Episode 056: Strange Snakes

This week we’re going to learn about some strange snakes. Snakes in the air! Snakes in the water! Snakes on a pla–NO I am not going there

Thanks to sirfinnhayes and Mackin for the topic suggestions! Mackin is host of the podcast Species, which you should listen to.

A golden tree snake:

A snake flying, or rather gliding with style:

Northern water snake (left) and water moccasin (right). Note the head and neck differences:

The yellow sea snake (Hydrophis spiralis):

Belcher’s sea snake. Have I mentioned how much I love stripey animals? I do love them, I do:

Horned viper. Do not step:

The Vietnamese longnosed snake. I TOOK THESE PHOTOS MYSELF AT HELSINKI ZOO!

The spiny bush viper. I’m sorry, all other snakes, this one is now my favorite:

A rattlesnake showing off its rattle:

The spider-tailed horned viper:

LOOKIT THAT SPIDER TAIL:

Tsuchinoko real:

Okay that is just way too many pictures.

Show Transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to find out about some strange snakes. This is a request from two different people, sirfinnhayes and Macken of the podcast Species. Sirfinnhayes is also the person who corrected my incomplete information on the definition of a subspecies, so thank you! Podbean still won’t let me reply to comments, but at least I can see who sent them now. If you don’t already listen to the Species podcast, I highly recommend it. It’s new, family friendly, and really interesting. The first episode of Species I listened to was about flying snakes, and I was already wondering if I could sneak in an episode of my own about flying snakes or if that would be really obvious and not cool, when the host, Macken, contacted me and said I ought to do an episode on flying snakes. Now I don’t have to feel guilty for copying!

So let’s start with flying snakes. You may be picturing Quetzalcoatl, the feathered snake god of the Aztecs. But flesh and blood flying snakes, as opposed to divine ones, don’t have wings or feathers. The god did lend his name to one of the biggest flying reptiles ever known, by the way, and even though Quetzalcoatlus isn’t a snake, I have to tell you about it. It was a type of pterosaur that lived around 68 million years ago, and its wingspan was almost 40 feet, or 12 meters. It could probably fly extremely fast and far, but spent most of its time hunting small dinosaurs and other animals on land like a monster stork.

We’re not three minutes into this episode and I’m already off topic. Back to flying snakes.

Flying snakes don’t really fly, they glide, but they’re very good at it. There are five species of flying snake, all from India and the Indonesian archipelago. The longest is the golden tree snake that can grow four feet long, or a little over 1.2 meters. All flying snakes are venomous, but their venom is weak and not dangerous to humans. Besides, you’re not likely to encounter a flying snake since they spend most of their time far up in the rainforest tree canopy chasing small animals.

So how does such a slender snake glide? When a flying snake drops off a branch to glide to another, it flattens its body, actually pushing its ribs apart to make a broader surface to catch the air. As Macken describes it, when gliding, its body somewhat resembles the shape of a long, thin Frisbee. It wriggles as it glides, pointing its head in the direction it wants to go. It can even change direction midair if necessary.

If some snakes can fly, surely some snakes can swim, right? Definitely! Water snakes are actually pretty common. When I was a kid, everyone panicked whenever they saw a snake in the lake or a creek where we were always playing. We thought all water snakes were venomous water moccasins, but as I found out much later, water moccasins don’t even live in East Tennessee. Most freshwater snakes are harmless, but people kill them anyway out of fear.

The Northern water snake is common throughout much of eastern and central North America, for instance. It can grow more than four feet long, or about 135 cm, and varies in color from brown or reddish to gray or black. Sometimes it has a darker pattern, banding or splotches, and its belly is usually lighter in color. It resembles a water moccasin in many ways but it’s completely harmless to humans unless cornered, in which case it can give a bad bite but not a venomous one. It will also poop all over you if you try to pick it up. It eats small fish, frogs, leeches, crawdads, salamanders, and other small animals.

The easiest way to tell a Northern water snake from a water moccasin is the head and neck. A water moccasin hasd a broad, roughly arrow-shaped head with a much thinner neck just behind it. A Northern water snake has a head that’s barely wider than its neck.

The water moccasin is a type of pit viper, the only species of pit viper that spends time in the water, in fact. It lives in the American South and can grow as long as six feet, or 180 cm, although most are much shorter. It’s a bulky snake with a broad, blunt head, and in color and markings it usually resembles the Northern water snake. When it feels threatened, it will raise its head and gape its jaws wide, showing the white tissue inside its mouth as a warning. Keep in mind that like all snakes, it really doesn’t want to bite you. It needs to save its venom for the frogs, birds, rats and mice, and other snakes it eats. It just wants you to go away and not scare it.

Young water moccasins have a yellowish or greenish tail tip. The snake will lie perfectly still in shallow water, twitching its tail. When a frog or lizard or some other animal comes to investigate that worm moving around in the water, the snake strikes.

Freshwater snakes spend at least part of their time on land every day. Sea snakes are another thing. Some species of sea snake can’t even move on land. If they’re washed up, they’re as helpless as a fish. And they’re almost all venomous.

All species of true sea snakes have a tail that’s flattened at the end like a paddle to help it swim better, and its nostrils are on the top of its snout so it can breathe without raising its head out of the water. When it’s underwater, the nostrils close automatically. It has to breathe air, but its left lung is enormously large, almost the full length of its body, which allows it to stay underwater for over an hour at a time. It also has a special gland under the tongue that filters extra salt from its blood, and every time the snake flicks its tongue, it releases some of the salt back into the ocean. In fact, sea snakes in general are so well adapted to living in the ocean for a formerly terrestrial animal that only whales are better adapted.

As an example, let’s learn about the yellow sea snake, because it can grow nine feet long, or 2.75 meters, the longest of all the sea snakes. It lives in shallow, warm water in the Indian Ocean and is yellow or yellow-green in color with narrow black bands all down its body. It’s really pretty. It gives birth to live babies who are fully developed and able to swim as soon as they’re born. Young snakes have a black head with a U-shaped yellow marking.

The yellow sea snake eats fish and eels that live among coral reefs and sea grasses. Its venom is fast-acting and not only kills its prey, it starts breaking down the prey’s tissues so that the snake can digest it faster. Occasionally a diver or fisher gets bitten, but most of the time the snake doesn’t inject venom when it bites a human.

The faint-banded sea snake, also called Belcher’s sea snake, also rarely injects venom into humans, and rarely bites humans at all. It even has the reputation as being kind of a friendly snake. At one time its venom was thought to be the most potent of any snake’s, but that honor actually belongs to three different snakes. The reef shallows sea snake is one. The others are the inland taipan, which is a land snake that lives in Australia, and the Eastern brown snake, which also lives in Australia as well as in southern New Guinea. Pretty much if you’re in Australia, don’t bother any snakes if you can possibly help it. Not that you need me to tell you that.

A lot of snakes have interesting facial decorations. The horned viper has a pointed horn over each eye that sticks almost straight up. It’s not really a horn, of course, but a modified scale. It lives in the desert in parts of the Middle East and northern Africa, is roughly the color of sand, and grows not quite three feet max, or 85 cm. Other snakes have nose horns, including the nose-horned viper, the rhinoceros viper, and many others. No one’s sure why some snakes have these decorations, but the best hypothesis is that they’re for display. In some species only the males have decorations, or the decorations are larger than in females; but in other species, females have larger or more decorations. One thing we do know, the horns are not used for fighting other snakes. They look sharp, but they’re actually relatively soft and flexible.

The spiny bush viper goes the extra step and has pointy spines all over its body that make it look bristly. It lives in central Africa and eats frogs, lizards, and small mammals. It’s not a big snake, not much more than two feet long, or around 60 cm, although males are usually a few inches longer than females. It’s typically yellowish in color with large dark eyes and black markings. It mostly stays in the trees and sometimes suns itself on top of big flowers, which is THE best thing I have heard all week.

The rattlesnake lives throughout North and South America, and just like in the cartoons, it has a rattle at the tip of its tail that it shakes to scare away potential predators. The rattle is made of keratin. Each segment of the rattle is hollow and vibrates against the rattles above and below it when the snake vibrates its tail. A rattlesnake has special muscles in the tail used just for this, and the muscles are incredibly fast. A snake can vibrate its tail as much as 50 times per second. Baby rattlesnakes only have a little button at the tip of their tail, but each time the snake sheds its skin, it grows a new segment of its rattle.

This is what a rattlesnake’s tail vibration sounds like.

[rattlesnake sound]

Both the Eastern and Western diamondback rattlesnakes can grow about eight feet long, or almost 2.5 meters. Other rattlesnake species are smaller.

The rattlesnake isn’t the only snake species with an interesting tail. The spider-tailed horned viper not only has horns above its eyes, the tip of its tail actually resembles a spider. Those of you who were already not real happy about a snake episode probably just threw your phone down in horror right about now. Sorry about that. The very tip of the snake’s tail ends in a little bulb like a spider’s round body, and the scales in front of it are elongated like a spider’s legs. It’s not just coincidence, either. The spider-tailed horned viper eats birds that eat spiders. Like a young water moccasin twitching its tail-tip like a worm, the spider-tailed horned viper twitches its tail around like a spider. When a bird comes close to grab the spider, chomp!

The spider-tailed horned viper, and I legit will never get tired of saying that, was discovered in 1968 but only recognized as a new species in 2006. It lives in western Iran but we don’t know a whole lot about it yet.

If people in the area had told stories about a snake with a tail that looked like a spider, probably no one would have believed it, but there it is. So what about actual mystery snakes?

In Croatia there are stories of a snake called the poskok, which is gray to reddish-brown in color, two or three feet long, or 60 to 90 cm, slender, aggressive, and venomous. But its real claim to fame is its ability to jump farther and higher than it is long.

Snakes can jump by making a striking motion and lunging forward, but while some snakes may actually leave the ground that way, notably the jumping viper, a small snake from Central America, no snake can jump very high.

If you search online for the poskok, you’ll get a lot of hits about the nose-horned viper. It spends at least part of the time in trees and shrubs hunting birds. If someone saw a nose-horned viper leaping after a bird, they might think it had jumped from the ground instead of a branch. But the poskok isn’t described as having a horn on its nose. Another suggestion for the poskok’s identity is one of various species of whip snake, which are slender, aggressive snakes that can move very fast, although they’re not venomous.

The tsuchinoko of Japan is supposed to be a short but wide-bodied snake with horns above its eyes, a broad head with sensory pits, and a thinner neck. Its pronounced dorsal ridge makes it seem somewhat triangular in shape instead of rounded like most snakes. It’s also said to be able to jump long distances. Some cryptozoologists suggest it might either be an unknown species of pit viper or a rare mutant individual of a known pit viper species. Stories of tsuchinoko sightings go back centuries, although more recent accounts describe it as a more ordinary-looking snake with a big bulge in its middle as though it has just swallowed something that it hasn’t digested yet. In 2017, a Tumblr post inspired a meme about the tsuchinoko. It’s a picture of three cats staring at a fat lizard with the legs photoshopped out and the caption “tsuchinoko real,” which I’m sure you can agree is meme GOLD.

Many cultures around the world believe some snakes have a magical stone in their heads that can cure poison or heal wounds. There are similar beliefs about toad-stones. In India some people believe some cobras have a glowing brown stone in their hood that heals snake bites, while in Sri Lanka it’s said that rarely, a cobra has a beautiful precious gem inside its belly that it pukes up and hides before it eats, then swallows again later. The ancient Celts believed that an adder-stone neutralized poison. But the adder-stone, it turns out, was just a fossilized sea urchin, while other snake stones were either semi-precious stones like agates with the value jacked up with a tall tale, or gastroliths.

And finally, to wrap things around to where we started, many cultures incorporate flying or winged snakes in various aspects of religion or folklore, but sometimes people report seeing snakes with wings flying overhead. These are probably all misidentifications of known animals since no snake has ever been found, alive or fossilized, with appendages that could be described as wings. Old newspaper accounts of flying snakes are probably all hoaxes. But new species of snake are discovered all the time. You wouldn’t think there’s anything big to be discovered in England, for instance, but a new species of snake was discovered there in 2017. It’s called the barred grass snake, although it actually spends a lot of its time hunting frogs and other amphibians in water. And it’s not small—it grows three feet long, or over a meter. So if a three-foot adder can hide in a country full of naturalists, maybe a snake with wings can hide in plain sight too.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 051: The Carolina Parakeet and the Elephant Bird

This week’s episode is about the Carolina parakeet, a cheerful, pretty bird that was once common in the central and eastern United States but which has been extinct for a century. Thanks to Maureen for the suggestion! I’ve paired it with the elephant bird, a gigantic extinct bird that we don’t know much about except for its enormous eggs.

The Carolina parakeet, deceased:

An ex-parrot next to an ex-passenger pigeon:

A still from the 1937? Nelson video:

The 2014 mystery parakeet photo:

An elephant bird, an elephant bird egg, and Sir David Attenborough (right):

Further Reading/Watching:

Here’s a close evaluation of the Nelson video taken in the late 1930s, supposedly in the Okefenokee Swamp.

I can’t get the Nelson video to embed properly, so here’s a link to it. You’ll need to scroll down to the bottom of the page for a decent-sized version that will play.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s episode is about two birds, one small and one really big, and both extinct. Probably.

First, let’s learn about the Carolina parakeet, a suggestion by listener Maureen. It was a type of small parrot that was common throughout a big part of the United States, as far west as Nebraska and parts of Colorado and as far north as New York, and as far south as Florida and around the Gulf of Mexico. It had a yellow and orange head and a green body with some yellow markings, and was about the size of a mourning dove or a passenger pigeon.

This story of extinction mirrors that of the passenger pigeon in many ways. The Carolina parakeet lived in forests and swamps in big, noisy flocks and ate fruit and seeds. But when European settlers moved in, turning forests into farmland and shooting birds that were considered pests, its numbers started to decline. In addition, the bird was frequently captured for sale in the pet trade and hunted for its feathers, which were used to decorate hats. Part of the reason it was so easy to kill was that if a wounded bird’s cries were heard by other Carolina parakeets—and they probably would hear it, since these birds were loud, with calls carrying up to two miles—the whole flock would come flying out to help the wounded bird.

By 1860 the Carolina parakeet was rare anywhere except the swamps of central Florida, and by 1904 it was extinct in the wild. The last captive bird died in the Cincinnati Zoo in 1918, which was not only the same zoo where the last passenger pigeon died in 1914, it was the same cage. It was declared extinct in 1939.

We don’t know a lot about the Carolina parakeet even though it survived into the 20th century because no one made any particular study of the bird. John Audubon painted it and made some notes, and we have a lot of skins, skeletons, and some stuffed specimens, but that’s about it. There were two subspecies, one that lived to the east of the Appalachian mountain range, and one that lived to the west, that went extinct sooner than the eastern subspecies and was more bluish-green than green.

One interesting thing that Audubon noted is that cats that killed and ate Carolina parakeets died. The bird ate a lot of cockleburs, and the cocklebur’s seed is poisonous—so much so that livestock die from eating them. If you listened to episode 31, venomous animals, you may remember the Africa spur-winged goose that eats toxic blister beetles, collects the toxin in its tissues, and is therefore poisonous to eat. It’s probable that the Carolina parakeet did the same with cocklebur toxins.

Sightings of the bird in the wild occurred through the 1920s and 30s. A whole flock of some 30 birds was spotted in Florida in 1920, and in 1926 three nesting pairs were seen in Okeechobee County, Florida by the Curator of Birds at Florida University, Charles Doe. Doe was so excited to find these supposedly extinct birds that he ROBBED ALL THREE PAIRS OF THEIR EGGS. Because that man was an idiot and he will go down in history as an idiot. Charles E. Doe, Idiot, it probably says on his tombstone. His egg-shaped tombstone, probably.

In the mid-1930s ornithologist Alexander Sprunt Jr collected a number of sightings of Carolina parakeets in the Santee Swamp in South Carolina. Numerous trained bird wardens and ornithologists saw the birds, but it didn’t matter. In 1938 the Santee River was dammed and a power plant built, which radically changed the area ecosystem, and much of the surrounding forest was cut down and the swampland drained during the construction process. No one has reported any parakeet sightings since then.

Of course, the southeast still has lots of swampland, some of it all but impenetrable. The Okefenokee Swamp in Georgia and Florida is close to half a million acres, or more than 1700 square kilometers, and most of that area has been a national wildlife refuge since 1974. In 1937 or a little after, someone shot about 50 seconds of color film footage of three green birds in the Okefenokee. The footage is usually attributed to a man named Oren, or Orsen, Stemville.

In the early 1950s an Audubon lecturer named Dee Jay Nelson bought an old film camera from a boat operator in the Okefenokee Swamp. The box it came in contained eight rolls of processed 16mm film, but Nelson didn’t actually view those rolls for about 15 years. One roll contained footage of alligators and toads native to the Okefenokee, and in between those was some strange footage of three green birds.

Roger Tory Peterson, a member of the American Ornithologists’ Union, got a copy of the film and presented it to the society for analysis in 1969. There was no consensus as to whether the birds were feral pet parakeets of some kind or Carolina parakeets. Peterson misplaced his copy of the film and when Nelson was contacted by the society in 1979, he said he had lost the original. But in 2005 the copy turned up in Peterson’s effects after he died. At that point the Ornithologists’ Union analyzed the film again and concluded that not only are the birds not Carolina parakeets, they appear to have been artificially colored to look like Carolina parakeets. In other words, it was a hoax—and not even a very good one. It’s possible that only one of the birds was even real; the others were probably taxidermied birds or models. Nelson’s story about how he found the footage is fishy anyway. In the 1960s Nelson was a screen-tour lecturer from Montana, so he may have shot the footage himself to illustrate some project that never got off the ground.

The 2005 analysis of the footage was thorough. The society even brought in botanists to find out what kind of tree is shown in the film, but they were unable to identify it and said that the Spanish moss draped on the branches appears to have been placed there instead of growing there naturally. I’ll put a link in the show notes to the society’s close notation of the footage, practically frame by frame. The film is archived with the Cornell University’s Laboratory of Ornithology, and I’ll include a link to the video too.

The problem with sightings is that the green parakeet, a species native to Central America as far north as the southern tip of Texas, and the red-masked parakeet from Ecuador and Peru, look similar to the Carolina parakeet and have been pets in the United States for a long time, as have many other parrot species. In Florida in particular, escaped parrots sometimes survive and band together in breeding colonies, and by the 1920s had already begun to do so. So if the Nelson footage isn’t a hoax, it might be mistaken identity.

While I’m pretty nearly certain that the Carolina parakeet really is extinct, if it still manages to hang on in the depths of the Okefenokee swamp or elsewhere, anyone who’s observed it might assume they’ve only seen a red-masked parakeet or something.

On April 1, 2009 someone posted an article that looked like a press release from Cornell University about the discovery of a population of Carolina Parakeet in northern Honduras. It was an April fool’s joke, but it was so convincing that people still claim it’s real. I really hate April fool’s, by the way.

In January 2014, someone posted an interesting picture to a bird forum, saying her son took the picture at their home in southern Georgia in 2010 and asking what kind of parrot it was. The bird’s a dead ringer for a Carolina parakeet sitting in an apple tree. The poster deleted the thread later, upset at being accused of posting a hoaxed picture. This being the internet, no one can agree on whether the picture is real or shopped. It looks real to me, but while it might be a young yellow-headed Amazon parrot, the red cheeks aren’t a yellow-headed trait. So it’s a mystery.

From this small, brightly colored bird we go to a gigantic one. The elephant bird stood about ten feet tall head to toe, or 3 m, and while it looks superficially like an ostrich, it was more closely related to the tiny kiwi of New Zealand. But the elephant bird only lived in Madagascar.

It’s possible that stories about the roc, an eagle so big it could pick up elephants, were actually garbled stories about the elephant bird. That’s where the name elephant bird comes from, incidentally. The real life elephant bird probably became the fabled roc not from sightings of the bird but from its eggs. The eggs were enormous, the largest bird egg known and possibly the largest egg ever known, some over a foot long or about 34 cm, and big enough to hold over two gallons of liquid, or seven and a half liters. We’re getting close to watermelon sized here.

In 1930, in the southernmost point of Western Australia, two boys were playing along the beach and discovered a gigantic egg buried in a sand dune. They took it home, where no one had any idea what bird might have laid it. It was twice the size of an ostrich egg. Eventually it was given to the Western Australia Museum, and in 1962 a naturalist examined it and identified it as the egg of an elephant bird. Another elephant bird egg was found in western Australia by three children in 1992. But what were they doing in Australia? Elephant birds can’t fly, were never native to Australia or anywhere else except Madagascar, and anyway by 1930 they were certainly extinct.

Well, eggs can float, especially in saltwater and especially if the embryo inside has died, as would happen if the egg was washed out of its nest and into cold water. The elephant bird liked to lay its eggs in sand along the beach or rivers. Sometimes they would be washed out to sea. People who found elephant bird eggs without knowing what kind of enormous bird they would hatch into would naturally tell stories about them, like the roc. And even now, when there are no elephant birds around to lay new eggs, intact eggs are still occasionally found. The shells of elephant bird eggs were as much as 4 mm thick, which doesn’t sound like much but is way thicker than any other egg shell. That’s over an eighth of an inch thick.

So these were big, tough eggs that weren’t easily destroyed. Moreover, the egg found in Australia in 1992 was dated to 2,000 years old and was found in deposits of sand that had been laid down a few thousand years ago too. Both eggs had been in place for millennia until those meddling kids dug them up.

In 1974 a King Penguin egg was found floating near the beach very near where the 1930 elephant bird egg was found, having drifted some 1200 miles, or 2,000 km, in only a matter of weeks. In 1991 another King Penguin egg was found in the same region. This one was covered in barnacles and algae, but both were easily removed without damaging the egg. And in the early 1990s, a man working on a dredge in the Timor Sea, which is part of the Indian Ocean, spotted an ostrich egg in the water and retrieved it. It was so heavily weighted down with algae that it wasn’t bobbing along at the surface, but it was still floating under the surface and was intact. Any barnacles that had grown on the elephant bird eggs would have been sandblasted off by wind once the eggs were beached. The 1930 egg had one surface polished smooth from exposure to wind.

The elephant bird ate plants, probably nuts and fruit. Some researchers think the fruit of some rare species of palm trees on Madagascar were eaten and dispersed by the elephant bird. It had muscular legs like an ostrich but was so heavy, it probably couldn’t run very fast.

We’re not sure when the elephant bird went extinct. Some egg shells have been dated to about 1,000 years ago and that seems to be the latest signs of elephant birds. But as late as the 17th century native people from Madagascar were adamant that it still lived in hard-to-travel swamps.

We do have a pretty good idea of why the elephant bird went extinct, though. The eggshells were used as buckets and bowls, and archaeological studies have found plenty of charred shells in cooking fires. One elephant bird egg could feed an entire family. The adult birds were also hunted and eaten. Not only that, when European settlers decided they’d like to live in Madagascar now, thanks very much, you native people can just shift over and give us all the good land, deforestation and overhunting combined to finish off the elephant bird forever.

Like other recently extinct animals, the elephant bird is a good candidate for de-extinction once cloning technology is perfected. But if we do get the elephant bird back, we have to promise not to eat all its eggs.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 050: Tallest Animals

We’re discovering which animals are the tallest this week! This episode includes our first dinosaur!

Sauroposeidon proteles:

Giraffes:

Bop bop bop have at thee!

Paraceratherium (I couldn’t find one that I liked so I drew one, along with a giraffe and ostrich to scale):

Ostrich running:

I SAID DON’T @ ME

A fine day at the ostrich races. I could not make this stuff up if I tried:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re looking at tall animals. Is the giraffe the tallest mammal that’s ever lived? Is the ostrich the tallest bird? And what about tall dinosaurs?

I don’t talk about dinosaurs much in this podcast because there are so many good podcasts devoted specifically to dinosaurs. I recommend I Know Dino. It’s family friendly and goes over the latest dinosaur news without talking down to listeners or dumbing down the information.

Four-footed animals are usually measured at the shoulder, since some animals hold their heads low, like bison, while others hold their heads high, like horses. But we’re talking about tall animals today, and that includes animals with long necks. So the measurements here are all from head to toe, with the head and neck held in its natural standing position.

Let’s start with the real biggie, the tallest dinosaur ever found.

In 1994 a guy named Bobby Cross noticed some fossils weathering out of the ground at the Oklahoma correctional facility where he worked as a dog trainer. As he always did when he found fossils, he called the Oklahoma Museum of Natural History. They sent a team to take a look. The team found four vertebrae, but they were just so big—around four feet long each, or 120 cm—that at first they thought they must be fossilized tree trunks.

Sauroposeidon proteles was probably closely related to Brachiosaurus, but was even bigger and taller. Sauroposeidon stood 60 feet tall, or 18 meters, and its neck alone was 39 feet long, or 12 meters. Its body and legs were relatively short and stocky. We don’t have a complete skeleton, just the four vertebrae found in southeastern Oklahoma, and a few vertebrae from two other individuals found in Montana and Texas. A trail of giant footprints in Texas may be a Sauroposeidon track too. But for sauropods, neck vertebrae are the most valuable fossils because they tell so much about the animal.

Sauroposeidon’s neck bones were massive, but they were lighter than they look due to tiny air sacs in the bones, like those in bird bones. The air sacs in bird bones actually contain air that flows through the lungs, called pneumatic bones, which provides the bird with more oxygen. A CT scan of the Sauroposeidon fossils—at least the portions of the fossils that would actually fit in the CT scanner—revealed that sauroposeidon’s vertebrae were constructed in the same way that bird bones are. We know that pterosaurs and theropods had pneumatic bones, so it’s not too surprising that at least some sauropods did too.

Sauroposeidon lived around 110 million years ago, during the Mesozoic era, specifically during the early to mid Cretaceous. The sea level was much higher then than it is now, so Sauroposeidon lived near the coast. It ate plants, and like many birds, it also swallowed stones to help it digest those plants, called gastroliths. Paleontologists have found lots of sauropod gastroliths associated with fossil animals. Unlike mammals, which chew their food before swallowing, sauropods swallowed it whole and the plant material was broken up in a stomach or gizzard-like structure. That’s why its head is so small relative to its body, and how it could eat enough plants to keep such an enormous body going. It probably ate literally a ton of food every single day.

We know a lot about sauropods, and since sauroposeidon appears to be structurally typical of other sauropods, just really big, it’s a safe bet to assume it was like other sauropods in many ways. It probably nested in groups and laid about two dozen eggs at a time in big nests on the ground. We don’t have any sauroposeidon eggs, but they probably wouldn’t have been all that big, maybe about the size of a football. Babies would have grown rapidly and were full grown in ten to twenty years. Sauroposeidon migrated in herds throughout the year, traveling from nesting grounds to new grazing grounds. While it lived near the ocean, it would have had to be careful about walking on soft ground. An animal that tall and heavy can get mired in mud easily. Paleontologists have actually found fossils of sauropods that died standing up, unable to climb out of a muddy hole after sinking in soft ground.

Giraffes are the tallest living animals today, with the tallest recorded giraffe, a male, measuring 19.3 feet, or 5.88 meters. That’s pretty darn tall, about 1/3 the height of sauroposeidon. Giraffes are related to deer and cattle, and live in the savannahs and forests of Africa, where they eat tree leaves that are much too high off the ground for other animals to reach. Female giraffes and their young make up loose groups, while males form groups of their own. While giraffes can kick hard enough to kill lions, when males fight over females, they use their necks. A male will swing its head at another male, and the two will tussle back and forth bopping necks together. As a result, male giraffes have thicker, stronger necks than females. Males are also usually taller than females.

The giraffe not only has a long neck and long legs, it has a long tongue that it uses to grab leaves that are juuuust too far away. The tongue is about 18 inches long, or 45 cm. A giraffe at Knoxville Zoo licked my hair once. The giraffe’s upper lip is also prehensile, and is hairy as a protection from thorns. Because of all the thorns it encounters, giraffe skin is surprisingly tough. The giraffe has large eyes that give it good vision, and it also has keen hearing and smell. It can close its nostrils to protect them from dust, sand, insects, and—you guessed it—thorns. So many thorns. And giraffe fur contains natural parasite repellents, which also makes giraffes smell funny.

All this is pretty awesome, but we’re not done with giraffe awesomeness. Giraffes have skin-covered horns called ossicones. Females and males both have ossicones, although males also have a median lump at the front of the skull that’s not exactly an ossicone but is sort of like one. Some females also have this median lump. Ossicones are made of cartilage that has ossified, or turned boney, and they’re covered in skin and hair, although since males use their ossicones in necking fights, they tend to rub all the hair off and have bald ossicones.

The only other animal alive today that has ossicones is the okapi, a close relative of the giraffe, but giraffe ancestors once had all kinds of weird ossicones. Xenokeryx amidalae, for instance, which lived about 16 million years ago in what is now Spain, had two ossicones over its eyes, and a third sticking up from the back of its head that was T-shaped. The name amidalae comes from the character Padme Amidala in Star Wars: The Phantom Menace, if you remember that weirdly shaped headdress she wore.

Because giraffes are so tall, they have some physical adaptations that are unique among mammals living today. A giraffe has the same number of neck bones as all other mammals except sloths and manatees, which are weird, but the vertebrae are much longer than in other mammals, almost a foot long, or 28 cm. The giraffe can also tilt its head right back until it’s just about in line with the back of the neck. I’m picturing everyone listening tilting their heads back right now, and hopefully you notice how the back of your neck curves when you look up. Also, please don’t wreck your car because you’re looking up while driving. The giraffe’s circulatory system is really unusual. Its heart is enormous and beats around 150 times per minute. The jugular veins, which are the big veins that carry blood up the neck to the brain, have valves that keep blood from running backwards when a giraffe lowers its head to drink.

Giraffes can walk, and giraffes can run, but they don’t have any other gaits. They can’t trot or canter, for instance. Even humans have more than two gaits, because we can skip. Despite its height, a giraffe can really move. It can run over 30 miles per hour, or about 50 km per hour, and keep it up for several miles. It has cloven hooves. Because a giraffe’s body is so heavy and its legs so long and thin, it has specialized ligament structures in its legs that keep them from collapsing. Horses also have this structure, which also helps the animal sleep while standing.

Oh, and the giraffe doesn’t eat leaves all the time. It spends a lot of the day just standing around chewing its cud.

There used to be a mammal that stood almost as tall as the giraffe at the shoulder. Paraceratherium orgosensis went extinct around 23 million years ago, and it’s not even related to the giraffe. It’s a member of the rhinoceros family. Like sauroposeidon, we don’t have a complete skeleton of paraceratherium, so its size is an estimate based on the proportions of closely related animals whose sizes we do know. It probably stood 18 feet high at the shoulder, or 5.5 meters, and while its neck was probably around 7 feet long, or a little over 2 meters, it probably held it forward like a rhino instead of up like a giraffe, so it didn’t add much to the animal’s overall height.

In episode 32 we learned about the giant moa, a flightless bird that once lived in New Zealand. It was probably the tallest bird that ever lived, with big females 12 feet tall, or 3.6 meters. But the tallest living bird is the ostrich. It also lives in Africa and is famous for being flightless and for being able to run really fast. In fact, it’s not only the tallest bird alive, it’s the fastest. It can run over 40 miles per hour, or about 70 km per hour, and it uses its large wings as rudders and even to help it brake. With its head raised, a big ostrich can be nine feet tall, or 2.8 meters.

There are a lot of differences between ostriches and most other birds. Most birds have four toes, for instance. The ostrich has two, one large toe with a hoof-like nail, and a smaller outer toe with no nail at all. All other living birds secrete urine and feces together, but the ostrich secretes them separately the way mammals do. And while most male birds don’t have a penis, the male ostrich does. And the ostrich has a double kneecap. Not only is that unique to birds, it’s unique to everything. No other animal known, living or extinct, has a double kneecap. Researchers have no idea what it’s for, although one hypothesis is that it allows a running ostrich to extend its legs farther, and another hypothesis is that it might protect tendons in the bird’s leg.

The ostrich eats plants, seeds, and sometimes insects. Like Sauroposeidon and many other dinosaurs and birds, the ostrich swallows small rocks and pebbles to help digest its food in its gizzard. The gizzard contracts, smashing the gastroliths and plants together to help break up the plant material the way mammals would chew it.

Ostrich eggs are the biggest laid by any living bird, about six inches long, or 15 cm. Females lay their eggs in a communal nest.

Ostriches are farmed like big chickens, for their feathers, meat, and skin for leather. Ostriches are also sometimes ridden and raced with special saddles and bridles. But ostriches aren’t easy birds to manage. They can be aggressive, and they can kill a human with one kick.

To wrap things back around to dinosaurs, some researchers think many fast-running dinosaurs used their feathered forelimbs the way ostriches use their wings, to help maneuver and possibly to help keep unfeathered portions of the body warm at night. During the day, when it’s hot, ostriches keep their wings raised so that their unfeathered upper legs can release heat into the atmosphere, but at night they cover their upper legs to retain heat. It’s just another link between birds and their long-distant ancestors, the dinosaurs.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 048: Out of Place Animals

Happy New Year! Let’s learn about a few animals that have shown up in places where they just shouldn’t be. How did they get there, and why? Sometimes we know, sometimes it remains a mystery.

Some of Pablo Escobar’s hippos:

King Julien, the ring-tailed lemur who was discovered almost frozen to death in London:

A little alligator captured in a koi pond. In Maryland. Which is not where gators live:

A monk parakeet eating pizza in Brooklyn, because of course it is:

How did these beavers get into a Devon river? They’re not telling:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Happy new year! Let’s ring in the new year with some out-of-place animals. Sometimes an animal shows up in a place where it just shouldn’t be, and while the animal itself isn’t a mystery, how it got there is. In this episode we’ll chase down the solutions to a few of these mysteries, and ponder a few others we can’t solve.

We’ll start with some hippos that aren’t hanging out in Africa where they belong, but are living in Columbia, South America. In this case, we do know what happened. Back in the 1980s, a guy named Pablo Escobar had a private zoo that contained four hippos, along with other animals. Escobar was not a nice person. He was a drug lord who grew obscenely rich from selling cocaine and killing anyone who didn’t agree with him. In 1993 the police raided his estate and Escobar was killed in a shoot-out. The government took over the estate and turned it into a park, and most of the animals were given to zoos. But the hippos stayed. The estate had a lake that they lived in, and they weren’t hurting anything.

But after a few decades, the four hippos turned into forty. The hippos have expanded their range from the park to neighboring rivers. Sometimes a hippo wanders into a neighboring town or ranch. Hippos can be dangerous—in fact, they’re the most dangerous animal in Africa, killing more people than any other animal. But the locals like the hippos. At this point the government is torn between needing to keep the people and environment safe from these out-of-place animals, and preserving animals that everyone agrees are really awesome. In 2010 the government started a program to castrate the males, which will stop the population from growing, although castrating a wild hippo is not easy so the program is not necessarily going to work.

This is what a hippo sounds like:

[hippo sound]

In December 2011, someone found an unusual animal in London, a ring-tailed lemur. Even if you don’t know what it is, you know what it is. The vets who treated the animal named him King Julien after the character from the movie Madagascar. Lemurs are primates, only found in the island country of Madagascar, so what was one doing in London on a below-freezing day? Poor King Julien almost died of hypothermia and dehydration.

King Julien was very tame, so had probably been someone’s pet. People are allowed to own lemurs in England, but only with a special license. Ring-tailed lemurs are popular exotic pets, and part of the reason they’re endangered in the wild is because they’re frequently captured for sale on the black market. I tried to find out what had happened to King Julien, without luck, but hopefully he recovered fully and now lives in a zoo or wildlife sanctuary where he can be properly cared for and can hang out with other lemurs.

This is what a ring-tailed lemur sounds like:

[ring-tailed lemur sound]

Unfortunately for many animals kept as exotic pets, once the people who buy them realize owning an alligator, for instance, is not as fun as it sounds, the animals are often just dumped outside to fend for themselves. The kind of person who would buy an exotic animal in the first place is probably not the kind of person who bothers to learn how to take care of it.

Back in the mid-20th century, if you took a vacation to Florida and went into a souvenir shop, you could buy a live baby alligator for a few bucks. Baby alligators are cute, like big lizards. But they grow fast, they eat a lot, they make a mess, and they often get sick because they’re not properly taken care of. I like to think I know a fair amount about animals, but I wouldn’t know how to take care of a baby alligator. And if it was 1950 and I couldn’t just look that information up online, or find it in the local library, I’d probably not do a very good job.

Now I know you’ve heard about sewer alligators. The story goes that back in the days when baby alligators were cheap pets, people would bring them home as souvenirs, realize very soon that they didn’t actually want an alligator as a pet, and would flush them down the toilet to get rid of them. Some of the flushed baby alligators survived, and grew up in the safety and relative warmth of the New York City sewers, eating rats. Every so often a maintenance worker would get the shock of shining a flashlight down a sewer tunnel and seeing the reflection of alligator eyes. In the stories, the gators were always enormous.

So did this ever happen? Did alligators ever really live in the sewers of New York or any other city? Alligators have actually been found in sewers, although it’s not known if they were survivors of being flushed or if they were released aboveground and found their way to the nearest water through storm drains. In 2010 a two-foot-long, or 60-centimeter, baby alligator was found in the sewer in New York City. In 1984 a Nile crocodile was captured in the Paris sewers. But a sewer is not a good habitat for any living thing, especially not a reptile. Any alligators found in sewers haven’t been there long—they wouldn’t survive long, and they certainly couldn’t breed in a cold, lightless environment.

But alligators don’t just turn up in sewers. They’re forever being found in people’s ponds, and not in Florida or surrounding areas like you’d think. As just one of many possible examples, in 2015 a guy in Maryland, in the northeastern United States, found a three foot, or .9 meter, alligator in his koi pond. Probably he did not have any koi left by the time police officers caught the gator and relocated it to a local zoo.

This is what an American alligator sounds like:

[alligator sound]

It’s not too unusual to find a bird somewhere outside of its natural range. While migrating birds have amazing skills at navigating long distances, sometimes a bird is blown off course by a storm, or joins a flock of closely related birds that then fly somewhere other than its usual migration route. But sometimes the presence of out-of-place birds aren’t so easy to figure out.

For instance, the Brooklyn parrots. Brooklyn is part of New York City, not a particularly welcoming place for tropical birds. But there’s a population of wild parrots called monk parakeets, or Quaker parrots, that have been living in the city for over 50 years. And no one’s sure where they came from.

The monk parakeet is from Argentina. It’s smallish, around 11 inches long or 29 cm, with a 19 inch wingspan, or 48 cm. It’s a cheerful bright green in color with pale gray forehead and breast, and some blue on the wings. It eats plants of all kinds and builds elaborate multi-family nests called apartments by weaving twigs together.

It’s also been a popular pet for a long time. It learns to mimic speech easily, is intelligent and hardy, and lives 15 to 20 years, or even longer. But because so many feral populations have developed in North America and Australia, some areas no longer allow monk parakeets as pets at all.

The Brooklyn parrots are probably escaped birds from pet stores and especially from shipping crates full of birds imported from Argentina. Thousands of the parrots were sold as pets in the United States during the 60s and 70s. The first report of parrots living in New York City comes from December 1970, when an article about them appeared in the New York Times. Since then, the origin of the parrots has achieved urban legend status, with unsubstantiated stories of heroic releases of captive birds from sinking cargo ships, a mass release of captive birds from an abandoned aviary, and so forth. In the mid-2000s, a poaching ring trapped birds to sell on the black market, but the ring was busted and the birds freed.

Populations of monk parakeets also live in Chicago, Austin TX, Brussels, Belgium, and many other cities. Because their droppings don’t harm statues and other structures the way pigeon droppings do, and studies of urban birds reveal that they aren’t a threat to native species, many cities have stopped trying to exterminate the birds. Their large nests do frequently have to be removed from power transformers.

This is what a monk parakeet sounds like:

[monk parakeet sound]

I always think of beavers as a North American animal, but the Eurasian beaver is native to—you guessed it—Europe and Asia. But like the North American beaver, the Eurasian beaver was almost driven to extinction by humans, who wanted its fur and a substance called castoreum that is still used in perfumes and cigarettes. Castoreum is produced by the beaver to scent mark their territory, and a beaver’s castor sacs is found right next to the anal glands. Another reason to quit smoking!

So by 1900, the Eurasian beaver was almost extinct throughout its range. Only a few small populations remained. In England, Scotland, and Wales it went extinct completely by the 16th century. But after conservation efforts throughout Europe and Asia, beavers have started to be reintroduced into their historic ranges. The first official reintroduction of beavers into Scotland occurred in 2009 and the animals are doing well.

In 2013, people in Devon, England started seeing beavers along the River Otter. The next year they had babies. No one had any idea where the beavers had come from—Devon is too far from Scotland for the Scottish beavers to have migrated there naturally, and anyway the Scottish beavers are closely monitored. If three had gone missing, the researchers in charge of them would know.

It led to a lot of controversy in Devon, to say the least. Fishers and farmers worried that the beavers would mess up the river, carry diseases, and in general cause havoc. And since the beavers hadn’t been officially introduced, no one knew whether these were even the right kind of beaver for England and if they were healthy. But locals liked having beavers around—they are really cute animals, after all. When the government agency Natural England announced it would capture the beavers and put them in a zoo, locals protested so strenuously that the plan was changed. Instead, the beavers were captured, examined by veterinarians to make sure they were Eurasian beavers and disease free, and rereleased. This happened in 2015. The beavers were healthy, they were the right species, and they were returned to the river. Still, no one one knows how they got there.

Beavers are actually good for fish and the local environment. Beaver ponds create winter habitat for many types of fish, and beaver dams don’t stop fish like salmon that migrate upriver to spawn. The presence of beaver dams helps reduce flooding, improves water quality, and creates cover for lots of fish and animals. And while some people believe beavers spread the giardia parasite, which causes a bacterial infection sometimes called beaver fever, giardia is actually mostly spread by humans and our domesticated animals, especially dogs. Giardiasis causes nasty diarrhea and other intestinal distress that can go on for weeks, and it’s why you don’t ever drink water that hasn’t been treated in some way.

The beavers in Devon are doing well and have spread into neighboring waterways. They got in the news again a little over a year ago, in October of 2016, when a rich guy decided he didn’t like them. Sir Benjamin Slade, who has a great name but who is clearly a prime jerk, posted a reward of 1,000 pounds to anyone who would kill the beavers who’d moved onto his estate, because he didn’t like that they were felling some of his trees. Dude, you are rich. Hire somebody to plant more trees for you. Besides, beavers have brought tourists to Devon who hope to catch a glimpse of the animals, which helps the local economy, Mr. Slade, if that IS your real name.

Anyway, this is what a beaver sounds like:

[beaver sound]

There are so many out-of-place animal reports that there’s no way to cover more than a few in one episode, so I’ll definitely revisit the topic. Until then, keep an eye out for anything unusual walking through your back yard.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 042: Mystery Bears

This week we’re going to learn about bears, including a bunch of m y s t e r y  b e a r s!

Hi! I am a panda bear!

A polar bear:

A spectacled bear:

A baby spectacled bear OMG LOOK AT THAT BABY:

The giant short-faced bear was indeed giant:

Further reading:

Shuker Nature

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’m in the mood for a bona fide mystery animal, and I bet you are too. So this week let’s learn about some mystery bears.

There are eight species of bears alive today that we know of: brown, polar, spectacled, sloth, sun, Asian and American black bears, and the giant panda. The other ones you may have heard of, like grizzlies, are subspecies of those eight. For a long time pandas were not considered bears at all, but more closely related to raccoons. These days they’re definitely in the bear box, but they’ve evolved in a completely different direction from other bears for some 19 million years, which is why they’re so different.

Before we get into the mysteries, let’s talk about just how different pandas are from other bears. As you probably know, the panda eats bamboo almost exclusively, unlike all other bears which are either omnivorous or, in the case of the polar bear, carnivorous. To survive on bamboo, the panda has evolved a lot of unusual adaptations. The front paws, for instance, have five toes just like all bears, and also a thumb. The thumb is actually a modified wrist bone that juts out from the base of the paw and helps the panda hold bamboo stalks as it eats the leaves.

Bamboo is not very nutritious. It’s certainly low in protein, especially considering that while the panda eats almost nothing but bamboo, it still has the digestive system of a carnivore. Special microbes in the panda’s intestines help break down the bamboo so the panda can digest it, but it takes a lot of bamboo to provide the energy a panda needs. A panda eats 20 to 30 pounds of bamboo leaves, stems, and shoots every day, or 9-14 kg, which means it also poops a whole lot. Seriously, it poops something like 40 times a day. And it still doesn’t have a lot of energy. It mostly just sits around eating and pooping. But while the panda just chews leaves all the time, it still has bear fangs and it will eat meat and eggs when it can. Researchers think that the panda only became exclusively a bamboo eater about two million years ago.

The panda lives in the mountains of China in only a few places. It used to also live in the lowlands but farming and other development drove it into more remote areas. There are about 50 pandas in captivity these days and somewhere between 1,500 and 3,000 pandas in the wild, with the population finally increasing after laws protecting pandas from poaching started to be enforced.

The people of China knew about the panda for centuries, although they were considered rare and elusive even in the olden days, but it wasn’t until 1869 that anyone from outside of China had a clue that gigantic roly-poly black and white bamboo-eating six-toed bears were real. Seriously, would you believe that? In 1869 a French missionary and naturalist bought a dead panda from some hunters, dissected it to study, and sent the skin to a zoologist friend in Paris.

So it’s possible that there are other mystery bears out there, known to the locals who don’t realize their bears are special, just waiting to be spotted by someone who knows a thing or two about bears.

In 1920 a Swedish scientist named Sten Bergman was shown the pelt of a bear by locals during an expedition to the Kamchatka Peninsula. That’s in the very eastern part of Russia on the Pacific coast and is sparsely populated. It’s mountainous with a cluster of active volcanos and it’s well known for the brown bears that live in the area. The Kamchatka brown bears are among the largest brown bear subspecies in the world, almost the size of the closely related Kodiak brown bear. When it stands on its hind legs it can be almost ten feet tall, or 3 meters. It’s mostly harmless to humans. Mostly. It hardly ever kills people. Just, you know, occasionally. The Kamchatka brown bears have long brown fur, sometimes pale brown but usually a sort of medium brown. They’re certainly not black. But the pelt that Dr. Bergman was shown was jet black and had short fur. But it was definitely a bear pelt, and the pelt was definitely enormous—much larger than a brown bear pelt. Bergman also saw a huge skull supposedly from one of the black bears, and a paw print 15” long and 10” wide, or 38 cm by 25 ½ cm.

Unfortunately none of the giant black bears have turned up since, living or dead. It’s possible that the bear was an unusually large brown bear with anomalous fur. Brown bears do have considerable variability in both the color and length of their fur, so it’s not out of the question that occasionally a brown bear is born that is actually black. It’s also possible that this black bear is actually a different species of bear, but that it’s either gone extinct or is extremely rare and only lives in far remote areas of Siberia these days.

But the Kamchatka Peninsula has another mystery bear for us to ponder. In 1987 a hunter named Rodion Sivolobov bought a giant white bear skin from locals. It looked like a big polar bear pelt, but the locals assured him it was from a very specific, very rare type of local bear.

They called it the irkuiem and described it as large but with a relatively small head, relatively short hind legs, and an unusual method of running. It supposedly runs in a sort of rocking motion, bringing both hind legs up to the forelegs, then throwing the forelegs forward together to start a new stride–more like a rabbit’s bounding run than a bear’s typical gait.

Sivolobov sent samples of the pelt to various zoologists in Russia, but they said there wasn’t much they could determine without a skull. But with DNA testing so much more advanced these days, it would be REALLY NICE if Sivolobov would get right on that and get his white bear pelt tested. If it really exists and if he’s not scared he was sold a marked-up polar bear skin with a tall tale.

The polar bear lives in the Arctic and is so closely related to the brown bear that the two species occasionally crossbreed when their range overlaps. Technically polar bears are marine mammals since they hunt seals on sea ice and spend a lot of time in the water. Sometimes a polar bear will drift for long distances on a piece of sea ice, or may swim for days, crossing hundreds of miles of ocean.

Polar bear feet are huge, around 12 inches wide or 30 cm, which helps keep the bear from sinking in the snow since its weight is more widely distributed on broad paws. Think snowshoes. Broad feet also helps it swim faster. The paw pads are bumpy so it’s less likely to slip on ice, and the claws are short and strong for digging in snow and ice. The polar bear stays warm because its body is heavily insulated with fat, plus its fur is thick with a soft undercoat that insulates so well that polar bears really are virtually invisible to heat-sensing radar. Male polar bears grow long fur on their forelegs, apparently because lady polar bears find that attractive. Unlike most other bears, polar bears don’t hibernate.

Georg Wilhelm Steller was a German naturalist who took part in explorations of Kamchatka Peninsula and other areas. He’s the guy that Steller’s sea-cow is named after and one day it’s getting its own episode. Anyway, in 1751 Steller wrote a book called, in English, Beasts of the Sea, and in it he mentions a report of a white sea-bear. He didn’t see it himself, but here’s his account, which I’ve taken from Karl Shuker’s excellent blog ShukerNature. I’ll link to it in the show notes.

Here’s the quote:

“Report, as I gather from the account of the people, has declared that the sea-bear, as it is called by the Rutheni and other people is different. They say it is an amphibious sea beast very like a bear, but very fierce, both on land and in the water. They told likewise, that in the year 1736 it had overturned a boat and torn two men to pieces; that they were very much alarmed when they heard the sound of its voice, which was like the growl of a bear, and that they fled from their chase of the otter and seals on the sea and hastened back to land. They say that it is covered with white fur; that it lives near the Kuril Islands, and is more numerous toward Japan; that here it is seldom seen. I myself do not know how far to believe this report, for no one has ever seen one, either slain or cast up dead upon the shore.”

Shuker suggests that this report may actually be of a fur seal, which is found in the area and has sometimes been called a sea-bear. Then again, fur seals aren’t white. They’re gray or brown and would appear darker in the water.

The Kuril Islands are a string of 56 volcanic islands that stretch between the northeastern tip of Hokkaido, Japan to the southern tip of Kamchatka Peninsula, a distance of about 810 miles, or 1300 km. Some of the largest islands are inhabited by brown bears, but it’s far from the Arctic. Polar bears get overheated easily in warmer areas, so a population of polar bears—or even a stray one—is unlikely that far south.

There are also stories of pure white bears in the forests of Hubei province in China. It’s always possible this is a garbled account of the panda, but maybe not.

In 1864, Inuit hunters supposedly killed a huge bear with yellowish fur. Naturalist Roderick McFarlane acquired the skin and skull and sent them to the Smithsonian, which promptly lost them. That’s the story, anyway. In fact, the Smithsonian did misplace the skin and skull for a while, but zoologist Clinton Hart Merriam found and examined them. He decided it was a new species of bear due to the skull’s odd shape and the light tan color of the fur.

Older polar bears do tend to have yellowish fur so maybe that’s all this bear was. But it might have been something else. As I mentioned earlier, polar bears and various subspecies of brown bear do sometimes crossbreed and produce fertile young. It’s rare, but it happens occasionally both in the wild and in captivity. The resulting babies show traits of both polar bears and brown bears, and tend to be pale brown or tan in color with darker brown paws. Then again, there’s a MonsterQuest episode that I haven’t actually seen where a paleontologist examines the McFarlane skull and states it’s just that of a young female brown bear.

For having only eight species, bears are remarkably widespread and vary considerably in diet and appearance. The sloth bear mostly eats insects, for instance. It lives in India and has shaggy black fur with a pale muzzle and white claws, big floppy ears, and a white V-shaped mark on the chest. It lacks upper incisors, which helps it slurp up insects.

Sloth bears are actually pretty darn awesome. Males often help raise the cubs and mothers carry their babies around on their backs. The sloth bear doesn’t hibernate, probably because it doesn’t really get cold where it lives.

The spectacled bear lives in South America. It’s the last close relative of the giant short-faced bear that went extinct about 11,000 years ago. The spectacled bear is mostly black, although some individuals may appear brown or reddish, and most but not all have lighter markings on the face and chest. Its head is much less bearlike than other bears, with a rounded face and short snout. It mostly eats plants and lives in the Andes Mountains and surrounding areas. It spends a lot of time in trees, and will even build a little platform in a tree to sleep on or store food on.

And you know what? Paddington Bear is modeled on the spectacled bear.

The spectacled bear is not especially scary. Its relative, the giant short-faced bear, was another story. It lived in North America, especially in California, and its remains have been found in the La Brea tar pits. But it also lived as far south as Mississippi. And it was huge. It was simply enormous. It stood up to 6 feet at the shoulder, or 1.8 meters, and twice that when standing on its hind legs. One website I read pointed out that regulation height for a basketball rim is ten feet, which means a giant short-faced bear could dunk the ball every time without doing anything more strenuous than standing up. It was probably an omnivore like most modern bears, but we have mastodon bones that show tooth marks from the short-faced bear.

Naturally, as with just about any extinct animal, people keep hoping they’re not really extinct and occasionally someone reports seeing a giant short-faced bear. Some cryptozoologists speculate that the Kamchatka Peninsula mystery bears may actually be short-faced bears, but since short-faced bear fossils have only been found in North America, it’s probably not likely that there would be any living in Russia. Besides, the short-faced bear would have looked very different from the brown bear, probably shaped more like a colossal spectacled bear. Locals would definitely notice the difference. Moreover, it’s not likely to live in the same area that already has a population of brown bears, since both animals would then be competing for the same resources.

Personally, while the giant short-faced bear is awesome to imagine, I’m perfectly happy with it not wandering around in the forests. Because I like to hike. And I worry enough about the relatively small and harmless American black bear as it is.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 031: Venomous Mammals

This week we’ll learn all about venomous mammals: what are they, will they kill you, and why aren’t humans venomous because that would be cool. While you’re pondering your lack of venom, hop on over and enter my Goodreads giveaway for my new book Skytown! (Canada and U.S. only, sorry.)

The adorable and venomous water shrew:

The adorable and venomous European mole!

The adorable and venomous Hispaniolan solenodon (there is a pattern in this episode)!

The adorable and venomous Cuban solenodon!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

For this week’s episode, we’re going to learn about venomous mammals. But first, an ad! Okay, not a real ad. If I ever do run advertisements on the podcast, I’ll put them at the very end so you don’t have to listen if you don’t want to. But I do want to tell you about my new book! It’s called Skytown and it’s published by Fox Spirit Books, a small British publisher you should totally support. All their books are good. Skytown is a fantasy adventure about two ladies who are airship pirates. The book isn’t intended for kids, but I estimate it at about a PG-13 rating—it has some bad language and some mild adult behavior and violence, but nothing adults only.

Right now I’ve got a Goodreads giveaway going on through the end of September 2017 for a paperback copy of Skytown, although in this case entries are limited to people in the United States or Canada. I’ll put a link to the giveaway page in the show notes in case you’re interested in entering, or if you just want to learn more about the book. It doesn’t have a whole lot to do with strange animals, although there are a few that are important to the plot, but I think it’s a lot of fun.

But now, back to the venomous mammals, and I get to work in a sneaky shout-out to the awesome podcast Varmints! In a recent episode about frogs, one of the hosts gives a good way to remember the difference between venomous and poisonous. If an animal bites you and you die, it’s venomous. If you bite an animal and then you die, the animal is poisonous. There are lots of venomous insects, lots of venomous reptiles, lots of venomous fish, lots of venomous amphibians, but not very many venomous mammals. Oh, and no venomous birds, but more about that later.

We’re most used to venomous snakes that inject poison with their fangs, but there are lots of ways to get venom into potential prey or a potential predator. Scorpions and bees inject venom with a stinger, for instance. Stingrays have barbed stingers on their tails, while some fish such as scorpionfish and dogfish sharks have sharp spines that are coated with toxins. Other fish, like stonefish, have spines that actually inject venom. Some lizards, including gila monsters and komodo dragons, have modified salivary glands in the lower jaw that contain venom, which is leached into a bite through the lower teeth, not through specialized fangs. Some types of amphibians, like the sharp-ribbed newt, actually puncture their own sides with their ribs when threatened, secreting toxins at the same time that coat the points of the ribs. And while poison dart frogs don’t inject venom, just secrete it and dare other animals to lick them, a few species of frog have little spines on the skull that injects venom when the frog headbutts an animal.

Most venom is a toxin that either renders prey helpless or kills it outright, or produces pain or adverse physical symptoms in predators. So it’s controversial to suggest that the anticoagulant found in vampire bat saliva is actually a venom. Likewise, the slow loris secretes a strong-smelling substance when threatened that can cause allergic reactions in some individuals but which isn’t technically a toxin.

Several species of shrew are definitely venomous, including the Eurasian water shrew. Water shrews are neat little animals even without venom. They’re around 4 inches long with a tail some 3 inches long. Like other shrews, its teeth have red tips due to iron concentrated in the enamel, which helps strengthen the tooth and keep it from wearing down as fast. The water shrew can only stay underwater about 20 seconds before needing to surface, but its fur traps air so water can’t get down to its skin. It also makes it look silvery if you get a picture of it as it’s diving. It lives in burrows near water and mostly eats aquatic organisms like fish, insects, snails, and amphibians. It mostly uses its sensitive whiskers to find prey.

And yes, it’s venomous. While its jaws aren’t strong enough to injure humans and other large mammals, it does a great job against small animals. The venom is present in its saliva, so when a shrew bites its prey, saliva naturally gets into the wound.

The European mole has venomous saliva too. Mostly it uses its venom to paralyze earthworms, which it eats, but it also sometimes eats shrews. Irony! Moles are around 4 to 6 inches long with strong forelegs with long claws that it uses to dig its burrows. Moles do have eyes and can see, but their eyes are tiny and protected by fur that grows over them. Its ears are similarly tiny and protected. The mole constructs elaborate tunnel systems and spends most of its life underground. It’s a solitary animal but like the old lady who lives up the hill from me, it always seems to know what its neighbors are up to. If a mole dies or is captured and removed from its burrow, its neighbors promptly move in on its territory. Earthworms are its favorite food but it will also eat insects.

The male platypus has a spur on the ankles of its hind feet that can inject venom. While venom is present through the year, its production is increased during the breeding season. Some researchers believe the venom is used when males fight each other. But the venom is incredibly toxic. It can kill animals as big as dogs outright, and while it won’t kill a human, it can certainly make the human wish they were dead. Not only is the pain excruciating and lasts for weeks, it can cause a heightened sensitivity to all pain for months. That seems a little like overkill. One good thing, though, is that recent research has isolated a form of insulin in the platypus’s venom that normally degrades very quickly, but that is much longer-lasting in the venom. Scientists are hopeful that learning more about it can lead to new treatment of diabetes in humans.

I swear I’m still planning an episode about platypuses pretty soon. They and their close cousins, echidnas, are freaky-deaky animals. So let’s skate right by the platypus for now and go on to discuss another freaky-deaky animal that you may not have heard of, the solenodon.

There are two species of solenodon, the Cuban and the Hispaniolan. They look a bit like small possums or big shrews, with long noses and long tails without fur. They climb well, although they can’t jump, and have relatively long legs, and they basically walk on their tiptoes. They can also be surprisingly clumsy, sometimes tripping themselves and tumbling to the ground. I thought I was the only one who did that. The Hispanolian solenodon is pale reddish-brown and gray while the Cuban solenodon is brown with a yellow-white face or head. Both are about a foot long not counting their eight-inch tails, and both have glands that secrete a musky smell.

The solenodon is one of those animals people like to call a living fossil. It’s been around since well before the dinosaurs went extinct, some 76 million years ago, and retains a number of characteristics considered primitive. There used to be a species in North America, but it went extinct sometime in the last two million years.

Females give birth to one or two babies at a time. Occasionally a litter of three is born, but the mother only has two teats, located toward the back of her belly and elongated so the babies can travel with her while they continue to nurse. That means a third baby doesn’t get much to eat.

The solenodon mostly eats insects and earthworms, but they’ll snack on just about anything, including carrion, fruit, and small animals. Two of the lower incisors have grooves, and when a solenodon bites, it injects venom into its prey through the grooves from modified salivary glands. The venom isn’t strong enough to kill a human, but it is painful. One solenodon kept in captivity in London bit a chicken, then ate it. Even though the chicken was bigger than he was.

The solenodon is shy and nocturnal. Its eyesight isn’t very good, but that’s okay, because it uses a form of echolocation to navigate and find prey. As it walks, it generates quiet clicking sounds the same way bats squeak, and it can interpret the echoes of its sounds to know what’s around it. It has good hearing and a very good sense of smell. Its long nose is extremely flexible—in fact, the Hispaniolan solenodon has a joint at the base of its snout to make it even more flexible. Since a lot of its prey hides in tree bark or crevices in the ground, it needs an extra investigative snoot.

You wouldn’t think such a little animal that mostly eats insects would be a big deal in the animal world, but until Europeans showed up on the island of Hispanolia, the Hispaniolan solenodon was pretty much a bigwig. Nothing ate it except the occasional eagle, so when Europeans showed up with dogs, cats, rats, and mongooses, the solenodon had no idea how to defend itself. While dogs bitten by solenodons do sometimes die, cats and rats eat a lot of the same prey the solenodon does and can outcompete it. The mongoose just eats the solenodon. The Cuban solenodon was similarly threatened by deforestation and introduced species. By 1970 researchers believed the solenodon was extinct. Fortunately, they were wrong, although both species are still rare. There used to be a population of the Hispaniolan solenodon in Haiti, but those do appear to be gone since there are few forested areas left for them to live in.

So why do a few mammals have venom while most of us don’t? Some researchers think venom used to be really common in mammals when dinosaurs were still alive. It was a useful defense when almost everything was bigger than mammals. But after most dinosaurs went extinct, and mammals began to evolve to fit new ecological niches, venom wasn’t as useful. Most mammal lineages lost the venom. Then again, we don’t know for sure if this is the case. Some other researchers think venom was never that common in mammals to start with. It’s hard to tell if an animal was venomous from fossil remains.

I mentioned earlier that no known venomous birds exist, but there are a few birds that make use of toxins from plants or insects they eat. For instance, the African spur-winged goose eats a lot of blister beetles, and blister beetles are toxic. If you touch one, it will secrete the toxin that’s powerful enough to raise blisters on your skin. Blister beetles are attracted to blooming alfalfa plants, which can cause a lot of problems for horses if any of the beetles are collected when the plants are dried and baled for hay. A couple of dead blister beetles in a single feeding of hay can kill the horse that eats them. But the spur-winged goose is immune to the beetle’s toxin. It collects the toxin in its tissues, which makes it poisonous. People have actually died as a result of eating its meat. Oh, and the goose has spurs on its wings—thus its name—that it uses to defend its territory from other birds. But the spurs aren’t venomous, although that would be really metal.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!

Episode 030: Reindeer and Moose don’t confuse them

In Episode 30, I admit a M I S T A K E, in that I did not realize Finland has a sizable moose population and so therefore assumed that although this thing looks like a moose, it must be a reindeer head. So because I made a M I S T A K E, the whole class is being punished by learning about reindeer and moose of Finland.

Oh yeah, I’m back from my trip to Finland. I had a great time!

Finnish forest reindeer:

Barren-ground caribou:

Finnish moose:

Alaskan moose:

Whee!

Oh, here’s a link to information about my new book! More details coming next week.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This is the first episode I’ve put together since returning from Finland last week. I had a great time on my trip! WorldCon was amazing, I got to hang out with some good friends, and I had lots of positive feedback after the panel I was on. One day I went to a fun Viking-themed restaurant with my friends Emma and Dave (hi guys!), where I ordered reindeer. It was really good, and when I got my food I tweeted a picture of the plate along with a picture of a stuffed animal head across from me. I captioned it something like, “A reindeer is watching me eat reindeer.”

Unfortunately, that wasn’t a reindeer head. It was a moose head. When I first saw it I knew it was a moose head, but I didn’t believe myself that it was a moose head because there’s no moose in Finland, right? Just reindeer.

Five thousand replies correcting me later, I sheepishly admitted that I was wrong and swore I would in the future trust myself to ID moose heads versus reindeer heads without convincing myself I was wrong. And just to clear things up, here’s an entire episode on certain hoofed Ice Age megafauna that live in Finland.

The reindeer living today are all one species, Rangifer tarandus, although there are a number of subspecies. Reindeer evolved about 3 million years ago and are closely related to moose.

During the late Pleistocene, better known as the ice ages, reindeer were much more widely spread than they are today. You could have found herds of reindeer in Tennessee and Spain during the last glaciation around 12,000 years ago. These days, wild reindeer are found in Norway, Finland, Iceland, and Siberia, and in Alaska, Canada, and Greenland. In North America, reindeer are called caribou. Wild reindeer and caribou numbers are in decline worldwide due to climate change and habitat loss.

Most reindeer are migratory to at least some extent. Some populations of caribou in North America migrate 3,000 miles a year. The only mammals that migrate farther than that are whales. Mating occurs during autumn migration, and calves are born after spring migration in May or June.

Reindeer have larger hearts than other ruminants of about their same size, which helps them run and swim for extended periods of time in cold environments. Reindeer knees click when they walk, and researchers believe this helps individuals keep track of each other in white-out conditions.

Reindeer eat leaves, twigs, some types of grass, and mushrooms, but their primary food in winter is the reindeer lichen. Mammals don’t typically eat lichens, but reindeer have developed a special enzyme called lichenase that helps them digest it. In spring they may also eat bird eggs, fish, and rodents when they can catch them. Instead of secreting urea in their urine as almost all mammals do, reindeer retain it within the digestive system for the nitrogen it contains.

Now, in my defense, the reindeer I’m familiar with are North American caribou, and many caribou have somewhat palmate antlers and heavy muzzles that kind of resemble moose. At least at first glance, especially if you’re convinced you’re looking at a reindeer head and not a moose head. Most reindeer in Europe have slenderer muzzles and more typically deer-like antlers. Reindeer have the largest antlers to body size of all living deer species, even counting the moose. Moose antlers are larger, but moose bodies are also bigger. Some mature male forest reindeer can have antlers almost seven feet wide with up to 44 points. Both females and males grow antlers, although females have smaller antlers and individuals in some populations don’t grow them at all. While males shed their antlers soon after the rut season, females keep theirs all winter and use them to defend their feeding areas from other reindeer.

In winter reindeer hooves are sharp and hard like ordinary deer hooves, which helps them keep a good purchase on ice and allows them to dig through snow to the lichen beneath. In summer, though, when the ground is muddy and soft, the hooves become more like spongey footpads to help spread their weight across a larger surface.

The first mention of reindeer herding comes from the ninth century, but the Sámi people, once called Lapps, of what is now northern Finland, Sweden, and Norway had probably domesticated reindeer long before that—at least 2,000 years ago and possibly as long as 7,000 years ago. The Sámi were traditionally nomadic, moving with their herds. They used reindeer for meat, milk, fur, and transport. These days reindeer herding is pretty hands-off, with herds moving around as they like while the herders check them periodically using ATVs or snowmobiles. But reindeer herding is an important aspect of Sámi culture, and extensive knowledge of reindeer and weather is still passed down mostly orally.

While reindeer have been at least semi-domesticated for thousands of years, the caribou of North America have never been domesticated, although many native cultures in North America depend on caribou hunting. As a result, domesticated reindeer tend to be heavier than caribou, migrate much shorter distances, and calve earlier in the year.

Next, let’s talk about moose. In North America, moose are called moose. But in Europe, moose are called elk.

The word elk is old and comes from the same Germanic root language that Old English evolved from. The word moose was borrowed from the Algonkian languages at the end of the 16th century. So I guess it’s inaccurate to say that it’s wrong to call your moose elk. I mean, before the 16th century people in Europe had to call moose something and the word elk was just sitting there. What we call elk in North America is a totally different large deer, native to North America and parts of Asia. But since the word moose is just fun to say, I don’t know why people in Europe haven’t adopted it. Then again, I also don’t know why we call elk elk and not WAH-pah-tee [wapiti] in North America, since wapiti is another Algonkian word.

But yes, moose do live in Europe, specifically northern Europe and parts of Russia. Moose did once have a much larger range. Moose remains only 3900 years old have been found in Scotland, but once the moose died out, the word elk was just floating around with nothing to fasten itself to, so for a long time people in Britain used the word elk to refer to any large deer, especially red deer—which resemble North American elk aka wapiti.

Anyway, I’m calling them moose and we’re not going to discuss the wapiti in this episode because I’m already confused enough as it is.

Like the reindeer, there is only one species of moose but several subspecies. The biggest are the Alaskan moose and the East Siberian moose. Big males of both can stand over seven feet tall at the shoulder and weigh over 1500 pounds. The moose subspecies of North America generally have larger antlers with two lobes each, whereas Eurasian moose subspecies typically have one lobe each. The largest spread of antlers ever measured was just under seven feet across. Only male moose grow antlers.

The moose likes marshy or wet areas and eats a lot of aquatic plants, although it will also rear up on its hind legs to reach tree leaves. It eats leaves, twigs, and roots, and prefers low-fiber plants. It can’t digest hay. Moose have even been known to dive to reach plants. Its nostrils seal when underwater, which allows it to eat without lifting its head out of the water.

Moose evolved around 2 million years ago in Europe, with the earliest known species called the French moose. It was actually bigger than the Alaskan moose but looked more like a deer. It didn’t have the modern moose’s heavy snout and its antlers were over eight feet across, mostly just one unbranched beam with a small palmation at the ends. By around a million years ago the French moose had given rise to the broad-fronted stag moose, which migrated from Eurasia to North America. It looked more like its modern descendant.

Like all deer, moose and reindeer have no upper incisors, just a hard palate. Both are also ruminants, which means their food goes through a complex system of bacterial fermentation, including needing to be regurgitated and rechewed as cud, so that the animal can extract as much nutrition from low-protein plant food as possible.

Around 100,000 moose live in Finland and hunting permits are limited each year to roughly the same number as calves born that year. Moose sound exactly like you’d expect them to sound, like this:

[angry moose sound–HOOOOOOONK HOOOOOONK HOOOOOOOOOONK]

While I was in Finland, I didn’t find as much time to bird as I’d planned. But my first night in Helsinki let me see an animal that I didn’t expect to see at all—I didn’t, in fact, know it was an animal that ever lives in cities. I won’t go into the reason why I was wandering around Helsinki at 3am on a Monday because it’s a long story without much of a payoff. But while I was out and about, I kept seeing an animal that at first I couldn’t identify. At first glance I thought it was a huge rat, but its legs were too long. Then I thought it might be a dog, but it wasn’t shaped right. It took me several sightings to realize I was looking at a hare, probably the European hare.

I’d never seen a hare before. I’m used to our cottontail rabbits, which are adorable and have tails like powder puffs, but which aren’t very big. This hare was easily over a foot tall with long legs, and it was hopping busily around the quiet streets of Finland’s largest city under the light of a full moon.

That’s it for this episode—apologies for how short it is, but I am unbelievably jetlagged. If you’re listening to this one the week it comes out, I’ll be at DragonCon this weekend. If you’re going to be there too and want to say hi, feel free to email or tweet at me! After DragonCon my schedule should go back to normal.

Oh, and one last thing—I have a book out! I’ll talk about it more in next week’s episode, but if you’re interested, the book is called Skytown and it’s a fun steampunk fantasy adventure about a couple of ladies who are airship pirates. It’s available in paperback right now but should soon be released as an ebook too. It’s published by Fox Spirit Books. I’ll put a link in the show notes.

Anyway, you can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!

Episode 029: Two Lake Monsters

This week we investigate a couple of famous lake monsters, Nessie and Champ. Don’t worry, there are more lake monster and sea monster episodes coming in the future!

Most lake monster pictures look like this. Compelling! This was taken in Loch Ness:

The famous Mansi photograph taken in Lake Champlain:

Beluga whales are really easy to spot. Look, this one has a soccer ball!

Further reading:

Hunting Monsters by Darren Naish

Abominable Science! by Daniel Loxton and Donald R. Prothero

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Back in March, we released an episode about sea monsters. For a long time it was our second most downloaded show, behind the ivory-billed woodpecker, although the jellyfish and shark episodes have taken over the top spots lately. I always intended to follow up with an episode on lake monsters, so here it is.

Let me just say going in that I think most lake monster sightings are not of unknown animals. On the other hand, I also firmly believe there are plenty of unknown animals in lakes—but they’re probably not very big, probably not all that exciting to the average person, and probably not deserving of the name monster. But who knows? I’d love to be proven wrong. Let’s take a look at what people are seeing out there.

One of the biggest names in cryptids is Nessie, the Loch Ness Monster. She and Bigfoot are the superstars of cryptozoology. But despite almost a century of close scrutiny of Loch Ness, we still have no proof she exists.

Loch Ness is the biggest of a chain of long, narrow, steep-sided lakes and shallow rivers that cut Scotland right in two along a fault line. Loch Ness is 22 miles long with a maximum depth of 754 feet, the biggest lake in all of the UK, not just Scotland. It’s 50 feet above sea level and was carved out by glaciers. During the Pleistocene, Scotland was completely covered with ice half a mile deep until about 18,000 years ago. And before you ask, plesiosaurs disappeared from the fossil record 66 million years ago.

Loch Ness isn’t a remote, hard to find place. All the lochs and their rivers have made up a busy shipping channel since the Caledonian Canal made them more navigable with a series of locks and canals in 1822, but the area around Loch Ness was well populated and busy for centuries before that. Loch Ness has long been a popular tourist destination, well before the Nessie sightings started. There have been stories of strange creatures in Loch Ness and all the lochs, but nothing that resembles the popular idea of Nessie. Rather, the stories were of water monsters of Scottish folklore like the kelpie, or of out-of-place known animals like a six-foot bottle-nosed dolphin that was captured at sea and released in the loch as a prank in 1868.

Then, in August of 1933 a couple on holiday from London, Mr. and Mrs. George Spicer, reported seeing a quote “dragon or prehistoric animal” unquote crossing the road 50 yards or so in front of their car near the loch. Mr. Spicer said quote “It seemed to have a long neck which moved up and down, in the manner of a scenic railway, and the body was fairly big, with a high back.” unquote. The creature was gray and seemed to be carrying a lamb or other animal at its shoulder. Spicer described it as 25 to 30 feet long, with no feet or tail visible although Spicer said he thought the tail must be curved around behind the body.

You know what else happened in 1933? King Kong was released in April of that year. If you haven’t seen the movie, or haven’t seen it in a long time, there’s a long-necked dinosaur in the movie that overturns a raft and kills the men aboard. The movie was a sensation unlike anything today, and that dinosaur looks identical to what George Spicer described seeing, right down to the details of the hidden feet, tail curved behind the body, and even the lamb or other animal it was carrying, since in the movie, the monster plucks a man from a tree and shakes him in its mouth at precisely the angle Spicer describes. In fact, Spicer admitted in an interview a few months after his sighting that he had seen King Kong and that his monster strongly resembled the dinosaur in the movie.

Spicer’s story hit the newspapers and spawned dozens of similar reports, along with a huge influx of tourists hoping to see the monster. Locals took advantage of the situation by branding everything in sight with Nessie, from beach toys to floor polish. By 1934 Nessie had appeared in a talkie called The Secret of the Loch, not to mention in radio shows, cartoons, popular songs, and basically everything. Her popularity hasn’t faded since.

One good thing has come from Nessie’s popularity. Loch Ness has been studied far more than it would have been otherwise. The water is murky with low visibility, so underwater cameras aren’t much use. However, submersibles with cameras attached have been deployed many times in the loch. In 1972 a dramatic result was reported, with a clearly diamond-shaped flipper photographed from a submersible, but it turned out that the flipper was basically painted onto two photos that otherwise show nothing but the reflection of light on silt or bubbles. Sonar scanning has been done on the entire lake repeatedly, in 1962, 1968, 1969, twice in 1970, 1981 through 1982, 1987, and 2003. They found no gigantic animals. The 1987 scan resulted in three hits of something larger than the biggest known salmon in the loch, but much smaller than a lake monster. It’s possible that the hits were only debris such as sunken boats or logs. From all the scans, though, we know there are no hidden outlets to the sea under the lake’s surface.

There are lots of known animals in and around the loch, from salmon to otters, and lots and lots of birds. Seals frequently visit, coming up the shallow River Ness through its locks. Any of these animals, especially the seals, may have contributed to Nessie sightings over the years, together with boats seen in the distance and floating debris such as logs. The lake doesn’t contain enough fish to sustain a population of large mystery animals even if they had somehow eluded all those sonar scans. No bones or dead bodies have been found, and no clear photographs have ever been taken of an unknown animal.

So that’s that. Sorry, Nessie. But what about other lake monsters?

Lake Champlain between New York and Vermont in the United States and part of Quebec in Canada, is supposedly home to a monster called Champ. Lake Champlain is bigger than Loch Ness but not as deep, around 125 miles long but no more than 14 miles wide at any point, and only about 400 feet deep. Like Loch Ness, it’s above sea level, in this case around 100 feet above. In summer the water is warm, while in winter part or even all of the lake may freeze over.

Lake Champlain has been around in one form or another for about 200 million years, when a big chunk of bedrock fell into a fissure between two faults, forming a canyon that filled with water from streams. Around 3 million years ago during the Pleistocene—that’s the ice age, remember—the entire region was covered with a mile-thick sheet of ice.

Ice is heavy, and since the continental ice sheets sat on the area for three million years, their weight pressed the rock down so that it was below sea level. When the ice melted around 12,000 years ago, it took a few thousand years before the rocks rose to their current levels—a process known as isostatic rebound. Between the time the ice sheets stopped blocking the ocean to the time the area rose above sea level, waters from the Atlantic flowed in and formed a shallow inland sea. Geologists call it the Champlain Sea.

The Champlain Sea was only around for about 2,000 years, and while it was connected to the Atlantic, the water wasn’t as salty as the ocean since there was so much runoff from melting glaciers. The sea shrank steadily as the land rose, until finally the ocean inlet was cut off. Fresh water flushed out the salt, creating the lake we see today.

The lake is home to a lot of genuinely big fish, including sturgeon, salmon, gar, pike, and some introduced game fish species like European carp. Naturally it’s a busy lake, with lots of anglers and tourists. Even the shipwrecks are a tourist draw, with divers required to register yearly for permission to explore the wrecks.

Many people quote Samuel de Champlain’s 1609 journal entry as the first sighting of the monster. But the famous quote about a 20-foot serpent thick as a barrel is a fake published in the summer 1970 issue of Vermont Life. A genuine quote from Champlain’s journal is less monstery. It’s clear he’s talking about a fish. Here’s the quote: “[T]here is also a great abundance of many species of fish. Amongst others there is one called by the natives Chaousarou, which is of various lengths; but the largest of them, as these tribes have told me, are from eight to ten feet long. I have seen some five feet long, which were as big as my thigh, and had a head as large as my two fists, with a snout two feet and a half long, and a double row of very sharp, dangerous teeth. Its body has a good deal the shape of the pike; but it is protected by scales of a silvery gray colour and so strong that a dagger could not pierce them.”

This description is probably that of the longnose gar, which can grow over six feet long and has a lot of sharp teeth in a very long jaw. It’s usually brownish or greenish but can appear silvery in color, and it has overlapping scales that are quite thick.

Whatever Champlain was talking about, it wasn’t Champ. It’s not until 1819 that a real monster is reported in the lake. The account appeared in the July 24, 1819 newspaper the Plattsburgh Republican, and is an account of a Captain Crum from a few days before. I looked up the original, which is available online in a pretty good scan—I could read the whole article except for one word—and guess what? It’s not real. It’s not even a hoax. It’s just one of those jokey space-fillers from back in the olden days when everyone apparently had the same sense of humor found in old Reader’s Digests. It’s short so I’m just going to quote you the whole dang thing exactly as it appears.

Mr. Printer,
On Thursday last, the inhabitants on the shore of Bulwagga Bay, were alarmed by the appearance of a monster, which from the description must be a relation of the Great Sea Serpent.
Captain Crum, who witnessed the sight, relates that about eight o’clock in the morning when putting out from shore in a scow, he discovered at a distance of not more than two hundred yards, an unusual undulation of the surface of the water, which was somethinged by the appearance of a monster rearing its head more than fifteen feet and moving with the utmost velocity to the south—at the same time lashing with its Tail two large Sturgeon and a Bill-fish which appeared to be engaged in pursuit. After the consternation occasioned by such a terrific spectacle had subsided, Capt. Crum took a particular survey of this singular animal, which he describes to be about 187 feet long, its head flat with three teeth, two in the under and one in the upper jaw, in shape similar to the sea-horse—the color black, with a star in the forehead and a belt of red around the neck—its body about the size of a hogshead with bunches on the back as large as a common potash barrel—the eyes large and the color of a pealed onion. He continued to move with astonishing rapidity towards the shore for about a minute, when suddenly he darted under water and has not since been seen, altho’ many fishing boats have been on the look out. Capt. Crum informs me that he has sent an express to Capt. Rich, of Boston, communicating this intelligence, but is fearful that before his arrival this disturber of our waters may be changed to a pickerel. Mr. *******, the celebrated engraver of the Battle of Plattsburgh, is now at this place, prepared to take a sketch of his terrific majesty, should he again make his appearance.
I am, sir, with great respect,
your ob’t serv’t.
HORSE MACKEREL.

HORSE MACKEREL, SIR, HORSE MACKEREL

It isn’t until 1873 that some seemingly real sightings show up. During that year there were two reports of a water serpent—estimated by one witness, a sheriff, at around 30 feet. The idea of a lake monster began to gain traction. PT Barnum even offered a reward for the monster’s skin.

The best evidence for Champ’s existence is a 1977 photo taken by Sandra Mansi. She and her family had stopped by the lake and her kids were paddling in the shallows when Mansi spotted the monster. She says she was terrified and rushed to get her children out of the water, but she took one picture. But she didn’t show the photo to anyone until 1981 when a friend pointed out how important it was. By then the negative was lost.

I’ll put the picture in the show notes. At first glance it’s stunning, clearly showing a monster with a slender neck curved away from the viewer, its skin gleaming with water in the sun. Part of its sloped back is visible above the water. Its head is small and in shadow.

But look more closely and things start to appear less clear. The photo is grainy, without a lot of detail. There appears to be something else in the water near the monster’s neck, far enough away and of such size that it can’t be a flipper or tail, but the same color as the monster. There’s also a little bump at the base of the monster’s neck that doesn’t look very biological. It almost looks like a root.

General consensus, and I agree, is that the picture shows nothing more exciting than a half-submerged tree stump with one curved root sticking up out of the water. And Mansi’s story doesn’t hold up either. For a long time she claimed she couldn’t remember where the picture was taken although she’s familiar with the area, but in more recent interviews she says she’s withholding information about the site so no one could find and kill the monster. She claims she never kept photo negatives—in his excellent book Hunting Monsters, Darren Naish calls this “a peculiar habit,” but back before digital cameras I never kept negatives either. But Mansi’s husband said in an interview that that particular negative had been specifically destroyed—either burnt or buried—because of the bad feelings Mansi had about the encounter. Since Mansi claimed at various times that the photo itself was either in an album or actually hung in the kitchen, she can’t have been too upset about it. If she was upset, why didn’t she destroy the picture at the same time as the negative?

Various people have pinpointed the spot where the picture was taken. It’s in Missiquoi Bay, which is no more than 14 feet deep, and the spot where the monster appears in the photo is only six feet deep with a fast current. In other words, a big lake monster is unlikely to be swimming in such shallow water, but a tree stump with roots might be tumbled there by the current.

There are plenty of other photos and videos taken at the lake, none of them convincing. But there is a mystery associated with the lake that may or may not have anything to do with Champ. I mentioned this in our strange recordings episode, episode eight. Squeaks, squeals, and loud clicking that sounds like echolocation was recorded underwater in Lake Champlain in 2003 by the Discovery Channel and in 2014 by local Champ enthusiasts. Fish-finding sonar and other artificial sources have been ruled out due to the irregularities in the sounds. In March 2010 the article “Echolocation in a fresh water lake” appeared in the Journal of the Acoustical Society of America, written by Elizabeth von Muggenthaler. The journal is about the field of acoustics, not a biological studies journal. Recent articles include one about laser-driven hearing aids, one about soundscape evaluations, and others that are so technical I don’t even know what they’re talking about, like “Solving transient acoustic boundary value problems with equivalent sources using a lumped parameter approach.” It’s not about whales, at least. On the other hand, Von Muggenthaler is a bioacoustician who was part of the Discovery Channel scientific team that recorded the clicking in 2003. Her work includes discoveries in infrasound made by giraffes and rhinos. She returned to Lake Champlain in 2009 for further research, although I haven’t discovered any reports of their findings.

The 2003 recording has been examined by Dr. Lance Barret Lennard, head of the cetacean research program at Vancouver aquarium. He doesn’t think the sounds are mammalian in origin and has doubts that they’re echolocation. But that doesn’t mean they aren’t being made by an animal. Around the same time as the Discovery Channel recordings but on the other side of the world, Snake-neck turtles in Australia were discovered to be making underwater percussive sounds that resemble echolocation as well as squeaks, chirps, and many other noises.

A lot of people think the 2003 and 2014 Lake Champlain recordings sound like beluga whales. We know whales and other marine animals lived in the Champlain Sea because we’ve found their remains, but whales can’t survive long in fresh water and even if they could, they’d be easily spotted when they came up to breathe. Beluga whales in particular are easily identified since they have round white heads that look like big eggs popping up to the surface of the water. But what if something else, something unknown, lived in the Champlain sea and stayed there after its access to the Atlantic was cut off? What if it was able to tolerate the increasingly freshening water and lives there still?

This would be awesome. It might also explain the clicking sounds recorded in the lake. But don’t forget how busy this lake is. Whatever unknown animal might be hiding in the lake, it simply can’t be gigantic, no matter how shy. We’d have definitive proof by now, probably by an astonished fisherman who hauled it up on his line, or a body washed ashore like the 7-foot sturgeon found in August of 2016, dead of natural causes. A diver might have seen it, or a commercial fisherman running sophisticated sonar.

My guess is the clicking is made by a fish, reptile, or maybe an amphibian that’s already known to science, but no one realizes it makes these noises. Whatever animal makes it, and whether or not it’s actual echolocation, it’s exciting. If I was in charge of investigations into the recordings, I’d take a good hard look at what might be hiding in the mud, especially turtles. I’d also order pizza for the team every night! And donuts with sprinkles! Good work, team.

Here’s a sample of the squeaks and clicks recorded in 2014.

[clicking]

We’d be here all night and day if I were to go over every lake monster ever reported. Almost every body of water has its own monster. I grew up near Norris Lake, which was formed in the 1930s when the Clinch River was dammed by the Tennessee Valley Authority. When I was a kid, it was “common knowledge” that there were catfish at the base of the dam as big as VW Bugs. Yeah, I don’t think so. But stories of monstrous fish, huge water snakes, and gigantic unidentified reptilian creatures are a staple of local legends everywhere. We want to tell scary stories about what might be under the water! That doesn’t mean there aren’t monsters out there, but it also doesn’t mean every story is true.

The problem with lake monsters is twofold. Firstly, a lake is a confined body of water. It’s not like the ocean, where any number of huge creatures can hide completely unknown to humans except for rare chance encounters. Even a big lake has limited space and resources compared to the ocean. A small lake simply can’t support a viable breeding population of giant animals, and since lakes are usually well populated by humans, it’s impossible to imagine that anything large living in the water wouldn’t be seen clearly and regularly by boaters and locals—not to mention that it would impact the ecology of its lake, which would definitely be noted by researchers.

Secondly, the reports we do have don’t make up a clear picture of one type of unknown animal. This sighting talks about a long-necked dinosaur-like monster crossing the road, but this other sighting describes a serpentine monster swimming in the lake, while a third sighting is just a triangular head or fin visible above the water. They can’t all three be the same animal, but one small lake simply can’t support three gigantic animals.

It’s clear, then, that a lot of the genuine sightings (that is, ones that aren’t hoaxes) have to be of known animals or floating debris that witnesses misidentified. This is just plain human nature, too. If you’re visiting Loch Ness or Lake Champlain, you’re undoubtedly familiar with the local stories—honestly, you can’t not be familiar with them. Nessie and Champ are local mascots. If you then spot something strange in the water, your first thought is that you’ve seen the monster. Later you might think it over and realize maybe that was just a big sturgeon at the surface. But by then your monster sighting has made it into the papers and onto the cryptozoological websites as genuine.

That said, I’m totally open to the possibility of unknown animals hiding in lakes. New species are discovered all the time—most of them small, but sometimes we get surprises. A new species of freshwater stingray was discovered a few years ago in Brazil, and it’s four feet long.

It’s pretty clear that I need to revisit lake monsters in a future episode, just as I have plans to explore sea monsters again. There’s just too much to cover in one episode. But that’s it for now. Until next week, keep your ears open for weird clicking sounds and if anyone is rude to you, feel free to shout, “HORSE MACKEREL, SIR”. I know I’m going to.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, give us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include exclusive twice-monthly episodes and stickers.

Thanks for listening!

Episode 028: Crawdads and Cicadas

Hello from Finland! While I’m far from home, I’m thinking of animals of my native land. So join me to learn about crawdads (aka crayfish aka crawfish aka freshwater lobsters aka everything) and cicadas!

A lovely blue crayfish from Indonesia:

Fite me

The giant Tasmanian crayfish:

A periodical cicada:

A cicada killer about to do horrible things to a cicada. Nature is disgusting.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

For this week’s episode, which I’m putting together right before I leave for Finland on a madcap two-week adventure—okay, two weeks staying in the city of Helsinki while attending a conference and eating a lot of pastries—I’m going to look at two invertebrates that live close to home. The first is the crawdad. I’ve always wondered if those muddy holes near creeks and streams that we call crawdad holes around here are actually crawdad holes. Sometimes they’re nowhere near water. So I looked it up.

Yes, they are actually holes dug by crawdads. So that’s one mystery solved. The crawdad has a lot of different names depending on where you live: crayfish, crawfish, mountain lobsters, freshwater lobsters, mudbugs, and many other names. In Australia they may be called yabbies. There are a lot of species throughout the world, most of them in North America. Some also live in South America, Australia, New Zealand, Madagascar, Japan, and Europe. In fact, they live everywhere except Africa and Antarctica.

Crawdads are freshwater crustaceans and eat just about anything. Some species prefer running water, others like still water, but they all need clean water. If you find crawdads in the creek behind your house, you can be happy to know the creek has clean water—but don’t drink it, seriously. That’s a gross story for another time, but trust me, don’t drink untreated water.

Crawdads look like little lobsters and are closely related to them, and people do eat them. Some species are kept as pets in freshwater aquariums, although if you add them to your aquarium definitely make sure you’re not just providing your fish with a crunchy new snack, since a lot of fish eat crustaceans. Also keep in mind that many species of crawdad like to climb and dig so can make a mess of your nicely arranged tank.

One especially sought-after aquarium crawdad is a blue crayfish. Like blue lobsters, crawdads of normally drab colored species are occasionally found that are bright blue. It’s rare but not ridiculously rare. But there aren’t very many species that are always blue. This particular crawdad is beautiful, purplish pink on its body with blue and white claws and legs. But when they started showing up in the pet trade in the early 2000s, scientists didn’t have any idea what species they were. And the pet sellers weren’t telling where they were found.

After some digging, German researcher Christian Lukhaup traced the crawdads to a creek in Indonesia. It’s a new species, announced in 2015. We don’t know how widespread it is. Researchers worry it may be rare and threatened, and unfortunately most of the ones sold as pets have been gathered from the wild.

Many species of crawdads dig burrows. The bottom of the burrow ends in water, whether it’s a creek or the water table or just wet mud. Crawdads breathe through gills, but their gills are in their abdomen under their shell. As long as the gills are wet, the crawdad doesn’t have to actually be in the water to breathe. Crawdads are nocturnal animals and stay in their burrows during the day, then come out at night. The top of the burrow is usually surrounded by mud that the crawdad has pushed out of its hole. Other crawdad species live under rocks.

One of the smallest crawdad species is found in eastern Australia. It’s less than an inch long—usually only 12 to 18 millimeters in length, not counting its antennae—and is called a lake yabby or eastern swamp crayfish. It was only discovered a few years ago. It’s bluish-black and spends a lot of its time in its burrow, which usually reaches down to the water table so the yabby can survive during the dry season, when the shallow lakes and swamps where it lives may dry up completely.

New species of crawdad are found all the time. In 2009 a possible new species was reported in Tennessee. Two biologists, one from the University of Illinois and the other from Eastern Kentucky University, took a research trip to Shoal Creek, near the Tennessee-Alabama border. The very first crawdad they found, after only two hours of searching, turned out to be a new species—and it’s not exactly small. It’s some five inches long, which is roughly the length between the tip of my pinky finger and the base of my palm. I just measured out of curiosity. Most crawdads in the area are about half that length. DNA testing confirmed that it’s a new species and it was formally described in 2010. It’s related to another big crawdad found in Kentucky and Tennessee, which can grow up to 9 inches long. Both species appear to be rare and live under rocks in the deepest parts of a few streams and small rivers.

The biggest species of crawdad living is the Tasmanian giant freshwater lobster. It lives a long time, up to 60 years, if nothing eats it, and can weigh as much as 13 pounds and grow over two and a half feet long.

There are mysteries associated with the crawdad. For instance, most of Asia doesn’t have crawdads at all, but the ones that are found in Asia are more closely related to the crawdads of the southeastern United States than the crawdads of the southeastern United States are related to the crawdads of the northwestern United States. The northwestern U.S. crawdads appear more closely related to those found in Europe. But the big mystery is why there aren’t any crawdads in Africa.

Crawdads evolved from their marine ancestors around 200 million years ago. Around the same time, a big chunk of the earth’s land was smushed together in a big continent called Gondwana. The continents move around all the time—very, very slowly from a human perspective—due to plate tectonics. That’s why some of the animals found in, for instance, South America are closely related to animals found in Africa, because those two continents were once joined together. If you look on a map or globe you can even see that they fit together like puzzle pieces.

So crawdads evolved when Gondwana was just starting to break up into smaller continents. That explains why there are so many crawdads in different parts of the world—crawdads had time to spread out across much of Gondwana before it broke apart. But what would later be called Africa was right in the middle of Gondwana, and we know it had plenty of freshwater that crawdads could have lived in. Why didn’t crawdads populate that area?

It’s possible they did, but that as Africa moved farther toward the equator over millions of years, the crawdads died out. Crawdads prefer temperate climates—not too hot and not too cold. But there are two problems with that hypothesis. First, we haven’t found any crawdad fossils anywhere in Africa. By itself that’s not too unusual, since arthropods don’t fossilize well. They don’t have bones and their shells decompose relatively quickly. Plus, everything eats them so they don’t typically lie around undisturbed in the mud. But the other problem is more, well, problematic. Africa is a huge continent and most of it has never been that close to the equator. Parts of it have always been rainy and temperate, the perfect crawdad environment. And the island of Madagascar, which separated from Africa some 135 million years ago, does have crawdads. Plus, there are crawdads in parts of Australia that are much warmer than most of Africa. Plus, crawdads from the United States have been introduced into parts of Africa and have done so well they’re now an invasive species. What gives?

Africa does have a lot of freshwater crabs, which occupy the same ecological niche that crawdads do. It’s possible crawdads might have been outcompeted by the crabs. But freshwater crabs prefer tropical climates, not temperate. And in the parts of Africa where crawdads have been introduced, they’re actually thriving so well they’re endangering the native freshwater crabs.

So at the moment, we don’t know why Africa doesn’t have any native crawdads. The reason is probably more complicated than any one thing. For instance, if crawdads in one area were already dealing with freshwater crabs horning in on their food sources and territories, and the temperature was steadily increasing over the centuries, any little setback might have caused the crawdads to go extinct.

There are rumors of gigantic crawdads yet to be discovered. The remote Japanese Lake Mashu, formed some 11,000 years ago in the crater of a dormant volcano, is supposedly home to giant crayfish. There are rumors that trout poachers in 1978 and 1985 captured huge crawdads in the lake, although no pictures exist and no one is sure how big huge is supposed to be in this case. There is one report of a crawdad some two feet long found in the lake. A fisherman also reported seeing one that was three feet long, although he didn’t capture or measure it. As far as we know, the only crawdad living in the lake is a North America species introduced into the lake in the 1930s. It typically grows around 6 inches long, but a 1992 study of the lake’s crawdads didn’t find any larger than two and a half inches long.

During World War II, Australian marines patrolling swampland in Borneo found a crawdad that measured more than four feet long and weighed 49 pounds. It was caught in fresh water although it resembled a marine lobster. The marines nicknamed it Bagaton. The corpse was kept but so far it hasn’t been studied, but take this whole story with a grain of salt because I can only find two sources online that mention it at all.

While I was finishing up my crawdad research, I was on Twitter complaining that I didn’t quite have enough information for a full episode and I wasn’t sure what animal to pair it with. One of the hosts of Rumor Flies, an awesome podcast about rumors and myths, suggested cicadas. That made perfect sense to me, since cicadas are THE sound of summer in the southeastern United States.

I happen to love the sound of cicadas. Yes, they’re loud, but I find their chiming restful. Cicadas call during the day when it’s hottest, not at night—the insects you hear at night are usually katydids and tree crickets. This is what cicadas sound like.

[cicada sound—really you are not missing much, it’s just a rhythmic drone that I find soothing]

On the other hand, cicadas are creepy-looking although they’re harmless. When I was very small I was afraid of cicada shells, which are what’s left behind when a cicada hatches from its nymph form into its adult form. The adult cicada has wings and the male has a really, really loud song—so loud that he disengages his own hearing while he sings so he won’t deafen himself. Cicadas don’t have ears like mammals, they have a membraneous structure called tympana that detects sound. Males produce their loud songs with a structure called a tymbal in their abdomen. The abdomen is mostly hollow, which helps amplify the rapid clicking of the tembals. Some cicada songs are louder than 120 decibels, which is the same decibel level as a chainsaw.

There are a lot of cicada species around the world, but most live in the tropics. Seven species are known as periodical cicadas, which live most of their lives underground as nymphs, eating sap from the roots of certain trees, but emerge from underground as adults all at once. They sing, mate, lay eggs, and die in a matter of weeks, and the babies that hatch from their eggs don’t emerge from underground for another 13 or 17 years, depending on the species. Other cicada species have similar life cycles, but they don’t all emerge from underground at the same time—some emerge every summer while others remains as nymphs.

Cicadas are eaten by birds, bats, spiders, and even squirrels. There’s even a wasp called a cicada killer that preys specifically on cicadas—it captures a cicada, takes it back to its underground nest, and lays eggs in it. The eggs hatch and eat the cicada’s insides. BUT THE CICADA IS STILL ALIVE. I try not to think about insects too often. Cicada killers have black and yellow stripes like yellow jackets, but are much larger, up to two inches long. They will sting but only if provoked. They have to be big because cicadas are big insects, also about two inches long in most species.

Cicadas are edible, and are considered delicacies in many cultures. The females are meatier since the males have that hollow abdomen. In case you were wondering what to look for when you go shopping.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. For only a dollar pledge a month on Patreon you’ll have access to all the patron-only episodes, which I release twice a month. Some recent episodes have covered scientists eating mammoth meat, animals with weird teeth, and the Beast of Busco. Also you get stickers.

Thanks for listening!

Episode 017: Thunderbird

We’re talking about Thunderbird this week and the huge North American birds that may have inspired Thunderbird’s physical description. Thanks to Desmon of the Not Historians podcast for this week’s topic suggestion!

Further listening:

While I was in the middle of researching this episode, Thinking Sideways did a whole episode on Washington’s Eagle.

Further reading:

“The Great Quake and the Great Drowning”

“The Myth of 19th Century Pterodactyls”

Depiction of Thunderbird on a Pacific Northwest totem pole:

A wandering albatross hanging out with a lot of lesser birds. Biggest wingspan in the world right here, folks!

A California condor. #16, in fact.

An adult bald eagle with a juvenile.

Washington’s eagle as painted by James Audubon

Model of a teratorn. We don’t actually know what colors they were.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s episode about Thunderbirds was suggested by Desmon of the Not Historians Podcast, a fun, fascinating podcast about history. If you haven’t given it a listen yet, I recommend it.

Despite my interest in birds, before I started research for this episode, I didn’t know much about the Thunderbird. I knew it was an element in First Nations lore but I didn’t know which tribes or regions, just assumed it was out west somewhere. Since I live in East Tennessee, “out west” to me is a vague wave of the hand and a mental image of wide-open plains and buffalo and maybe John Wayne. But it turns out that the Thunderbird is an important element in Northeastern and Pacific Northwest tribal lore, as well as being well known among the Great Plains societies and beyond. Thunderbird, in fact, is one of the most widespread figures in Native American lore.

I’m always cautious when mystery animal research points me to religious lore. Many cryptozoologists like to mine myths, legends, folktales, and religious stories of all kinds to find corroboration for the existence of their personal pet cryptid, but if you aren’t extremely well versed in the culture, it’s easy to misinterpret elements of a story. Worse, some cryptozoologists do this on purpose, running roughshod over sacred beliefs and yanking out one mention of, for instance, a giant human and then shouting about how this tribe clearly knows all about Bigfoot. Not to pick on the Bigfoot hunters, but guys, you need to calm down.

Thunderbird is associated with storms but it’s not accurate to say he’s a storm god. He’s more of a representation of the uncontrollable power of nature. In many Plains societies, Thunderbird is associated with trickster figures and a deep belief in the dual aspect of nature—that things in nature often hold their own opposites, that everything found in nature is reflected and represented in the human world.

Thunderbird is not necessarily a single being, either. Many tribes have stories about four different varieties of Thunderbird represented by different colors. Sometimes the different colored Thunderbirds correspond to the cardinal directions, sometimes not. And while Thunderbird is generally supposed to be an enormous eagle-like bird, the difference between bird and human is frequently blurred in the stories. This blurring of human and animal traits in stories is true across all cultures, incidentally, and if you doubt me, think about “what big eyes you have, granny.” Animal beings in traditional stories of all types are allegories, not real animals or real people.

The Thunderbird is also an allegory, a spiritual being, and it’s a disservice to the rich and sophisticated First Nations cultures to strip those trappings away and try to find nothing but a bird underneath. That’s not to say the physical form of Thunderbird wasn’t inspired by eagles or other birds. Just don’t dismiss a culture’s spiritual world to root out so-called proof of a natural explanation.

But. That doesn’t mean there aren’t any gigantic honkin birds in North America and throughout the world.

Going by wingspan, the biggest known living bird is the wandering albatross. Its wingspan can exceed 12 feet, with unconfirmed rumors of individuals with wingspans topping 17 feet. That is an enormous wingspan, seriously. I’d love to see one. The wandering albatross looks like an enormous seagull, white with black wings and a pink bill and feet. Males have more white on the wings—sometimes only the wingtips are black—and a peach-colored spot behind the head. Like many seabirds, albatrosses have a salt gland in their nostrils that helps filter excess salt from the body.

The wandering albatross spends most of its life on the wing far out at sea. It can soar for hours without needing to flap its wings. It eats fish and other animals it can catch at the surface of the ocean or in shallow dives, and sometimes will eat so much it can’t fly and has to sit in the water while it digests. I feel that way every time I go to a buffet.

But since the wandering albatross, as well as its somewhat smaller relatives, lives around the southern sea at the south pole, I think we can safely say that it wasn’t an inspiration for Thunderbird. Besides, it’s basically a giant seagull. Not exactly Thunderbird material.

The California condor’s wingspan is ten feet, and many people point at it as a possible Thunderbird model. But the condor is a type of vulture, which means it has a bald head and mostly eats carrion. Vultures evolved bald heads to reduce bacterial growth in their feathers, since yeah, they sometimes stick their heads in dead animal carcasses to get at those yummy soft parts. No matter how magnificent a wingspan the condor has, it doesn’t fit the stories of Thunderbird battling creatures like Horned Snake, since vultures aren’t raptors and their bills and claws are relatively weak. The same holds true for the Andean condor, with a wingspan of eleven feet, not to mention that bird lives in South America.

The trumpeter swan has a wingspan of over ten feet and lives in North America, but while swans can be aggressive, they eat aquatic plants and act like gigantic ducks, not exactly fierce Thunderbird material. The American white pelican likewise has a ten-foot wingspan but, well, it’s a pelican.

So what about North American eagles? We only have two known species, the bald eagle and the golden eagle. Both have wingspans that can reach more than eight feet and, tellingly, both are common throughout the Pacific Northwest and throughout most of North America. It’s entirely possible that admiration of these large eagles gave form to descriptions of the Thunderbird.

But while an eagle with a nine foot wingspan is impressive, let’s not fool ourselves. We all want to know about GIANT HECKIN HUGE BIRDS. Like, twice that size! This is what cryptozoologists so often dig around for in Native Thunderbird legends, hints that there was once and maybe still is a bird so enormous that it inspired terror and awe in people who saw it, to the degree that they immortalized it in cultures throughout North America as the Thunderbird.

In cultures without written language, stories impart knowledge of everything—history as well as religion, warnings of real-life dangers as well as rituals to ward off the danger—and many stories serve dual purposes. Among the Pacific Northwest peoples, certain stories about Thunderbird battling Whale commemorate a cataclysmic event now known to science, a violent earthquake on Jan. 16, 1700. It was probably a magnitude 9 quake that dropped the coast as much as six and a half feet and resulted in tsunami waves drowning villages from northern California to southern Vancouver Island. In the 1980s a team of researchers studying the geology of the area looked closely at stories of the Makah people in Washington state. Soon they learned that all the indigenous peoples along the coast had stories about the earthquake.

The difference between that study and cryptozoologists looking for Bigfoot or a real-life Thunderbird is one of training and intent. The 1980s team consisted of anthropologists, geologists, and indigenous scholars. And they weren’t cherrypicking information that matched what they had already decided was the truth. What they discovered among the Pacific Northwest peoples guided their research and helped them learn more about the infrequent but violent earthquakes in the area. They even uncovered stories that may be about older quakes and tsunamis.

The problem is that stories about events that happened a long time ago tend to fall out of circulation eventually, especially if the events are no longer relevant. The earthquake stories were hard to gather in the 1980s because the event that inspired them happened almost 300 years before. How much can you remember about the year 1700 without looking it up online? And in the meantime, other cataclysms, notably invading Europeans bringing diseases like smallpox, destroyed much of the native culture.

In other words, even if you’re a trained anthropologist with a deep understanding of the cultures you’re studying, teasing historical information about giant birds from Native American stories is next to impossible. We know truly gigantic birds used to exist in North America because we’ve found their remains, but we can never know for certain if any of those birds inspired Thunderbird legends in any way or if the birds were ever even seen by humans.

Some of the largest flying birds that ever lived are known as pseudotooth birds because their beaks had toothlike spines. They were big, slender birds that probably looked a lot like albatrosses although at the moment they’re classified as more closely related to storks and pelicans. While we don’t have any complete skeletons, researchers estimate the birds’ wingspans may have been as much as 20 feet. One species, Pelagornis sandersi, may have had a wingspan as wide as 24 feet. I just went outside and measured the road in front of my house, and it’s only about 18 and a half feet wide, just to put that into perspective. It’s probable the pseudotooth birds weren’t actually able to flap their wings, just soar.

Like albatrosses, the pseudotooth birds probably covered vast distances in flight. Their remains have been found in North and South America, New Zealand, parts of Africa and Europe, Japan, even the Antarctic. They ate whatever they could scoop up from the water with their long bills. The toothlike projections on their bills weren’t very strong and just helped the bird keep hold of wriggly fish, but they certainly look impressive.

But from what we know from the fossil record, the pseudotooths all died out by the early Pleistocene, some two million years ago. Homo habilis may have seen them flying off the coast of Africa, and if so I bet our distant ancestors thought something like, “Wow, that’s a huge bird!”

The group of North American birds that a lot of cryptozoologists want to call the Thunderbird is the teratorns. Some of them were as big as pseudotooth birds with 20-foot wingspans, but they looked much different. They’re related to the New World vultures, but their bills are more eagle-like, indicating that teratorns were active hunters that could probably swallow prey as large as rabbits whole. Formerly some researchers thought the biggest teratorns couldn’t fly, but new discoveries of fossils with contour feather attachment marks indicate they could. But since teratorns had long, strong legs as well, they might have sometimes stalked their prey on foot the way golden eagles occasionally do.

We have a lot of teratorn remains from the La Brea tar pits. Teratornis merriami had a wingspan of about 12 feet and lived until only about 10,000 years ago. The biggest teratorn is Argentavis magnificens, which lived in South America and probably went extinct around 6 million years ago. It had a wingspan of at least 20 feet, possibly more than 25 feet, but we don’t have very many fossils of this bird. Only one humerus has been discovered—that’s the upper arm bone, and it’s the length of an entire human arm.

It would be truly magnificent if a teratorn descendent still existed. Some people think it did, at least until a few hundred years ago. We might even have a depiction of one by the most famous bird artist in the world, James Audubon.

In February 1814, Audubon was traveling on a boat on the upper Mississippi River when he spotted a big eagle he didn’t recognize. A Canadian fur dealer who was with him said it was a rare eagle that he’d only ever seen around the Great Lakes before, called the great eagle. Audubon was no slouch as a birdwatcher and was familiar with bald eagles and golden eagles. He was convinced this great eagle was something else.

Audubon made four more sightings over the next few years, including at close range in Kentucky where he was able to watch a pair with a nest and two babies. Two years after that, he spotted an adult eagle at a farm near Henderson, Kentucky. Some pigs had just been slaughtered and the eagle was probably coming by to look for scraps. Audubon shot the bird and took it to a friend who lived nearby, an experienced hunter, and both men examined the body carefully.

According to the notes Audubon made at the time, the bird was a male with a wingspan of 10.2 feet. Since female eagles are generally larger than males, that means this 10-foot wingspan was likely on the smaller side of average for the species. It was dark brown on its upper body, a lighter cinnamon brown underneath, with a dark bill and yellow legs.

Audubon named the bird Washington’s eagle after George Washington and used the specimen as a model for a lifesized painting. Audubon was meticulous about details and size, using a double-grid method to make sure his bird paintings were precisely exact. This was long before photography, remember.

So we have a detailed painting and first-hand notes from James Audobon himself about an eagle that…doesn’t appear to exist.

Now, this isn’t the only bird Audubon painted that went extinct afterwards. He painted the ivory-billed woodpecker, subject of our episode nine, and the passenger pigeon, along with less well known birds like Bachman’s warbler and the Carolina parakeet. Yeah, North America used to have its very own budgie that was cute as heck, but it’s long gone now.

To add to the confusion, though, Audubon also made some mistakes. Selby’s flycatcher? Nope, that was just a female hooded warbler. Many people think Washington’s eagle was just an immature bald eagle, which it resembles.

I don’t actually agree. I’m just going to say that right out. Let me explain why.

There are reports of bald eagles with wingspans of nine feet, although I couldn’t find any verified measurements that long. A bald eagle will actually have a slightly wider wingspan as a juvenile than as an adult because of the way its feathers are arranged, but that difference is a matter of a few inches, not feet. In addition, the largest bald eagles are found in Alaska; individuals in the southeastern United States are usually much smaller. And female bald eagles are typically as much as 25% larger than males.

But here we have a male eagle shot in Kentucky with a measured wingspan of 10.2 feet. Juvenile bald eagles do travel widely, but even if that happened to be an outrageously large individual who’d flown down from Alaska, consider that Audubon had seen the same type of eagle nesting a few years before near the same area. He’d watched a pair feeding two chicks. Immature bald eagles don’t nest or lay eggs. There are other differences too, notably the color and size of the nostril area and the type of scaling on the legs.

Golden eagles also resemble juvenile bald eagles to some degree, but they don’t nest in Kentucky. Their winter range just barely touches Kentucky, in fact. They nest in Canada and in the western half of the United States. And the largest golden eagle ever measured was a captive-bred female with a 9.3 foot wingspan, and like bald eagles, golden eagle females tend to be considerably larger than males. A male with a wingspan of over ten feet is probably not too likely; but even if an aberrantly large male golden eagle decided to vacation a little farther south than usual, it’s clear from many details in Audubon’s painting and in his notes that the bird he shot can’t be a golden eagle.

Audubon kept diaries of his birding trips so we know he was familiar with juvenile bald eagles—he even painted one. We also know he differentiated between juvenile bald eagles and Washington’s eagle, which he wrote was about a quarter larger than the juvenile bald eagle.

And Audubon wasn’t the only person to have reported the eagle. From other reports we know it hunted differently from bald eagles, including no reports of it stealing fish from ospreys the way bald eagles frequently do (the jerks). Washington’s eagle reportedly preferred to nest in rocky cliffs near water, not in trees like bald eagles.

So I don’t think Audubon was mistaken or lying. I think he really did paint a type of eagle that was already rare in the early 19th century and which went extinct soon after. Unfortunately, Audubon’s mounted specimen has been lost, but it’s always possible there are other specimens floating around in personal collections or museum storage rooms, possibly mislabeled as juvenile bald eagles.

There’s not a very good chance that Washington’s eagle survived into the present day just because its immense size would make it easy to spot. Then again, size is really hard to estimate without something of known size to compare it to. Is it a gigantic eagle that’s really high up or an ordinary eagle at a closer distance? Combine that with Washington’s eagle looking so much like a juvenile bald eagle and there could be a remote population hiding in plain sight.

There are, of course, lots of reports of giant birds in North America. Most take place along roads or in back yards, where people catch glimpses of eagles of unbelievable proportions—literally unbelievable, in fact, 15 or 20 or even 25-foot wingspans and birds that pick up deer and fly off with them. Most of these are probably misidentifications of known birds of prey with size exaggerated due to alarm, poor visibility, or just an inability to estimate size correctly. Some may be hoaxes. But there’s always the possibility that in this case we might really have a very rare, very large eagle still living in remote areas of Canada or Alaska, and occasionally one flies into more populated areas.

Let’s hope someone finds some remains, either taxidermied specimens or a collection of bones and feathers in some protected cave, so they can be tested and we can find out if there’s a real live teratorn still flying around—or at least learn if there are three species of eagle in North America instead of just two.

I don’t know if Washington’s eagle has anything to do with the Thunderbird. In my mind they feel like two completely separate entities: a flesh and blood eagle circling high above a lake in search of prey, and a terrifying being wrapped in storm clouds soaring somewhere between reality and the spirit world. Some birds are bigger than others, and some birds have to be taken on faith.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!