Episode 265: Penguins!

Thanks to Page for suggesting we talk about penguins this week!

A big birthday shout-out to EllieHorseLover this week too!

Further reading:

March of the penguins (in Norway)

Rare Yellow Penguin Bewilders Scientists

Giant Waikato penguin: school kids discover new species

An ordinary king penguin with the rare “yellow” king penguin spotted in early 2021 (photo by Yves Adams, taken from article linked above):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I was looking over the ideas list recently and noticed that Page had suggested we cover a specific bird way back in 2020! It’s about time we get to it, so thanks to Page we’re going to learn about penguins this week, including a penguin mystery.

But first, we have a birthday shout-out! Happy birthday to EllieHorseLover, whose birthday comes right before next week’s episode comes out. Have a fantastic birthday, Ellie, and I agree with you about horses. They are awesome and so are you.

Also, a quick correction from last week’s episode about Dolly the dinosaur. If you listened to episode 264 the day it came out, you heard the incorrect version, but I was able to correct it and upload the new version late that day. Many thanks to Llewelly, who pointed out that Dolly hasn’t actually been identified as a Diplodocus, just as a sauropod in the family Diplodocidae. Paleontologists are still studying the fossil and probably will be for some time. Also, I said that sauropods aren’t related to birds but that’s not the case. Sauropods share a common ancestor with birds and that’s why they both have the same kind of unusual respiratory system.

So, speaking of birds, it’s time to learn about penguins! We’ve talked about penguins twice before, but not recently at all. It’s about time we really dug into the topic.

Penguins live in the southern hemisphere, including Antarctica. The only exception is the Galapagos penguin, which we talked about in episode 99, which lives just north of the equator. Penguins are considered aquatic birds because they’re so well adapted to swimming and they spend most of their time in the ocean finding food. Instead of wings, their front limbs are flippers that they use to maneuver in the water. They’re incredibly streamlined too, with a smooth, dense coat of feathers to help keep them warm in cold water without slowing them down.

One of the ways a penguin keeps from freezing in the bitterly cold winters of Antarctica and in cold water is by a trick of anatomy that most other animals don’t have. The artery that supplies blood to the flippers crosses over the veins that return blood from the flippers deeper into the body. The arterial blood is warm since it’s been through the body’s core, but the blood that has just traveled through the flippers has lost a lot of heat. Because the veins and the arteries cross several times, the cold venal blood is warmed by the warm arterial blood where the blood vessels touch, which means the blood returning into the body’s core is warm enough that it doesn’t chill the body.

Penguins groom their feathers carefully to keep them clean and spread oil over them. The oil and the feathers’ nanostructures keep them from icing over when a penguin gets out of the water in sub-zero temperatures. The feathers are not only super-hydrophobic, meaning they repel water, their structure acts as an anti-adhesive. That means ice can’t stick to the feathers no matter how cold it is. In 2016 researchers created a nanofiber membrane that repels water and ice with the same nanostructures found in penguin feathers. It could eventually be used to ice-proof electrical wires and airplane wings.

Penguin feathers also trap a thin layer of air, which helps the penguin stay buoyant in the water and helps keep its skin warm and dry.

While a penguin is awkward on land, it’s fast and agile in the water. It mostly eats small fish, squid and other cephalopods, krill and other crustaceans, and other small animals, and it can dive deeply to find food. The emperor penguin is the deepest diver, with the deepest recorded dive being over 1,800 feet, or 565 meters. The gentoo penguin has been recorded swimming 22 mph underwater, or 36 km/hour.

Penguins are famous for being mostly black and white, but in 2010, a study of an extinct early penguin revealed that it looked much different. The fossil was found in Peru and is incredibly detailed. The flipper shape is clear, proving that even 36 million years ago penguins were already fully aquatic. Even some of the feathers are preserved, allowing researchers to reconstruct the bird’s coloration from melanosomes in the fossilized feathers. They show that instead of black and white, the extinct penguin was reddish-brown and gray. The bird was also one of the biggest penguins known, up to five feet long, or 1.5 meters.

Another species of extinct penguin was discovered in 2006 in New Zealand by a group of school children on a field trip. The New Zealand penguin lived between about 28 and 34 million years ago and while it wasn’t as big as the Peru fossil penguin, it had longer legs that made it about 4.5 feet tall, or 1.4 meters. It was described as a new species in September of 2021 and somehow I missed that one when I was researching the 2021 discoveries episode.

The smallest penguin alive today is the fairy penguin, which only grows 16 inches tall at most, or 40 cm. It lives off the southern coasts of Australia and Chile, and all around New Zealand’s coasts. It’s also called the little blue penguin because its head is gray-blue. The largest penguin is the emperor penguin, which lives in Antarctica and can grow over four feet tall, or 130 cm.

The king penguin looks like a slightly smaller version of the emperor penguin, which makes sense because they’re closely related. It can stand over 3 feet tall, or 100 cm. Its numbers are in decline due to climate change that has caused some of the small fish and squid the penguins eat to move away from the penguin’s nesting grounds. Large-scale commercial fishing has also reduced the number of fish available to penguins. As a result, the penguins have a hard time finding enough food for themselves and their babies. King penguins are protected, though, and conservation efforts are in place to stop commercial fishing near their nesting grounds. A ban on commercial fishing around Robben Island in South Africa, where the endangered African penguin nests, increased the survival of chicks by 18%, so hopefully the same will be true for the king penguin.

In early 2021, a Belgian wildlife photographer named Yves Adams was leading a group of photographers on an island where king penguins live. They spotted a group of the penguins swimming nearby when Adams noticed that one of the penguins seemed really pale. It was yellowish-white instead of black and white, although it did have the yellow markings on its head and breast that other king penguins have. It and the other penguins came ashore and Adams got lots of pictures of it. Ornithologists who have studied the pictures aren’t sure what kind of genetic anomaly has caused the penguin’s coloration, but with luck scientists will be able to find it again and take a genetic sample.

The king penguin is also the subject of a small penguin mystery, but the mystery starts with the great auk. As we talked about in episode 78, the name penguin was originally used for a bird also called the great auk or gairfowl, which lived in the northern hemisphere. It was common throughout its range until people decided to start killing them by the thousands for their feathers and meat. By 1844, the last pair of great auks were killed. The great auk was a black and white aquatic bird that looked a lot like a penguin due to convergent evolution.

The story goes that in the late 1930s people started seeing great auks on the Lofoten Islands off the coast of Norway. Since this was 70 years after the great auk officially went extinct, the reports caused a flurry of excitement.

While a small, scattered population of great auks probably did persist for years or even decades after their official extinction, once an expedition investigated the Lofoten Islands they discovered not auks but penguins. Specifically, a small group of king penguins. How did the penguins get there from their natural range in various sub-Antarctic islands on the other side of the world?

Some reports say whalers captured some penguins as pets and later released them, but it actually appears that the introduction of nine king penguins to two islands off the coast of Norway was done by the Nature Protection Society, backed by the Norwegian government, in 1936. The penguins were still there until at least 1944, with the last sighting coming from 1954.

These weren’t the only penguins released in the islands. In 1938 the Norwegian government released around 60 other penguins from various species onto the islands. The goal was to establish penguin breeding colonies in Norwegian waters in a confused attempt to claim the Antarctic for Norwegian whaling. The real mystery is why they thought that would work.

Very occasionally, a stray penguin is found in the northern hemisphere with no idea how it got there. In the past, people assumed the penguin got lost and swam the wrong way or got pushed away from its homeland by storms, but these days biologists think these lost penguins were transported by fishing boats. Sometimes a penguin will get tangled in a fishing net and hauled aboard by accident, and the fishers will untangle it and keep it as a pet for a while before setting it free. It would be better if the penguin was set free immediately so it could return to its home, but it’s better than being killed. Just ask the penguin.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 264: Sick, Sad Dinosaurs

This week we answer a question you probably didn’t ask, did dinosaurs ever get sick? The answer is yes (or else it would be a super short episode). (Thanks to Llewelly for some corrections!)

A big birthday shout-out to Gwendolyn! Have a great birthday!

The unlocked Patreon episode about green puppies

Further reading:

Researchers discover first evidence indicating dinosaur respiratory infection

Sauro-throat, Part 3: what does Dolly’s disease tell us about sauropods?

Dinosaurs got cancer

Giant Dinosaur Had 2 Tumors on Its Tailbone

Dinosaurs got sick, too–but from what?

cough cough:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a dinosaur episode, but not one you may expect. We’re going to learn about some dinosaur fossils found with evidence of sickness to answer the question, did dinosaurs get sick? Yes, they did. Otherwise this episode would be about two minutes long.

I know some people get squicked when they hear about illness and disease, so I’ve also unlocked a Patreon episode about puppies that are born green. Don’t worry, the puppies are fine! There’s a link in the show notes so you can click through and listen to the episode on your browser, no login needed.

Before we get to the dinosaurs, we have a birthday shout-out! Happy birthday to Gwendolyn, who is turning two years old this week! Oh my gosh, Gwendolyn, you’re going to learn so many new things this year! I hope you have a wonderful birthday.

And now, the dinosaurs.

Just a few days ago as this episode goes live, researchers announced that they’d found the fossilized remains of a young sauropod dinosaur. It lived around 150 million years ago in what is now the United States, specifically in southwestern Montana. The fossil was nicknamed Dolly by the paleontologists who studied it.

Dolly was a sauropod in the family Diplodocidae, and like other sauropods the Diplodocids all had huge neck vertebrae because their necks were so long. The bones weren’t solid, though, but contained air sacs that made the bones lighter and also connected to the respiratory system. This is the case in birds too. Technically the air sacs in the bones are called pneumatic diverticula, but that’s hard to say so I’m just going to call them air sacs.

When a bird breathes, instead of its lungs inflating and deflating, the air sacs throughout its body and bones inflate and deflate. This pumps fresh air through the lungs and allows the bird to absorb a lot more oxygen with every breath than most mammals can.

The bones of Dolly’s neck had unusual bony protrusions around the spaces where the air sacs once were. When the paleontologists made a CT scan of the protrusions they discovered they were abnormal bone growths that probably resulted from an infection. Sauropods share a common ancestor with birds and researchers think they might have sometimes caught a respiratory illness similar to aspergillosis [asper-jill-OH-sus], a disease common in birds and reptiles today.

Dolly would have had a fever, difficulty breathing, coughing, a sore throat, and other symptoms familiar to us as flu-like or pneumonia-like. Aspergillosis can be fatal in birds, so this respiratory infection might have actually been what killed Dolly. I think we can all agree that the worst symptom to have as a sauropod, whose necks were as much as 30 feet long, or 9 meters, is a sore throat.

That’s not the only indication of illness in a dinosaur fossil, of course. A 2003 paper published in Nature detailed the results of a study where paleontologists scanned 10,000 dinosaur vertebrae from over 700 animals to see if any of them showed tumors. They found 97 individuals that did, all of them from around 70 million years ago and all of them hadrosaurs. Those are the duck-billed dinosaurs that were common in the late Cretaceous in many parts of the world, especially in what is now North America and Asia. Hadrosaurs had flattened snouts that made the skull look like it has a duck bill, but it wasn’t a birdlike bill and hadrosaurs had teeth.

The hadrosaur was a plant-eater and it especially liked to eat conifers. Conifers were really common through most of the Cretaceous and are still around today, including pines, cedars, junipers, hemlocks, redwoods, yews, cypresses, larches, spruces, and more. Most are fast-growing evergreens with scaly or needle-like leaves, and many of them produce resins that are high in toxins to help ward off insects and fungus, and help keep many animals from eating the leaves. Amber is fossilized resin from conifer trees.

Conifer resins contain carcinogenic chemicals, which means that eating enough conifer leaves can increase the risk of developing tumors. Hadrosaurs ate conifers all the time, so it’s not surprising that the 2003 study found a relatively high percentage of hadrosaur vertebrae with tumors. Most of the tumors were small and benign. Only two dinosaurs showed evidence of cancerous tumors. Most confusing to the researchers is that the tumors are mostly in the hadrosaurs’ tail vertebrae.

A more recent study, from 2016, found two tiny tumors on one vertebra from a titanosaur. It lived 90 million years ago in what is now Brazil in South America. Titanosaurs are some of the largest sauropods known, including one species that was 85 feet long, or 26 meters, but the tumors were only about 8 millimeters across and were benign. This was the first study that found a tumor in a dinosaur that wasn’t a hadrosaur, although they’ve been found in fossils of other animals like mosasaurs and ancient crocodiles.

A study published in 2020 found advanced cancer in the leg bone of a centrosaurus too. Centrosaurus was a ceratopsian dinosaur that lived in the late Cretaceous in what is now Canada. It had a single horn on its nose, two smaller horns over its eyes, and a frill at the back of its head that was decorated with two more small hook-like horns. It lived in herds and ate plants. The individual with the cancerous leg bone would have had trouble running or even walking on its bad leg, but it didn’t die of cancer or predation. Instead, researchers think it drowned in a flood along with the rest of its herd. This means it was protected by its herd and able to live a normal life despite its disease. In fact, when the centrosaurus bone was first discovered, researchers thought it just showed a healed fracture.

That’s the case for a disease seen in some theropod dinosaurs, specifically tyrannosaurids, including Tyrannosaurus rex. Even Sue the T. rex shows evidence of this disease and researchers think it might have been wide-spread among tyrannosaurids. Initially paleontologists thought it was the result of bite wounds from other dinosaurs, but a 2009 study presented evidence that the lesions seen in many tyrannosaurid skulls were due to a parasitic infection similar to that found in some birds today.

The infection is called trichomonosis and is especially common in pigeons, where it’s called canker, and birds of prey, where it’s called frounce. Other birds can catch it too and it can decimate songbird populations. It’s due to a parasite that only affects birds, so you can’t catch it from a sick bird. If you have a birdfeeder or birdbath in your yard, it’s a good idea to give it a good scrub every so often and let it dry out thoroughly before putting it out again in a different area. The parasite is spread from bird to bird and causes lesions in the mouth and throat that can eventually cause the bird to die. 

Researchers think trichomonosis in tyrannosaurids was spread not only between individuals when fighting, but the parasite might have been present in other dinosaurs that tyrannosaurids typically killed and ate. The parasite might not have caused symptoms in other dinosaurs, but when a tyrannosaurid was infected, the parasite completed its life cycle in its host. Other researchers think tyrannosaurids practiced cannibalism, which would also spread the parasite. The parasite actually feeds on the infected animal’s jawbone, causing erosive lesions in the mouth and throat which can stop a bird from being able to swallow, so researchers think many tyrannosaurids died of it the same way birds do.

A 2011 study of a reptile called Labidosaurus, which lived about 275 million years ago in the midwestern United States, showed a bacterial infection in the jaw bone that was the equivalent to an abscessed tooth. Labidosaurus grew about a foot long, or 30 cm, and looked like a lizard with a wide head. It lived long before dinosaurs evolved. This specimen is the first fossil ever found that shows a bacterial infection in a land-dwelling animal. The reptile had bitten something that caused it to lose two teeth, and as the injury healed over, bacteria were trapped inside the jaw. This led to a bad bone infection that was still active when the animal died, although researchers aren’t sure if the infection caused the animal’s death or not.

Most diseases don’t leave any evidence in bones, so we don’t have a fossil record of them. Since all animals get sick sometimes, it’s certain that dinosaurs had various diseases too. Next time you get a sore throat, just be glad that your throat isn’t as long as a sauropod’s.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 263: Pair Bonds

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Ella and Jack for this week’s topic suggestion, animals that mate for life or develop pair bonds! Happy Valentine’s Day!

Further reading:

Wisdom the albatross, now 70, hatches yet another chick

The prairie vole mates for life:

Swans mate for life:

The black vulture also mates for life:

The Laysan albatross:

Wisdom the Laysan albatross with her 2021 chick (pic from the link listed above). I hope I look that good at 70:

Dik-diks!

The dik-dik nose is somewhat prehensile:

The pileated gibbon (and other gibbons) forms pair bonds:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Last February Ella and her son Jack suggested a Valentine’s Day topic. I already had the February episodes finished last year, but this year Valentine’s Day falls on a Monday and that just seems too perfect to pass up. So thanks to Ella and Jack, we’re going to learn about some animals that are monogamous.

Valentine’s Day falls on February 14th and in many European cultures is a day celebrating love and romance. It also falls at the very beginning of spring in the northern hemisphere, when many animals start finding mates.

Different species of animal have different relationships. Some animals are social, some are solitary. Every species is different because every species has slightly different requirements for reproducing due to different habitats, foods, how much care the babies need, and so forth.

There are different types of monogamy among animals and it can get complicated, just as it’s often complicated in people, so I’m going to simplify it for this episode into two categories: animals that mate for life and animals that form pair bonds. Animals that mate for life, meaning the male and female seek each other out every mating season to have babies together, don’t necessarily spend all their time together outside of mating season. Animals in pair bonds spend a lot of their time together, but they don’t always exclusively mate with each other. But some animals do both.

For instance, the prairie vole. This is a little rodent that lives in dry grasslands in central North America, in parts of the United States and Canada. It’s about the size of a mouse with a short tail although it’s more chonky than a mouse, like a small dark brown hamster. It spends most of its time either in a shallow burrow it digs among grass roots or out finding the plant material and insects it eats by traveling through aboveground tunnels it makes through densely packed plant stems. It lives in colonies and is a social animal most of the time, and the male in particular is devoted to his mate. He’s so devoted that once he’s found a mate, he will even drive away other females who approach him.

The only time the prairie vole isn’t social is during mating season, which is usually twice a year, in fall and in spring. At that time, mated pairs leave the colony and find a small territory to have their babies. The pair spends almost all their time together, grooming each other, finding and sharing food, and building a nest for the babies. When the babies are born, both parents help care for them.

The male prairie vole mates for life. Most of the time “mating for life” means that if one of a pair dies, the other will then find a new mate. But for the male prairie vole, if his mate dies, he stays single for the rest of his life. He also shows behaviors that are similar to grief in humans. The female prairie vole is a little more practical and although she also grieves if her mate dies, she’ll eventually find another mate. Researchers who study prairie voles have discovered that the hormones found in mated pairs are the same as those in humans who are in love.

That’s so sweet, and I wish I didn’t have to talk about the voles dying. I think the opposite of love isn’t hate; the opposite of love is grief. It’s okay to be sad even for a long time when someone you love dies or moves far away, or if your own pair bond doesn’t work out. It’s also okay to find happy moments even when you’re grieving. Life is complicated. Also, just going to point out, devoted as they are to each other, sometimes a prairie vole will mate with someone besides their own mate.

One bird that’s famous for being monogamous is the swan. It mates for life and also forms pair bonds. These pair bonds form while the swans are still young, and the young couples basically just hang out together long before they’re old enough to have babies. It’s no wonder pictures of swans appear on so many wedding invitations and Valentine’s day cards. It helps that they’re beautiful birds too. The black vulture also mates for life but no one puts vultures on a wedding invitation. Also, swans sometimes split up and find new mates. Things don’t always work out with a pair bond, even for swans.

Another large, beautiful bird that mates for life is the albatross, but it doesn’t form a pair bond. Most of the time the albatross is solitary, traveling thousands of miles a year as it soars above the open ocean, looking for squid, small fish, and other food near the surface of the water. But once a year in some species, and once every two years in other species, albatrosses return to their nesting grounds and seek out their mate.

Albatrosses live a very long time so are really picky about who they choose as a mate. Once a pair forms, they develop a complicated, elegant dance to perform together. Each couple’s dance is unique, which helps them find each other in a crowded nesting colony when they haven’t seen each other in a couple of years.

The oldest wild bird in the world that we know of is a Laysan albatross named Wisdom. She was tagged by scientists in 1956 when she was at least five years old already, and as of 2021 she was still healthy and producing healthy chicks with her mate. Her leg tag has had to be replaced six times because she’s outlasting the material used to make the tags.

The Laysan albatross is a smaller species of albatross, with a wingspan of not quite 7 feet, or over two meters. Its body is mostly white, although its back is gray, with black and gray wings and a dark smudge across the eyes that looks very dramatic. It spends most of the time in the northern Pacific between the west coast of North America and the east coast of Asia, but it only nests on 16 tiny islands. Most of these are part of the Hawaiian islands with a few near Japan, but recently new breeding colonies have been spotted on islands off the coast of Mexico.

Wisdom the albatross is estimated to be at least 70 years old as of 2021 and she’s raised 30 to 36 chicks successfully. Because of her age, which is old even for an albatross, she may have outlived her first mate and taken another. She’s been with her current mate since at least 2012.

Albatrosses only lay one egg during nesting season. Both parents help incubate the egg and feed the baby when it hatches. It takes two or three months for the egg to hatch, depending on the species. Once the egg hatches, it’s at least another 5 or 6 months before the chick is old enough to leave the nest and care for itself, and in some species this is as much as 9 months. This means a big time and energy investment for both parents.

Albatrosses don’t reach sexual maturity until they’re at least five years old. Birds younger than this still join the breeding colony and practice their dance moves for when they’re old enough to choose a mate.

Pair bonding and mating for life are common in birds, rare in amphibians, reptiles, and fish, and surprisingly rare in mammals. One mammal that both mates for life and forms a pair bond is a tiny antelope called a dik-dik.

The dik-dik lives in parts of eastern and southern Africa and is barely bigger than a rabbit, which it somewhat resembles in shape. It stands less than 16 inches tall at the shoulder, or 40 cm, although its back and rump are arched and rounded and so are actually higher than the shoulder. Females are usually larger than males, while only males have horns. The horns arch back from the head but because the male has a tuft of long hair on the top of his head, and because the horns are only about 3 inches long at most, or 7.5 cm, they can be hard to see.

The dik-dik has an elongated snout that’s somewhat prehensile. It lives in hot areas without much water, so it gets most of its moisture from the plants it eats. Most of the time hot weather doesn’t bother it, but on exceptionally hot days it can cool down by panting through its long nose. Its nose is lined with blood vessels close to the surface and it has special nose muscles that allow it to pant quickly. Air moving over the blood vessels helps cool the blood.

Because pretty much everything eats the dik-dik, traveling long distances to find a mate is dangerous. Once the dik-dik finds a mate, they stay together for life in a small territory and spend most of their time together. Females give birth to one fawn twice a year, and the fawn no longer needs its parents at about 7 months old. Parents drive away their grown offspring, who leave to find a mate and territory of their own.

Humans, of course, strongly pair bond because we’re such intensely social creatures, and many people choose a partner and stay with them for life. Then again, we don’t always. Surprisingly, our closest living cousins, the great apes, are also very social, but they don’t typically form pair bonds and females may mate with different males.

The gibbon, which is a lesser ape instead of a great ape, does often form long-lasting pair bonds. We’ve talked about various species of gibbon in previous episodes. Gibbons are the apes that sing elaborate duets with their mates, with their children sometimes joining in as a chorus.

Here’s a pair of pileated gibbons singing together. The female is named Molly and was in a rehabilitation center after being injured, but she found a wild mate while she was recovering:

[gibbons singing]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 262: Animals Discovered in 2021

It’s the second annual discoveries episode! Lots of animals new to science were described in 2021 so let’s find out about some of them.

Further reading:

First description of a new octopus species without using a scalpel

Marine Biologists Discover New Species of Octopus

Bleating or screaming? Two new, very loud, frog species described in eastern Australia

Meet the freaky fanged frog from the Philippines

New alpine moth solves a 180-year-old mystery

Meet the latest member of Hokie Nation, a newly discovered millipede that lives at Virginia Tech

Fourteen new species of shrew found on Indonesian island

New beautiful, dragon-like species of lizard discovered in the Tropical Andes

Newly discovered whale species—introducing Ramari’s beaked whale (Mesoplodon eueu)!

Scientists describe a new Himalayan snake species found via Instagram

The emperor dumbo octopus (deceased):

The star octopus:

New frog just dropped (that’s actually the robust bleating tree frog, already known):

The slender bleating tree frog:

The screaming tree frog:

The Mindoro fanged frog:

Some frogs do have lil bitty fangs:

The hidden Alpine moth, mystery solver:

The Hokie twisted-claw millipede:

One of 14 new species of shrew:

The snake picture that led to a discovery:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This episode marks our 5th year anniversary! I also finally got the ebook download codes sent to everyone who backed the Kickstarter at that level. The paperback and hardback books will hopefully be ready for me to order by the end of February and I can get them mailed out to backers as soon as humanly possible. Then I’ll focus on the audiobook! A few Kickstarter backers still haven’t responded to the survey, either with their mailing address for a physical book or for names and birthdays for the birthday shout-outs, so if that’s you, please get that information to me!

Anyway, happy birthday to Strange Animals Podcast and let’s learn about some animals new to science in 2021!

It’s easy to think that with all the animals already known, and all the people in the world, surely there aren’t very many new animals that haven’t been discovered yet. But the world is a really big place and parts of it, especially the oceans, have hardly been explored by scientists.

It can be confusing to talk about when an animal was discovered because there are multiple parts to a scientific discovery. The first part is actually finding an animal that the field scientists think might be new to science. Then they have to study the animal and compare it to known animals to determine whether it can be considered a new species or subspecies. Then they ultimately need to publish an official scientific description and give the new animal a scientific name. This process often takes years.

That’s what happened with the emperor dumbo octopus, which was first discovered in 2016. Only one individual was captured by a deep-sea rover and unfortunately it didn’t survive being brought to the surface. Instead of dissecting the body to study the internal organs, because it’s so rare, the research team decided to make a detailed 3D scan of the octopus’s body instead and see if that gave them enough information.

They approached a German medical center that specializes in brain and neurological issues, who agreed to make a scan of the octopus. It turned out that the scan was so detailed and clear that it actually worked better than dissection, plus it was non-invasive so the preserved octopus body is still intact and can be studied by other scientists. Not only that, the scan is available online for other scientists to study without them having to travel to Germany.

The emperor dumbo octopus grows around a foot long, or 30 cm, and has large fins on the sides of its mantle that look like elephant ears. There are 45 species of dumbo octopus known and obviously, more are still being discovered. They’re all deep-sea octopuses. This one was found near the sea floor almost 2.5 miles below the surface, or 4,000 meters. It was described in April of 2021 as Grimpoteuthis imperator.

Oh, and here’s a small correction from the octopus episode from a few years ago. When I was talking about different ways of pluralizing the word octopus, I mispronounced the word octopodes. It’s oc-TOP-uh-deez, not oc-tuh-podes.

Another octopus discovered in 2021 is called the star octopus that has a mantle length up to 7 inches long, or 18 cm. It lives off the southwestern coast of Australia in shallow water and is very common. It’s even caught by a local sustainable fishery. The problem is that it looks very similar to another common octopus, the gloomy octopus. The main difference is that the gloomy octopus is mostly gray or brown with rusty-red on its arms, while the star octopus is more of a yellowy-brown in color. Since individual octopuses show a lot of variation in coloration and pattern, no one noticed the difference until a recent genetic study of gloomy octopuses. The star octopus was described in November 2021 as Octopus djinda, where “djinda” is the word for star in the Nyoongar language of the area.

A study of the bleating tree frog in eastern Australia also led to a new discovery. The bleating tree frog is an incredibly loud little frog, but an analysis of sound recordings revealed that not all the calls were from the same type of frog. In fact, in addition to the bleating tree frog, there are two other really loud frog species in the same area. They look very similar but genetically they’re separate species. The two new species were described in November 2021 as the screaming tree frog and the slender bleating tree frog.

This is what the slender bleating tree frog sounds like:

[frog call]

This is what the screaming tree frog sounds like:

[another frog call]

Another newly discovered frog hiding in plain sight is the Mindoro fanged frog, found on Mindoro Island in the Philippines. It looks identical to the Acanth’s fanged frog on another island but its mating call is slightly different. That prompted scientists to use both acoustic tests of its calls and genetic tests of both frogs to determine that they are indeed separate species.

Lots of insects were discovered last year too. One of those, the hidden alpine moth, ended up solving a 180-year-old scientific mystery that no one even realized was a mystery.

The moth was actually discovered in the 1990s by researchers who were pretty sure it was a new species. It’s a diurnal moth, meaning it’s active during the day, and it lives throughout parts of the Alps. Its wingspan is up to 16mm and it’s mostly brown and silver.

Before they could describe it as a new species and give it a scientific name, the scientists had to make absolutely sure it hadn’t already been named. There are around 5,000 species of moth known to science that live in the Alps, many of them rare. The researchers narrowed it down finally to six little-known species, any one of which might turn out to be the same moth as the one they’d found.

Then they had to find specimens of those six species collected by earlier scientists, which meant hunting through the collections of different museums throughout Europe. Museums never have all their items on display at any given time. There’s always a lot of stuff in storage waiting for further study, and the larger a museum, the more stuff in storage it has. Finding one specific little moth can be difficult.

Finally, though, the scientists got all six of the other moth species together. When they sat down to examine and compare them to their new moth, they got a real surprise.

All six moths were actually the same species of moth, Dichrorampha alpestrana, described in 1843. They’d all been misidentified as new species and given new names over the last century and a half. But the new moth was different and at long last, in July 2021, it was named Dichrorampha velata. And those other six species were stricken from the record! Denied!

You don’t necessarily need to travel to remote places to find an animal new to science. A professor of taxonomy at Virginia Tech, a college in the eastern United States, turned over a rock by the campus’s duck pond and discovered a new species of millipede. It’s about three quarters of an inch long, or 2 cm, and is mostly a dark maroon in color. It’s called the Hokie twisted-claw millipede.

Meanwhile, on the other side of the world on the island of Sulawesi, a team of scientists discovered FOURTEEN different species of shrew, all described in one paper at the end of December 2021. Fourteen! It’s the largest number of new mammals described at the same time since 1931. The inventory of shrews living on Sulawesi took about a decade so it’s not like they found them all at once, but it was still confusing trying to figure out what animal belonged to a known species and what animal might belong to a new species. Sulawesi already had 7 known species of shrew and now it has 21 in all.

Shrews are small mammals that mostly eat insects and are most closely related to moles and hedgehogs. Once you add the 14 new species, there are 461 known species of shrew living in the world, and odds are good there are more just waiting to be discovered. Probably not on Sulawesi, though. I think they got them all this time.

In South America, researchers in central Peru found a new species of wood lizard that they were finally able to describe in September 2021 after extensive field studies. It’s called the Feiruz wood lizard and it lives in the tropical Andes in forested areas near the Huallaga River. It’s related to iguanas and has a spiny crest down its neck and the upper part of its back. The females are usually a soft brown or green but males are brighter and vary in color from green to orangey-brown to gray, and males also have spots on their sides.

The Feiruz wood lizard’s habitat is fragmented and increasingly threatened by development, although some of the lizards do live in a national park. Researchers have also found a lot of other animals and plants new to science in the area, so hopefully it can be protected soon.

So far, all the animals we’ve talked about have been small. What about big animals? Well, in October 2021 a new whale was described. Is that big enough for you? It’s not even the same new whale we talked about in last year’s discoveries episode.

The new whale is called Mesoplodon eueu, or Ramari’s beaked whale. It’s been known about for a while but scientists thought it was a population of True’s beaked whale that lives in the Indian Ocean instead of the Atlantic.

When a dead whale washed ashore on the South Island of New Zealand in 2011, it was initially identified as a True’s beaked whale. A Mātauranga Māori whale expert named Ramari Stewart wasn’t so sure, though. She thought it looked different than a True’s beaked whale. She got together with marine biologist Emma Carroll to study the whale and compare it to True’s beaked whale, which took a while since we don’t actually know very much about True’s beaked whale either.

The end result, though, is that the new whale is indeed a new species. It grows around 18 feet long, or 5.5 meters, and probably lives in the open ocean where it dives deeply to find food.

We could go on and on because so many animals were discovered last year, but let’s finish with a fun one from India. In June of 2020, a graduate student named Virender Bhardwaj was stuck at home during lockdowns. He was able to go on walks, so he took pictures of interesting things he saw and posted them online. One day he posted a picture of a common local snake called the kukri snake.

A herpetologist at India’s National Centre for Biological Sciences noticed the picture and immediately suspected it wasn’t a known species of kukri snake. He contacted Bhardwaj to see where he’d found the snake, and by the end of the month Bhardwaj had managed to catch two of them. Genetic analysis was delayed because of the lockdowns, but they described it in December of 2021 as the Churah Valley kukri snake.

The new snake is stripey and grows over a foot long, or 30 cm. It probably mostly eats eggs.

It just goes to show, no matter where you live, you might be the one to find a new species of animal. Learn all you can about your local animals so that if you see one that doesn’t quite match what you expect, you can take pictures and contact an expert. Maybe next year I’ll be talking about your discovery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 261: Walking Fish

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to my brother Richard for suggesting one of the fish we talk about this week–fish that can walk! (Sort of.)

Further watching:

Video of a gurnard walking

Further reading:

Walking shark moves with ping-pong paddle fins

Walking sharks discovered in the tropics

The Hawaiian seamoth (the yellowy one is a larval seamoth, the brighter one with the snoot the same fish as a juvenile, both pictures by Frank Baensch from this site):

 

The slender seamoth (an adult, photo from this site):

A flying gurnard with its “wings” extended:

A flying gurnard with its “wings” folded, standing on its walking rays:

An eastern spiny gurnard standing on its walking rays:

A mudskipper’s frog-like face:

Mudskippers on land:

Walking sharks:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at some weird fish, specifically fish that use their fins to walk. Well, sort of walk. Thanks to my brother Richard for suggesting one of these fish.

Before we get started, let’s learn the terms for a fish’s two main pairs of fins. Different types of fish have different numbers and locations of fins, of course, but in this episode we’re focusing on the pectoral fins and the pelvic fins. Pectoral fins are the main fins in most fish, the ones near the front on each side. If a fish had arms, that’s roughly where its arms would be. The pelvic fins are near the tail on either side, roughly where its legs would be if fish had legs. If you remember that people lift weights with their arms to develop their pectoral muscles in the chest, you can remember where pectoral fins are, and if you remember that Elvis Presley was sometimes called Elvis the Pelvis because he danced by shaking his hips, you can remember where the pelvic fins are.

So, let’s start with the seamoth, which lives in shallow tropical waters of the Indo-Pacific Ocean and the Red Sea, including around Australia. We don’t know enough about it to know if it’s endangered or not, but since it’s considered a medicine in some parts of Asia, it’s caught to sell as an aquarium fish, and its habitat is increasingly impacted by bottom trawling and coastal development, it probably isn’t doing great. It’s never been especially common and doesn’t reproduce very quickly. Researchers think it may even be a social fish that forms a pair bond with its mate, since pairs are often found together.

The seamoth doesn’t even look that much like a fish at first glance. It’s covered with bony plates that act as armor, including bony rings around its tail. It even has to shed its skin as it grows larger.

The seamoth has a long, pointed snout with a tiny mouth underneath, but it can protrude its mouth out of its…mouth–okay that doesn’t make sense. Basically it’s able to extend its mouth into a tube that it uses like a straw to slurp up worms and other small animals from the sea floor.

It can change colors to match its surroundings too. If all this makes you think of seahorses and pipefish, the seamoth is related to both, but it looks very different because of its fins.

The seamoth’s pectoral fins are so large they resemble wings, and its modified pelvic fins are stiff and more fingerlike than fin-like so that it can walk across the sea floor with them. It spends most of its time walking on the sea floor, only swimming when it feels threatened and has to move faster. Sometimes a seamoth will cover itself with sand to hide from a predator. During breeding season, males develop brightly colored patterns on their pectoral fins.

The seamoth is a small fish, with the largest species growing about five inches long, or 13 cm. One species of seamoth, the little dragonfish, sheds its armor in one big piece—not just once or twice a year, but as often as every five days or so when it needs to rid itself of parasites. Its body is flattened but broad, which makes it look kind of like a piece of shell from above.

The flying gurnard is similar in some ways. It lives in warm coastal waters where it spends most of its time on the sea floor, looking for small animals to eat. We’ve talked about it before, in episode 101, but let’s go over it again in case like me you haven’t listened to episode 101 since it came out over three years ago.

The flying gurnard is a bulky fish that grows more than a foot and a half long, or 50 cm. It has a face sort of like a frog’s and can be reddish, brown, or greenish, with spots and patches of other colors. But most importantly, its pectoral fins are extremely large, looking more like fan-like wings than fins. The so-called wings are shimmery, semi-transparent, and lined with bright blue. They sort of look like butterfly wings and can be more than 8 inches long, or 20 cm. The fins actually have two parts, a smaller section in front and the larger wing-like section behind. The front section is stiff and makes the fish able to walk along the sea floor. It’s possible the flying gurnard can also use its wing-like fins to glide above the water for short distances like a flying fish, but at the moment we don’t know for sure.

The flying gurnard hasn’t traditionally been recognized as being related to the seamoth despite their similarities, but DNA studies suggest that they might actually be related after all. The flying gurnard may be related to the true gurnards, too. Both the flying gurnard and the true gurnard have a special muscle that beats against the swim bladder to make a drumming sound, and they look and act alike in many other ways too.

The gurnard is the fish my brother Richard recommended. There are actually a lot of different gurnards and they’re all kind of weird. Gurnards in the family Triglidae are bottom dwellers that grow around 16 inches long, or 40 cm. Some species have armor plates that make their heads so strong that a gurnard will occasionally ram snorkelers with its forehead if they get too close. Like the flying gurnard, the gurnard has pectoral fins that are divided into a front section and a rear section, with the rear section being larger and the front section highly modified, called walking rays, used by the fish to walk across the sea floor.

Walking rays look more like long, thin, stiff fingers than a fish’s fins, although they’re also bendy. The gurnard has three walking rays on each side of the body, and they have special muscles that allow the fish to actually use them as little legs. It’s really disturbing to watch an otherwise pretty ordinary fish crawl forward on what look like invertebrate legs.

The mudskipper is another fish that uses its fins to walk, but not like the fish we just talked about. Instead of having walking rays, its pectoral fins are muscular and allow it to climb out of the water and onto land. In fact, it can climb into low branches and can even jump.

It’s so good at living on land the mudskipper is actually considered semi-aquatic. It lives in mudflats, mangrove swamps, the mouths of rivers where they empty into the ocean, and along the coast, although it prefers water that’s less salty than the ocean but more salty than ordinary freshwater. It only lives in tropical and subtropical areas because it needs high humidity to absorb oxygen through its skin and the lining of its mouth and throat.

The mudskipper is a fish, but it looks an awful lot like a frog in some ways, due to convergent evolution. It has a wide mouth and froglike eyes at the top of its head and will often float just under the water with its eyes above water, looking for insects it can catch. The largest species grows about a foot long, or 30 cm, and while it has some scales, its body is coated with a layer of mucus to help it retain moisture. It spends most of the day on land, hunting for insects and other small animals. Not only can it absorb oxygen through its skin, it keeps water in its gill chambers to keep the gills wet too. It even has a little dimple under its eye that holds water, that helps keep its eyes moist.

The mudskipper also takes a big mouthful of water with it when it climbs on land, but not to breathe. It uses the water to hunt with. When it encounters an insect or other small animal on land, it carefully rotates its mouth–you heard me right, it can rotate its mouth–so that it’s just above the animal. Then it spits out the mouthful of water onto the insect and immediately sucks the water back into its mouth, carrying the insect with it. When it catches an animal underwater, it opens its big mouth quickly, causing suction that sucks the animal right into its mouth that way. It also has sharp teeth, so when an animal is in its mouth, it’s not getting out again.

The mudskipper’s pectoral fins look like little arms, complete with an elbow. The elbow is actually a joint between the radial bones, which in most fish are hidden within the body but which stick out of the mudskipper’s sides a short distance, and the actual fins. This helps it move around on land more easily. Its pelvic fins are also shaped in such a way that they act as little suction cups on land.

Another bottom-dwelling fish that uses its fins to walk on the sea floor is the walking shark. There are several species known but they’re not very big, only around four feet long at most, or 107 cm. It lives in shallow coastal waters, often around reefs, and spends most of the time swimming just above the sea floor or using its pectoral and pelvic fins to walk on the sea floor while it searches for small animals to eat. It doesn’t walk like gurnards do, and it doesn’t skip or climb the way mudskippers do. Instead, it wriggles like a salamander as it uses its fins to push itself along.

At least one species of walking shark can also walk on land. That’s right: land shark. Don’t worry, it’s harmless to humans. (Still: land shark.) Because the walking shark often lives in really shallow water, including in tidal pools that sometimes dry up completely between high tides, it has to be able to reach water by walking on land. The walking shark can also survive in water with low oxygen content for short periods of time. Four newly identified species of walking shark were announced in January 2020, all from around New Guinea and northern Australia.

The really interesting thing is that the walking shark’s pectoral and pelvic fins are different from other shark fins. Not only are they strongly muscled, they can rotate to make it easier for the shark to use them as legs. Researchers think that this type of locomotion may have given rise to land animals in our far, far-distant ancestors. In other words, we’re all land sharks if you think about it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 260: Danger! Newts!

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Enzo for suggesting this week’s topic, newts from least dangerous to most dangerous!

Further reading:

One snake’s prey is another’s poison

The Corsican brook salamander is not toxic (photo by Paola Mazzei, from iNaturalist):

The smooth newt is a little bit toxic (photo by Fred Holmes and taken from this site) – this is a male during breeding season:

The Hong Kong warty newt has an orange-spotted belly and is toxic:

The chonky Spanish ribbed newt will stab you with its own toxin-covered bones (photo by Eduardo José Rodríguez Rodríguez, taken from this site):

Yeah maybe don’t touch the Japanese fire belly newt if you don’t need to:

Warning! Do not eat the California newt:

The safest newt to handle is this toy newt. I really want one:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s topic is a suggestion from Enzo, who wants to learn about newts “from least dangerous to most dangerous.” There are at least 60 species of newt known with more being discovered every year, but I’ll do my best to hit the highlights.

A newt is a type of salamander, specifically a semi-aquatic salamander in the subfamily Pleurodelinae. All newts are salamanders but not all salamanders are newts. Newts live throughout much of the northern hemisphere, including northern Africa and the Middle East, Eurasia, and North America.

Female newts lay their eggs in freshwater, usually attaching them to vegetation or in little crevices in rocks. A few weeks later, the eggs hatch into larvae with external gills. The larvae are called tadpoles like frog larvae, and they mostly eat algae and tiny insects. They metamorphose over several months just like frogs do when they develop from tadpoles, but where frogs develop their hind legs first, newt tadpoles develop front legs first. The newt tadpole finally absorbs its gills and grows lungs instead, at which point it emerges from the water as an immature newt called an eft. Efts are juvenile newts and live exclusively on land, although like other amphibians they have to keep their skin damp so you’ll usually find them in leaf litter and under rotting logs. Efts that live in North America return to the water when they become full adults, but most newts in other parts of the world stay on land the rest of their lives except during breeding season. Efts and adult newts eat worms, insects and insect larvae, slugs, frog tadpoles, and any other small animals they can catch.

The Corsican brook salamander is a type of newt that lives on the island of Corsica in the Mediterranean Sea. It grows about five inches long at most, or 13 cm, and is brown or olive-green, sometimes with a mottled pattern of orange or red on its back. It’s an exception to the rule that newts outside of North America usually live their adult lives on land. Not only does the Corsican brook salamander live in freshwater most of the time as an adult, it doesn’t even have working lungs. It spends most of its time in fast-moving streams and rivers in higher elevations, where it absorbs oxygen from the water through its skin.

As Enzo undoubtedly knows, many newts produce toxins. This is why it’s not a good idea to handle a newt, or any other amphibian for that matter, unless you’re absolutely certain it’s a species that’s not toxic. In most cases, a newt’s toxin won’t hurt you if it just touches your skin, but if it gets in a cut or if you have some of the toxin on your finger and then rub your eye or put your finger in your mouth, the toxin can make you really sick. Some newts are even deadly.

The Corsican brook salamander we just talked about is not toxic, so we’ll call it the least dangerous newt. The smooth newt, on the other hand, produces a relatively mild toxin. You’d have to actually eat a bunch of smooth newts to get sick from its toxins, and why are you eating newts at all? Stop that immediately and have a banana instead.

The smooth newt lives throughout much of Europe and parts of Asia. It grows just over 4 inches long, or 11 cm, and most of the time it’s brown with darker spots. The male also has a bright orange stripe on his belly. During breeding season, though, the male develops a wavy crest down his spine and brighter colors. Both males and females move into the water during breeding season, so both males and females develop tail fins on the top and bottom of their tails to help them swim.

The males of many newt species develop brighter colors and crests during breeding season to attract females. In the case of the Hong Kong warty newt, in breeding season the male develops a white stripe on his tail. He attracts the attention of females by wagging his tail in the water, where the white stripe shows up well even in dim light. The Hong Kong warty newt lives in Hong Kong and grows up to 6 inches long, or 15 cm. It’s brown with orange patches on its belly and its skin appears bumpy like the skin of an orange. If it feels threatened, it sometimes rolls onto its back and pretends to be dead, which not only may deter some predators, it shows off the bright orange markings on its belly. This signals to a potential predator that this newt is toxic, and another thing it does when it plays dead is secrete toxins from its skin. In other words, don’t bite this newt or touch it. It’s also a protected species in Hong Kong so you shouldn’t be trying to eat it anyway. Its eggs are toxic too.

Some newts deliver their toxins to potential predators in a way you might not expect. If an animal tries to bite the Spanish ribbed newt, it secretes toxins from special glands on its sides and then pushes the sharp points of its own ribs out through the tubercles where the poison glands are located. The pointed ribs become coated with toxins as they emerge and are sharp enough to stab a predator right in the mouth. The toxin causes severe pain when injected and can even cause death in small animals. The newt itself isn’t injured by this process, which it can do repeatedly whenever it needs to. Newts, like all amphibians, heal extremely quickly.

The Spanish ribbed newt lives in the southern Iberian Peninsula in Europe and Morocco in northern Africa. It’s larger than the newts we’ve talked about so far, growing up to a foot long, or 30 cm. It’s dark gray with rusty-red or orange spots on its sides, one spot per poison gland. It actually spends most of its adult life in the water and especially likes deep, quiet ponds and wells.

Finally, we’ve reached the most dangerous newt in the world. I’m nominating two newts for this honor because they both secrete the neurotoxin tetrodotoxin, which we’ve talked about before. It’s the same kind of toxin found in pufferfish and some frogs. The toxin can irritate your skin even if you only touch it, and if a little of the toxin gets into a scratch or cut, it can cause numbness, shortness of breath, and dizziness. If you accidentally swallow any of the toxin, you can die within six hours. There’s no antidote.

Our two most dangerous newts are the Japanese fire belly newt and the California newt. The Japanese fire belly newt grows about 5.5 inches long, or 14 cm, and lives in parts of Japan in ponds, lakes, and ditches. It has pebbly skin and is brown or black with red speckles, but its belly is bright orange or red. The California newt has slightly bumpy gray or gray-brown skin on its back but a bright orange or yellow belly. It can grow up to 8 inches long, or 20 cm. It lives in parts of California, especially near the coast and in the southern Sierra Nevada Mountains.

The reason the California newt has such a potent toxin is that its main predator, the common garter snake, has a great resistance to the toxin. Only the most toxic newts are more likely to survive if a garter snake grabs it, and only the most resistant snakes are more likely to survive eating it. It’s a predator-prey arms race that’s been going on for at least 40 million years, resulting in a newt that is boss fight level toxic to most predators but just barely ahead of the game when it comes to garter snakes. It’s likely that something similar has occurred with the Japanese fire belly newt.

If you live in the areas where these toxic newts also live, be especially careful with your pets. Keep your dog on a leash so you can be sure it doesn’t try to bite or play with one of these newts. Some people actually keep the Japanese fire belly newt as a pet, but obviously if you do this you need to be extremely careful, especially if you have pets or small children. Maybe you should get a toy newt instead.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 259: Indestructible Animals

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Thanks to Nicholas and Emma for their suggestions this week as we learn about some (nearly) indestructible animals!

Further listening:

Patreon episode about Metal Animals (unlocked, no login required)

Further reading:

Even a car can’t kill this beetle. Here’s why

The scaly-foot snail’s shell is made of actual iron – and it’s magnetic

The scaly-foot gastropod (pictures from article linked above):

The diabolical ironclad beetle is virtually unsquishable:

Limpet shells:

The business side of a limpet:

Highly magnified limpet teeth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some indestructible animals, or at least animals that are incredibly tough. You may be surprised to learn that they’re all invertebrates. It’s a suggestion by Nicholas, and one of the animals Nicholas suggested was also suggested by Emma.

We’ll start with that one, the scaly-foot gastropod, a deep-sea snail. We actually covered this one a few years ago but only in a Patreon episode. I went ahead and unlocked that episode so that anyone can listen to it, since I haven’t done that in a while, so the first part of this episode will sound familiar if you just listened to that one.

The scaly-foot gastropod lives around three hydrothermal vents in the Indian Ocean, about 1 ¾ miles below the surface, or about 2,800 meters. The water around these vents, referred to as black smokers, can be more than 350 degrees Celsius. That’s 660 degrees F, if you even need to know that that’s too hot to live.

The scaly-foot gastropod was discovered in 2001 but not formally described until 2015. The color of its shell varies from almost black to golden to white, depending on which population it’s from, and it grows to almost 2 inches long, or nearly 5 cm. It doesn’t have eyes, and while it does have a small mouth, it doesn’t use it for eating. Instead, the snail contains symbiotic bacteria in a gland in its esophagus. The bacteria convert toxic hydrogen sulfide from the water around the hydrothermal vents into energy the snail uses to live. It’s a process called chemosynthesis. In return, the bacteria get a safe place to live.

The snail’s shell contains an outer layer made of iron sulfides. Not only that, the bottom of the snail’s foot is covered with sclerites, or spiky scales, that are also mineralized with iron sulfides. While the snail can’t pull itself entirely into its shell, if something attacks it, the bottom of its foot is heavily armored and its shell is similarly tough.

Researchers are studying the scaly-foot gastropod’s shell to possibly make a similar composite material for protective gear and other items. The inner layer of the shell is made of a type of calcium carbonate, common in mollusk shells and some corals. The middle layer of the shell is regular snail shell material, organic periostracum, [perry-OSS-trickum] which helps dissipate heat as well as pressure from squeezing attacks, like from crab claws. And the outer layer, of course, is iron sulfides like pyrite and greigite. Oh, and since greigite is magnetic, the snails stick to magnets.

Unfortunately, the scaly-foot gastropod is endangered due to deep-sea mining around its small, fragile habitat. Hopefully conservationists can get laws passed to protect the thermal vents and all the animals that live around them.

The scaly-foot gastropod is the only animal known that incorporates iron sulfide into its skeleton or exoskeleton, although our next indestructible animal, the diabolical ironclad beetle, has iron in its name.

The diabolical ironclad beetle lives in western North America, especially in dry areas. It grows up to an inch long, or 25 mm, and is a dull black or dark gray in color with bumps and ridges that make it look like a piece of tree bark. Since it lives on trees, that’s not a coincidence. It spends most of its time eating fungus that grows on and under tree bark.

Like a lot of beetles, it’s flattened in shape. This helps it slide under tree bark and helps it keep a low profile to avoid predators like birds and lizards. But if a predator does grab it and try to crunch it up to eat, the diabolical ironclad beetle is un-crunchable. Its exoskeleton is so tough that it can withstand being run over by a car. When researchers want to mount a dead beetle to display, they can’t just stick a pin through the exoskeleton. It bends pins, even strong steel ones. They have to get a tiny drill to make a hole in the exoskeleton first.

The beetle’s exoskeleton is so strong because of the way it’s constructed. In a late 2020 article in Nature, a team studying the beetle discovered that the exoskeleton is made up of multiple layers that fit together like a jigsaw puzzle. Each layer contains twisted fibers made of proteins that help distribute weight evenly across the beetle’s body and stop potential cracking. At the same time, the arrangement of the exoskeleton’s sections allows for enough give to make it just flexible enough to keep from cracking under extreme pressure. Of course, this means the beetle can’t fly because its wing covers can’t move, but if it falls from a tree it doesn’t need to worry about hurting itself.

Engineers are studying the beetle to see if they can adapt the same type of structures to make airplanes and cars safer.

Nicholas also suggested the limpet, another mollusk. It’s a type of snail but it doesn’t look like the scaly-foot gastropod or like most other snails. Its shell is shaped like a little cone with ridges that run from the cone’s tip to the bottom, sort of like a tiny ice-cream cone that you don’t want to eat. There are lots of species and while a few live in fresh water, most live in the ocean. The limpets we’re talking about today are those in the family Patellidae.

If you think about a typical snail, whose body is mostly protected by a shell and who moves around on a wide flat part of its body called a foot, you’ll understand how the limpet is a snail even though it looks so different superficially. The conical shell protects the body, and the limpet does indeed move around on a so-called foot, gliding along very slowly on a thin layer of mucus.

The limpet lives on rocks in the intertidal zone and is famous for being able to stick to a rock incredibly tightly. It has to be able to do so because otherwise it would get washed off its rock by waves, plus it needs to be safe when the tide is out and its rock is above water. The limpet makes a little dimple in the rock that exactly matches its shell, called a home scar, and as the tide goes out the limpet returns to its home scar, seals the edges of its shell tight to the rock, and waits for the water to return. It traps water inside its shell so its gills won’t dry out while it waits. If the rock is too hard for it to grind down to match its shell, it grinds the edges of its shell to match the rock. It makes its home scar by rubbing its shell against one spot in the rock until both are perfectly matched.

The limpet mostly eats algae. It has a tiny mouth above its foot and in the mouth is a teensy tongue-like structure called a radula, which is studded with very hard teeth. It uses the radula to rasp algae off of the rocks. Other snails do this too, but the limpet has much harder teeth than other snails. Much, much harder teeth. In fact, the teeth of some limpet species may be the hardest natural material ever studied.

The teeth are mostly chitin, a hard material that’s common in invertebrates, but the surface is coated with goethite [GO-thite] nanofibers. Goethite is a type of of iron, so while the limpet does have iron teeth, it still doesn’t topple the scaly-foot gastropod as the only animal known with iron in its skeleton. Not only does the goethite help make the teeth incredibly strong, which is good for an animal that is scraping those teeth over rocks constantly, the dense chitin fibers in the teeth make them resistant to cracking.

The limpet replaces its teeth all the time. They grow on a sort of conveyer belt and move forward until the teeth in front, at the business end of the radula, are ready to use. It takes about two days for a new tooth to fully form and move to the end of the radula, where it’s quickly worn down and drops off.

Meanwhile, even though the limpet’s shell doesn’t contain any iron, its shape and the limpet’s strong foot muscles mean that once a limpet is stuck to its rock, it’s incredibly hard to remove it. It just sits there being more or less impervious to predation. Humans eat them, although they have to be cooked thoroughly because they’re tough otherwise, naturally.

Finally, one animal that Nicholas suggested is probably the royalty of indestructible animals, the water bear or tardigrade. Because we talked about it recently, in episode 234, I won’t go over it again. I’ll just leave you with an interesting note that I missed when researching that episode.

In April of 2019, an Israeli spacecraft was launched that had dormant tardigrades onboard as part of an experiment about tardigrades in space. There were no people onboard, fortunately, because the craft actually crashed on the moon instead of landing properly. The ship was destroyed but the case where the tardigrades were stored appears to be intact.

It’s not exactly easy to run up to the moon and check on the tardigrades, so we don’t know if they survived the crash landing. Studies since then suggest they probably didn’t, but until we can actually land on the moon and send a rover or an astronaut out to check, we don’t know for sure. Tardigrades can survive incredibly cold, dry conditions while dormant. It’s not exactly the experiment researchers intended, but it’s definitely an interesting one.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 258: Sable and Sable Antelope

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

A big birthday shout-out to Penelope this week! Thanks to Isaac for this week’s topic suggestion. We’re learning all about the sable and sable antelope!

Further reading (mostly for the pictures since there’s not much content otherwise):

Woman Rescues This Sable from Becoming Someone’s Coat

Further watching:

Kruger Park, Season 15 – this one is about some sable antelope bulls fighting

Fuzzy sable face:

Sable:

Sable antelopes:

A sable antelope growth chart. I find this really interesting. NERD:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’ve got an interesting theme, with both the theme and the animals suggested by Isaac. But first, we have a birthday shout-out!

Happy birthday this week to Penelope, whose birthday is on January 15th! I hope you have the best birthday ever!

Isaac suggested the sable, which is a type of mustelid, or weasel and ferret relation, and also suggested the sable antelope! It’s the sable episode.

The word sable means black or a rich dark brown, but most of the time it’s used to refer to the fur of an animal called the sable. The fur was so highly prized in Europe and Asia that the color of the animal’s fur was used as the name of the animal itself, and has been borrowed to refer to a specific coloration of other animals like cats and dogs.

The animal called the sable is common throughout parts of Asia, especially Siberia, China, and northern Mongolia. It lives in forests and mostly hunts by sound, and will eat just about anything it can find. This includes small animals like hares, rodents, birds, and even other species of mustelid, but it will also eat carrion, berries, fish, insects, snails and slugs, and occasionally it will even manage to kill a small bovid called a musk deer. The musk deer isn’t actually a deer but is more closely related to goats and antelopes. It can stand over two feet tall at the shoulder, or 70 cm, and the male has fang-like tusks instead of antlers or horns.

For an animal that sometimes kills and eats musk deer, the sable isn’t very big. It’s long and slender like other mustelids and measures nearly 2 feet long, or 56 cm, not counting its tail, which can add another 5 inches, or 12 cm. Females are a little smaller. It’s brown all over, usually dark brown but sometimes lighter depending on where it lives, with a pale patch on its throat. It has large fox-like ears and a somewhat fox-like or cat-like face but with smaller eyes. Its legs are short but that doesn’t stop it from covering long distances every day to find enough food, more than seven miles in some cases, or 12 km.

The sable is crepuscular, meaning it’s most active during dawn and dusk. When it’s not out hunting, it sleeps in a burrow it digs among tree roots, often lined with leaves and dry grass so it’s more comfortable and warmer. The exception is during mating season when the sable is more likely to be out during the daytime. Males fight each other during this time, and when a female is deciding whether she likes a male, she and the male will play-fight and chase each other.

One unusual thing about the sable is that even though mating season is usually in summertime, and even though it only takes about a month for the babies to develop inside the mother before they’re born, the babies are born in spring. Since the sable doesn’t have access to a time machine, something else is going on.

It’s called delayed implantation or embryonic diapause, where the mother’s egg is fertilized but then stays dormant for a time before it attaches to the uterine wall and starts developing into an embryo and ultimately a baby ready to be born. This allows babies to be born at a time of year when there’s plenty of food. In the sable’s case, the fertilized eggs don’t implant for 8 months.

Sables aren’t the only mammals that practice delayed implantation. A lot of mustelids do, as well as bears, seals, armadillos, and many others. A slightly different variety of delayed implantation only happens when the mother already has a baby that’s nursing, meaning she’s still producing milk. That’s hard on the body, so in some mammals, including some rodents and marsupials, the fertilized egg waits to implant until the mother is no longer producing milk. That way the mother has more resources available to nourish the growing embryo instead of having to divide her energy between her developing embryos and her already-born babies. In other mammals, including humans, a nursing mother doesn’t usually produce eggs to be fertilized until she’s stopped producing milk for her baby.

A female sable usually has two or three babies in a litter but sometimes more. The babies are born with a little bit of fuzzy hair to help keep them warm, but like puppies and kittens they’re born with their eyes sealed shut. It takes about a month for their eyes to open. The mother weans them when they’re about two months old but continues to take care of them, first by regurgitating food for them to eat, then by teaching them how to hunt and forage for themselves.

The sable’s fur is exceptionally soft and beautiful, and as a result it’s been killed for its fur for centuries and has always been expensive to buy. One Russian population is jet black with a white tip to each hair, which was even more highly prized than the rest. But the best way to experience the beautiful fur of a sable is by petting a live one, not the skin of a dead one. Some people have started keeping sables as pets, although they’re not actually domesticated and can be difficult or even dangerous to keep.

Next, another beautiful non-domesticated animal is the sable antelope. It lives in forested savannas in parts of eastern and southern Africa. There are four subspecies, the largest of which is the giant sable antelope. That makes it sound enormous but it’s only a little bigger than other subspecies, and is critically endangered. In fact, the giant sable antelope was suspected of having gone extinct during a terrible civil war in Angola, which is the only place in Africa where it lives. Fortunately a herd of them was caught on camera trap in 2004, and the giant sable antelope is now protected.

Sable antelope cows give birth to one baby during the rainy season, which varies depending on where they live. The calves are light brown or pale reddish-brown but as they grow older, their fur becomes darker. Mature females are usually dark brown but adult males are black. Adults and older calves also have white patches on the face, belly, and rump.

The sable antelope has a short tail with a little tuft at the end, and it also has a short mane that usually stands upright like a donkey’s mane. Males are bigger than females, standing some 4 and a half feet tall at the shoulder, or 1.4 meters.

Both males and females have horns, though. Antelopes are bovids, which means they have true horns like cattle and goats, not antlers like deer that are shed every year. The sable antelope’s horns are really impressive, too. They’re dark gray or black and arch up and back from the head like really big goat horns. A female can have horns up to 3 and a half feet long, or 102 cm, while a male can have horns 0ver 5 feet long, or 165 cm. That’s right, his horns can be longer than he is tall. Sable antelopes are so spectacular that when you think of an antelope, you probably think of an animal that has horns like this.

Unfortunately, those horns have caused the sable antelope to be a target for big game hunters who want the horns as a trophy. These days, though, the biggest threat is habitat loss as humans fence their grasslands to graze livestock.

During the rainy season, the sable antelope lives in small herds of up to 30 females and their young, who share a territory with a single bull. The herd is led by the oldest females who know where the best places are to graze and find water. When the herd moves, the male usually follows right behind to make sure everyone stays together.

The sable antelope eats tree leaves and some kinds of grass, and spends the hottest parts of the day lying down and chewing its cud because, like other bovids, it’s a ruminant. The calves are always in the middle of the resting herd and the adults lie facing outward so they can watch for danger and meet it with their horns. When the adults are moving around to graze, young calves stay in a group called a creche, watched over by a few adults.

During the dry season when there’s not as much to eat, herds will come together to graze in the best pastures with access to water. When young males mature, the older male drives them away from the herd to fend for themselves. Young bulls often form small bachelor herds or may be solitary.

When a bull challenges another bull in an attempt to take control of his territory, they fight with their horns, although they don’t usually injure each other. The sable antelope also uses its horns to fight off and sometimes even kill predators like lions and leopards.

This is the only reliable audio I could find of a sable antelope. There’s a link to the original video in the show notes. The sound is of a bull who’s stuck in the mud, although he later manages to get out.

[sable antelope sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 257: Some Animals of Belize

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

A big birthday shout-out this week to Yori!!!

I was fortunate enough to visit the country of Belize in December and saw lots of amazing animals! I’ve chosen four to highlight in this week’s episode.

Further reading:

There may be more bird species in the tropics than we know

The adorable proboscis bat, my favorite:

Proboscis bats all in a row (photograph by me!):

The black howler monkey has a massive hyoid bone that allows it to make big loud calls:

The white-crowned manakin is impossibly cute:

The mealy parrot is cheerful and loud:

A morning view and night view from our villa balcony, photos by me!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Let’s start the new year off right with an episode about some animals I saw in person recently during my vacation to Belize!

But first, we have our first birthday shout-out of the year! A very happy birthday to Yori, whose birthday is on the 8th of January! I hope you have a great day!

Belize is a country on the eastern coast of Central America on the Caribbean Ocean, just south of Mexico and north of Guatemala. It used to be called British Honduras but has been an independent country since 1981. The coast is protected by a series of coral reefs that are so little studied that there are probably dozens if not hundreds of animals and plants waiting to be discovered around them. Belize is serious about protecting the reefs and about conservation in general, which is great because it has some of the highest animal and plant life diversity in the Americas.

My brother and his family had made vacation plans for Belize in spring of 2021, about the time the Covid-19 vaccine was rolling out and things were looking up. They rented a big villa with more bedrooms than they needed so they generously invited me and one of my cousins to join them. I didn’t mention the trip on the podcast because I was worried it would end up canceled. But we were able to visit in mid-December, with negative Covid tests coming and going, and wearing our masks appropriately in all public areas.

Belize is absolutely gorgeous. We stayed right on the coast in an upstairs flat with a big balcony that overlooked the ocean. We spent most of the time relaxing on the beach or the balcony and eating amazing food, but we did go on two excursions.

We all went on a riverboat wildlife tour of the Monkey River, and a few days later my brother and cousin and I went on a birdwatching expedition to the nearby Cockscomb Basin Wildlife Sanctuary. We had to get up at 5am for that one but it was worth it. In both excursions we saw lots of animals of all kinds, so many that it was hard for me to choose which ones to highlight in this episode.

One animal that I fell in love with on the Monkey River is the proboscis bat. Belize has a lot of bat species but I didn’t expect to see any, much less up close.

The proboscis bat lives throughout Central America and the northern half of South America. It’s only about 2.5 inches long, or 6 cm, and gets its name from its pointed nose. It lives near water, especially wetlands, because it eats insects that live around water like mosquitoes and caddisflies. It’s so small that it sometimes gets caught in spiderwebs, especially of the big spider Argiope submaronica, [ar-JY-opee] a species of orbweaver spider that holds its legs in an X pattern while it’s on its web. Different species live throughout the world, especially in warm places. It does actually eat the bats it catches, which is hard on the bat but a nice big meal for the spider. There’s two sides to every story.

How, you may ask, did I manage to see a bat up close during broad daylight while on a boat? The proboscis bat spends the day on a tree trunk or branch or log near the water, especially in shady areas, and our guide was able to ease the boat up to not one but two different trees with bats asleep on them. The proboscis bat is gray-brown with darker and lighter markings that help it blend in against bark, and it sleeps perched on the side of the tree with its head pointing down. It literally looks like a little bump on a log that way. But it’s not usually alone. It lives in small groups and everyone roosts on the same tree during the day, and the best thing is that they roost in a row one above the other, head to tail. Nothing to see here, just a row of bumps on this log.

The second group of proboscis bats we saw we got a little too close to and suddenly all the bats took off in all different directions. Everyone else in the boat yelped and ducked except me, although I think they were mostly just startled. I could tell the bats were about to fly and just sat there thinking, “Oh no, we’ve disturbed the bats!” and then their amazing little wings unfolded and they all flew away. I’m still sorry we bothered them but it was a wonderful sight. Bats are so great.

Another animal we saw and heard on our Monkey River trip was the black howler monkey. It gets its name from the male’s appearance because males have mostly black fur while females are more golden.

It’s pretty big for a monkey, with a big male growing over two feet long, or 65 cm, not counting its tail. Females are smaller. The black howler’s tail is as long as its body and is prehensile to help it navigate through the trees. Its tail only has hair on the upper side, with the lower side bare to help it grab onto tree limbs more securely. Part of the reason the black howler monkey uses its tail so much to climb around in trees is that its arms can’t move as far as the arms of many primates, and that’s because of something called the hyoid bone.

The hyoid bone is found in a whole lot of animals, not just howler monkeys. In humans it’s shaped like a little horseshoe and it’s found near the top of the throat. While everyone has a hyoid bone, it’s larger and more prominent in men, and it causes the bump in the throat sometimes called an Adam’s apple. A lot of muscles attach to the bone, including the tongue, and it helps us talk and breathe properly. But in howler monkeys, the hyoid bone is much larger and shaped more like a cup. Air resonates in the cup, which is how howler monkeys make such loud, deep, booming calls. Male howler monkeys have much larger hyoid bones than females, but having such an enlarged hyoid bone restricts the range of motion in the arms.

The black howler monkey is really loud. It’s especially noisy at sunrise when males in a troop roar together to let other troops know where they are and to announce that they’re the biggest, baddest males around and no one better mess with them. These sounds can be heard three miles away, or 5 km.

The black howler monkey lives in forests and spends most of the time in the trees, eating fruit, leaves, and flowers. Its diet isn’t all that high in caloric energy, though, so unlike many species of monkey, the black howler spends a lot of time just lazing around in trees, resting or napping.

We only saw two howler monkeys on our Monkey River trip even though they’re common throughout the area. We all got out of the boat and our guide grabbed a machete, which I think was pretty much just for show because the trail we were on was obviously well traveled and wide. We were going to hike 15 or 20 minutes into the rainforest to find a troop of howlers, but there had been so much rain in the last week that the trail was ankle-deep in mud. We were all sliding around and my sister-in-law actually lost a shoe and had to fish it out of the mud. We were all relieved when after only about five minutes we came across a young male howler and stopped to watch him.

He was sitting way way up high in the treetops, naturally, and there were definitely other monkeys around him that we couldn’t see because after a few minutes we spotted an even younger monkey walking along a branch. It was mid-morning by then and the male was eating, so when our guide banged his machete on a tree trunk and imitated the territorial call of a male howler, the male up in the tree only responded half-heartedly. I got audio and you should be able to tell which call is our guide and which call is the monkey because the guide was so much louder, since he was so close to me.

[guide and howler monkey sounds]

We also saw a LOT of birds! As you may know, birdwatching is one of my hobbies, so I was excited and amazed at the variety of birds in Belize. I did some birding on my own with my cousin along, and my brother came with us one early morning on an actual birdwatching trip with a local guide. I’m going to be on the Casual Birder podcast soon talking about the birds I saw on the trip, although I’m not sure yet when it will air. I’ll let you know or you could just subscribe to the Casual Birder Podcast now and beat the rush.

Anyway, one bird we saw is a tiny adorable little floof called the white-crowned manakin. It only grows about 4 inches long at most, or 10 cm, and has red eyes, a short tail, and looks superficially like a wren in shape. The female is olive-green with a gray head but the male is glossy black with a bright white cap that he can raise up in a fluffy crest. He looks like the lead singer of an edgy indie band.

The white-crowned manakin is a common bird throughout parts of Central and South America. The reason I decided to talk about it in this episode is because of a study released in November 2021 that discovered the white-crowned manakin isn’t actually a single species. Genetic studies found that some isolated populations of the bird are different enough from the others to be considered a completely different species. These populations may look similar but their plumage patterns and songs are very different from the main population too. Since there are so many birds in South America that aren’t very well studied, conservationists are concerned that other known bird species may actually have genetically different populations that look very similar. If we don’t know what birds are rare, we don’t know how to protect them.

The last animal we’ll cover today is another bird, the mealy parrot, also called the southern mealy Amazon parrot. It’s a big parrot, mostly green, that lives in rainforests in parts of Central and South America. Like other parrots, it’s a smart, social animal that lives in flocks. It gets its name because many individuals have paler feathers on their back and upper wings that make them look like they’ve been dusted with flour, and meal is another word for flour. It mostly eats fruit, nuts, berries, and other plant material, including flowers. It’s still a common parrot but habitat loss, hunting, and trapping of birds to sell as pets on the black market has caused their numbers to decline recently. If you decide you want a pet parrot, make sure you buy yours from a reputable breeder who is selling domesticated parrots, not wild-caught ones.

Because we started birding so early, we were lucky enough to hear the mealy parrots calling, something they do early in the day and at night. We also heard some howler monkeys in the distance. But while we kept hearing a whole flock of mealy parrots, they were always just out of sight. We would hurry as quietly as we could up the trail and they would retreat ahead of us, calling cheerfully as though taunting us. It was actually really funny. Then, finally, just when I’d started to assume I would never see the wild parrots we kept hearing, there they were! And there were lots of them! We also saw a small flock of red-lored parrots that look similar but have a red band just above their upper bill, lots of keel-billed toucans, the national bird of Belize, and lots lots more!

This is some audio I took of the mealy parrots calling while we were trying to spot them.

[mealy parrot calls]

We didn’t see a jaguar or a manatee during our visit to Belize, but I did learn how to properly pronounce the word spelled T-A-P-I-R. There are lots of different pronunciations throughout the world, but from now on I’m going with the Belizean one of TAP-eer. We didn’t see a tapir either but we did see crocodiles and green iguanas and a couple of basilisks and lots more. I was even brave enough to get in a kayak and paddle around ON THE OCEAN, admittedly in very calm, shallow water with my family around to encourage me, and saw some kind of small rays, moon jellies, and a crab. I’m scared of the ocean but as soon as I started seeing jellies from my kayak I got a lot less scared and a lot more interested, so I’m proud of myself for facing my fears.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 256: Mammoths and the End of the Ice Ages

Sign up for our mailing list! We also have t-shirts and mugs with our logo!

Further reading:

Million-year-old mammoth genomes shatter record for oldest ancient DNA

Mammoth Genome Project (with pictures of cave art and ancient carvings of mammoths)

The most famous cave painting of a mammoth, from a cave in France:

Sivatherium:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the last Monday of 2021, which means the very last extinction event episode. There’ve been way more extinction events in earth’s long history than the five we’ve covered this year, and not all of the extinction events I chose to highlight were even necessarily the biggest. This one, for instance.

You may have noticed a pattern when I talk about ice age megafauna. So many animals went extinct about 11,000 years ago. That’s this week’s topic, the end-Pleistocene extinction event.

The Pleistocene is often called the ice age, or ice ages since it consisted of multiple glaciation periods separated by warmer times when the glaciers would retreat for a while. It started roughly 2.6 million years ago and is considered to have ended 11,700 years ago. Keep in mind, as always, that these dates are just a shorthand to help scientists refer to changes in earth’s history. There was no one day where the sun rose and everything had abruptly changed from one era to another. The changes took place over a long time, hundreds of thousands of years, with different parts of the world changing more quickly or slowly than others depending on local conditions.

At the beginning of the Pleistocene, the world’s continents were roughly in their present positions. Two continental plates in what is now Central America collided very slowly over millions of years, which caused the land to buckle up and magma to erupt through the earth’s crust as volcanoes. The volcanoes created islands in the Central American Seaway, a section of ocean between North and South America that connected the Atlantic and Pacific Oceans. By around 5 to 10 million years ago, the volcanoes and land continued to be pushed up, and sediment from rivers filled in between them, until finally instead of islands there was actual land that connected North and South America. That land is called the Isthmus of Panama and it allowed the great American interchange where animals from North America could cross into South America, and vice versa, but that’s a topic for another episode.

Another result of the Isthmus of Panama’s formation is that the Atlantic and Pacific Oceans were more separated. Instead of ocean currents circulating between North and South America, they were cut off and new currents formed. Ocean currents help distribute warm water to colder areas and cold water to warmer areas, which affects air and land temperatures too. Around 2.5 million years ago, the ocean current changes had changed the entire overall temperature of the earth, making it much cooler overall. That wasn’t the only cause of the ice ages, but it was a major factor.

The earth gradually became cooler and dryer, a process that had already started due to other causes and was accelerated by the ocean current changes. As the global temperature dropped, more and more water was locked up in huge glaciers called ice sheets, at first around the poles and then farther south. This meant sea levels dropped a lot. North America was connected to Asia by a stretch of grassland steppe called Beringia that had formerly been submerged.

As the temperatures dropped and the climate changed, animals and plants had to adapt. The ancestors of modern elephants had lived in Africa for millions of years, but they started migrating to other parts of the world around 3 million years ago. Because they were already big, they were good at retaining heat in their bodies and became quite successful as the climate grew cooler and cooler. They evolved long hair to stay even warmer and spread throughout much of the world, including Europe, Asia, and North America. You may know them as mammoths, which were closely related to the modern Asian elephant. The first mammoth known was the South African mammoth that lived around 5 million years ago and stood about 12 feet tall at the shoulder, or 3.7 meters.

We actually know a lot about the various species of mammoth because we have so many remains. Our own distant ancestors left cave paintings and carvings of mammoths and other animals in many parts of the world, we’ve found lots of fossilized remains, and we have lots of subfossil remains too. Because the mammoth lived so recently and sometimes in places where the climate hasn’t changed all that much in the last 10,000 years, namely very cold parts of the world with deep layers of permafrost beneath the surface, sometimes mammoth remains are found that look extremely fresh.

Before people understood extinction and related natural concepts, some people who lived in areas where dead mammoths occasionally weathered out of the permafrost thought they’d only died recently. That’s how fresh the dead animals looked. The people didn’t know what the animals were, though, and assumed that since they were only ever seen partially buried, they must be underground animals. In parts of Siberia, people thought mammoths lived underground and if they accidentally came to the surface, they died.

In February of 2021, a genetic study of mammoth DNA found in teeth was published in Nature. Nature is one of the most important scientific journals in the world and they don’t just publish any old genetic study these days, now that DNA is so much easier to sequence than it used to be. In this case, though, the DNA came from three mammoth teeth that were more than one million years old and possibly around 1.5 million years old. The teeth were found in the 1970s in different places. Before DNA was successfully found in the teeth, the oldest DNA sequenced was from a horse bone that was about 780,000 years old at the most.

Genetic material breaks down relatively quickly once an animal dies, becoming more and more fragmented as the years pass by. That’s why we don’t have any dinosaur DNA—they just lived too long ago for any usable genetic material to remain. The mammoth genetic study is a big deal since it’s pushed back scientists’ ability to sequence ancient DNA, at least of some samples. In the case of both the mammoth teeth and the ancient horse bone, the remains were preserved in permafrost that slowed the fragmentation of the DNA.

The study found that one of the teeth belonged to an early woolly mammoth and the other two were from early steppe mammoths, but it’s not as simple as it sounds. The two steppe mammoth teeth looked alike but their genetic story was very different. One had genetic markers that identified it as an ancestor of woolly mammoths–but the other didn’t. The one that didn’t is called the Krestovka sample and was found in Russia. Researchers aren’t sure yet if it’s actually a new species or subspecies, but it was obviously part of a population isolated from other steppe mammoths.

But it gets even more complicated, because Columbian mammoths from North America do show that some of their ancestors were related to the Krestovka sample–and Columbian mammoths are also related to woolly mammoths. Researchers suspect that the Columbian mammoth was a species that developed from hybrids of the Krestovka steppe mammoths and woolly mammoths. Over half a million years ago, there were enough of these hybrid mammoths that they were actually numerous enough to form their own stable species. Hybrid speciation is still a relatively new concept but as genetic studies get more sophisticated, we’re getting more evidence of it happening.

Researchers are hopeful that even older genetic samples can eventually be sequenced, but there’s a hard limit to DNA found in permafrost. That limit is 2.6 million years, which is when the permafrost began forming. And that brings us back to the ice age.

Mammoths weren’t the only animals adapted to cold conditions, of course. They weren’t even the only elephant lineage that adapted to the cold. Mastodons aren’t actually that closely related to mammoths but they are an elephant relation.

The woolly rhinoceros was about the size of living rhinoceros species but was covered in thick fur. It had a massive hump on its shoulders that was made up of fat reserves and muscle, much like modern bison. It went extinct about 10,000 years ago.

A giraffe relation, Sivatherium, lived in Africa and parts of Asia during the Pleistocene. Its neck wasn’t as long as a modern giraffe’s but it was still tall, over 7 feet tall at the shoulder, or more than 2 meters, and almost 10 feet tall including the head and neck, or 3 meters. The males had two pairs of ossicones that resembled antlers, a large pair on its head and a smaller pair over its eyes. Ossicones are bony projections usually covered with skin and hair, and modern giraffes have ossicones too.

Mammals weren’t the only megafauna, though. Mega just means big, and fauna just means animal. There were megafauna birds and reptiles too, such as the Asian ostrich. It lived throughout much of Asia and the Middle East until around 8,000 years ago and was related to the modern ostrich. The wonambi was an Australian constrictor snake, not related to the snakes living in Australia now, that could grow up to 30 feet long, or 9 meters.

So what happened to cause the extinction of all these amazing animals? Surely we know more about this extinction event than we do about older ones since it happened so recently, right?

Actually, no. Although it feels significant to us now, the end-Pleistocene extinction event actually wasn’t very big compared to the others we’ve discussed this year. A lot of ice age megafauna are still around, including bears, wolves, moose, reindeer, horses, bison, elephants, giraffes, lions, tigers, camels, kangaroos, tapirs, ostriches, condors, and lots more. Even humans are ice age megafauna since we spread throughout the world during the Pleistocene.

We do have hints of what might have caused the end-Pleistocene extinction event, and one big hint comes from what happened in Australia. Like the rest of the world, Australia’s climate was cooler and dryer during the ice ages and animals that had adapted to the cold lived throughout the continent. This included diprotodon that we talked about in episode 224, along with kangaroos, wombats, koalas, and other marsupial mammals that were bigger than the ones living today. But extinctions in Australia started a lot earlier than they did in the rest of the world, around 45,000 years ago. There’s also no corresponding extinction event among marine animals. By about 40,000 years ago almost 90% of all species of Australian megafauna had gone extinct, while smaller animals and marine animals were mostly just fine.

One specific event that happened around 45,000 years ago was the colonization of Australia by humans. Humans had visited and even lived in Australia as far back as 70,000 years ago, but by 45,000 years ago they were really spreading throughout the land. The animals of Australia had never encountered smart, fast tool-users before and didn’t know what to do except try to avoid them. Humans had weapons like spears that could kill at long range, and humans worked together to kill animals that before then had no predators due to their size. Humans also drink a lot of water because we developed in a part of Africa where water is abundant. Fresh water isn’t nearly as abundant in Australia, so humans would stake out water sources and keep other animals away.

The Australian extinctions were probably a combination of climate change, humans hunting large animals that reproduced slowly, and humans outcompeting animals for water sources. The same causes probably led to extinctions in other parts of the world, but because humans took longer to spread to continents like the Americas that are far away from Africa, those extinctions mostly took place later than in Australia. It’s also important to note that Africa showed almost no extinctions at the end of the Pleistocene. Researchers think this is because the animals of Africa evolved alongside humans and knew how to deal with us.

Natural climate change was definitely a contributing cause to the extinctions, though. Ice sheets melted, glaciers retreated, and the world warmed over the course of just a few thousand years. Animals that were well adapted to the cold had to move to places where it was still cold, but those places didn’t always have the right foods or enough food. The sea levels rose too, cutting off access to parts of the world. Beringia became covered with ocean again, for instance, where it remains today, separating Asia from North America.

Humans probably finished off the mammoths by hunting the last ones to extinction, but some populations survived much later than the 10- to 12,000 years ago commonly given as their extinction date. There were still mammoths alive in the world only 4,000 years ago and maybe only 3,700 years ago—but only on an island where humans didn’t live.

Wrangel Island is located in the Arctic Ocean near western Siberia, more than 85 miles from the nearest coast, or 140 km. It has low mountains and sea cliffs and is cold and dry most of the year, which is the kind of climate mammoths preferred.

The woolly mammoths that lived on Wrangel Island were probably cut off from the mainland when sea levels rose and flooded Beringia. They lived on for thousands of years after their mainland relations had gone extinct. Gradually the mammoths became more and more inbred, leading to genetic defects at a much higher rate than in a healthy population. Even so, the mammoths might have managed to survive even longer except for one thing. Around 1700 BCE, humans arrived on the island. Shortly afterwards, the mammoth was extinct.

Wrangel Island is a nature sanctuary these days and home to lots of animals, including polar bears, walruses, Arctic foxes, seals, reindeer, musk ox, and wolves. All of these are considered ice age megafauna, so although the mammoths are gone, other megafauna remain.

While we don’t know for sure that humans played a big part in the end-Pleistocene extinction event, we sure didn’t help. We can’t blame our ancient ancestors for their actions but we can learn from their mistakes. We’re in the middle of another extinction event right now, often called the Holocene extinction or Anthropocene extinction, directly due to our actions. Habitat loss, pollution, overhunting, and human-caused climate change are driving more species of animal and plant to extinction every year.

It can feel overwhelming, but there are lots of small things you can do to help. Just picking up trash and putting it in the waste bin or remembering to take your reusable bags to the grocery store can make a difference. No one person can fix all the world’s problems, but if everyone does a little bit to help, the big problems get smaller and more manageable. If everyone pitches in, we can make the world a cleaner, better place for animals and for people.

Happy new year! Let’s make it a great one!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!