. Louis, Missouri later in 1840. It was a hit, and in 1841 he decided he’d make more money if he took Missourium on the road. He packed the massive skeleton up, sold his exhibit hall, and went on tour with just the mastodon.

Paleontologists spoke out against Koch’s Missourium as being unscientific, but that only gave him free publicity. People thronged to his exhibit for the next two years, until 1843 when he sold it to the British Museum. Needless to say, the experts at the British Museum promptly disassembled Missourium so they could study the fossils properly before remounting them into a mastodon that didn’t contain any extra ribs and vertebrae. Also, they put the tusks on the right way up.

But Koch wasn’t done riding roughshod over paleontology. To learn about what he did next, we have to learn about an animal called Basilosaurus.

Despite its name, Basilosaurus isn’t a dinosaur or even a reptile. It’s a mammal—specifically a whale, although it didn’t look like any whale alive today. It probably grew up to 70 feet long, or over 21 meters, with long jaws full of massive teeth—more like a crocodile or mosasaur than a whale. It had short flipper-like front legs that still had an elbow joint. Modern whales don’t have elbows. It also had little nubby hind legs, but the legs were far too small to support its weight on land. It probably mostly lived at or near the surface of the ocean since its vertebrae were large, hollow, and filled with fluid, which would have made Basilosaurus buoyant. It wouldn’t have been able to dive much at all as a result. It ate sharks and fish as well as smaller whale relatives.

Basilosaurus went extinct around 34 million years ago. Modern whales aren’t related to it very closely, although modern whales did share an ancestor with Basilosaurus. But Basilosaurus was a common animal and its fossils are relatively common as a result. They were so common, in fact, that they were sometimes used as house supports in parts of the American South.

In 1835 a British naturalist named Richard Harlan examined some fossils found in Alabama and decided it was a marine reptile, which he named Basilosaurus, which means king lizard. The mistake was corrected soon after when another paleontologist determined that the animal was a whale-like mammal, but it was too late to change the name due to taxonomic rules in place to minimize confusion. That’s why Basilosaurus is sometimes called Zeuglodon, since that was the name everyone wanted as a replacement for Basilosaurus.

In 1845, Albert Koch got hold of a lot of Basilosaurus fossils and decided this was his next big thing. And again, he didn’t care what Basilosaurus was or what it was called, he just wanted that moolah.

He constructed a mounted skeleton with the Basilosaurus fossils. But just as he did with his mastodon fossils, he didn’t arrange them as they appeared in life. He constructed a sea serpent that was 114 feet long, or almost 35 meters, and contained bones from six Basilosauruses, as well as some ammonite shells to bulk it out even more. He named it Hydrarchos and exhibited it first in New York City, then went on tour throughout the United States and Europe. It was even more popular than Missourium. Heck, I would have paid to see it.

Koch sold Hydrarchos to King Friedrich Wilhelm IV of Prussia, who exhibited it in the Royal Anatomical Museum in Berlin even though the paleontologists there really, really didn’t want it. Kock promptly bought more Basilosaurus bones and built a new fake, a mere 96 feet long this time, or 29 meters. He toured with it and sold it to another flim-flam artist in Chicago, who exhibited it until 1871, when the great Chicago fire destroyed it and most of the rest of Chicago.

Koch wasn’t the only person putting together real bones to make a fake animal back then, but at least he did it for the money. Other fakes were more insidious because we aren’t even sure why the hoaxer did it. That’s the case with the so-called Piltdown Man.

This is how the story goes. A man called Charles Dawson said that a worker at a gravel pit in Piltdown had given him a piece of skull in 1908. Dawson searched the pit and found more pieces, which he gave to a geologist at the British Museum, Arthur Woodward. Woodward and Dawson both returned to the gravel pit in 1912, where they found more pieces of the skull and part of a jawbone. Woodward reconstructed the skull from the pieces and reported that the ape in question must be a so-called missing link between humans and apes.

Just going to mention here that if anyone refers to a fossil as a missing link, you should be suspicious that maybe they don’t actually know what they’re talking about, or that the fossil is a fake.

Not everyone agreed with the reconstruction. In 1913, Woodward, Dawson, and a geologist and priest named Pierre Teilhard de Chardin returned to the gravel pit. Teilhard found an ape-like canine tooth that fit the jaw. But the tooth raised even more controversy, leading to the loss of friendships and colleagues splitting into camps for and against the Piltdown fossil. Teilhard de Chardin washed his hands of the whole thing and moved to France, and later helped discover Homo erectus, one of our direct ancestors.

Piltdown Man, of course, was a fake. Some people had already suspected it was a fake in 1912, and through the years afterwards people repeatedly examined the bones and kept pointing out that it was a fake. Now, of course, it’s easy for researchers to see that the jaw and teeth are from an orangutan while the skull is from a human. But for a long time, no one was sure who was behind the hoax. Was it Dawson, Woodward, Teilhard de Chardin, or all of them together? Or did someone else plant the fakes for those people to find?

In 2008, a team of experts decided to examine the fossil and the circumstances surrounding its so-called discovery. It took them eight years. They determined that the orangutan teeth were all from the same animal while the pieces of skull came from at least two different people and were possibly several hundred years old. The jaw and skull pieces had been treated with putty, paint, and stain to make them look fossilized, with some carving to make the bones match up better. The hoaxer had even crammed pebbles into the natural hollow places inside the bones, then puttied them over, presumably to make the bones weigh more and therefore feel more like fossils.

All these methods were the work of a single person, and experts have seen that person’s work before. Charles Dawson was an amateur geologist, historian, and archaeologist who “discovered” a lot of things, almost all of which have been proven to be hoaxes. But the Piltdown man hoax was the one that got him into the history books, even if only as a cheater.

So why did Dawson do it? It’s possible he wanted Britain to be home to a human ancestor more impressive than Homo heidelbergensis, which was discovered in Germany in 1907 and which was probably the common ancestor of humans and Neandertals. More likely, he just wanted to be part of the excitement of a big discovery, one which would bring him the respect of the professional scientists he envied. His other hoaxes had brought him a certain amount of fame and weren’t discovered during his lifetime, so he just kept making them.

You’d think the days of faked fossils were behind us now that paleontology is so much more sophisticated. But fake fossils are actually more of a problem now than ever, mostly because fossils can be worth so much money. Usually the fakes are obvious to experts, but sometimes they’re much more sophisticated and can fool paleontologists for at least a short time. And that brings us to Archaeoraptor.

In 1999, National Geographic announced the discovery of a feathered dinosaur fossil from China, which was a mixture of elements seen in both dinosaurs and birds. National Geographic called it a missing link between dinosaurs and birds.

Yep, another missing link.

Archaeoraptor looked like a small dinosaur but with feather impressions. This doesn’t sound weird to us now, but in 1999 it was shocking. Dinosaurs with feathers? Who ever heard of such a thing! Supposedly, the farmer who found the fossil had cemented the broken pieces together as best he could before selling it to a dealer. The fossil ended up in the United States where it was bought in early 1999 by The Dinosaur Museum in Utah for $80,000.

The National Geographic Society was interested in publishing an article about it in the magazine after the official description appeared in Nature. But Nature rejected the description. The paleontologists tried the journal Science next but again, Science rejected it. By then, other paleontologists who had examined the fossil reported that it wasn’t one fossilized animal but pieces from at least three different animals glued together to look like one. Albert Koche would be proud.

But National Geographic decided not to pull the article. It appeared in the November 1999 issue and the fossil itself was put on display at the National Geographic Society in Washington DC.

Meanwhile, a paleontologist named Xu Xing who’d seen the Archaeoraptor fossil thought it looked really familiar. He asked around in the area of China where Archaeoraptor was supposedly found, and eventually discovered the fossil of a small dinosaur called dromaeosaur. The tail of Archaeoraptor matched the tail of the Dromaeosaur fossil exactly—like exactly, right down to a yellow ochre stain in the same place. This doesn’t mean it was a fake or a copy, but that the two pieces had once been joined. Quite often fossils leave impressions on both sides of a piece of rock, which are called the slab and counterslab. Once Xing’s information got out, people started calling the fossil the Piltdown bird.

Remember last week when an extinct peccary tooth was misidentified as an ape tooth? People who didn’t believe evolution was real claimed that that one mistake proved they were right and all of science was wrong wrong wrong. Well, the same argument is going on today with people who still don’t believe evolution is real. For some reason they think that because Archaeoraptor was a hoax, evolution is somehow also a hoax—even though we now have plenty of perfectly genuine feathered dinosaur fossils that show how a branch of dinosaurs evolved into modern birds.

There are a lot of hoaxed fossils coming from China, which has some of the world’s most amazing fossil beds and some of the most amazingly well preserved fossils in the world. But because the people finding them are often desperately poor farmers, it’s common for fossils to be sold to dealers for resale. The dealers prepare the fossils and sometimes, to improve the resale value, they add details that aren’t really there to make the fossils seem more valuable. Even worse, the preparation by non-experts and those added details often destroy parts of the fossil that are then lost to science forever. And because the fossils are dug up by non-experts, paleontologists usually don’t know exactly where the fossils were found, which means they can’t properly estimate the fossil’s age and other important information.

Let’s finish with a very old hoax that was started for the best of reasons but took some unusual twists and turns. Way back in the late 17th century, the countryside near Rome in Italy kept getting flooded by rivers. Rumor had it that a dragon-like monster was responsible, that when it moved around too much in the river where it lived, the river overflowed its banks like water out of an overfull bathtub. In actuality the area is in a natural floodplain so of course it was going to flood periodically, but that didn’t make it any easier for the people who lived there.

A Dutch engineer, architect, and engraver named Cornelius Meyer had a solution, though, involving levees to make the River Tiber more navigable and less prone to flooding. He started the project around 1690 but had trouble with his local workers. They expected to come across the dragon at any moment, which made them reluctant to get too near the river.

So Meyer decided to show them that the local dragon was dead. In 1691 he “found” its remains and mounted them to put on display. The workers were satisfied and got to work building the levees that did exactly what Meyer promised, reducing flooding and saving many lives. No one knows what happened to Meyer’s dragon, but we have an engraving he made of it in 1696. You can see it in the show notes. It shows a partially skeletal monster with hind legs, bat-like wings, a long tail, and horns on its skeletal head.

Centuries later, in 1998 and again in 2006, two men saw the engraving reprinted in a book about dragons published in 1979 and decided it was a depiction of a recently killed pterosaur. Wait, what? Pterosaurs disappear from the fossil record at the same time as non-avian dinosaurs, about 66 million years ago. Why would anyone believe Meyer’s dragon was a pterosaur? It didn’t even look like one.

The two men were part of a group called the young-earth creationists, who believe the earth is only about 6,000 years old. In order to shoehorn the entire 4 ½ billion years of earth’s actual history into only 6,000 years, they claim that rocks only take a few years to form and that dinosaurs and other extinct animals either still survive today in remote areas or survived until modern times. I shouldn’t have to point out that their ideas make no sense when you understand geologic processes and other fields like cosmology, the study of the entire universe and how planets form. Young-earth creationists are always on the lookout for anything that fits their theories, like so-called living fossils and cryptids that resemble dinosaurs, like the mokele mbembe we talked about way back in episode two. I’m not sure why they think that finding a living dinosaur would prove that the earth is only 6,000 years old. All it would prove is that that a non-avian dinosaur survived the Cretaceous-Paleogene extinction event 66 million years ago.

Anyway, these two men decided that Meyer’s dragon was a pterosaur, which brought the engraving to the attention of modern scientists, who hadn’t known about it before. Obviously the dragon wasn’t actually a pterosaur. What was it?

The original remains were long gone, but the engraving was of extremely high quality. In 2013 researchers were actually able to determine what animal bones Meyer had used to make his dragon. The skull is from a dog, the jaw is from another dog, the ribs are from a large fish, the hind limbs are actually the front leg bones of a young bear, and so on. The wings, horns, and a few other parts are carvings.

Gradually, historians pieced together the real story behind Meyer’s dragon. We don’t know who actually made the fake dragon, but they did a great job. But it wasn’t a real dragon, and it definitely wasn’t a pterosaur.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 131: Paleontological Mistakes

Part of the scientific method involves making mistakes and correcting them. Here are some interesting and sometimes goofy mistakes made by paleontologists through the years, and how the mistakes were corrected.

Iguanodon did not actually look like this (left). It looked like this (right):

Pterosaur did not actually look like this (left). It looked like this (right):

Elasmosaurus did not actually look like this (left). It looked like this (right):

Apatosaurus/brontosaurus did not actually look like this (left). It looked like this (right):

Stegosaurus did not actually look like this (left). It looked like this (right):

Gastornis did not actually look like this (left). It looked like this (right):

Those are Gastornis’s footprints:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Paleontology is the study of fossils, and really it’s only been a discipline for a little over a century. Back in the 19th and early 20th centuries, even experts made major mistakes in preparing and assembling fossil skeletons, and dishonest amateurs made deliberate errors so their fossil animals looked bigger or scarier. Many of these mistakes or hoaxes were displayed in museums, sometimes for decades.

I found so many interesting examples during my research that I decided to split the episode into two. This week we’ll learn about some paleontological mistakes and what the fossil animals really looked like when they were alive. Next week we’ll look at the frauds and hoaxes.

We’ll start with Iguanodon, a dinosaur that lived around 125 million years ago in what is now Europe. It ate plants and was fairly common, with a number of species now known to science. The biggest could grow as much as 43 feet long, or 13 meters. It had teeth that resemble an iguana’s, which is how it gets its name, and a beak probably covered in keratin that it used to clip through tough plants. It probably mostly walked on two legs and browsed from trees, but its front legs were long and it might have spent at least some of its time on all fours. But the most interesting thing about Iguanodon was its hands. Its little finger was slender and usually longer than the others and many researchers think it was used for handling food and other objects. The first finger, which is equivalent to a thumb, wasn’t so much a digit as just a big spike. It’s called a thumb spike and no one’s sure what it was for. It might have been used for defense, but it might also have been used to help dig up plants. Maybe it was used for both. But it was the source of an embarrassing mistake that many paleontologists made for years.

Iguanodon came to the attention of science in 1822 when a medical doctor in Sussex, England found some fossilized teeth. No one was sure what kind of animal the teeth belonged to, although guesses ranged from a crocodile to a rhinoceros. In 1824 the doctor, Gideon Mantell, noted the teeth’s resemblance to iguana teeth, but so big that he estimated Iguanodon must have been almost 60 feet long, or 18 meters. He also thought Iguanodon looked like an iguana.

In 1834 more Iguanodon fossils came to light in a quarry and Mantell bought them. This incomplete skeleton included a thumb spike, but Mantell didn’t know where it belonged. He thought it was a horn, so when he made a drawing of the living animal, he placed the thumb spike on the nose.

And there it stayed, despite other fossils found with the thumb spike in place on the hand, and despite other scientists pointing out that they didn’t think Iguanodon had a horn on its nose. It wasn’t until 1882 that the nose horn vanished for good and Iguanodon started looking more like itself.

Similarly, pterosaurs have been misunderstood since the very beginning, with a lot of frankly ridiculous suggestions made about them. To be fair, they are really strange animals and nothing like any animal living today. The first pterosaur was described in 1784 by an Italian naturalist, but he thought it was a swimming animal and that its wing bones were actually flippers. Zoologist Georges Cuvier pointed out it was a flying reptile in 1801, but the swimming hypothesis wasn’t abandoned for decades after that. Even after the flying part was accepted by other researchers and the general public, many people believed they were related to bats for a remarkably long time. In 1843 one scientist suggested pterosaurs were not only bats, but specifically marsupial bats. (There are no marsupial bats. Bats are placental mammals.) The notion that pterosaurs and bats were related hung around a really long time, right up to the 1930s, although experts had more or less figured it out by then.

Elasmosaurus lived around 80 million years ago and was a type of plesiosaur. We talked about Elasmosaurus in episode 92 about marine reptiles. It wasn’t a dinosaur but it lived at the same time as dinosaurs, and could grow up to 34 feet long, or over 10 meters. It had a very long neck containing 72 vertebrae, a short tail, and four paddle-like legs. These days we know that the neck wasn’t very flexible, but for a long time Elasmosaurus and its relatives were depicted with flexible, serpentine necks. But the real mistake came when it was first discovered.

The first Elasmosaurus fossil was found in Kansas in 1867 and given to Edward Cope, a well-known paleontologist who discovered many fossil species found in North America.

The problem was, Cope was the bitter rival of another well-known paleontologist, Othniel Marsh. The two men were so frantic to publish more descriptions of new animals than the other that it sometimes led to sloppy work. That may have been why, when Cope described Elasmosaurus in 1869, he placed its head at the end of its tail so that it looked like it had a short neck and a really long tail instead of the other way around. The bones were all jumbled together and the jaws had ended up at the wrong end of the skeleton when it was covered over with sediment and the fossilization process began.

Another paleontologist pointed out Cope’s mistake only a few months later. Cope tried to buy up all the copies of the article and reissued a corrected version. But Cope’s nemesis Marsh got hold of a copy of the original article and was absolutely gleeful. He never would let Cope forget his mistake, and in fact it was the final straw in the relationship between the two. Cope and Marsh had started out as friends but their friendship soured, and by 1870 they pretty much loathed each other.

But Marsh made his own mistakes. In 1877 he found a dinosaur he named Apatosaurus, although the specimen was missing a skull. He used the skull of a different dinosaur when he prepared the specimen. Then in 1885 his workers found a similar-looking skeleton with a skull. He named it Brontosaurus.

Guess what. They were the same animal. Marsh was so eager to describe a new dinosaur that Cope hadn’t described yet that he didn’t even notice. But for some reason the name Brontosaurus stuck in pop culture, which is why you probably know what a Brontosaurus was and what it looked like, while you may never have heard of Apatosaurus. The mistake has been corrected and the dinosaur’s official scientific name is Apatosaurus, but Marsh’s Apatosaurus skeleton from 1877 didn’t get the right skull until 1979. The skeleton had been on display with the wrong skull for almost a century, but researchers found the correct skull that had been unearthed in 1910 and stored away.

Apatosaurus lived in North America around 150 million years ago and was enormously long, growing on average 75 feet long from head to tail, or 23 meters. It ate plants, and some researchers suggest that it used its incredibly long tail as a whip to scare predators by cracking the whip and making a loud noise. This sounds absurd but the physiology of the tail’s end supports that it could probably withstand the pressures involved in a whip-crack. The neck was also quite long and researchers are still debating how flexible it was. The reason so much old artwork of Apatosaurus/Brontosaurus shows the animal standing in water eating swamp plants is because scientists used to think it was such a heavy animal that it couldn’t even support its own weight out of the water, much like whales. Not true, of course. It had strong, column-like leg bones that had no trouble supporting its weight on dry land, and it lived on what are referred to as fern savannas. Grass hadn’t yet evolved so the main groundcover was made up of ferns.

The name Brontosaurus has been retained for some Apatosaurus relations, fortunately, because it’s a pretty nifty name. It means thunder lizard.

Marsh is also responsible for the notion that some of the larger dinosaurs, specifically Stegosaurus, had a second brain at the base of their tails. This isn’t actually the case at all. Marsh just couldn’t figure out how such a large animal had such a small brain. Then again, Marsh also thought Stegosaurus’s tail spikes, or thagomizer, belonged on its back while its back plates belonged on its tail.

If you want to learn more about the Stegosaurus, check out episode 107 where we learn about it and Ankylosaurus. It’s too bad a paleontologist named Charles Gilmore couldn’t listen to that episode, because in 1914 he decided the back plates were osteoderms that lay flat on its skin. This was an early idea of Marsh’s that he had rejected early on but which Gilmore liked. Gilmore also thought the thagomizer spikes grew between the back plates so that the Stegosaurus was covered in both big plates like armor with spikes in between the plates.

A man named Henry Fairfield Osborn made a couple of mistakes too. He was the guy who named Oviraptor, which means “egg thief.” That was a reasonable assumption, really, since the first specimen was found in 1923 in a nest of Protoceratops eggs…but the Protoceratops eggs were later found to actually be Oviraptor eggs, and Oviraptor was just taking care of its own nest.

In 1922 Osborn was the president of the American Museum of Natural History when a rancher sent him a fossil tooth he’d found in Nebraska in 1917. Paleontologists often have to extrapolate an entire animal from a single fossil, and teeth are especially useful because they tell so much about an animal. So Osborn examined the tooth carefully and published a paper describing the ape that the tooth came from.

If you remember, though, there are no apes native to the Americas, just monkeys. The media found out about the discovery and wrote articles about the missing link between humans and apes, which was a popular topic back before people fully understood how evolution worked and when so little was known about human ancestry. The papers called the fossil ape the Nebraska man.

Then, a few years later, paleontologists went to Nebraska to find the rest of the fossilized ape bones. And while they did find them, they didn’t belong to an ape. The tooth came from a species of extinct peccary. You know, a type of pig relation. Peccaries do evidently have teeth that look a lot like human teeth, which is kind of creepy, plus the fossil tooth was badly weathered. Osborn retracted his identification in 1927.

All this wouldn’t have been a big deal except that people who didn’t believe evolution was real decided that this one relatively small mistake, quickly corrected, meant ALL scientists were ALL wrong FOREVER.

We’ll finish with a bird fossil, a bird you’ve probably never heard of although it’s massive. The first Gastornis fossil was found in the mid-19th century near Paris and described in 1855. More fossils were found soon after, and in the 1870s there were enough Gastornis bones that researchers were able to reconstruct what they thought it looked like, a gigantic crane. They were wrong.

Gastornis was as big as a big moa, over six and a half feet high, or 2 meters. It had a heavy beak and a powerful build that for over a century led many paleontologists to think it was a predator. But these days, we’re pretty sure it only ate tough plant material. Its bill could have crushed nuts but wasn’t the right shape to strip meat from bones, and a carbon isotope study of Gastornis bones indicate that its diet was entirely vegetarian.

Gastornis had vestigial wings that probably weren’t even visible under its body feathers. It was actually related most closely to modern waterfowl like ducks and geese. We have some fossilized Gastornis eggs and they were bigger than ostrich eggs, although they were shaped differently. They were oblong instead of ovoid, about ten inches long, or over 25 cm, but only four inches in diameter, or 10 cm. Only the elephant bird of Madagascar laid bigger eggs. We even have two fossil feather impressions that might be from Gastornis, and some fossil footprints in Washington state that show Gastornis had three toes with blunt claws. The bird went extinct around 40 million years ago.

At about the same time that Gastornis was being described in Europe as a kind of giant wading bird, our old friend Edward Cope found some bird fossils in New Mexico. He described the bird in 1876 as Diatryma gigantea and recognized that it was flightless. Cope’s deadly enemy Othniel Marsh also found a bird’s toe bone and described it as coming from a bird he named Barornis regens in 1894. As more and more fossils were found, however, it became clear that Cope’s and Marsh’s birds were from the same genus, so Barornis was renamed Diatryma.

By then, some paleontologists had already suggested that Diatryma and Gastornis were the same bird. In 1917 a nearly complete skeleton, including the skull, was discovered in Wyoming in the United States, but it didn’t really match up to the 1881 reconstruction of Gastornis.

But in the 1980s, researchers looked at that reconstruction more closely. It turned out that it contained a lot of mistakes. Some of the elements weren’t from birds at all but from fish and reptiles, and some of the broken fossil bones had been lengthened considerably when they were repaired with plaster. A paper published in 1992 highlighted these mistakes, and gradually the use of the term Diatryma was changed over to Gastornis.

So remember, everyone, don’t be afraid to make mistakes. That’s how you get better at things. And for the same reason, don’t make fun of other people who make mistakes. Other people get to learn stuff too. And even if you don’t think you’ve made a mistake, maybe double check to make sure you didn’t accidentally include a fish fossil in your extinct flightless bird reconstruction.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 125: Triceratops and other ceratopsids

It’s time to learn about some more dinosaurs, ceratopsids, including the well-known Triceratops!

Triceratops:

An artist’s frankly awesome rendition of Sinoceratops. I love it:

A Kosmoceratops skull:

Pachyrhinosaurus had a massive snoot:

Protoceratops:

Fighting dinos!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Back in episode 107, about ankylosaurus and stegosaurus, I mentioned that one day I’d do an episode all about triceratops and its relations. Well, that day is today. It’s the ceratopsid episode!

Ceratopsids are a family of dinosaurs with elaborate horns on their faces and frills on the back of their heads. They almost all lived in what is now North America and most of them lived in the late Cretaceous. Triceratops is the most well known, so we’ll start with it.

The name triceratops, of course, means three face horns, and it did indeed have three face horns. It had one on its nose and two on its brow, plus a frill that projected from the back of its skull.

Triceratops was a big animal, around 10 feet high at the shoulder, or 3 meters, and about 30 feet long, or 9 meters. Its body was bulky and heavy, sort of like a rhinoceros but, you know, even bigger and more terrifying.

Like the rhinoceros, triceratops was a herbivore. It had a horny beak something like a turtle’s that it probably used to grab plant material, and it had some 40 teeth on each side of the jaw. These teeth were replaced every so often as the old ones wore down, sort of like crocodilians do. Back when triceratops lived, around 68 million years ago, grass hadn’t developed yet. There were prairies in parts of western North America the same way there are today, but instead of grass, the prairies were covered in ferns. Many researchers think triceratops mostly ate ferns, grazing on them the same way bison graze on grass today.

In fact, the first paleontologist to study a triceratops fossil thought it was an extinct type of bison. This was a man called Othniel Charles Marsh. To his credit, Marsh only had a little piece of a triceratops skull to examine, the piece with the brow horns. And since the brow horns of a triceratops do look a little like the horn cores of a bovid, and since this was 1887 before a lot was known about dinosaurs, and since the fossil was found in Colorado where the buffalo roam, it’s understandable that Marsh would have assumed he was looking at a gigantic fossil bison skull. He figured it out the following year after examining another skull with the nose horn intact, since bovids are not known for their nose horns, and he naturally named it Triceratops.

It’s tempting to assume that Triceratops was a herd animal, but we don’t have any evidence that it lived in groups. It was common and we have lots of fossil triceratops, especially the thick-boned skulls, but it seems to have mostly been a solitary animal.

It’s pretty obvious that the triceratops’ horns must have been for defense. It lived at the same time as Tyrannosaurus rex, which preyed on triceratops often enough that we have a lot of Triceratops fossils with T rex tooth marks in the bones. We also have some triceratops fossils with T rex tooth marks in the bones that show signs of healing, indicating that the triceratops successfully fended off the T rex and lived. But what was the frill for?

Researchers have been trying to figure this out for years. There were a lot of different ceratopsid species, many of which may have overlapped in range and lived at the same time, so some researchers suggest the frill’s size and shape may have helped individuals find mates of the same species. Triceratops has a rather plain frill compared to many ceratopsid species, which had frills decorated with points, spikes, scalloped edges, lobes, and other ornaments.

But the ornamental elements of the frills change rapidly through the generations, which suggests that they weren’t for species recognition. If that was the case, the frills would have stayed about the same to minimize confusion. Instead, they get more and more elaborate, which suggests that they were a way to attract mates who liked fancy head frills. You know, like a snazzy hairstyle.

Of course, the frill could have more than one use. It could be attractive to potential mates and also could have protected the back of the skull from T rex bites, just like a snazzy hairstyle still keeps your head warm in cold weather. Then again, in many species of ceratopsid the frill is thin and rather fragile, so it’s more likely to be just for display. It’s very likely that the frills were brightly colored or patterned.

So what were some of these other ceratopsids with strange shaped frills? I’m SO glad you asked! There were so many ceratopsids, and they all had bodies shaped roughly the same but with head frills and horns that looked very different from each other. Some had no horns, just a frill. Some just had a nose horn, some just had brow horns. The horns were shaped differently in different species, too. Researchers group ceratopsids into two major groups: the chasmosaurines, which have longer frills and usually long brow horns and short nose horns; and the centrosaurines, which typically had larger nose horns and small brow horns, and snouts that were thicker top to bottom.

Almost all the ceratopsids have been found in North America, where they were super common in the Cretaceous. But Sinoceratops was discovered in 2008 in China. It wasn’t as big as Triceratops, topping out at about 6 ½ feet tall, or 2 meters, but what it lacked in bulk it made up in head frill ornamentation. Its frill was relatively short and was edged with small horns that curve forward. Its frill also had knobs along its edge and down the middle, which is unique among all ceratopsids and may have been the base for small keratin horns. Since keratin doesn’t fossilize, we have no way of knowing. It also had two holes in the frill that made it lighter, but they would have been covered with skin (no matter what a certain movie may have led you to believe). Its single nose horn pointed almost straight up, and in front of the nose horn it had a bony knob. It basically had no brow horns, just what may have been bony knobs above its eyes.

Kosmoceratops had probably the most ornamented skull of any known ceratopsid, and maybe any known dinosaur, with 15 horns growing from it. The rear of its frill curled forward like a collar, edged with flat, pointed projections. The frill was scalloped along its sides. Its brow horns were long, pointy, and arched sideways and slightly downward. Kosmoceratops also had a cheek horn under each eye and a flattened nose horn just in front of the brow horns. It lived in what is now Utah, in the United States, some 76 million years ago, and was only described in 2010.

Pachyrhinosaurus had flattened bony nose and brow horns more properly called bosses, since they aren’t actually horns. But Pachyrhinosaurus did have horns on its frill, although the size, shape, and number of the frill horns vary from individual to individual.

These bosses resemble the base of rhinoceros horns, which as you may recall are made of keratin. Some researchers think the bosses found in Pachyrhinosaurus and other ceratopsids may have also had keratin horns growing from them.

Remember how I said Triceratops didn’t appear to be a herd animal? Triceratops is considered a chasmosaurine, and chasmosaurines all seemed to be fairly solitary animals. But the other big group of ceratopsids, centrosaurines, may have been herd animals. Pachyrhinosaurus was a centrosaurine, for instance, and several bonebeds containing dense collections of fossil pachyrhinosaurus have been found where the individuals appear to have died at the same time. The biggest found so far is in Alberta, Canada, where paleontologists have excavated thousands of bones, from full grown adults to babies. Researchers suggest a herd of the animals may have died trying to cross a flooded river. The species of Pachyrhinosaurus found in the Alberta bonebed had both bosses and short brow horns.

Even though only one species of ceratopsid has been discovered in Asia so far, earlier basal forms were common in Asia. Protoceratops, which only stood about two feet tall, or 60 cm, lived in what is now the Gobi Desert in Mongolia around 80 million years ago. Researchers think some of these early species in the genus Protoceratops migrated into North America on the Bering land bridge, where they evolved into ceratopsids.

Protoceratops looked like a mini ceratopsid with a simple neck frill and no horns. We have a lot of Protoceratops fossils and some of them are frankly amazing.

For instance, a Protoceratops fossil found in 1965 was preserved with its own footprint in the ground near it. The fossils of baby protoceratopses have been found together in one nest, which suggests the parents cared for their young. We even have a fossil of a protoceratops and a Velociraptor that both died together while fighting. The velociraptor’s hind leg is extended where it kicked protoceratops with its vicious claws, but the velociraptor’s arm is in protoceratops’s jaws, broken.

Fighting dinosaurs. It’s one of those things that makes life worth living, you know?

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 124: Updates 2 and a new human

It’s our second updates and corrections episode! Thanks to everyone who sent in corrections and suggestions for this one! It’s not as comprehensive as I’d have liked, but there’s lots of interesting stuff in here. Stick around to the end to learn about a new species of human recently discovered on the island of Luzon.

The triple-hybrid warbler:

Further reading:

New species of ancient human discovered in the Philippines: Homo luzonensis

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Yes, it’s our second updates episode, but don’t worry, it won’t be boring!

First, a few corrections. In episode 45 I talked about monotreme, marsupial, and placental mammals, and Tara points out that the placenta and bag of waters are different things. I got them mixed up in the episode. The bag of waters is also called the amniotic sac, which protects and cushions the growing baby inside with special amniotic fluid. The placenta is an organ attached to the lining of the womb, with the bag of waters inside the placenta. The umbilical cord connects the baby to the placenta, which supplies it with all its needs, including oxygen since obviously it can’t breathe yet.

Next, I covered this correction in in episode 111 too, but Judith points out that the picture I had in episode 93 of the Queen Alexandra’s birdwing butterfly was actually of an atlas moth. I’ve corrected the picture and if you want to learn more about the atlas moth, you can listen to episode 111.

Next, Pranav pointed out that in the last updates episode I said that the only bears from Africa went extinct around 3 million years ago–but the Atlas bear survived in Africa until the late 19th century. The Atlas bear was a subspecies of brown bear that lived in the Atlas Mountains in northern Africa, and I totally can’t believe I missed that when I was researching the nandi bear last year!

Finally, ever since episode 66 people have been emailing me about Tyrannosaurus rex, specifically my claim that it was the biggest land carnivore ever. I don’t remember where I found that information but it may or may not be the case, depending on how you’re defining biggest. Biggest could mean heaviest, tallest, longest, or some combination of features pertaining to size.

Then again, in 1991 a T rex was discovered in Canada, but it was so big and heavy and in such hard stone that it took decades to excavate and prepare so that it can be studied. And it turns out to be the biggest T rex ever found. It’s also a remarkably complete fossil, with over 70% of its skeleton remaining.

The T rex is nicknamed Scotty and was discovered in Saskatchewan. It lived about 68 million years ago, and turns out to not only be the biggest T rex found so far, it was probably the oldest. Paleontologists estimate it was over 30 years old when it died. It was 43 feet long, or 13 meters. This makes it bigger than the previously largest T rex found, Sue, who was 40 feet long, or 12.3 meters. Scotty also appears to be the heaviest of all the T rexes found, although estimates of its weight vary a lot. Of course some researchers debate Scotty’s size, since obviously it’s impossible to really know how big or heavy a living dinosaur was by just looking at its fossils. But Scotty was definitely at least a little bigger than Sue.

Scotty is on display at the Royal Saskatchewan Museum in Canada.

Way back in episode 12, I talked about snakes that were supposed to make noises of one kind or another. Many snakes do make sounds, but overall they’re usually very quiet animals. A snake called the bushmaster viper that lives in parts of Central America has long been rumored to sing like a bird. The bushmaster can grow up to ten feet long, or 3 meters, and its venom can be deadly to humans.

Recently, researchers discovered the source of the bushmaster’s supposed song. It’s not a snake singing. It’s not a bird singing. It’s not even a single animal–it’s two, both of them tree frogs. One of the frogs is new to science, the other is a little-known frog related to the new one.

I tried so hard to find audio of this frog, and I’m very bitter to report that I had no luck. The closest I could find was not great audio of this frog, whose name I forgot to write down, which I think is related to the new frogs.

[frog sound]

Now let’s do some quick, short updates, mostly from recent articles I’ve happened across while researching other things.

A triple-hybrid warbler, its mother a golden-winged/blue-winged hybrid (also called a Brewster’s warbler) and its father a warbler from a different genus, chestnut-sided, was sighted in May of 2018 by a birder in Pennsylvania. Lowell Burket noticed it had characteristics of both a blue-winged and a golden-winged warbler but sang like a chestnut-sided warbler. He contacted the Cornell Evolutionary Biology Lab about the bird with photos and video of it, and they sent a researcher, David Toews, out to look at it. Toews caught the bird, measured it, and took a blood sample for analysis. I think a listener told me about this article but I didn’t write down who, so thank you, mystery person.

Red-fronted lemurs chew on certain types of millipedes and rub the chewed-up millipedes on their tails and their butts. They also eat some of the millipedes. Researchers think the millipedes secrete a substance called benzoquinone, which acts as an insect repellant and may also help the lemurs get rid of intestinal parasites. Other animals rub crushed millipedes on their bodies for the same reasons.

A recent study of saber-toothed cat fossils show that many of the animals with injuries to their jaws and teeth that would have kept them from hunting properly survived on softer foods like meat and fat. Researchers think the injured cats were provided with food by other cats, which suggests they were social animals. The study examined micro-abrasions on the cats’ teeth that give researchers clues about what kinds of food the animals ate.

Simon sent me an article about a 228 million year old fossil turtle, Eorhynchochelys [ay-oh-rink-ah-keel-us]. It was definitely a turtle but it didn’t have a shell. Instead, its ribs were wide, which gave its body a turtle-like shape. Turtle shells actually evolved from widened ribs like these. Researchers are especially interested because Eorhynchochelys had a beak like modern turtles, while the other ancient turtle we know of had a partial shell but no beak. This gives researchers a better idea of how turtles evolved. Oh, and in case you were wondering, Eorhynchochelys grew over six feet long, or over 1.8 meters.

The elephant bird, featured in episode 51, was a giant flightless bird that lived in Madagascar. Recently new research about elephant birds has revealed some interesting information. For one thing, we now know what the biggest bird that ever lived was. It’s called Vorombe titan and grew nearly ten feet tall, or 3 meters, and weighed up to 1,800 lbs, or 800 kg. It was first discovered in 1894 but not recognized as its own species until 2018.

There’s also some evidence that at least some elephant bird species may have been nocturnal with extremely poor vision. This is the case with the kiwi bird, which is related to the elephant bird. Brain reconstruction studies of two species of elephant bird reveal that the part of its brain that processed vision was very small. It resembles the kiwi’s brain, in fact. One of the species studied had a larger area of the brain that processed smell, which researchers hypothesize may mean it lived in forested areas.

Another study of the elephant bird bones show evidence that the birds were killed and eaten by humans. But the bones date to more than 10,000 years ago. Humans supposedly didn’t live in Madagascar until 4,000 years ago at the earliest. So not only is there now evidence that people colonized the island 6,000 years earlier than previously thought, researchers now want to find out why elephant birds and humans coexisted on the island for some 9,000 years before the elephant bird went extinct. Hopefully archaeologists can uncover more information about the earliest people to arrive on Madagascar, which may help us learn more about how they interacted with the elephant bird and other extinct animals of the island.

Speaking of humans, humans evolved in Africa and until very recently, evolutionarily speaking, that’s where we all lived. Scientists rely on fossils, archaeological materials, and studies of ancient DNA to determine when and where humans spread beyond Africa. But at the moment, the DNA that researchers have studied doesn’t overlap entirely with what we’ve learned from the other sources. Basically this means that there are big chunks of data we still need to find to get a better picture of where our ancestors traveled. Part of the problem is that DNA preserves best in cold, dry areas, so most of the viable DNA recovered is from middle Eurasia. Fortunately, DNA technology is becoming more and more refined every year.

This brings us to a suggestion by Nicholas, who told me about a newly discovered hominin called Homo luzonensis. Homo luzonensis lived on an island called Luzon in the Philippines at least 50,000 years ago. It wasn’t a direct ancestor to Homo sapiens but was one of our cousins, although we don’t know yet how closely related.

No one thought humans could reach the island of Luzon until relatively recent times, because of how remote it is and because it hadn’t been connected to the mainland for the last 2 ½ million years. But when Homo floresiensis was discovered in 2004 on the island of Flores in Indonesia, which you may remember from episode 26, suddenly scientists got interested in other islands. Researchers knew there had been human settlements on Luzon 25,000 years ago, but no one had bothered to search for older settlements. In 2007 a team of paleoanthropologists returned to the island and found a foot bone that looked human. In 2011 and 2015 the team found some teeth and more bones from at least three different individuals.

We don’t know a whole lot about the Luzon humans yet. The discoveries are still too new. The Luzon hominins have a combination of features that are unique, a mixture of traits that appear more modern and traits that are seen in more ancient hominins. They’re also smaller in stature than modern humans, closer to the size of the Flores people. Homo luzonensis apparently used stone tools since researchers have found animal bones that show cut marks from butchering.

Researchers are starting to put together a picture of South Asia in ancient times, 50,000 years ago and more, and it’s becoming clear that there were a surprising number of hominins in the area. It’s also becoming clear that hominins lived in the area a lot longer ago than we thought. Researchers have found stone tools on the island of Sulawesi that date back at least 118,000 years. Even on Luzon, in 2018 researchers found stone tools and rhinoceros bones with butcher marks that date back over 700,000 years ago. We don’t know who those people were or if they were the ancestors of the Luzon people. We just know that they liked to eat rhino meat, which is one data point.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 119: Before the Dinosaurs

What kinds of animals lived before dinosaurs evolved? What did they evolve into? Let’s find out!

Dimetrodon! Not a dinosaur! Not even actually a reptile:

Cotylorhynchus had a teeny head. I am not even exaggerating:

Moschops had a big thick skull:

Lisowicia was the size of an elephant but looked like…well, not like an elephant:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Lots of people know about dinosaurs. Dinosaurs are really interesting. But do you know what animals lived before dinosaurs evolved? Let’s find out.

If you’ve heard of dimetrodon, you may think it’s just another dinosaur. It’s the animal that looks sort of like a huge lizard with a sail-like frill down its back. But not only was dimetrodon not a dinosaur, it went extinct 40 million years before the first dinosaur evolved.

Dimetrodon lived almost 300 million years ago and was a synapsid. Synapsid is a catchall term for a group of animals with both reptilian and mammalian characteristics, also sometimes called proto-mammals. The term synapsid also includes mammals, so yes, you are related to dimetrodon verrrrrrry distantly. You are more closely related to dimetrodon than you are to any dinosaur, let’s put it that way.  Dimetrodon was an early synapsid, which are referred to as pelycosaurs.

The largest species of dimetrodon grew up to 15 feet long, or 4.6 meters, with some probably growing even larger. It had serrated teeth, a long tail, short legs, and a massive sail on its back. The sail is formed from neural spines, which are basically just really long prongs of bone growing from the vertebrae. The spines were connected with webbing, although possibly not all the way to the tip of the spines. Ever since the first fossil remains of dimetrodon were discovered in 1878, scientists have been trying to figure out what the sail was for.

For a long time the most popular theory was that the sail helped with thermoregulation. That is, it helped dimetrodon stay warm in cool weather and cool in warm weather by absorbing sunshine or releasing heat, depending on where dimetrodon was. If dimetrodon was chilly, it would angle its body so that lots of sunlight reached its sail, but if dimetrodon was hot, it would find a patch of shade or turn its body so that minimal sunlight reached its sail, allowing the blood vessels covering the sail to release heat into the atmosphere.

This is a pretty good guess, since many modern animals use something similar to help regulate body temperature. That’s why African elephants have such large ears. But more recent studies of dimetrodon’s sail show that it didn’t have a lot of blood vessels, as it would if it was for thermoregulation. These days paleontologists suggest the sails may have mostly been for display. Different species had differently shaped sails, and there’s some evidence that male and female dimetrodons of the same species may have had differently shaped sails too. It’s possible the sails were brightly colored or patterned during the breeding season.

But dimetrodon wasn’t the only early synapsid with a sail. Secodontosaurus had one too and resembled dimetrodon in many ways, including having a long tail and short legs. But where dimetrodon was chunky with a massive skull, secodontosaurus was much more slender with long, narrow jaws. It may have eaten fish. It probably grew up to nine feet long, or 2.7 meters, and it lived around 275 million years ago. It was related to dimetrodon, but paleontologists aren’t sure how closely it was related.

The largest pelycosaur, or early synapsid, was cotylorhynchus [ko-tillo-rinkus], which lived around 275 million years ago in what is now North America. It was a weird-looking animal. Weird, weird weird. Seriously, it was very strange. It grew to almost twenty feet long, or 6 meters, with a barrel-shaped body, great big legs, and a long tail. But its neck was very short and its head was tiny.

Some researchers think cotylorhynchus lived in the water. Its forefeet may have been paddle-shaped. It ate plants, which is why its body was so big, since it needed room to hold lots of plants while they digested. It may have dug for roots as well, since its forefeet had long claws. Weird as it was, if you think of it as shaped sort of like a giant tortoise, its small head and big body make more sense.

Dimetrodon and other pelycosaurs lived in the early Permian era. By the mid-Permian, a group of synapsids called therapsids started evolving to become more mammal-like. The legs of therapsids were positioned more beneath the body instead of sprouting out from the sides, which is the difference between a dog’s body and a lizard’s body. This allowed therapsids to run more efficiently and breathe more efficiently when moving fast.

We know that at least some of these early therapsids had fur because paleontologists have found coprolites, which as you recall are fossilized poops, with fur embedded in them. Since this was long before mammals evolved, it had to be therapsids with fur. In fact, it was the therapsids that eventually evolved into mammals, so technically you are also a therapsid.

Therapsids were probably warm-blooded and probably had whiskers. But they wouldn’t have looked like mammals today. They probably resembled reptiles in a lot of ways, especially early therapsids. The tails of many therapsids would have looked like reptile tails, long, thick, and pointed. The heads would have looked much more like a lizard head than a mammal head, with no external ears.

Some therapsids would have looked really weird. For instance, moschops [mo-shops], which lived around 260 million years ago in what is now southern Africa. Moschops was a type of therapsid that ate plants, and it was massively built. It was around 8 feet long, or 2.5 meters, and had a thick skull and short snout with strong jaw muscles. The back sloped downward from the shoulders to a short tail. Its relatively short legs were sturdy to hold up the weight of the broad and massive body. The front legs were much farther apart than the hind legs. Its teeth were strong but not sharp; instead, they had chisel-like edges that helped it bite through tough vegetation.

Moschops had such a thick skull that many researchers think it fought other moschopses by butting heads. The small brain was extremely well protected by a skull that was as much as 6 inches thick, or 15 cm, and new research shows that the head was usually held forward instead of up. This makes sense in a grazing animal, and would also make sense if males were butting heads to impress potential mates, or if individuals fought over territory or food. If moschops did butt heads, it’s possible that it lived in groups with a certain amount of social organization.

Toward the end of the Permian, a group of therapsids called dicynodonts became widespread and lived well into the Triassic era. Dicynodonts were probably warm-blooded, probably had fur or hair, and some may have had feet that were more paw-like than reptilian, with fleshy pads. But while all these features are mammalian, most dicynodonts had a horny beak like a turtle and either no teeth at all, or only a pair of teeth in the front of the jaw that grew like tusks. Some paleontologists think only males had these tusks. Most dicynodonts were herbivorous and some dug burrows.

About 250 million years ago, there was a mass extinction event called the Permian-Triassic extinction, or sometimes just the Great Dying. Researchers aren’t sure what caused it, but like the later extinction that ended the dinosaurs, it may have been caused initially by a massive meteor impact that sent the earth’s climate into a tailspin. 96% of all marine species went extinct and 70% of land animals. This was the event that led to the rise of the dinosaurs ultimately. But some therapsids survived.

The biggest dicynodont evolved after the great dying and it was the size of an elephant. Lisowicia lived in what is now Poland around 230 million years ago, but it was probably more widespread than that sounds. We only have a single specimen of lisowicia that was discovered in south Poland in 2008. It probably stood 8 ½ feet high, or 2.6 meters. All four of its legs were positioned under the body like modern mammals, whereas most dicynodonts were similar to moschops, where the hind legs were under the body and the forelegs were more widely spaced and sprawling. But it probably didn’t look much like a modern mammal beyond that. Its head would probably have looked quite reptilian since it had a horny beak like other dicynodonts. Its tail was short.

Dicynodonts went extinct by the late Triassic, but the related cynodonts persisted. Cynodonts are the direct ancestors of mammals. You are definitely also considered a cynodont. The first cynodonts evolved in the late Permian and had a lot of traits that are still retained by mammals, such as fur, whiskers, warm-bloodedness, and teeth that are differentiated into different types like molars and incisors. They also developed what’s called a secondary palate, or as we call it, the roof of the mouth. All mammals still have this feature, which allows us to breathe and chew at the same time. But cynodonts also still probably laid eggs. Eventually cynodonts developed into monotremes like the platypus and echidna, which many researchers consider to retain many cynodont features.

Probably the largest cynodont was cynognathus, which lived around 240 million years ago. Cynognathus was a predator that grew almost four feet long, or 1.2 meters, not counting its long tail. It was widespread throughout the southern hemisphere, with cynognathus fossils of various species found in modern-day southern Africa, South America, and Antarctica. It had already evolved the secondary palate, and its head and jaws were both long and wide, with sharp teeth.

Because cynodonts lived alongside dinosaurs for millions of years, they evolved into animals that were generally quite small, no larger than a rat, and frequently nocturnal. But they were still incredibly successful, spreading out across the world and evolving into animals that looked more and more like mammals that we’d recognize today. The haramiyids were probably insectivores and lived in trees, with some species able to glide like flying squirrels or the colugo. Many cynodonts lived in large shared burrows, suggesting increasingly complex social behavior.

But not all early mammals were tiny and ran away from dinosaurs. Repenomamus [re-penno-may-mus] lived around 125 million years ago and grew over three feet long, or 1 meter. In shape, it somewhat resembled a badger with a long tail. We know it ate small animals, including hatchling dinosaurs, because fossil remains of a baby psittacosaurus [sit-acko-saurus] was found in the stomach area of a fossil repenomamus. The psittacosaurus remains were in chunks, which suggests that repenomamus had bitten it into pieces to swallow it.

Repenomamus was considered a Eutriconodont, a type of early mammal, but the eutriconodonts went extinct at about the same time as the dinosaurs.

But by then, the therapsids were fully evolved into what we have termed mammals. And they were poised to take over. Or, I should say, we mammals were poised to take over. And we have.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!