Episode 127: New World Vultures

This week we’ll learn about some vultures from North and South America–some living, some extinct, and one mystery! Thanks to Maureen and Grady for their suggestions!

Thanks also to Kat White for the Turkey Vulture Song that opens the podcast! If you’d like to buy her album “In the Eye of the Owl,” visit her website at katwhitemusic.com/

Further listening:

CritterCast episode 35 Turkey Vultures

How to tell a turkey vulture apart from a black vulture:

The king vulture has a very bright head:

The Andean condor soaring:

The painted vulture:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Way back in episode 40 we learned about the bearded vulture and some of its close relatives. This was a suggestion from Maureen, and I always meant to revisit vultures so we could learn about more vulture species. Then Grady wanted to know how long buzzards stay in the sky until they come down for food, and why do they soar for so long? That’s a great question that shows some good observation skills, so let’s go back to vultures and learn more about them.

Those of you listening in Europe may be wondering why I’m talking about buzzards in a vulture episode. That’s because we’re going to learn about new world vultures today, and in North America the general term for a vulture is a buzzard. In Europe, a buzzard is actually a type of eagle.

Before we get into the episode, though, I should mention that the intro music we heard is by Kat White, who was kind enough to let me use a snippet. It’s from the album “In the Eye of the Owl,” which is all about animals and so much fun I wanted to let everyone know about it. I’ll put a link in the show notes so you can find out more about the songs.

Kat also let me know about a turkey vulture named Lord Richard who lives in a park called Lindsay Wildlife Experience in California. Lord Richard just turned 45 years old and got a huge birthday party! So as you can see, vultures can live a long time in captivity, although usually not as long in the wild. Then again, the oldest verified vulture is an Andean condor born in captivity in 1930 who died in 2010 at the age of 79. Andean condors in the wild can live more than 50 years. This makes Lord Richard sound like a positive youngster.

New World vultures are native to the Americas and all of them are pretty big. In fact, condors are vultures and they’re extremely large birds. The New World vultures aren’t very closely related to each other but they all share some traits.

Vultures are scavengers that find dead animals to eat. The meat from dead animal carcasses is referred to as carrion. Vultures will also eat rotting fruit and garbage sometimes. Because they eat meat that is often spoiled, vultures have an extremely acidic digestive system that helps the bird digest its food quickly and kills off any bacteria that might make it sick. It also has beneficial bacteria in its digestive system that neutralize toxins.

But that’s not where the adaptations to eating carrion end. The vulture is a highly specialized bird. Most vultures don’t have many feathers on their heads, unlike other birds. If you’re snacking right now, you might want to pause this until you’re done. Quite often a vulture will actually stick its head into a rotting animal carcass to get at the, uh, softer parts. This means its head gets covered in rotting gunk and a lot of bacteria. If it had head feathers, they would be destroyed by bacteria.

One interesting thing about vultures of all kinds is that they actually help stop the spread of diseases like rabies and anthrax. Their digestive tract is so effective that it kills off viruses that caused the animal to die, so it’s actually beneficial to the environment in general and to farmers. Unfortunately, farmers don’t always know this and think vultures spread disease. Many vultures are protected species in most countries to stop farmers and other people from shooting them.

Quite often you’ll see a vulture perched somewhere up high with its wings spread. It does this to dry them when it’s been rainy or foggy, but also so that sunlight will help kill off any bacteria on the feathers. That’s another reason the vulture has no feathers on the head, so that sunlight can kill off any bacteria on its skin.

Vultures do some other gross stuff, like pee on their own legs. They do this to cool down in hot weather, since as the liquid droppings evaporate it cools the legs, and therefore cools the blood flowing through the legs, and therefore cools the vulture’s body temperature overall. But vultures also like to bathe in shallow water, which helps clean the skin and the feathers, and which of course washes any droppings off their legs.

Vultures also puke up what they’ve eaten if they feel threatened. This serves two purposes. The vulture is immediately much lighter and can fly away more easily, and the horrible stench of partially digested rotting meat may drive away a potential predator.

There are seven species of new world vulture alive today. The most common one is the turkey vulture, which lives throughout most of North and South America. The next most common is the American black vulture, which lives in South America up to the southern parts of North America. From a distance it can be hard to tell the two apart, but the black vulture has silvery tips on its wings.

The turkey vulture is the vulture most often referred to as a buzzard. It has a wingspan of about six feet, or over 1.8 meters, although it doesn’t weigh more than about five pounds at most, or 2.4 kg. It’s kind of a picky eater, surprisingly, and doesn’t like really rotten meat. It often hangs out with black vultures, but black vultures are more aggressive even though they’re a little smaller, and the turkey vulture will wait until the black vultures are done eating before it moves in to finish off what’s left.

Black vultures and turkey vultures aren’t very closely related and don’t really look very similar if you see them up close. The turkey vulture has a red head that looks a lot like a male turkey’s, which is where it gets its name. The black vulture has a gray head.

Unlike the turkey vulture, which almost exclusively eats carrion and rotting fruit and sometimes vegetables, the black vulture will also eat eggs and sometimes kills small animals, especially baby animals. It hunts in groups and can even kill newborn calves.

If you want to learn more about the turkey vulture, the Critter Cast Podcast has a really good episode all about it. I’ll put a link in the show notes in case you don’t already listen to Critter Cast.

The other new world vultures are mostly restricted to South America, except for the California condor. We’ll talk about condors in a minute. The king vulture is most common in South America although it also lives in parts of southern Mexico and in Central America. Unlike most vultures, which are mostly black, its feathers are mostly white with some gray and black markings. The skin of its bald head is brightly colored, with different individuals having different coloration—red, orange, yellow, purple, even blue, with an orange crest on its bill in adult birds. It also has a white eye with a red rim, and short bristles on the head. The ancient Maya people considered the king vulture a messenger of the gods, which is pretty neat.

The king vulture is big even for a vulture, with a wingspan of up to about 7 feet, or 2 meters, which makes sense since it’s most closely related to the Andean condor. It has a stronger bill than most vultures, which helps it tear open an animal carcass that other vulture species might not be able to access. Often, other vulture species will wait until a king vulture has opened a carcass and eaten its fill before they move in and eat too. It especially likes the skin and tougher meat of a carcass, and its tongue is raspy to help it pull meat off bones.

The king vulture’s ancestors lived farther north, into parts of North America, but went extinct around 2 ½ million years ago. We don’t really know all that much about the ancestors of the New World vultures, though, because they’re not very common in the fossil record. But the New World vultures are related to the terratorns, huge birds that are extinct now. We’ve discussed terratorns once before way back in episode 17, about the Thunderbird, but let’s discuss them again because they were incredible birds.

We have a decent number of terratorn remains from the La Brea Tar Pits and a few other places. The terratorns were bigger even than condors. A number of species lived throughout the Americas, with even the smaller species having an estimated wingspan of around 12 feet, or 3.8 meters. The largest species known, Argentavis magnificens, lived in South America around six million years ago. It’s estimated to have a wingspan of at least 16 feet, or 6.5 meters, and possibly as much as 26 feet, or 8 meters. That’s the size of a small aircraft.

Researchers think Argentavis was an efficient glider, hardly needing to flap its wings. But it wasn’t very maneuverable, so researchers also think it was probably a scavenger like modern vultures. Smaller terratorns may have been active hunters, more like eagles than vultures. Argentavis had strong legs and probably took off by running into the wind with its massive wings spread, sort of like an airplane taking off, so it didn’t have to flap its wings at all.

That brings us to Grady’s question about why and how buzzards soar for so long. Argentavis would have spent most of its time soaring, hardly ever needing to flap its wings. Its wings weren’t even very strong, and it might not even have been able to flap them when they were extended. The turkey vulture, or buzzard, is especially good at soaring for long periods of time, sometimes for hours, without needing to flap its wings.

If you’ve noticed, soaring birds like vultures, eagles, and hawks tend to fly in circles. There’s a reason for this. When the wind blows over a hill or mountain, it creates an updraft, a breeze that blows directly upward. Similarly, air rises from land that’s been warmed by the sun, causing columns of warm air called thermals. A soaring bird stays in these updrafts and thermals by flying in circles. Vultures also have wingtips where the feathers are spread out, so that each flight feather is separated from the next by a small space. Each of these feathers acts like a tiny wing of its own, which helps keep the vulture gliding forward and not downward. All this wind over the wingtip feathers causes a lot of pressure, though, and vultures have a special bone at the wingtip that helps strengthen and support the flight feathers. Soaring instead of flapping conserves a lot of energy, which is why vultures will soar for as long as they can, looking for food.

Most New World vultures have a good sense of smell, which is unusual for birds. The turkey vulture finds a lot of its food by smell. The black vulture doesn’t have nearly as good a sense of smell, though, and as a result it often follows turkey vultures to find carcasses, then bullies the turkey vultures out of the way to eat first. That’s not very nice, birds. In addition, the turkey vulture has keen eyesight, which helps it find dead animals that might not have started to smell yet.

So let’s talk about those condors now. There are two species of condor alive today, the California and the Andean. We covered the California condor in episode 44, extinct and back from the brink. The California condor actually went extinct in the wild in 1987, with only 22 birds alive in captivity, but an ongoing captive breeding program saved it from extinction and captive-bred birds started to be released into the wild in 1991. But there are still fewer than 500 individuals alive today, so it’s still in danger of extinction. The California condor only lives in a few small areas of western North America today, but around 40,000 years ago it lived throughout North America. Part of the reason it’s still so rare is that it reproduces very slowly. A pair doesn’t nest every year, and even when they do, the female only lays one egg. A young condor depends on its parents for a full year, both for food and to learn how to fly. It can take a young condor months to learn how to fly properly, and researchers sometimes observe awkward crash landings that are probably pretty funny, although maybe not so funny to the condor.

The California condor’s wingspan can be up to almost ten feet, or 3 meters. This is huge, but the Andean condor is even bigger. Its wingspan is nearly eleven feet, or 3.3 meters. The Andean condor lives in and near the Andes Mountains along the western coast of South America. It’s mostly black with silvery patches on the wings and a white ruff around the neck, and its head is gray in color but can flush reddish to communicate with other condors. The male also has a comb on the top of its head.

The Andean condor’s feet are adapted for walking, not fighting. Its feet aren’t very strong and its talons aren’t very sharp. It does sometimes kill small animals like rabbits, but its feet are so weak that it can’t use them to attack. Instead, it stabs the animal to death with its beak.

Like Argentavis, the Andean condor’s wings are built for soaring, not flapping. It can soar for hours without needing to flap its wings once, sometimes traveling hundreds of miles in a day to find food.

It’s a social bird that mates for life, and one of its courtship rituals is a hopping, flapping dance. Keep in mind that this is a bird with wings over five feet long. That would be a pretty impressive dance. The Andean condor nests high in the Andes Mountains on cliffs that predators can’t reach and lays one or two eggs.

Let’s go back to the king vulture now to finish up, because there’s a mystery associated with the king vulture. In the 1770s, a man named William Bartram traveled through Florida and took notes about the animals and plants he saw. He published a book of his travels in 1791 and in it, he included information about a bird he called a painted vulture. He said it was fairly common in Florida and that he’d even shot one himself. The description he gave sounds like a king vulture except that Bartram described its tail as white with a black tip, not entirely black.

But remember, the king vulture primarily lives in South America. It is known in the very southern parts of North America in Mexico, but not Florida. What’s going on?

Some people think Bartram included the painted vulture as a hoax. Some people think he got it mixed up with a different bird, the Northern caracara, a bird of prey which only looks slightly like a king vulture. Some people think there may have been a small population of king vultures in Florida at the time that later went extinct, possibly a subspecies of king vulture with a mostly white tail instead of all black.

Bartram wasn’t the only person who reported seeing the painted vulture. In 1734 an English naturalist and artist, Eleazar Albin, painted a vulture that looked almost identical to the one Bartram described 30-odd years later, tail and all. It’s not completely clear where Albin saw his bird, but as far as researchers can determine Bartram wasn’t aware of the painting. So it’s possible that a subspecies of king vulture once lived in Florida but went extinct soon after Bartram saw it. If he and Albin hadn’t documented it, no one alive today would have any idea the painted vulture ever existed.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 125: Triceratops and other ceratopsids

It’s time to learn about some more dinosaurs, ceratopsids, including the well-known Triceratops!

Triceratops:

An artist’s frankly awesome rendition of Sinoceratops. I love it:

A Kosmoceratops skull:

Pachyrhinosaurus had a massive snoot:

Protoceratops:

Fighting dinos!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Back in episode 107, about ankylosaurus and stegosaurus, I mentioned that one day I’d do an episode all about triceratops and its relations. Well, that day is today. It’s the ceratopsid episode!

Ceratopsids are a family of dinosaurs with elaborate horns on their faces and frills on the back of their heads. They almost all lived in what is now North America and most of them lived in the late Cretaceous. Triceratops is the most well known, so we’ll start with it.

The name triceratops, of course, means three face horns, and it did indeed have three face horns. It had one on its nose and two on its brow, plus a frill that projected from the back of its skull.

Triceratops was a big animal, around 10 feet high at the shoulder, or 3 meters, and about 30 feet long, or 9 meters. Its body was bulky and heavy, sort of like a rhinoceros but, you know, even bigger and more terrifying.

Like the rhinoceros, triceratops was a herbivore. It had a horny beak something like a turtle’s that it probably used to grab plant material, and it had some 40 teeth on each side of the jaw. These teeth were replaced every so often as the old ones wore down, sort of like crocodilians do. Back when triceratops lived, around 68 million years ago, grass hadn’t developed yet. There were prairies in parts of western North America the same way there are today, but instead of grass, the prairies were covered in ferns. Many researchers think triceratops mostly ate ferns, grazing on them the same way bison graze on grass today.

In fact, the first paleontologist to study a triceratops fossil thought it was an extinct type of bison. This was a man called Othniel Charles Marsh. To his credit, Marsh only had a little piece of a triceratops skull to examine, the piece with the brow horns. And since the brow horns of a triceratops do look a little like the horn cores of a bovid, and since this was 1887 before a lot was known about dinosaurs, and since the fossil was found in Colorado where the buffalo roam, it’s understandable that Marsh would have assumed he was looking at a gigantic fossil bison skull. He figured it out the following year after examining another skull with the nose horn intact, since bovids are not known for their nose horns, and he naturally named it Triceratops.

It’s tempting to assume that Triceratops was a herd animal, but we don’t have any evidence that it lived in groups. It was common and we have lots of fossil triceratops, especially the thick-boned skulls, but it seems to have mostly been a solitary animal.

It’s pretty obvious that the triceratops’ horns must have been for defense. It lived at the same time as Tyrannosaurus rex, which preyed on triceratops often enough that we have a lot of Triceratops fossils with T rex tooth marks in the bones. We also have some triceratops fossils with T rex tooth marks in the bones that show signs of healing, indicating that the triceratops successfully fended off the T rex and lived. But what was the frill for?

Researchers have been trying to figure this out for years. There were a lot of different ceratopsid species, many of which may have overlapped in range and lived at the same time, so some researchers suggest the frill’s size and shape may have helped individuals find mates of the same species. Triceratops has a rather plain frill compared to many ceratopsid species, which had frills decorated with points, spikes, scalloped edges, lobes, and other ornaments.

But the ornamental elements of the frills change rapidly through the generations, which suggests that they weren’t for species recognition. If that was the case, the frills would have stayed about the same to minimize confusion. Instead, they get more and more elaborate, which suggests that they were a way to attract mates who liked fancy head frills. You know, like a snazzy hairstyle.

Of course, the frill could have more than one use. It could be attractive to potential mates and also could have protected the back of the skull from T rex bites, just like a snazzy hairstyle still keeps your head warm in cold weather. Then again, in many species of ceratopsid the frill is thin and rather fragile, so it’s more likely to be just for display. It’s very likely that the frills were brightly colored or patterned.

So what were some of these other ceratopsids with strange shaped frills? I’m SO glad you asked! There were so many ceratopsids, and they all had bodies shaped roughly the same but with head frills and horns that looked very different from each other. Some had no horns, just a frill. Some just had a nose horn, some just had brow horns. The horns were shaped differently in different species, too. Researchers group ceratopsids into two major groups: the chasmosaurines, which have longer frills and usually long brow horns and short nose horns; and the centrosaurines, which typically had larger nose horns and small brow horns, and snouts that were thicker top to bottom.

Almost all the ceratopsids have been found in North America, where they were super common in the Cretaceous. But Sinoceratops was discovered in 2008 in China. It wasn’t as big as Triceratops, topping out at about 6 ½ feet tall, or 2 meters, but what it lacked in bulk it made up in head frill ornamentation. Its frill was relatively short and was edged with small horns that curve forward. Its frill also had knobs along its edge and down the middle, which is unique among all ceratopsids and may have been the base for small keratin horns. Since keratin doesn’t fossilize, we have no way of knowing. It also had two holes in the frill that made it lighter, but they would have been covered with skin (no matter what a certain movie may have led you to believe). Its single nose horn pointed almost straight up, and in front of the nose horn it had a bony knob. It basically had no brow horns, just what may have been bony knobs above its eyes.

Kosmoceratops had probably the most ornamented skull of any known ceratopsid, and maybe any known dinosaur, with 15 horns growing from it. The rear of its frill curled forward like a collar, edged with flat, pointed projections. The frill was scalloped along its sides. Its brow horns were long, pointy, and arched sideways and slightly downward. Kosmoceratops also had a cheek horn under each eye and a flattened nose horn just in front of the brow horns. It lived in what is now Utah, in the United States, some 76 million years ago, and was only described in 2010.

Pachyrhinosaurus had flattened bony nose and brow horns more properly called bosses, since they aren’t actually horns. But Pachyrhinosaurus did have horns on its frill, although the size, shape, and number of the frill horns vary from individual to individual.

These bosses resemble the base of rhinoceros horns, which as you may recall are made of keratin. Some researchers think the bosses found in Pachyrhinosaurus and other ceratopsids may have also had keratin horns growing from them.

Remember how I said Triceratops didn’t appear to be a herd animal? Triceratops is considered a chasmosaurine, and chasmosaurines all seemed to be fairly solitary animals. But the other big group of ceratopsids, centrosaurines, may have been herd animals. Pachyrhinosaurus was a centrosaurine, for instance, and several bonebeds containing dense collections of fossil pachyrhinosaurus have been found where the individuals appear to have died at the same time. The biggest found so far is in Alberta, Canada, where paleontologists have excavated thousands of bones, from full grown adults to babies. Researchers suggest a herd of the animals may have died trying to cross a flooded river. The species of Pachyrhinosaurus found in the Alberta bonebed had both bosses and short brow horns.

Even though only one species of ceratopsid has been discovered in Asia so far, earlier basal forms were common in Asia. Protoceratops, which only stood about two feet tall, or 60 cm, lived in what is now the Gobi Desert in Mongolia around 80 million years ago. Researchers think some of these early species in the genus Protoceratops migrated into North America on the Bering land bridge, where they evolved into ceratopsids.

Protoceratops looked like a mini ceratopsid with a simple neck frill and no horns. We have a lot of Protoceratops fossils and some of them are frankly amazing.

For instance, a Protoceratops fossil found in 1965 was preserved with its own footprint in the ground near it. The fossils of baby protoceratopses have been found together in one nest, which suggests the parents cared for their young. We even have a fossil of a protoceratops and a Velociraptor that both died together while fighting. The velociraptor’s hind leg is extended where it kicked protoceratops with its vicious claws, but the velociraptor’s arm is in protoceratops’s jaws, broken.

Fighting dinosaurs. It’s one of those things that makes life worth living, you know?

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 124: Updates 2 and a new human

It’s our second updates and corrections episode! Thanks to everyone who sent in corrections and suggestions for this one! It’s not as comprehensive as I’d have liked, but there’s lots of interesting stuff in here. Stick around to the end to learn about a new species of human recently discovered on the island of Luzon.

The triple-hybrid warbler:

Further reading:

New species of ancient human discovered in the Philippines: Homo luzonensis

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Yes, it’s our second updates episode, but don’t worry, it won’t be boring!

First, a few corrections. In episode 45 I talked about monotreme, marsupial, and placental mammals, and Tara points out that the placenta and bag of waters are different things. I got them mixed up in the episode. The bag of waters is also called the amniotic sac, which protects and cushions the growing baby inside with special amniotic fluid. The placenta is an organ attached to the lining of the womb, with the bag of waters inside the placenta. The umbilical cord connects the baby to the placenta, which supplies it with all its needs, including oxygen since obviously it can’t breathe yet.

Next, I covered this correction in in episode 111 too, but Judith points out that the picture I had in episode 93 of the Queen Alexandra’s birdwing butterfly was actually of an atlas moth. I’ve corrected the picture and if you want to learn more about the atlas moth, you can listen to episode 111.

Next, Pranav pointed out that in the last updates episode I said that the only bears from Africa went extinct around 3 million years ago–but the Atlas bear survived in Africa until the late 19th century. The Atlas bear was a subspecies of brown bear that lived in the Atlas Mountains in northern Africa, and I totally can’t believe I missed that when I was researching the nandi bear last year!

Finally, ever since episode 66 people have been emailing me about Tyrannosaurus rex, specifically my claim that it was the biggest land carnivore ever. I don’t remember where I found that information but it may or may not be the case, depending on how you’re defining biggest. Biggest could mean heaviest, tallest, longest, or some combination of features pertaining to size.

Then again, in 1991 a T rex was discovered in Canada, but it was so big and heavy and in such hard stone that it took decades to excavate and prepare so that it can be studied. And it turns out to be the biggest T rex ever found. It’s also a remarkably complete fossil, with over 70% of its skeleton remaining.

The T rex is nicknamed Scotty and was discovered in Saskatchewan. It lived about 68 million years ago, and turns out to not only be the biggest T rex found so far, it was probably the oldest. Paleontologists estimate it was over 30 years old when it died. It was 43 feet long, or 13 meters. This makes it bigger than the previously largest T rex found, Sue, who was 40 feet long, or 12.3 meters. Scotty also appears to be the heaviest of all the T rexes found, although estimates of its weight vary a lot. Of course some researchers debate Scotty’s size, since obviously it’s impossible to really know how big or heavy a living dinosaur was by just looking at its fossils. But Scotty was definitely at least a little bigger than Sue.

Scotty is on display at the Royal Saskatchewan Museum in Canada.

Way back in episode 12, I talked about snakes that were supposed to make noises of one kind or another. Many snakes do make sounds, but overall they’re usually very quiet animals. A snake called the bushmaster viper that lives in parts of Central America has long been rumored to sing like a bird. The bushmaster can grow up to ten feet long, or 3 meters, and its venom can be deadly to humans.

Recently, researchers discovered the source of the bushmaster’s supposed song. It’s not a snake singing. It’s not a bird singing. It’s not even a single animal–it’s two, both of them tree frogs. One of the frogs is new to science, the other is a little-known frog related to the new one.

I tried so hard to find audio of this frog, and I’m very bitter to report that I had no luck. The closest I could find was not great audio of this frog, whose name I forgot to write down, which I think is related to the new frogs.

[frog sound]

Now let’s do some quick, short updates, mostly from recent articles I’ve happened across while researching other things.

A triple-hybrid warbler, its mother a golden-winged/blue-winged hybrid (also called a Brewster’s warbler) and its father a warbler from a different genus, chestnut-sided, was sighted in May of 2018 by a birder in Pennsylvania. Lowell Burket noticed it had characteristics of both a blue-winged and a golden-winged warbler but sang like a chestnut-sided warbler. He contacted the Cornell Evolutionary Biology Lab about the bird with photos and video of it, and they sent a researcher, David Toews, out to look at it. Toews caught the bird, measured it, and took a blood sample for analysis. I think a listener told me about this article but I didn’t write down who, so thank you, mystery person.

Red-fronted lemurs chew on certain types of millipedes and rub the chewed-up millipedes on their tails and their butts. They also eat some of the millipedes. Researchers think the millipedes secrete a substance called benzoquinone, which acts as an insect repellant and may also help the lemurs get rid of intestinal parasites. Other animals rub crushed millipedes on their bodies for the same reasons.

A recent study of saber-toothed cat fossils show that many of the animals with injuries to their jaws and teeth that would have kept them from hunting properly survived on softer foods like meat and fat. Researchers think the injured cats were provided with food by other cats, which suggests they were social animals. The study examined micro-abrasions on the cats’ teeth that give researchers clues about what kinds of food the animals ate.

Simon sent me an article about a 228 million year old fossil turtle, Eorhynchochelys [ay-oh-rink-ah-keel-us]. It was definitely a turtle but it didn’t have a shell. Instead, its ribs were wide, which gave its body a turtle-like shape. Turtle shells actually evolved from widened ribs like these. Researchers are especially interested because Eorhynchochelys had a beak like modern turtles, while the other ancient turtle we know of had a partial shell but no beak. This gives researchers a better idea of how turtles evolved. Oh, and in case you were wondering, Eorhynchochelys grew over six feet long, or over 1.8 meters.

The elephant bird, featured in episode 51, was a giant flightless bird that lived in Madagascar. Recently new research about elephant birds has revealed some interesting information. For one thing, we now know what the biggest bird that ever lived was. It’s called Vorombe titan and grew nearly ten feet tall, or 3 meters, and weighed up to 1,800 lbs, or 800 kg. It was first discovered in 1894 but not recognized as its own species until 2018.

There’s also some evidence that at least some elephant bird species may have been nocturnal with extremely poor vision. This is the case with the kiwi bird, which is related to the elephant bird. Brain reconstruction studies of two species of elephant bird reveal that the part of its brain that processed vision was very small. It resembles the kiwi’s brain, in fact. One of the species studied had a larger area of the brain that processed smell, which researchers hypothesize may mean it lived in forested areas.

Another study of the elephant bird bones show evidence that the birds were killed and eaten by humans. But the bones date to more than 10,000 years ago. Humans supposedly didn’t live in Madagascar until 4,000 years ago at the earliest. So not only is there now evidence that people colonized the island 6,000 years earlier than previously thought, researchers now want to find out why elephant birds and humans coexisted on the island for some 9,000 years before the elephant bird went extinct. Hopefully archaeologists can uncover more information about the earliest people to arrive on Madagascar, which may help us learn more about how they interacted with the elephant bird and other extinct animals of the island.

Speaking of humans, humans evolved in Africa and until very recently, evolutionarily speaking, that’s where we all lived. Scientists rely on fossils, archaeological materials, and studies of ancient DNA to determine when and where humans spread beyond Africa. But at the moment, the DNA that researchers have studied doesn’t overlap entirely with what we’ve learned from the other sources. Basically this means that there are big chunks of data we still need to find to get a better picture of where our ancestors traveled. Part of the problem is that DNA preserves best in cold, dry areas, so most of the viable DNA recovered is from middle Eurasia. Fortunately, DNA technology is becoming more and more refined every year.

This brings us to a suggestion by Nicholas, who told me about a newly discovered hominin called Homo luzonensis. Homo luzonensis lived on an island called Luzon in the Philippines at least 50,000 years ago. It wasn’t a direct ancestor to Homo sapiens but was one of our cousins, although we don’t know yet how closely related.

No one thought humans could reach the island of Luzon until relatively recent times, because of how remote it is and because it hadn’t been connected to the mainland for the last 2 ½ million years. But when Homo floresiensis was discovered in 2004 on the island of Flores in Indonesia, which you may remember from episode 26, suddenly scientists got interested in other islands. Researchers knew there had been human settlements on Luzon 25,000 years ago, but no one had bothered to search for older settlements. In 2007 a team of paleoanthropologists returned to the island and found a foot bone that looked human. In 2011 and 2015 the team found some teeth and more bones from at least three different individuals.

We don’t know a whole lot about the Luzon humans yet. The discoveries are still too new. The Luzon hominins have a combination of features that are unique, a mixture of traits that appear more modern and traits that are seen in more ancient hominins. They’re also smaller in stature than modern humans, closer to the size of the Flores people. Homo luzonensis apparently used stone tools since researchers have found animal bones that show cut marks from butchering.

Researchers are starting to put together a picture of South Asia in ancient times, 50,000 years ago and more, and it’s becoming clear that there were a surprising number of hominins in the area. It’s also becoming clear that hominins lived in the area a lot longer ago than we thought. Researchers have found stone tools on the island of Sulawesi that date back at least 118,000 years. Even on Luzon, in 2018 researchers found stone tools and rhinoceros bones with butcher marks that date back over 700,000 years ago. We don’t know who those people were or if they were the ancestors of the Luzon people. We just know that they liked to eat rhino meat, which is one data point.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 121: Cave Dwelling Animals

This week let’s learn about some animals that live in caves!

The dipluran Haplocampa:

Oilbirds and their big black eyes:

A swiftlet:

The angel cave fish that can walk on its fins like a salamander walks on its feet:

Leptodirus, carrying around some air in its abdomen in case it needs some air:

The cave robber spider and its teeny hooked feet:

The devils hole pupfish:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Way back in episode 27 we learned about some animals that live deep in caves. Cave dwelling animals are always interesting because of the way they’ve adapted to an unusual environment, so let’s learn about some of them!

We’ll start with an invertebrate. Diplurans are common animals that are related to insects but aren’t insects. They live all over the world, with hundreds of species known to science, but most people have never seen one because of where they live. They like moist, dark areas like soil, dead leaves, and caves. They’re also small, usually only a few millimeters long, although a few species grow larger, up to two inches long, or five cm.

Diplurans have long bodies with a number of segments, six legs, long antennae, and a pair of tail appendages called cerci. Depending on the species, the cerci may just be a pair of straight filaments like an extra pair of antennae, or they may look like pincers. Diplurans with pincer-like cerci use them to help capture prey, while ones with antennae-like cerci eat fungi and plant material.

Diplurans also don’t have eyes. They don’t need eyes because they live underground where there’s little or no light. A lot of species are pale in color or lack pigment completely.

Diplurans have been around for something like 350 million years, although we don’t have very many fossil diplurans. But recently, a new species of dipluran was discovered in North America that has raised some interesting questions.

Vancouver Island is a large island on the west coast of Canada, near the city of Vancouver. It’s prone to earthquakes and contains a lot of caves, and last summer, in June of 2018, a party of cavers and scientists explored two of the caves and found a new dipluran, which has been named Haplocampa wagnelli. This dipluran is chunkier than most other known diplurans, with shorter antennae, which researchers think points to a more primitive body plan. Since the dipluran is so different from most other diplurans known, and because the caves where it was found were under a thick ice sheet until around 18,000 years ago, researchers are trying to figure out if it found its way into the caves after the ice sheet melted or if it survived in the caves while they were buried under ice.

Haplocampa seems to be most closely related to a few diplurans found in Asia. Asia was connected to western North America during the Pleistocene when sea levels were much lower, since so much of the world’s water was frozen, so it’s possible the ancestors of Haplocampa migrated from Asia after the ice sheets started to melt but before the Bering Land Bridge was completely submerged. Possibly its eggs were accidentally transported by birds who foraged in leaf litter where its ancestor lived.

A lot of animals that live in caves are only found in one particular cave system. This happens when a species of animal that lives near a cave moves into the cave, either full-time or part-time. As its descendants grow up, they become more and more adapted to cave life, until eventually they couldn’t live outside of the cave. Since there’s no way for them to travel from one cave system to another, they are confined to that single cave. And since caves are largely difficult for humans to explore, that means there are lots and lots and lots of animals unknown to science living out their quiet lives deep within caves where humans have never visited. Every so often a group of adventurous and brave scientists explore a cave and discover new animals, usually with the help of experienced cavers.

Animals that are endemic to a specific cave system are rare to start with and vulnerable to any changes in the cave environment. The Tumbling Creek cave snail is only found in a single stream in Tumbling Creek Cave in Missouri, in the United States. It lives its whole life in the water and is only about 2 millimeters in size, with a pale yellowish shell. When it was first discovered in 1971 it was common. Thirty years later, researchers could only find about forty of the snails due to water pollution.

Caves aren’t very friendly environments. Most of the animals that live in caves are very small as a result. Lots of insects and spiders live in caves, some snails, lots of fish, lots of crustaceans that live in fresh water, like crawdads and amphipods, and some salamanders. But the only mammals and birds that live in caves leave the cave to hunt or forage outside of it, like bats. There just isn’t enough food inside a typical cave to sustain a population of larger animals.

So what do cave animals eat? Obviously they eat each other, but without plants a cave system is definitely lacking in organic matter that can sustain populations of animals. Nutrients enter a cave primarily in two ways. Water flowing into a cave brings nutrients from outside, and animals that mainly live outside but sleep in caves also bring nutrients in. In the case of animals, their poop is a major source of organic material, with dead animals also contributing to the cave’s ecosystem. Bats in particular support a lot of cave animals with their poop, which is called guano, but bears, hyenas, and various other animals, birds, and insects also spend time in caves, either to sleep or to hibernate, and bring nutrients in from outside in one way or another.

There are two birds that spend time in caves, and I’m going to talk about both of them briefly even though technically they don’t live in caves, because they’re so interesting. Both birds are nocturnal and can echolocate like bats. The oilbird lives in parts of northern South America and is related to nightjars. I have a whole episode planned about nightjars and their relatives, but the oilbird is the only one that echolocates (as far as we know). The other bird that echolocates is the swiftlet.

The oilbird nests in caves and also roosts in caves during the day, then flies out at night and eats fruit. Some oilbirds roost in trees during the day instead. Its wings have evolved to allow it to hover and to navigate through tight areas, which helps it fly through caves. It sees well in darkness, with eyes that are arranged more like those of deep-sea fish rather than typical bird eyes.

Several species of swiflet echolocate. These are the birds that make their nests from saliva, and which humans gather to make bird’s nest soup from. They mostly live in Asia. They nest in caves and roost in caves at night, then fly out during the day to catch insects.

Researchers don’t know a lot yet about either bird’s echolocation. It’s audible to human ears, unlike most bat echolocating, and some researchers think it’s less sophisticated than bats’. It’s always possible there are other birds that echolocate, but we don’t know about them yet because maybe we can’t hear their echolocating.

This is what oilbirds sound like. The clicking noises are the echolocation calls.

[oilbird calls]

Cave fish are especially interesting. There isn’t one kind of cave fish but hundreds, mostly evolved from ordinary fish species that ended up in a cave’s water system and stayed. Sometimes the species of fish that gave rise to cave fish are still around, living outside the cave, but most cave fish species have evolved so much that they’re no longer very closely related to their outside ancestors.

Cave fish are considered extremophiles and they tend to have similar characteristics. They usually have no pigment, no scales, and often have no eyes at all, or tiny eyes that no longer function. They’re usually only a few inches long, or maybe 10 cm, and have low metabolic rates. They typically eat anything they can find.

Some cave fish have evolved in unusual ways to better fit their specific habitats. The cave angel fish lives in a single large cave system in Thailand, in fast-moving water. It’s about an inch long, or not quite 3 cm, and gets its name from its four broad fins, which look feathery like angel wings.

It was discovered in 1985 but it wasn’t until 2016 that researchers verified a persistent rumor about the fish, which is that it can WALK on its fins. It has a robust pelvis and vertebral column, and strong fin muscles that allow it to climb rocks to navigate waterfalls.

Other fish navigate waterfalls and other obstacles by squirming and wriggling, using their fins to push them along. But the cave angel fish walks like a salamander. Scientists are studying the way it walks to learn more about how the ancestors of four-legged animals evolved.

The largest cave dwelling animal is the blind cave eel, which grows up to 16 inches long, or 40 cm, although it’s very slender. Since it appears pink due to a lack of pigment in its skin and it has no eyes or fins, it looks a lot like a really long worm. But it’s actually a fish. Not much is known about it, but it’s widespread throughout western Australia and is sometimes found in wells. It lives in caves or underground waterways that are connected to the ocean.

The first insect that was recognized as living only in caves is a beetle called Leptodirus hochenwartii. It was discovered in 1831 deep in a cave in Slovenia, and researchers of the time found it so intriguing that they invented a whole new discipline to study it and other cave animals, known as biospeleology.

Leptodirus has some interesting adaptations to cave living. It has no wings and no eyes, its antennae and legs are long, but the real surprise is its body. Its head is small and the thorax, the middle section of an insect, is slender. But the abdomen is relatively large and round, and the insect uses it to store moist air. Caves tend to be humid environments and Leptodirus has evolved to need plenty of moisture in the air it breathes. But some parts of a cave can be dry, so not only does Leptodirus keep a supply of breathable air in its abdomen, its antennae can sense humidity levels with a receptor called the Hamann organ.

Some spiders live in caves and like other cave dwellers, they’ve evolved to look strange compared to ordinary spiders. The cave robber spider was only discovered in 2010 in a few caves in Oregon. Researchers suspect there are more species of cave robber spider in other cave systems that haven’t been explored yet by scientists.

The cave robber spider is so different from other spiders that it’s been placed in its own family, Trogloraptoridae, which means cave robber. It has hook-like claws on the ends of its legs which it probably uses to capture prey. It spins small, simple webs on the roofs of caves and researchers think it probably hangs upside down from its web and grabs its prey as it passes by. But since no one knows what the cave robber spider eats, it’s anyone’s guess. Researchers have even tried raising the spider in captivity to learn more about it, but it wouldn’t eat any of the insects or other small invertebrates it was offered as food. It starved to death without ever eating anything, so it’s possible it only eats specific prey. It’s a yellowish-brown spider with two rows of teeth, called serrula in spiders, which researchers say is unique among spiders.

It’s also pretty big for a cave dweller. Its body is up to 10 millimeters long, or about a third of an inch, and it has a legspan of about 3 inches, or 7.6 cm. But it’s very shy and rare, and of course it’s not going to hurt you. It literally wouldn’t even hurt a fly to keep itself from starving.

One of the scientists who discovered the spider and is studying it, Charles Griswold, points out that there are stories in the area of giant spiders living in caves. He suggests the cave robber spider might be the source of the stories, since a three inch spider looks much bigger when it’s hanging down from the roof of a cave right in your face, with hooked claws.

Let’s finish with a remarkable cave fish known as the devil’s hole pupfish. Devil’s hole is a geothermal pool inside a cavern in the Amargosa Desert in Nevada, which is in the southwestern United States. It’s not far from Death Valley. The cavern is more than 500 feet deep, or 150 meters, with water that stays at about 92 degrees Fahrenheit, or 33 degrees Celsius. There’s a single small opening into the cavern at the surface, which geologists estimate opened about 60,000 years ago. The cavern and cave system are more than half a million years old.

The geothermal pool is home to the devils hole pupfish, which is barely an inch long, or 25 millimeters, and looks pretty ordinary. It mostly stays around the opening to the surface, where there’s a limestone shelf just below the water’s surface that measures about 6 ½ by 13 feet, or 2 by 4 meters. While the pupfish does swim deeper into the cavern at times, it mostly eats algae that live on and around the shelf, and tiny animals that live within the algae. It also depends on the shelf for laying eggs and spawning.

So the shelf is really important. But it’s also really small and close to the surface. It can only support so many pupfish, so the average devil’s hole pupfish population is about 200 or 300 fish, although this fluctuates naturally depending on many factors. In the 1960s, a farming corporation drilled wells in the area and pumped water out for irrigation, and the water in devil’s hole started to drop and drop. Devil’s hole is part of Death Valley National Monument, and conservationists were well aware of how fragile the pupfish’s environment was. As the water level dropped, threatening to expose the limestone shelf that the pupfish depended on for their entire lives, conservation groups sued to stop the pumping of groundwater in the area. After a series of court cases that went all the way up to the Supreme Court, the water rights were acknowledged to be part of the national monument status. Pumping of groundwater was limited and the pupfish was saved.

The water level in devil’s hole is monitored daily, which has led to a lot of information about how the water is affected by seismic events. Earthquakes as far away as Alaska, Japan, and South America have all affected the water level.

Researchers aren’t sure how long the pupfish have lived in devil’s hole. Some researchers think they’ve been there for 20,000 years, others think it’s more like a few hundred. Researchers aren’t sure how such a small population of fish has stayed healthy for so long, since such a restricted number of individuals should be so inbred they’re no longer viable. The most recent genetic analysis of the pupfish suggests they became isolated from other pupfish species in the area less than a thousand years ago. But if that’s the case, no one’s sure how they got into devil’s hole in the first place. Flooding of the area hasn’t happened in the last thousand years.

Because the pupfish’s habitat is so fragile, the U.S. Fish and Wildlife Service has moved some of the fish into captive populations that mimic the fish’s original habitat. It’s nice to think that these tiny silvery-blue fish with big eyes have so many people working to keep them safe.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 118: The Hummingbird

This week’s episode is about the world’s tiniest birds, the hummingbird! Thanks to Tara for the suggestion!

The bee hummingbird:

The giant hummingbird:

The giant giant hummingbird:

If you’re interested in my little side project, Real Life Cooking Podcast, here’s the URL (or you can just search for it in your regular podcast app): https://reallifecooking.blubrry.net/

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week is another listener suggestion, this one from Tara! Tara’s favorite bird is the hummingbird, and I can’t believe I didn’t know that before she texted me, because I’ve known Tara for a long long time and in fact she is married to my brother. Tara, I hope you are ready for hummingbird-themed birthday gifts for the rest of your life!

The smallest birds in the world are hummingbirds, but not all hummingbirds are the smallest birds in the world. If that makes sense. The very smallest hummingbird, and definitely the smallest bird alive today and possibly alive ever, is the bee hummingbird.

The bee hummingbird is literally the size of a bee. Males are slightly smaller than females and barely grow more than two inches long, or 5.5 cm, from the tip of its long bill to the end of its tail. It weighs less than an ounce, or 2 grams. A penny weighs more than this bird does.

The bee hummingbird lives in Cuba and parts of the West Indies. Males are iridescent green and blue while females are more green and gray. During the breeding season, in spring and early summer, males also have red or pink spots on the head and throat.

Just like other birds, the bee hummingbird builds a nest and lays one or two eggs. The female takes care of the eggs and babies by herself. But her nest is so incredibly small! It’s barely an inch across, or 2.5 cm, lined with soft items like dandelion fluff and cobwebs. And the bee hummingbird’s eggs are the size of peas. I have some peas in my lunch today. Peas are really small. Can you imagine the smallness of an egg the size of a pea, and the smallness of the baby that hatches from the egg? I just died. I literally just died because it’s so cute and tiny I can’t stand it. Don’t worry, I came back to life to finish telling you about hummingbirds.

The largest hummingbird is called the giant hummingbird. It’s just over 9 inches long, or 23 cm, which sounds enormous, especially compared to the bee hummingbird. But keep in mind that its long bill is included in that length, so if you go by actual body size it’s only about the size of a sparrow. It has relatively long, pointed wings and sometimes actually glides instead of flapping its wings, which is practically unheard-of among hummingbirds. The giant hummingbird lives in the Andes Mountains in western South America, with some populations even living in high altitudes where the air is thinner. You know the so-called Nazca lines, the giant geoglyphs created by the ancient Nazca people that are shaped like animals? One of the geoglyphs is a hummingbird that’s 305 feet long, or 93 meters. It’s based on the giant hummingbird that lives in the area, so I guess you could say it’s a GIANT giant hummingbird.

*rimshot!* [it’s actually called a sting, and I played this one myself. Years of drum lessons have finally paid off!]

All hummingbirds are specialized to eat nectar from flowers. A hummingbird has a long, slender bill that can reach down into a flower to get at the nectar. In the process, the hummingbird gets pollen on its feathers that it then transfers to the next flowers it visits, helping pollinate the flowers. So the hummingbird gets a good meal and the flowers get pollinated, so everyone wins. Some hummingbird species have co-evolved with certain plant species so that only the bird can reach the nectar and only the bird can pollinate the flowers.

But the hummingbird’s bill isn’t a straw. It can open its bill just like other birds, and in fact hummingbirds eat a lot of tiny insects they find while foraging for nectar. They need to eat insects because while nectar provides a ton of energy, since it’s mostly just sugar, it doesn’t supply many nutrients. The upper part of the bill is much longer than the lower part, and the lower bill actually fits tightly inside the upper bill. That’s why it looks like a hummingbird’s bill is a tiny needle-like tube, since even if the bird has its mouth open it’s hard to tell.

A hummingbird actually uses its tongue to lap up nectar. The hummingbird’s tongue is extremely long, up to twice the length of the bill, and has a forked end. The tongue also contains grooves. When a hummingbird puts its bill into a flower, it sticks its tongue out and laps up the nectar rapidly, something like 13 licks a second. The nectar travels up the grooves into the bird’s mouth.

If you were wondering, a mother hummingbird feeds her babies nectar and tiny insects. Also, the reason hummingbirds use so much spiderweb silk in their nests is because it will expand as the babies grow. I’m sorry, I just died again. Give me a second to stop dying of cute. A baby hummingbird grows quickly and some species learn to fly at only two weeks old, although the mother bird continues to feed the babies for a little longer.

Hummingbirds move fast, which is why they need all that energy from nectar. Their energy needs are incredibly high. When a hummingbird flies, its metabolic rate increases to the highest ever measured in an animal that’s not an insect. Its heart can beat over 1,200 times per minute and it may breathe 250 times per minute. At night, or if there’s not a lot of food around, the hummingbird’s metabolism slows dramatically and the bird enters a state called torpor. Its body temperature falls, its heartrate can drop to only 50 beats per minute—which is on the slow side for a human—and its breathing rate drops too. Torpor is basically a very short hibernation where the bird will sleep deeply until morning or until it needs to go out and find more food. Even so, a hummingbird can lose up to 10% of its body weight overnight as its body burns fat reserves to keep it alive.

So that makes it all the more amazing that some species of hummingbird migrate long distances, including over the ocean. All hummingbird species are native to the Americas, but many species that spend the summer in North America migrate south to spend winter in Central America or Mexico. Some species in South America migrate north to winter in warmer areas too. The rufous hummingbird migrates from Alaska to Mexico, about 3,900 miles, or almost 6,300 km, and then it migrates back up the western coast of North America in spring.

The hummingbird doesn’t fly like other birds. It flaps its wings in a figure 8 motion that provides lift, which allows it to hover. Its wings beat incredibly quickly, up to 80 times a second. Even the slowest-moving hummingbird, the giant hummingbird, beats its wings 12 times a second. I don’t know about you, but I’m pretty sure I can’t do anything 12 times a second except maybe flutter my eyelashes, and even then my eyelids would get tired after a few seconds. Also, that’s not going to help me fly. Not even if I wear really long false eyelashes.

The hummingbird gets its name from the humming sound its wings make as they beat so incredibly fast. But the hummingbird’s feathers also make other sounds as the bird flies. In some species of hummingbird, the male grows special feathers that vibrate as he flies and make a whistling or chirping sound. This helps females find a male and helps the male defend his territory by announcing his presence to other males.

Oh, you didn’t know hummingbirds were territorial? They sure are. They may be tiny and pretty, but they’re fierce too. A male will chase other males away from his flowers, even stabbing other males with his long bill.

My aunt likes to tell a story of a cat she had years and years ago who liked to go into her garden and lie in the sun. One day the cat leaped at what my aunt thought was a bee. The cat stopped with a startled look on his face and opened his mouth. A hummingbird backed up out of the cat’s mouth and flew away and the cat never bothered a bird or a bee again, since the hummingbird’s beak had stabbed him in the back of the throat.

Needless to say, the hummingbird is the only bird that can fly backwards.

It’s one thing to think, “Oh, hummingbirds are so small” but it’s another thing to see a hummingbird in the wild and really understand how small they are. When I’m out birdwatching I almost always mistake hummingbirds for bees when I first see one. The hummingbird is so small, in fact, that it’s eaten by some larger insects, like the preying mantis, and by larger spiders. Anything that will eat an insect will eat a hummingbird, and that includes some other birds.

Fortunately, the hummingbird is so fast that it can usually get away from predators. It can fly up to 30 mph, or 48 km per hour. Its tail feathers also come out easily and grow back quickly, so anything that grabs it by the tail is probably just going to end up with a few feathers to eat.

The hummingbird flies so quickly through dense vegetation that its brain processes images in a different way from other birds so it doesn’t run into things. It has excellent vision, too, since it finds flowers by sight.

You can attract hummingbirds to your garden by planting flowers they like, such as bee balm, hollyhocks, petunias, trumpet vine, and lots more. You can also put out hummingbird feeders that you fill with imitation nectar. It’s important to keep the feeders cleaned, since the nectar will spoil after a while, mold will grow inside the feeder, and insects may get into the nectar and drown. Also make sure to hang the feeder where the birds will be safe from predators like cats and snakes.

Some of you may have heard that I’ve started a little side project, another podcast called Real Life Cooking where I share recipes and explain how to make them. So as a sort of crossover event, I’ll give you a recipe for making hummingbird nectar.

You don’t need anything expensive, just plain tapwater and plain white sugar. Use one part sugar to four parts water. So if you use one cup of water, add ¼ c sugar. Put them together in a small pot on the stove and heat the water, stirring occasionally, until the water is boiling. Let it boil for about a minute, then remove it from the heat and let it cool to room temperature. Once it’s cool, you can pour it into your hummingbird feeder. Don’t add red food coloring or any kind of flavoring, and don’t use any sugar except regular white sugar. Brown sugar and natural-colored sugars can contain iron, which is toxic to hummingbirds. If the feeder you use isn’t attracting hummingbirds, you can tie a red ribbon around it to make hummingbirds notice it. Make sure to change out the nectar every couple of days so it won’t go bad.

Sugar-water sounds like a horrible thing to feed a wild animal, but it’s exactly what hummingbirds need and what they eat naturally.

Hummingbirds are such unusual birds that it’s hard to imagine what they’re related to. There are birds that resemble hummingbirds in some ways, especially the sunbird that lives in Africa, parts of Asia, and Australia. But the hummingbird and the sunbird aren’t related. They just share a very specific ecological niche, which has resulted in similarities due to convergent evolution.

No, the hummingbird is most closely related to the swift! Not closely related, of course, because the two started evolving separately as much as 42 million years ago. The first ancestral hummingbird is found in the fossil record in South America around 22 million years ago, where they spread throughout the Americas and evolved into the hundreds of species we have today. In the Andes Mountains alone, there are 140 species of hummingbird and researchers keep finding new ones. The blue-throated hillstar was only discovered in 2017, for instance, since it lives in a very small area of the Andes in Ecuador and is very rare.

Researchers keep finding out more about hummingbirds, too. The black Jacobin hummingbird from the mountains of eastern Brazil makes complex sounds that are so high-pitched that the researchers have to record them using equipment developed to record bat calls. So who knows what else we’ll learn about hummingbirds next? I can definitely see why they’d be anyone’s favorite bird.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 115: Giant Rabbits and King Hares

This week let’s learn about some giant-sized rabbits and hares! Also some regular-sized ones.

Further listening:

Life, Death & Taxonomy podcast episode about the Collared Pika

Further reading:

Dr Karl Shuker’s post about giant rabbits and hares

The National Cryptid Society’s post about giant rabbits and hares

An eastern cottontail rabbit:

The Flemish giant looks Photoshopped. It’s a big bunny:

A European hare (also called the brown hare):

The Belgian hare is a domestic rabbit bred to look like a hare:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

A few weeks ago we had an episode about some animal hoaxes that were based on true animal facts, including the horned hare. While I was researching that topic, I kept running across interesting facts about rabbits and hares, specifically mysterious reports about giant rabbits. So this week, let’s have a whole episode about gigantic rabbits and hares.

We’ll start with some general information. Collectively rabbits and hares are called leporids after their family, Leporidae, or lagomorphs after their order, Lagomorpha. Lagomorphs include pikas, which are really cute and look sort of like oversized hamsters. The podcasts Species and Life, Death and Taxonomy both did really good episodes about the pika recently, so we’re just going to talk about rabbits and hares today.

Leporids are famous for hopping instead of walking, and they’re able to do so because their hind legs are longer than their front legs and have specialized ankle joints. Ancestors of leporids developed this ankle as much as 53 million years ago, but their legs were much shorter so they probably ran instead of hopped. Hares have longer legs than rabbits and can run faster as a result, but both rabbits and hares are known for their ability to bound at high speeds. When a rabbit or hare runs, it pushes off from the ground with the tips of its long hind toes, and its toes are connected with webbed skin so they can’t spread apart. If the toes did spread apart, they would be more likely to get injured. Rabbits and hares also don’t have paw pads like dogs and cats do. The bottom of a leporid’s foot is covered with dense, coarse fur that protects the toes from injury. Its long claws help it get a good purchase on the ground so its feet won’t slip.

Baby rabbits are called bunnies, kits, or kittens, and like baby dogs and cats, they’re born helpless, without fur and with their eyes still sealed closed. Baby hares are called leverets and are born fully developed, with fur and with their eyes open.

Leporids eat plants, including grass, weeds, twigs, and bark. Animals that eat grass and other tough plants have specialized digestive systems so they can extract as many nutrients from the plants as possible. Many animals swallow the plants, digest them for a while, then bring up cuds of plants and water to chew more thoroughly. Rabbits and hares don’t chew their cud in that way, but they do have a system that allows them to digest the plants they eat twice.

After a leporid eats some plants, the plants go into the stomach, naturally, and then travel into the first part of the large intestine, called the cecum. The cecum separates the softer parts of the plants from the harder, less digestible parts. The hard parts are compressed into hard pellets that the rabbit poops out. But the soft parts of the plants, which are most nutritious, develop into softer pellets. These are called cecotropes, and as soon as the rabbit poops out the cecotropes, it immediately eats them again. This allows the digestive system to get a second round to extract more nutrients from the plants.

Most rabbit species are native to North America, but there are also rabbits native to parts of South America, parts of Europe and Asia, parts of Africa, and a few Japanese islands. They’ve also been introduced to other areas of the world, especially Australia, where they’re a real pest since rabbits eat a lot and reproduce rapidly.

Most hare species are native to Eurasia, with some species also living in parts of Africa, North America, and some Japanese islands. Despite its name, the jackrabbit of North America is a hare.

Hares live above ground and are generally solitary. Almost all rabbits are sociable and sleep underground in warrens and burrows. The exceptions are the rare hispid hare of South Asia, which is actually a rabbit, and the cottontail rabbit of North America. These rabbits make nests in long grass like hares do to raise their babies. Eastern cottontails are the rabbits I’m familiar with, and the cottontail gets its name because its short tail is white all over instead of only white underneath. It looks like a powder puff.

Hares aren’t domesticated, but rabbits have been and there are a lot of breeds of domestic rabbit. I had a pet red satin when I was a kid. Her name was June and she was beautiful. Domestic rabbits can be trained to use a litter box just like a cat, but unlike most cats, rabbits will chew on everything. I say most cats because I had a cat once who liked to chew through phone cords, back when I had a landline phone. But a rabbit will chew on all cords, on furniture, on wallpaper, and things like that if the rabbit isn’t trained and isn’t given appropriate things to chew on. A pet rabbit can be spayed or neutered just like a pet dog or cat to make it healthier, less likely to spray urine to mark its territory, and less aggressive.

So now we have a good idea of what rabbits and hares are like. Now let’s find out about some gigantic and mysterious leporids.

I’ll start with an account by a witness named Evelyn who saw something unusual while waiting for the school bus one morning. This happened in New Jersey, which is in the northeastern United States. I’ll quote the account I found in the National Cryptid Society archives.

“In 1954, I had just turned 14. I was waiting for the school bus at 6:45 AM by our house in the country, which was across the road from a holly farm. At that time before they planted hollies it was mostly weeds along the road but sweet potatoes in the rest of the field.

“I glanced over at the 10+ acre field in front of me and there sat what appeared to be a huge ‘rabbit.’ It was brown and I was roughly ten to fifteen feet from it. I had seen hares before but this was not a hare; besides, hares hadn’t been seen in that part of New Jersey in forty years.

“This creature was sitting on its haunches and stood nearly four and a half feet tall. It just watched me for several minutes, and then it just disappeared! It did not hop away.

“I wasn’t frightened. I had a strange feeling of peace. I had such a calm, peaceful feeling. It was almost as if it was reassuring me it was not unreal; that is the only way I can explain it.

“No one else ever saw it and my family lived there for over 25 years. To this day I wonder what it really was and where it came from.”

Wow, wait, what?? How does an animal that big just disappear? Like, actually vanish into thin air?

Let’s take a closer look at the details here and see what we can figure out.

We’ll start with the detail about the sweet potatoes in hopes of figuring out what time of year it was. In New Jersey, sweet potatoes are planted around the end of spring and harvested in late summer into early autumn. In other words, if there were sweet potatoes in the field, the days would be long and it would have been fully light at 6:45 am. So Evelyn probably did get a good look at the animal for at least a minute.

She also states she was only ten to fifteen feet away from it, which would be about 3 to 4 and a half meters away. That’s really close. But from the way she describes the scene, it sounds like she was across the road from the field where she saw the animal. She says she was waiting by her house, which was across from the farm. I actually measured the road in front of my house when I was researching episode 17 about the Thunderbird. My road is a typical two-lane road in a small town and I believe it measured 18 ½ feet, or just over 5.6 meters. Of course, I don’t know how wide roads were back in 1953, but it’s likely Evelyn was a little farther away from the animal than she remembers.

It sounds like the animal was close to the road, probably in the weeds along the edge of the road rather than in the cultivated field full of sweet potatoes. Deer are considered sweet potato pests but rabbits aren’t, so if it was a giant rabbit of some kind, it was probably eating weeds instead of sweet potato leaves.

Next, what kind of rabbits and hares live in New Jersey? The eastern cottontail and the New England cottontail are both small rabbits that Evelyn would have recognized easily. The European hare, black-tailed jackrabbit, and white-tailed jackrabbit, which are all hares, have been introduced into parts of New Jersey for hunting at different times. But Evelyn states specifically that this was not a hare.

The snowshoe hare is sometimes seen in northern New Jersey and might occasionally stray farther south. I don’t know what part of New Jersey Evelyn was from, but sweet potato farming is more common in the southern parts of the state. The snowshoe hare is more rabbit-like in appearance than other hares, since its ears are smaller and its body more rounded. Its fur usually turns white in winter to camouflage it against the snow, but in summer it would be brown. And it’s also fairly large, certainly bigger than a cottontail rabbit. Not counting the tail, a snowshoe hare can grow up to a foot and a half long, or 48 cm. If it was sitting up on its hind legs, especially if it was sitting up high on its hind legs to watch Evelyn in case it needed to run, it might appear to be even bigger, say two feet or more, or over 61 cm. But even accounting for the animal’s size being exaggerated in Evelyn’s memory, that’s still a lot smaller than the almost four and a half foot tall animal she describes. Four and a half feet is 137 cm. That’s really tall.

If you’ve listened to episode 73, about phantom kangaroos, you know that wallabies and kangaroos are sometimes kept as pets in the United States and often escape. Wallabies and kangaroos have long ears, long hind legs, and sit up like rabbits and hares. If Evelyn saw a wallaby but didn’t see its long tail, she might have thought she was looking at an enormous rabbit.

But…it disappeared. Hares are considered masters of hiding and are said to be able to seem to disappear from view even in short grass, but how in the heck can an animal more than four feet tall just vanish?

I don’t have an answer, so all I can offer is that either Evelyn misjudged the animal’s size and thought it was much larger than it was, and it was able to drop down quickly and appear to vanish in tall weeds, or Evelyn actually saw a ghostly giant rabbit of some kind that actually vanished. Now this sounds like a Halloween episode. At least her ghost rabbit wasn’t scary. She even points out that she felt peaceful after seeing it.

Evelyn isn’t the only person who’s reported seeing a giant rabbit or hare. In 1976 in Dorset, England, a woman named Louise Hodgson and two men out walking their dogs in the evening saw a group of about a dozen hares in a field. This was in September so it was unusual to find that many hares together just to start with, since hares are usually solitary except during mating season in spring. But there was a bigger animal with the hares. The dog-walkers at first thought it was a roe deer due to its size, but then they realized it was another hare, but huge. A roe deer stands no more than two and a half feet at the shoulder, or 75 cm, which is the same measurement of the length of a large European hare’s body. So a European hare could appear as tall as a roe deer when sitting up, but then why did it appear so much larger than the other hares?

In April of 2006, not long after the awesome movie Wallace & Gromit and the Curse of the Were-Rabbit was released, reports of a giant rabbit eating up gardens in Northumberland, England hit the news. People thought it was an April Fool’s joke, but the gardeners were furious and had proof: giant-sized rabbit footprints, and of course their destroyed produce. They reported that the rabbit was the size of a dog and was black and brown in color. The first witness saw it in February of that year. But before anyone could get a good photo of the rabbit or capture it, a local woman reported that she’d been driving one night in early April when a massive rabbit bounded in front of her car. She wasn’t able to stop and collided with the rabbit, which was so big that the front bumper of her car was damaged. The rabbit died, unfortunately, and the woman said she got out and looked at it. She estimated it was at least two feet long, or 61 cm, with long legs. Rabbit fur was found stuck in the damaged bumper of her car, but the dead rabbit was long gone, probably eaten by a fox. After that the giant rabbit wasn’t seen again and the gardeners were left in peace.

And in 2017 a man reported that when he was a kid in the late 1960s, in Placer County, California, he and his mother both saw some jackrabbits that were almost four feet tall when they sat up, or 1.2 meters. The best part of this story is that they saw more than one giant jackrabbit.

So what could these giant hares and rabbits be? Do leporids ever really get that big?

Actually, yes. There are two breeds of domestic rabbit that are enormous. One is called the Flemish giant and the other is a British breed called the Continental giant. Both were originally bred for fur and meat, but are good-natured rabbits that are often kept as pets these days. A typical domestic rabbit is roughly the size and weight of a small to medium-sized cat, but a Flemish or continental giant rabbit can be as large as a medium-sized dog. The biggest is a rabbit named Darius, who is officially four feet four inches long, or 134 cm. Pictures of him and other domestic breed giants look photoshopped, because how can a rabbit be so big? But they are.

It’s probable that the Northumberland giant rabbit was a Flemish or continental giant that had escaped its home. But what about the giant hares reported in other places? Hares look much more slender and angular than rabbits and usually have longer ears.

Some cryptozoologists suggest that an extinct leporid might be the culprit, if it isn’t really extinct. Nuralagus rex, also called the Minorcan giant lagomorph, and sometimes referred to as a giant jackrabbit, was only described in 2011 and went extinct 3 to 5 million years ago. But Nuralagus wasn’t a jackrabbit and it only lived on one island, Menorca in the Mediterranean Sea. While it was related to modern rabbits and hares, it was definitely very different and not really all that big. It probably stood about a foot and a half high at the highest part of the back, or around half a meter, and was big and heavy. But it had small eyes and ears, and it probably couldn’t hop or even run very fast. If it was alive today, no one would think it was even related to a rabbit or hare.

The king hares seen in parts of England might be unusually large hares whose size has been exaggerated, since it’s hard to estimate size of an animal seen in the distance or seen only briefly. The king hare seen by Louise Hodgson in Dorset amid a bunch of smaller hares might actually have been a large hare in a field of rabbits, which Hodgson and her companions might have interpreted as being one giant hare and a lot of normal-sized hares. Hares and rabbits don’t typically interact where their ranges overlap, but they also don’t apparently dislike each other. A solitary hare might feed in a field where rabbits are also feeding.

Of course it’s also possible that there are anomalously large hares born sometimes. But there is another possibility.

In the mid-1980s, a man named Andrew Munro was walking through his mother’s garden in County Cork, Ireland when he saw a huge hare. He stopped and stared at it, and it stopped and stared at him, standing on its hind legs with its ears perked up. Munro estimated it was over four feet tall, or 1.2 meters. Munro’s dog saw it and gave chase, but the hare bounded away and was gone in moments.

This is an interesting sighting, because Munro pointed out that the hare was only four feet tall because it was standing up tall on its hind legs with its long ears up. A large hare can have ears more than half a foot long, or 15 cm. If you add the ear length to the body and head length, a big hare sitting up can measure three feet, or over 91 cm, and if it’s also standing on its hind legs instead of sitting on its bottom, that adds more height. So maybe we’re talking about big hares, but not ENORMOUS hares.

Not only that, there’s a breed of domestic rabbit called the Belgian hare that was bred to look like a hare. It’s slender, strong, and energetic, with long ears and legs. It was first bred in the early 18th century and was considered a meat rabbit, and while it’s not as heavy or bulky as a Flemish giant or continental giant rabbit, it’s big, much bigger than a wild hare. In fact, the Flemish giant was developed from the Belgian hare breed.

The Belgian hare became incredibly popular at the end of the 19th century and beginning of the 20th as a meat rabbit and as a show rabbit. Some prize Belgian hares sold for as much as a thousand dollars, which is expensive now and was ridiculously expensive back in the olden days. By 1917 its popularity had fallen, mostly because there were just so many Belgian hares that the price dropped to almost nothing, which made fewer people want to bother keeping them to sell.

According to zoologist Karl Shuker’s blog, during the 1940s, Belgian hares may have been released into the wild in Ireland with the expectation that people could shoot them for meat. But before long Ireland was overrun with rabbits to such an extent that they were eradicated. I can’t find anything else about this online so this might not be the case, or the rabbits might only have been released in one small area, but it is interesting to consider that the big hare Andrew Munro saw in the 1980s might actually have been a descendant of one of these hare-like rabbits.

We’ll finish with another interesting rabbit, but not a big one. It’s the marsh rabbit, and it’s a type of cottontail that lives in swamps and along the coast of the southeastern United States. It’s smaller than other cottontail species with small ears and shorter legs, and it always lives around water. There are three subspecies, including the endangered Lower Keys marsh rabbit that lives in the Florida Keys.

The marsh rabbit can hop just fine like other rabbits, but because its legs are so much shorter than other rabbit species, it can also walk. Its walking gait resembles a cat’s. This helps it navigate dense vegetation more easily. Not only that, its toes are much more widely spread than in other rabbit species.

But the really extraordinary thing about the marsh rabbit is that it likes to swim. It spends a lot of time in the water—and I mean, actually in the water. It mostly eats aquatic plants. It will submerge itself in muddy water to hide with just its nose and eyes above water and its ears laid flat to hide them. If a predator approaches, the rabbit will swim away. This is not behavior I think of when I think of rabbits but you have to admit, it’s adorable.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 114: The Depths of the Sea of Cortez

The Gulf of California, AKA the Sea of Cortez, is home to thousands upon thousands of animals, many of them not found anywhere else in the world. New research expeditions in its deep-sea fissures and trenches have turned up some amazing new animals too. Let’s take a look at a few of them!

Thanks to Hally for this week’s topic suggestion!

The lollipop catshark sounds cuter than it is:

The black brotula:

A super creepy grenadier fish. Look at those EYES:

A type of batfish. It uses its stiff fins to walk around on the bottom of the ocean:

Some beautiful hydrothermal chimneys:

Giant tube worms:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s been a while since we did a deep-sea episode. This week let’s find out about some strange fish discovered in the Pacific Ocean off the coast of Mexico. Thanks to Hally for the suggestion!

The Gulf of California, also called the Sea of Cortez, is the stretch of water between mainland Mexico and the Baja peninsula. Researchers estimate it started forming over 5 million years ago when tectonic forces separated the strip of land now called Baja peninsula or Baja California from the mainland. It’s still attached to the mainland at its northern edge, where the Colorado River empties into the gulf. The sea is about 700 miles wide, or over 1100 km.

Because the gulf was formed by tectonic forces and undersea volcanos, parts of it are extremely deep—more than 12,500 feet deep in places, or 3,800 meters. It’s full of islands, nearly 1,000 of them, a few of them quite large and some just tiny, some of them volcanic and some not. And it’s rich in ocean life, with many animals found in the Gulf of California that live nowhere else in the world.

For instance, the lollipop catshark! What a cute name. It probably plays ukulele and its best friend plays the xylophone. They should start a band!

The lollipop catshark is actually not super cute, although it is pretty awesome. It’s a small shark, only about 11 inches long, or 28 cm, and it has pinkish gray skin that’s almost gelatinous in texture, although it also has tiny spiky denticles, especially on its back. It gets the name lollipop from its shape. It has a broad head with large gills, but its body tapers to a slender tail so that it’s sort of shaped like a tadpole. Not really lollipop shaped, frankly. Babies are born live instead of hatching from eggs, with a female giving birth to two babies at a time. It eats crustaceans and fish.

The reason the lollipop catshark has such big gills is that it lives at the bottom of the ocean where there’s not much oxygen. The Gulf of California is especially oxygen-poor in its deepest areas, so when a team of scientists sent a submersible to the deepest parts of the gulf in 2015, they didn’t expect to find that many fish or other animals. But not only were there a lot of lollipop catsharks, there were lots of other animals too.

The submersible found the most fish in a part of the gulf called the Carralvo Trough, which is nearly 3,300 feet deep, or 1,000 meters. A few years before, a submersible had discovered the bodies of dozens of dead squid in the trough, and researchers determined that the squid were all females that had laid eggs and then died and sunk to the bottom. The dead squid are usually eaten by scavengers within 24 hours of dying, including crabs and sea stars, brittle stars, and acorn worms, as well as small bottom-dwelling sharks like the lollipop catshark. So it was good timing that the submersible saw so many of them at once.

Another deep-sea animal found in the Gulf of California is the cusk eel. There are lots of species of cusk eel that live throughout the world’s oceans and even some fresh water, and despite the name, cusk eels are fish, not eels. They’re related to cod, although not closely. They live on the bottom of the ocean, usually in shallow water, where they burrow in the sediment and sand at the bottom.

But the cusk eel found in the Carralvo Trough is called the black brotula, and it’s so different from other cusk eels that it has its own genus. The black brotula grows up to 10 inches long, or about 25 cm, and only lives in the depths of the Gulf of California and in some deep areas along the western coast of Mexico and Chile. Not only can it tolerate low-oxygen water, it prefers it. It’s black or dark gray in color–even its intestines are black. And that’s pretty much all we know about it at this point. Cusk eels are generally not very well studied, and the black brotula is hard to study because it lives so deep in the gulf. Researchers don’t even know how it tolerates water with so little oxygen and what it eats down there. We do know that young black brotulas prefer shallower water.

Another deep-sea fish found in the Gulf of California is the grenadier [grin-a-deer]. Grenadiers are some of the most common deep-sea fish in the world, with lots of different species. Some researchers estimate that they may make up as much as 15% of all fish that live in the deep sea. All grendadiers have large heads with big eyes and mouths, slender bodies that taper to such a thin tail that some people call the fish rattail.

The grenadier has barbels under the chin with chemoreceptors on them, and more chemoreceptors on the mouth and head, so it can sense other fish nearby even if it can’t see them. It’s been found as deep as nearly 23,000 feet under the surface, or 7,000 meters, which is just ridiculous. That’s four and a third miles underwater, or seven km. The Gulf of California isn’t that deep, of course, but there are grenadiers swimming around in the deepest areas, eating anything they can catch.

Some grenadiers are eaten, but mostly they have a soft, unpleasant texture and are low in protein. The biggest grenadier, which is common throughout the deep areas of the Pacific Ocean, is the giant grenadier, which can grow to 6 ½ feet long, or 2 meters. It eats vampire squid and other cephalopods. The grenadier most commonly found in the Gulf of California is the smooth grenadier, which only grows to about a foot long, or 30 cm.

A type of batfish that’s common off the western coasts of North, Central, and South America is also found in the deep sea of the Gulf of California. It’s a small type of anglerfish, only about six inches long, or 15 cm, dark in color, with a broad flattened head tapering to a much thinner long tail. Like other anglerfish, it has strong, stiff fins that it uses to crawl around on the ocean floor, where it hunts small animals like polychaete worms and crustaceans as well as fish.

If you look at the pictures I have in the show notes, or if you’ve been paying attention to the descriptions of all these fish, you’ll notice that even though they’re not related, they all share similar features. Their heads are large and usually broad, while their bodies are relatively small with a slender tail. The large head allows the fish to have unusually large gills and eyes, with a broad mouth so it can gulp down any food it finds. You know what this points to? That’s right, convergent evolution, where the fish all share a similar habitat that has influenced certain aspects of the body shape!

Currently, researchers are exploring volcanic vents in the Gulf of California that are the deepest found in the area. The area contains hydrothermal vents, which can heat the water to over 660 degrees F, or 350 degrees Celcius, and cold seeps, which are only called cold because they’re not super heated.

The vents are surrounded by mineral towers called hydrothermal chimneys that are up to 120 feet high, or 37 meters. These deepest vents and chimneys were only discovered in 2015, with others nearby only discovered in 2012. There are two types of chimneys in the area, dark-colored ones that grow the biggest, which are made up of sulfide minerals, and smaller, more delicate ones made up of light-colored carbonate minerals. The only other carbonate chimneys ever found are in the Atlantic. They’re really pretty.

Between the super heated water, the high levels of sulfides and heavy metals from the vents, and the great depth, the area would kill most animal life. But hydrothermal ecosystems are home to extremophiles that thrive in places that are deadly to other animals. The dark-colored chimneys, often called black smokers since they give off plumes of superheated minerals that look like smoke, are home to giant tube worms that can grow nearly eight feet long, or 2.4 meters, although they’re only a little more than an inch and a half wide, or 4 cm.

Giant tube worms don’t have a digestive tract, just a sort of internal pouch to hold the chemosynthetic bacteria that provide nutrients to the worm. The worm gives the bacteria a safe place to live, and the bacteria convert the carbon dioxide, hydrogen sulfide, and other minerals into nutrients that the worm absorbs.

But how do giant tube worms find new hydrothermal vents? Old vents go cold and new ones open up all the time, and giant tube worms can’t move once they’ve attached themselves to a rock or other solid structure. It turns out that newly hatched giant tube worms are free-swimming larvae, and at first they don’t contain any of the symbiotic bacteria that they need later in life. They acquire the bacteria later, when bacteria in the water find the larva and burrow into its skin. The larva swims deeper into the ocean and finds a hydrothermal vent, if it’s lucky, and attaches itself to a rock or something nearby. It then develops rapidly from a larva into the juvenile stage, where its digestive system reforms into a place for the bacteria to live. Then it grows into an adult tube worm.

The carbonate chimneys have a different kind of tube worm that prefers a different range of minerals.

Giant tube worms were only discovered in 1977. No one back then dreamed that anything could live around hydrothermal vents so the team exploring some vents hadn’t even brought along a biologist, just geologists. I like to think that they freaked out when they saw tube worms and other animals living around the vents.

It just goes to show, like they say in Jurassic Park, life finds a way.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 113: Horned Hares and Winged Cats

It’s April Fool’s Day, but while these two mystery animals may mostly be associated with hoaxes and tall tales, there’s a really interesting nugget of truth in both.

Unlocked Patreon episode about mammals with nose horns

Further reading: Dr Karl P N Shuker’s blog post about winged cats and his blog post about horned hares

Traditional drawings of horned hares:

You can take classes in taxidermy that specialize in making jackalopes!

A genuine horned hare (with an extreme case of SPV):

A winged cat:

Mitzi/Thomas the winged cat:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This episode releases on April Fool’s Day, April 1. I’m not a fan of April fool jokes, so we’re going to discuss two interesting strange animals that turned out to be hoaxes—but hoaxes with a nugget of truth that’s actually more interesting than the hoax.

The first hoax is akin to the jackalope and it’s pretty obvious to us nowadays. The horned hare was a tradition in European folklore and drawings of it look like a jackalope. There are even stuffed horned hares, just as there are stuffed jackalopes.

Some of you may be wondering what the heck a jackalope is, so I’ll explain that first.

The jackalope legend may have started as a tall tale, but was probably just a taxidermy joke. When someone prepares a dead animal for taxidermy, it’s not a simple process. The taxidermist has to remove the skin from the body, clean it and add preservatives, make a careful armature or mannequin of the body out of wood or other materials, and put the skin on the armature and sew it up. The taxidermist then adds details like glass eyes and artificial tongues. It can take months of painstaking work to finish a specimen, and it requires a lot of artistry and training. Taxidermists who are learning the trade will often mount small, common animals like rabbits and rats as practice. And sometimes they’ll get creative with the process, just to make it more interesting. For instance, a taxidermist may add pronghorn antelope horns to a jackrabbit. Voila, there’s a jackalope!

You can see stuffed jackalopes today in a lot of places, since they’re fun conversation pieces. Some restaurants will have one stuck up on a wall somewhere, for instance. Horned hares are similar, but instead of a jackrabbit with pronghorn horns or white-tailed deer antlers, which are animals from North America, the European horned hare is usually a European hare with horns [I should have said antlers] from a roe deer.

The horned hare was such a common taxidermied animal that people actually believed it was real. Eventually, around the 19th century, as knowledge of the natural world grew more sophisticated, scientists realized rabbits and hares don’t have horns and those stuffed specimens were just hoaxes. The tip-off was probably when taxidermists started getting really fancy and adding bird wings and saber teeth to their mounted hares.

But…

The horned hare goes way back in history. It appeared in medieval bestiaries, sometimes called the unicorn hare. The unicorn hare was supposed to have a single black horn on its head. The hare would act normal, but when someone approached, it would spring at them and stab them with its horn. Then it would eat them. The legend of the horned hare is so widespread and long-lived, in fact, and was believed for so long, that it’s easy to think maybe it was based on something real. I mean, we just talked about rodents with nose horns a few weeks ago, so nothing’s impossible.

Wait, I think that’s a Patreon episode. If it is, I’ll unlock it. I’ll put a link in the show notes.

There is a strange truth behind all the jackalopes and horned hares. A disease called the Shope papilloma virus, or SPV, affects hares and rabbits. There are a lot of papilloma viruses in various animals, even humans, but in most animals, including humans, it only results in tumors in the body. In rabbits and hares, it causes keratinized tumors to grow from the skin, often on the head. Usually these are small and don’t show through the fur, but sometimes an animal has an extreme case of SPV and it genuinely looks like it has horns. The horns are hard and usually dark in color. As if that wasn’t bad enough, rabbits and hares in Europe can also get a disease called Leporipoxvirus that again causes facial horns to grow from the skin.

If you’re feeling totally creeped out right now, don’t worry, humans can’t catch these diseases from rabbits and hares.

Remember how I mentioned taxidermied hares with wings? What about cats with wings—but not taxidermied, real live domestic cats with fur-covered wings. That totally can’t be real, right? It’s not real?

It’s real…but only if you are really generous with what you mean by wings.

Winged cats are a real phenomenon, but the wings in question are furry, not feathered, and winged cats can’t fly. That doesn’t stop people from claiming they’ve seen these winged cats flying around causing mischief. For instance, in Ontario, Canada in 1966 a so-called vampire cat was supposedly flying around attacking other animals. It was a black tomcat with furry wings 7 inches long, or 18 cm. Eventually someone shot the cat, which was examined by veterinarians and found to be rabid. Its wings were nothing but thickly matted fur, so the stories of it flying around weren’t true, although sadly, it was definitely attacking other animals due to having rabies.

In 1959, a case went to court in West Virginia over a winged cat. A 15 year old boy named Douglas Shelton said he’d rescued the cat from a tree and adopted her. But a woman named Mrs. Hicks said that the cat was hers, named Mitzi, but that Mitzi had run away and she wanted her back. This makes sense. I mean, I would want my cat back too. At first the judge awarded the cat to Mrs. Hicks, but when Douglas brought her into the courtroom, she had no wings. Douglas said she’d shed them during the summer but he’d kept the wings, which he showed to the judge. At that point, Mrs. Hicks suddenly decided she didn’t want the cat after all. Frankly, I’m sure Mitzi was better off with Douglas, who didn’t care if she had wings or not, although he did change Mitzi’s name to Thomas.

Stories like these didn’t just happen back in the olden days. There are lots of winged cat reports today, including photos and videos. What’s going on? Why do some cats develop these furry appendages that people call wings?

Sometimes the cats in question just have long fur that has become unusually matted and appears to form winglike flaps along the sides. But in many cases, the wings are due to a rare skin condition called feline cutaneous asthenia, or FCA.

Cats with FCA have unusually elastic skin. All skin stretches at least a little bit but almost immediately snaps back into place. You can try this yourself by gently tugging up the skin on the back of your hand and releasing it. But in cats with FCA, the skin doesn’t snap back properly, especially the skin along the shoulders and back. Since in the ordinary course of living its life, a cat’s skin stretches quite a bit along the back, eventually an FCA cat ends up with long flaps of furry skin that stretched and didn’t snap back repeatedly. The wings aren’t really wings, of course, and can’t allow the cat to fly.

Cats with FCA do usually need special care, especially if the case is severe. The skin is elastic, but it’s also prone to damage because it’s actually very delicate. The so-called wings sometimes tear off naturally, leaving wounds that bleed very little but still need to be treated by a veterinarian. They then reform. The wings tend to be on the sides near the hind legs but are sometimes closer to the shoulders.

Mitzi, AKA Thomas, was definitely a cat with FCA. Her wings were six inches long, or 15 cm, and her tail was described as squirrel-like. She was a white cat described as a Persian, although she may have just had long hair like a Persian cat. A reporter who examined Thomas described her wings as fluffy at the ends but with a gristly feel at the base, as though they contained tendons or other structure. This was probably the extended skin due to FCA.

It sounds like Douglas was a really nice kid who rescued the cat from the tree and took her home, and when his friends made fun of the unusual-looking cat, he was really upset. Once word of the winged cat got around, people started showing up at the family’s house to look at it. At first Douglas charged 10cents to see the cat, and he was even invited to New York where he and Thomas appeared on the Today Show.

But after that, things started to go kind of nuts. Thousands of people kept trying to see the cat, so many that Douglas’s mom spread the story that the cat had died, just so people would leave the family alone. She also took the cat to a friend’s house for a while until the fuss died down, swearing the friend to secrecy that the cat was still alive. Then Mrs. Hicks sued.

I tried to find out what happened to Douglas Shelton and Thomas after all the excitement died down. Douglas and his family were awarded custody of Thomas by the judge, with Mrs. Hicks rewarded a single dollar in damages, but whatever happened after that has vanished into the pre-internet vacuum. I’m sure Thomas lived a good life with the Sheltons, and Douglas is probably still alive today. He would be about the right age to be a granddad by now, so I bet he tells his grandkids stories about the time he had a cat with wings. I bet they don’t even believe him.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 104: Tiger Salamanders

Thanks to Connor who suggested this week’s topic, tiger salamanders! Not only do we learn all about the Eastern tiger salamander and the banded tiger salamander, we also learn where asbestos comes from AND IT’S NOT EVEN LIKE I GOT OFF TOPIC, I SWEAR

The Eastern tiger salamander:

The barred tiger salamander:

A baby tiger salamander:

A CANNIBAL BABY TIGER SALAMANDER:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’ll learn about an animal suggested by listener Connor that’s been waiting on the ideas list for way too long. Thanks, Connor! Sorry it took me so long to get to your suggestion!

So, Connor suggested that we cover “tiger salamanders’ cannibalism and how salamanders were once believed to be fire-related.” That sentence gives us a lot to unpack.

First let’s find out what a tiger salamander is. It gets its name because it’s stripey, or at least has blotches that can look sort of like stripes. It may be yellow and black or green and black. It grows up to 14 inches long, or 36 cm, which is pretty darn big for a salamander. Smaller tiger salamanders mostly eat insects and worms, but the bigger ones will naturally eat bigger prey, including frogs.

Like all salamanders, the tiger salamander is an amphibian. That means it’s cold-blooded with a low metabolic rate, with delicate skin that needs to stay damp. Like other salamanders, it doesn’t have claws, it does have a tail, and its body is long compared to its short legs. Basically a salamander usually looks like a wet lizard. But salamanders actually have more in common with frogs than with lizards, since frogs are also amphibians.

While the tiger salamander can swim just fine, it spends most of its adult life on land. It catches insects by shooting its sticky tongue at them just like frogs do. And just like a frog, the tiger salamander’s eyes protrude like bumps on its head, and it retracts its eyeballs when it swallows to help force the food down its throat. This is fascinating, but you might want to take a moment to be glad you don’t have to do this every time you swallow a bite of food.

The tiger salamander, like most other amphibians, secretes mucus that helps its skin stay moist and tastes nasty to predators. The tiger salamander doesn’t appear to actually be toxic, though. It mostly lives in burrows it digs near water, and while it’s common throughout much of eastern North America, it’s not seen very often because it’s shy and because it prefers ponds in higher elevations such as mountains.

A female lays her eggs on the leaves of water plants in ponds or other standing water. The eggs hatch into larvae which have external gills and a fin that runs down its back and tail to help it swim. At first the larva looks a little bit like a tadpole, but it grows legs soon after hatching. As a larva, it eats aquatic insects and tiny freshwater crustaceans like amphipods. How soon it metamorphoses into an adult salamander depends on where it lives. Tiger salamanders that live in more northerly areas where summer is short will metamorphose quickly. Tiger salamanders that live in warmer climates stay larvae longer. And in areas where the water is better suited to gathering food than the land is, the larvae may not fully metamorphose at all and will live in the water their whole lives. The term for a fully adult salamander that still retains its external gills and lives in the water is neotene, and it’s pretty common in salamanders of various species.

The tiger salamander is actually closely related to the axolotl, more properly pronounced ash-alotl. I learned that from the Varmints! podcast. Most axolotls are neotenic. On the rare occasion that an axolotl metamorphoses into its adult form, it actually looks a lot like a tiger salamander.

Unfortunately, the tiger salamander carries diseases that can kill frogs, reptiles, fish, and even other amphibians, even though the tiger salamander is usually not affected. The tiger salamander is also a popular pet, but since many pet tiger salamanders were caught in the wild, be careful that you’re not introducing diseases that might kill your other amphibians, reptile, or fish pets. While the tiger salamander is doing just fine in the wild and isn’t protected, it’s always better to buy pets from people who bred the salamanders and can guarantee they’re disease free. Likewise, if you’re someone who likes to fish, don’t use tiger salamander larvae as bait. Researchers think this is the main way the diseases carried by tiger salamanders spread.

So all this information about tiger salamanders is interesting, but it’s also pretty normal for salamanders. What does Connor mean by cannibalism in tiger salamanders?

The tiger salamander we’ve just learned about is actually called the Eastern tiger salamander. Until recently the barred tiger salamander was considered a subspecies of the Eastern tiger salamander, although now it’s considered a separate species. It looks and acts pretty much just like the Eastern tiger salamander but it lives in the western areas of North America. The main difference between the two species is that the barred tiger salamander is not quite as big, and it isn’t as common. The adults are illegal to sell in most American states, although it’s legal to keep them as pets.

But there is one main difference about the barred tiger salamander, and it’s something that only happens in some populations, usually ones in dry areas where ponds are more likely to dry up and larvae need to metamorphose quickly as a result. A few weeks after they hatch, some of the larvae develop large teeth and wider heads. Then they start eating other tiger salamander larvae. Researchers have found that a cannibal tiger salamander won’t eat tiger salamanders it’s related to, and the hypothesis is that it recognizes the scent of its brothers and sisters.

Researchers think most tiger salamanders don’t become cannibals because doing so increases the risk that it will be affected by the diseases tiger salamanders carry. By eating salamanders that are competing for the same resources its siblings need to grow up quickly, the cannibal salamanders help their siblings and may sacrifice themselves by risking disease as a result.

Forget what I said about being glad you don’t have to retract your eyeballs every time you swallow. Just be glad you’re not a tiger salamander at all.

Connor also mentioned the old belief that salamanders lived in fire. How the heck did that belief come about? Salamanders are wet little amphibians that mostly live in water.

It’s been a belief for literally thousands of years. It’s mentioned in the Talmud, in Pliny the Elder’s writings, and in bestiaries. Where did it start?

The main hypothesis is that because some salamanders hibernate in rotting logs, the only time most people would see a salamander would be when they tossed firewood into a fire. The salamander, rudely awakened from its winter home, would slither out of the fire, protected from the heat for a very brief time by its damp skin. There’s actually a species of salamander common throughout Europe called the fire salamander. So that sounds plausible. Older legends refer to the salamander actually being able to put fires out with its cold body or breath. Since salamanders are cold-blooded and damp, they do feel cold to the touch even on relatively warm days.

One traditional writer thought all this was pish-posh, though. Marco Polo himself, who traveled widely in Asia starting in 1271, wrote, “Everybody must be aware that it can be no animal’s nature to live in fire.” He was right, of course. Nothing lives in fire. But by the time Marco Polo lived, there was a certain amount of confusion regarding a type of cloth that was fire-resistant. It was called salamander wool and was supposed to be woven from hairs harvested from salamanders—which is a real trick, considering only mammals have hair.

Marco Polo met a man from Turkey who procured the fibers that were called salamander wool. But they didn’t come from an animal at all. He had to dig for them. I’ll quote from a translation of Marco Polo’s writing:

“He said that the way they got them was by digging in that mountain till they found a certain vein. The substance of this vein was then taken and crushed, and when so treated it divides as it were into fibres of wool, which they set forth to dry. When dry, these fibres were pounded in a great copper mortar, and then washed, so as to remove all the earth and to leave only the fibres like fibres of wool. These were then spun, and made into napkins. When first made these napkins are not very white, but by putting them into the fire for a while they come out as white as snow. And so again whenever they become dirty they are bleached by being put in the fire.

“Now this, and nought else, is the truth about the Salamander, and the people of the country all say the same. Any other account of the matter is fabulous nonsense.”

This actually sounds even more confusing than fire salamanders. What the heck is this cloth, what are those fibers, are they really fireproof, and if so, why hasn’t anyone these days heard of it?

Well, we have, we just don’t realize it. That stuff is called asbestos.

I always thought asbestos was a modern material, but it’s natural, a type of silicate mineral that’s been mined for well over 4,000 years. It’s actually any of six different types of mineral that grow in fibrous crystals. Just like Marco Polo reported, after pounding and cleaning, you’re left with fibers that really are fire, heat, and electricity resistant. As a result, it became more and more common in the late 19th century when it was used in building insulation, electrical insulation, and even mixed with concrete. And just as Marco Polo reported, it was still spun into thread and woven into fabric that was often made into items used around the house, like hot pads for picking up pans from the oven, ironing board covers, and even artificial snow used for Christmas decorations.

Of course, we know now that breathing in bits of silica is really, really bad for the lungs. The dangers of working with asbestos had already started to be known as early as 1899, when asbestos miners started having lung problems and dying young. The more asbestos was studied, the more dangerous doctors realized it was—but since it was so useful, and the effects of asbestos damage on the lungs usually took years and years to manifest, businesses continued to ignore the warnings. Asbestos was even used in cigarette filters during the 1950s, as if smoking wasn’t already bad enough.

These days, most uses of asbestos have been banned around the world, but if you’ve seen those TV commercials asking if you or someone you know suffers from mesothelioma, and you might be entitled to compensation, that’s a disease caused by breathing in asbestos dust. Some industries still use asbestos.

It sounds like asbestos being called salamander wool was named not because people literally thought they were made from hairs harvested from salamanders but because asbestos cloth resisted fire and heat the way salamanders were supposed to. These days chefs use a really hot grill called a salamander to sear meats and other foods, which is named after the folkloric animal, but no one believes it has anything to do with real salamanders. At least, I hope not. Then again, there are pictures of salamanders in medieval bestiaries showing salamanders with hair, which argues that at least some people really truly believed that asbestos came from salamanders.

Because tiger salamanders are large and not endangered, they’re good subjects for study. Researchers have learned some surprising things by studying the behavior and physiology of tiger salamanders. For instance, salamanders in general have legs that haven’t changed that much from those of the first four-legged animals, or tetrapods. Researchers study the way tiger salamanders walk to learn more about how early tetrapods evolved. And yes, this research did involve filming tiger salamanders walking on a tiny treadmill.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 100: The Centipede of Episodes!

It’s our 100th episode! Thanks to my fellow animal podcasters who sent 100th episode congratulations! Thanks also to Simon and Julia, who suggested a couple of animals I used in this episode.

An Amazonian giant centipede eating a mouse oh dear god no:

The kouprey:

The Karthala scops owl:

A sea mouse. It sounds cuter than it is. Why are you touching it? Stop touching it:

A sea mouse in the water where it belongs:

Mother and baby mountain goats. Much cuter than a sea mouse:

A hairy octopus:

Further reading:

Silas Claiborne Turnbo’s giant centipede account collection

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This is our 100th episode! I’ll be playing clips from some of my favorite animal podcasts throughout the show, and I highly recommend all of them if you don’t already listen!

For our big 100 show, I’ve decided to cover several animals, some mysterious, some not so mysterious, and all weird. But we’ll start with one that just seems to fit with the 100th episode, the centipede—because centipedes are supposed to have 100 legs.

So do they have 100 legs? They don’t, actually. Different species of centipede have different numbers of legs, from only 30 to something like 300. Centipedes have been around for some 430 million years and there are thousands of species alive today.

A centipede has a flattened head with a pair of long mandibles and antennae. The body is also flattened and made up of segments, a different number of segments depending on the centipede’s species, but at least 15. Each segment has a pair of legs except for the last two segments, which have no legs. The first segment’s legs project forward and end in sharp claws with venom glands. These legs are called forcipules, and they actually look like pincers. No other animal has forcipules, only centipedes. The centipede uses its forcipules to capture and hold prey. The last pair of legs points backwards and sometimes look like tail stingers, but they’re just modified legs that act as sensory antennae. Each pair of legs is a little longer than the pair in front of it, which helps keep the legs from bumping into each other when the centipede walks.

Like other arthropods, the centipede has to molt its exoskeleton to grow larger. When it does, some species grow more segments and legs. Others hatch with all the segments and legs they’ll ever have.

The centipede lives throughout the world, even in the Arctic and in deserts, which is odd because the centipede’s exoskeleton doesn’t have the wax-like coating that other insects and arachnids have. As a result, it needs a moist environment so it won’t lose too much moisture from its body and die. It likes rotten wood, leaf litter, soil, especially soil under stones, and basements. Some centipedes have no eyes at all, many have eyes that can only sense light and dark, and some have relatively sophisticated compound eyes. Most centipedes are nocturnal.

Many centipedes are venomous and their bites can cause allergic reactions in people who also react to bee stings. Usually, though, a centipede bite is painful but not dangerous. Small centipedes can’t bite hard enough to break the skin. I’m using bite in a metaphorical way, of course, since scorpions “bite” using their forcipules, which as you’ll remember are actually modified legs.

The largest centipedes alive today belong to the genus Scolopendra. This genus includes the Amazonian giant centipede, which can grow over a foot long, or 30 cm. It’s reddish or black with yellow bands on the legs, and lives in parts of South America and the Caribbean. It eats insects, spiders, including tarantulas, frogs and other amphibians, small snakes, birds, mice and other small mammals, and lizards. It’s even been known to catch bats in midair by hanging down from cave ceilings and grabbing the bat as it flies by. Because it’s so big, its venom can be dangerous to children. A four-year-old in Venezuela died in 2014 after being bitten by one, but this is unusual, and bites generally only lead to a few days of pain, fever, and swelling.

You’ll often hear that the Amazonian giant centipede is the longest in the world, but this isn’t actually the case. Its close relation, the Galapagos centipede, is substantially longer. The Galapagos Islands have EVERYTHING. The Galapagos centipede can grow 17 inches long, or 43 cm, and is black with red legs.

Another member of Scolopendra is the waterfall centipede, which grows a mere 8 inches long, or 20 cm, but which is amphibious. The waterfall centipede was only discovered in 2000, when entomologist George Beccaloni was on his honeymoon in Thailand. Naturally he was poking around looking for bugs, and I trust his spouse was aware that that’s what he would do on his honeymoon, when he spotted a dark greenish-black centipede with long legs. It ran into the water and hid under a rock, which he knew was extremely odd behavior for a centipede. They need moisture but they avoid entering water. Beccaloni noted that the centipede was able to swim in an eel-like manner. He captured it and later determined it was a new species. Only four specimens have been found so far in various parts of South Asia. Beccaloni hypothesizes that it eats insects and other small animals found in the water.

There are stories of huge centipedes found in the depths of jungles throughout the world, centipedes longer than a grown man is tall. These are most likely tall tales, since centipedes breathe through tiny notches in their exoskeleton like other arthropods and don’t have proper lungs. As we learned in the spiders episode a few months ago, arthropods just can’t get too big or they can’t get enough oxygen to live. But some of the stories of huge unknown centipedes have an unsettling ring of truth.

There are stories from the Ozark Mountains in North America about centipedes that grow as long as 18 inches, or almost 46 cm. Historian Silas Claiborne Turnbo collected accounts of giant centipede encounters in the 19th century, which are available online. I’ll put a link in the show notes.

All the accounts come across as truthful and not exaggerated at all. I think it’s worth it to read the last few paragraphs of the centipedes chapter of Turnbo’s manuscript verbatim, because they’re really interesting and I kept finding garbled accounts of the stories in various places online. Whenever possible, go to the primary source.

“R. M. Jones, of near Protem, Mo., tells of finding a centipede once imprisoned in a hollow tree. Mr. Jones said that after his father, John Jones, settled on the flat of land on the east side of Big Buck Creek in the southeast part of Taney County, his father told him one day in the autumn of 1861 to split some rails to build a hog pen. Going out across the Pond Hollow onto the flat of land he felled a post oak tree one and one-half feet in diameter. There was a small cavity at the butt of the tree. After chopping off one rail cut he found that the hollow extended only four or five feet into the rail cut, and was perfectly sound above it. After splitting the log open he was astonished at finding a centipede eight inches in length, coiled in a knot in the upper part of the cavity. At first there appeared to be no life about it. ‘I took two sticks,’ said he, ‘and unrolled it and found that it was alive. It was wrapped around numerous young centipedes which were massed together in the shape of a little ball. The old centipede was almost white in color. After a thorough examination of the stump and the ground around it, I found no place where the centipede could have crawled in. Neither, in the log, was there any place where it could enter. How it got there I am not able to explain and how long it had been an inhabitant there is another mystery to me.’

“William Patton, who settled on Clear Creek in Marion County, Ark., in 1854 and became totally blind and is dead now, says that one day while his eyesight was good he was in the woods on foot stock hunting. When about 1 ½ miles west of where the village of Powell now is, he noticed something a short distance from him crawl into a hollow tree at the ground. ‘On approaching the tree to identify the object,’ remarked Mr. Patton, ‘I saw a monster centipede lying just on the inside of the hollow which was the object I had just observed crawl into the tree. I placed the muzzle of my rifle near the opening and shot it nearly in twain, and taking a long stick I pulled it out of the hollow and finished killing it with stones. I had no way of measuring it accurately, but a close estimation proved that it was not less than 14 inches long and over an inch wide.’

“The biggest centipede found in the Ozarks that I have a record of was captured alive by Bent Music on Jimmies Creek in Marion County in 1860. Henry Onstott an uncle of the writer and Harvey Laughlin who was a cousin of mine kept a drugstore in Yellville and collected rare specimens of lizards, serpents, spiders, horned frogs and centipedes and kept them in a large glass jar which sat on their counter. The jar was full of alcohol, and the collection was put in the jar for preservation as they were brought in. Amongst the collection was the monster centipede mentioned above. It was of such unusual size that it made on almost shudder to look at it. Brice Milum, who was a merchant at Yellville when Mr. Music brought the centipede to town, says that he assisted in the measuring of it, before it was put in the alcohol and its length was found to be 18 inches. It attracted a great deal of attention and was the largest centipede the writer ever saw. The jar with its contents was either destroyed or carried off during the heat of the war. Henry Onstott died in Yellville and is buried in the old cemetery one half a mile west of town.”

There are large centipedes around the Ozarks, including the red-headed centipede that can grow over eight inches long, or 20 cm. A hiker was bitten by a six-inch red-headed centipede a few years ago in Southwestern Missouri and had to be treated at a hospital. The red-headed centipede mostly stays underground during the day, although it will come out on cloudy days. It has especially potent venom and lives in the southwestern United States and northern Mexico. And, interestingly, females guard their babies carefully for a few days after they hatch. Since the red-headed centipede is a member of the genus Scolopendra, the ones that grow so long, I wouldn’t be a bit surprised if individuals sometimes grow much longer than eight inches.

One story of a giant centipede called the upah turned out to have a much different solution. Naturalist Jeremy Holden was visiting a village in western Sumatra in the early 2000s when he heard stories of the upah. It was supposed to be a green centipede that grew up to about a foot long, or 30 cm, and had a painful bite. It was also supposed to make an eerie yowling sound like a cat. Holden discounted this as ridiculous, since no centipedes are known to make vocalizations of any kind, until he actually heard one. He was in the forest with a guide, who insisted that this was the upah. The sound came from high up in the treetops so Holden couldn’t see what was making it. But on a later trip to Sumatra with a birdwatcher friend, Holden heard the same sound, but this time the friend knew exactly what was making it. It wasn’t a centipede at all but a small bird called the Malaysian honeyguide. The honeyguide has a distinctive catlike call followed by a rattling sound, but is extremely hard to spot even for seasoned birdwatchers with powerful binoculars. This is what a Malaysian honeyguide sounds like, if you’re curious:

[honeyguide call]

The worst kind of centipede is the house centipedes. I hate those things. I’d rather have a pet spider that lives in my hair than touch a house centipede. House centipedes are the really fast ones that have really long legs that sort of make them look like evil feathers running around on the walls.

Next, let’s take a look at the kouprey, a bovine that is rare and possibly extinct. Thanks to Simon who suggested this ages ago, after the mystery cattle episode, or at least he mentioned it to me while we were talking on Twitter.

The kouprey is a wild ox from Southeast Asia and may be closely related to the aurochs. It’s big and can stand over six feet tall at the shoulder, or almost two meters. It has long legs, a slightly humped back, and a long tail. Males have horns that look like typical cow horns, but females have horns that spiral upward like antelope horns. Cows and calves are gray with darker bellies and legs, while grown bulls are dark brown with white stockings. It lives in small bands led by a female and eats grass and other plants. Males are usually solitary or may band together in bachelor groups. It likes open forest and low, forested hills. Sometimes it grazes with herds of buffalo and other types of wild ox.

The kouprey wasn’t known to science until 1937, when a bull was sent to a zoo in Paris from Cambodia. It was already rare then. A 2006 study that showed the kouprey was actually a hybrid of a domestic cow and another species of wild ox, the banteng, was later rescinded by the researchers as inaccurate. Genetic studies have since proven that the hybrid hypothesis was indeed wrong.

Unfortunately, if the kouprey still exists, there are almost none left. In the late 1960s only about 100 were estimated to still remain. While it’s protected, it’s poached for meat and horns, and is vulnerable to diseases of domestic cattle and habitat loss. The last verified sighting of a kouprey was in 1983, and there are no individuals in captivity. But conservationists haven’t given up yet. They continue to search for the kouprey in its historical range, including setting camera traps. Since the kouprey looks very similar to other wild oxen, it’s possible there are still some hiding in plain sight.

Next up, let’s look at a rare owl. Thanks to Julia who suggested the Karthala scops owl, which only lives in one place in the world. That one place in the world happens to be an active volcano. Specifically, it lives on the island of Grande Comore between Africa and Madagascar, in the forest on the slopes of Mount Karthala.

It’s a small owl with a wingspan of only 18 inches, or 45 cm. Some of the owls are greyish-brown and some are dark brown. It probably eats insects and small animals, but not much is known about it. It’s critically endangered due to habitat loss, as more and more of its forest is being cut down to make way for farmland. It sounds like this, and if you don’t think this is adorable I just can’t help you:

[owl call]

The Karthala scops owl wasn’t discovered by science until 1958, when an ornithologist named C.W. Benson found a feather living a sunbird nest. He thought it might be a nightjar feather, but it turned out to belong to an unknown owl. At first researchers thought it was a subspecies of the Madagascar scops owl, but it’s now considered to be a new species. Unlike many other scops owl species, the Karthala scops owl doesn’t have ear tufts.

That’s pretty much all that’s known about the Karthala scops owl right now. Researchers estimate there are around 1,000 pairs living on the volcano, and hopefully conservation efforts can be put into place to protect their habitat.

The sea mouse has been on my ideas list from the beginning, so let’s learn a little bit about it today too. It’s not a mouse, although it does live in the sea. It’s actually a genus of polychaete worm that lives along the coasts of the Mediterranean Sea and the Atlantic Ocean, although it doesn’t really look like a worm. It looks kind of mouse-like, if you’re being generous, mostly because it has setae, or hairlike structures, on its back that look sort of like fur. Some species grow up to a foot long, or 30 cm, but most are usually smaller, maybe half that size or less. It’s shaped roughly like a mouse with no head or tail, and is about three inches wide, or 7.5 cm, at its widest.

The sea mouse is usually a scavenger, although at least one species hunts crabs and other polychaete worms. It spends a lot of its time burrowing in the sand or mud on the ocean bed, looking for decaying animal bodies to eat. It also has gills and antennae, although these aren’t readily noticeable because of the setae covering the animal’s back.

Underneath the setae, the sea mouse is segmented. It doesn’t have real legs but it does have appendages along its sides called parapodia, which it uses like little leglets to push itself along. Sometimes a sea mouse is found washed ashore after a storm. Often it scurries through the wet sand and looks even more like a mouse.

The most interesting thing about the sea mouse is its setae. The setae are about an inch long and are dark red, yellow, black, or brown under ordinary circumstances, depending on species. But when light shines on them just right, they glow with green and blue iridescence. The setae are hollow and made of chitin. The setae are much thinner than a human hair, and nanotech researchers have used them to create nanowires.

Here’s a sweet little mystery animal I got from one of my favorite books, Karl Shuker’s Search for the Last Undiscovered Animals. In 1858, French missionary Emmanuel Domenech published a book called Missionary adventures in Texas and Mexico. A personal narrative of six years’ sojourn in those regions, and in that book he mentions an interesting animal. This event apparently took place in or near Fredericksburg, Texas, sometime before about 1850. The woman in question may have been Comanche. I’ll quote the relevant passage, from pages 122 and 123 of the book.

“An American officer assured me that he had seen an Indian woman, dressed in the skin of a lion which she had killed with her own hand—a circumstance which manifested on her part no less strength than courage, for the lion of Texas, which has no mane, is a very large and formidable animal. This woman was always accompanied by a very singular animal about the size of a cat, but of the form and appearance of a goat. Its horns were rose-coloured, its fur was of the finest quality, glossy like silk and white as snow; but instead of hoofs this little animal had claws. This officer offered five hundred francs for it; and the commandant’s wife, who also spoke of this animal, offered a brilliant of great value in exchange for it; but the Indian woman refused both these offers, and kept her animal, saying that she knew a wood where they were found in abundance; and promised, that if she ever returned again, she would catch others expressly for them.”

So what could this strange little animal be? It sounds like a mountain goat. Mountain goats live in mountainous areas of western North America, but might well have been unknown elsewhere in the mid-19th century. They’re pure white with narrow black horns and hooves, but an albino individual might have horns that appear to be pinkish, at least at the base where the horn core is, due to lack of pigment in the horns allowing blood to show through the surface. While male mountain goats can grow more than three feet tall at the shoulder, or 1 meter, females are much smaller and have smaller horns. Most tellingly, mountain goats have sharp dewclaws as well as cloven hooves that can spread apart to provide better traction on rocks. To someone not familiar with mountain goats, this could look like claws rather than feet. My guess is the woman had a young mountain goat she was keeping as a pet, possibly an albino one, which would explain its size and appearance. It’s nice to think that she cared so much for her little pet that she refused huge amounts of money for it.

Let’s finish up with a rare and tiny cephalopod called the hairy octopus. It’s tiny, only two inches across, or five centimeters, and covered with strands of tissue that give it its name. The so-called hair of the hairy octopus camouflages it by making it look like a piece of seaweed or algae. It can also change colors like other octopuses, to blend in even more with its surroundings. It can appear red, brown, cream, or white, with or without spots and other patterns. It’s only ever been seen in the Lembeh Strait off the coast of Indonesia, and then only rarely.

It’s so rare, in fact, that it still hasn’t been formally described by science. So if you’re thinking about becoming a biologist and you find cephalopods like octopus and squid interesting, this might be the field for you. You might get to give the hairy octopus its official scientific name one day!

Thanks so much to all of you, whether you’re a fellow podcaster, a Patreon subscriber, a regular listener, or someone who just downloaded your first episode of Strange Animals Podcast to see if you like it. I’m having a lot of fun making these episodes, and I’m always surprised at how many people tell me they enjoy listening. I tend to forget anyone listens at all, so whenever I get an email or a review or someone tweets to me about an episode, I’m always startled and pleased. I’ve been trying hard to make the show’s sound quality better, and while I don’t always have the time to do as much research for each episode as I’d like, I do my best to make sure all the information I present is up to date and as accurate as possible.

As always, you can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening, and happy new year!