Episode 291: The Ediacaran Biota

This week let’s find out what lived before the Cambrian explosion!

A very happy birthday to Isaac!

Further reading:

Some of Earth’s first animals–including a mysterious, alien-looking creature–are spilling out of Canadian rocks

Say Hello to Dickinsonia, the Animal Kingdom’s Newest (and Oldest) Member

Charnia looks like a leaf or feather:

Kimberella looks like a lost earring:

Dickinsonia looks like one of those astronaut footprints on the moon:

Spriggina looks like a centipede no a trilobite no a polychaete worm no a

Glide reflection is hard to describe unless you look at pictures:

Trilobozoans look like the Manx flag or a cloverleaf roll:

Cochleatina looked like a snail:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the last week of August 2022, so let’s close out invertebrate August with a whole slew of mystery fossils, all invertebrates.

But first, we have a birthday shoutout! A humongous happy birthday to Isaac! Whatever your favorite thing is, I hope it happens on your birthday, unless your favorite thing is a kaiju attack.

We’ve talked about the Cambrian explosion before, especially in episode 69 about some of the Burgess shale animals. “Cambrian explosion” is the term for a time starting around 540 million years ago, when diverse and often bizarre-looking animals suddenly appear in the fossil record. But we haven’t talked much about what lived before the Cambrian explosion, so let’s talk specifically about the Ediacaran (eedee-ACK-eron) biota!

I was halfway through researching this episode when I remembered I’d done a Patreon episode about it in 2021. Patrons may recognize that I used part of the Patreon episode in this one. You’d think that would save me time but surprise, it did not.

The word Ediacara comes from a range of hills in South Australia, where in 1946 a geologist noticed what he thought were fossilized impressions of jellyfish in the rocks. At the time the rocks were dated to the early Cambrian period, and this was long before the Cambrian explosion was recognized as a thing at all, much less such an important thing. But since then, geologists and paleontologists have reevaluated the hills and determined that they’re much older than the Cambrian, dating to between 635 to 539 million years ago. That’s as much as 100 million years before the Cambrian. The Ediacaran period was formally designated in 2004 to mark this entire period of time, although fossils of Ediacaran animals generally start appearing about 580 million years ago.

Here’s something interesting, by the way. During the Ediacaran period, every day was only 22 hours long instead of 24, and there were about 400 days in a year instead of 365. The moon was closer to the earth too. And life on earth was still sorting out the details.

Fossils from the Ediacaran period have been discovered in other places besides Australia, including Namibia in southern Africa, Newfoundland in eastern Canada, England, northwestern Russia, and southern China. Once the first well-preserved fossils started being found, in Newfoundland in 1967, paleontologists started to really take notice, because they turned out to be extremely weird. The fossils, not the paleontologists.

Many organisms that lived during this time lived on, in, or under microbial mats on the sea floor or at the bottoms of rivers. Microbial mats are colonies of microorganisms like bacteria that grow on surfaces that are either submerged or just tend to stay damp. Microbial mats are still around today, usually growing in extreme environments like hot springs and hypersaline lakes. But 580 million years ago, they were everywhere.

One problem with the Ediacaran biota, and I should explain that biota just means all the animals and plants that live in a particular place, is that it’s not always clear if a fossil is actually an animal. Many Ediacaran fossils look sort of plant-like. At this stage, the blurry line between animals and plants was even more blurry than it is now, with the added confusion that sometimes non-organic materials can resemble fossils, and vice versa.

For instance, the fossil Charnia, named after Charnwood Forest in England where it was first discovered. In 1957, a boy named Roger, who was rock-climbing in the forest, found a fossil that looked like a leaf or feather. He took a rubbing of the fossil and showed his father, who showed it to a geologist. The year before, in 1956, a 15-year-old girl named Tina saw the same fossil and told her teacher, who said those rocks dated to before the Cambrian and no animals lived before the Cambrian, so obviously what she’d found wasn’t a fossil.

Tina’s teacher was wrong about that, of course, although he was correct that the rocks dated to before the Cambrian, specifically to about 560 million years ago. But while Charnia looks like a leaf, it’s not a plant. This was about 200 million years before plants evolved leaves, and anyway Charnia lived in water too deep for plants to survive. It anchored itself to the sea floor on one end while the rest of the body stuck up into the water, and some specimens have been found that were over two feet long, or 66 cm. Some researchers think it was a filter feeder, but we have very little evidence one way or another.

One common animal found in Australia and Russia is called Kimberella, which lived around 555 million years ago and might have been related to modern mollusks or to gastropods like slugs. It might have looked kind of like a slug, at least superficially. It grew up to 6 inches long, or 15 cm, 3 inches wide, or 7 cm, and an inch and a half high, or 4 cm, which was actually quite large for most animals that lived back then. It was shaped roughly like an oval, with one thin end that stuck out, potentially showing where its front end was, although it didn’t have a head the way we think of it today. The upper surface of its body was protected by a shell, but not the type of shell you’d find on the seashore today. This was a flexible, non-mineralized shell, basically just thick, toughened tissue with what may be mineralized nodules called sclerites embedded in it. All around its body was a frill that might have acted as a gill. The underside of Kimberella was a flat foot like that of a slug.

We know Kimberella lived on microbial mats on the sea floor, and it might have had a feeding structure similar to a radula. That’s because it’s often found associated with little scratches on its microbial mat that resemble the scratches made by a radula when a slug or related animal is feeding on a surface. The radula is a tongue-like organ studded with hard, sharp structures that the animal uses to scrape tiny food particles from a surface.

Kimberella displays bilateralism, meaning it’s the same side to side. That’s the case with a lot of modern animals, including all vertebrates and a lot of invertebrates too, like insects and arachnids. But other Ediacarans showed radically different body plans. Charnia, for instance, exhibits glide reflection, where both sides are the same as in bilateralism, but the sides aren’t exactly opposite each other. If you walk along a beach and make footprints in the sand, your trail of footprints actually demonstrates glide reflection. If you stand on the sand and jump forward with both feet together, your footprints demonstrate bilateralism since the prints are side by side. (This is confusing to describe, sorry.) Pretty much the only living animals with this body pattern are some sea pens, which get their name because they resemble old-fashioned quill pens. Many sea pens look like plants, and for a long time researchers thought Charnia might be an ancient relation to the sea pen. These days most researchers are less certain about the relationship.

A similar-looking animal that lived around the same time as Charnia was Dickinsonia. It looks sort of like a leaf too, but a more broad oval-shaped leaf instead of a long thin one like Charnia. It’s also not a leaf. Some are only a few millimeters long, but some are over 4 1/2 feet long, or 1.4 meters.

Dickinsonia may be related to modern placozoans, a simple squishy creature only about one millimeter across. It travels very slowly across the sea floor and absorbs nutrients from whatever organic materials it encounters. But we don’t know if Dickinsonia was like that or if it was something radically different. Until a few years ago a lot of paleontologists thought Dickinsonia might be some kind of early plant or algae. Then, in 2016, a graduate student discovered some Dickinsonia fossils that were so well preserved that researchers were able to identify molecular information from them. They found cholesteroids in the preserved cells, and since only animals produce cholesteroids, Dickinsonia was definitely an animal. But that’s still about all we know about it so far.

Spriggina is another animal that at first glance looks like a leaf or feather. Then it sort of resembles a trilobite, or a segmented worm, or a possible relation to Dickinsonia. It looks like all sorts of animals but doesn’t really fit with anything known. It grew up to two inches long, or 5 cm, and had what’s referred to as a head shield although we don’t know for sure if it was actually its head. The head shield might have had eyes and might have had some kind of antennae, and some fossils seem to show a round mouth in the middle of the head, but it’s hard to tell. The rest of its body was segmented in rings. What Spriggina didn’t have was legs, or at least none of the fossils found so far show any kind of legs. Some species of Spriggina show a glide reflection body plan, while others appear to show a more ordinary bilateral body plan.

Three Ediacaran animals have such a weird body plan that they’ve been placed in their own phylum, Trilobozoa, meaning three-lobed animals. They show tri-radial symmetry, meaning that they have three sections that are identical radiating out from the center. They lived on microbial mats and were only about 40 mm across at most, which is about an inch and a half. Tribrachidium was roughly round in shape although its relations looked more like tiny cloverleaf rolls. Cloverleaf rolls are made by putting three little round pieces of dough together and baking them so that the roll has three lobes, although Trilobozoans probably didn’t taste as good. Also, Trilobozoans were covered with little grooves from center to edge and had three curved ridges, one on each lobe. The ridges were originally interpreted as arms or tentacles, but they seem to have just been ridges. Researchers think the little grooves directed water over the body’s surface and the ridges acted as tiny dams that slowed the water down just enough that particles of food carried in the water would fall onto the body so that the animal could absorb the nutrients, although we don’t know how that worked.

Many other Ediacaran animals had radial symmetry like modern echinoderms and jellyfish, including the ancestors of jellyfish. Some Ediacaran animals even had shells of various kinds, and they’re generally referred to as small shelly fossils. They were rarely more than a few millimeters across at most and are sometimes found mixed in with microbial mats. Cochleatina, for instance, is less than a millimeter across and all we know about it is that it had a ribbon-like spiral shell like a really simple snail’s shell. It wasn’t a snail, though. We don’t even know if it was an animal. It might have been some kind of algae or it might have been something else. Unlike most small shelly fossils, Cochleatina survived into the Cambrian period.

We’re also not sure why most Ediacaran organisms went extinct at the beginning of the Cambrian, but it’s probable that most were outcompeted by newly evolved animals. There may also have been a change in the chemical makeup of the ocean and atmosphere that caused an extinction event of old forms and allowed the rapid expansion of new animal forms that we call the Cambrian explosion.

We can also learn a lot about what we don’t find in the Ediacaran rocks. Pre-Cambrian animals didn’t appear to burrow into the sea floor, or at least we haven’t found any burrows, just tracks on the surface. Most Ediacaran animals also didn’t have armored bodies or claws or so forth. Researchers think that predation was actually pretty rare back then, with most animals acting as passive filter feeders to gather nutrients from the water, or they ate the microbial mats. It wasn’t until the Cambrian explosion that we see evidence that some animals evolved to kill and eat other animals exclusively.

With every new Ediacaran fossil that’s found and studied, we learn more about this long-ago time when multi-cellular life was brand new.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 290: Lobsters!

Thanks to Pranav for this week’s suggestion, lobsters!

Happy birthday to Jake!!

Visit Dr. Oné R. Pagán’s site for links to his podcast and his free book Arrow: The Lucky Planarian! You can also order his other books from your favorite book store. Here’s the direct link to his interview with me!

Further reading:

Don’t Listen to the Buzz: Lobsters Aren’t Actually Immortal

An ordinary lobster:

A blue lobster!

The scampi looks more like a prawn/shrimp than a lobster, but it’s a lobster:

 

The rosy lobsterette is naturally red because it lives in the deep sea:

The deep-sea lobster Dinochelus ausubeli was only discovered in 2007 and described in 2010:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As invertebrate August continues, this week we’re going to talk about lobsters. Thanks to Pranav for the suggestion!

But first, we have a birthday shout-out! A great big happy birthday this week to Jake! I hope your birthday is epic fun!

I’d also like to let you know that Dr. Oné R Pagán interviewed me recently about my book, Beyond Bigfoot & Nessie: Lesser-Known Mystery Animals from Around the World, and you can hear that interview on his podcast, the Baldscientist Podcast. Baldscientist is all one word. I’ll put a link in the show notes. While you’re at it, you should definitely buy his books, including his latest one, Drunk Flies and Stoned Dolphins: A Trip Through the World of Animal Intoxication, which just came out this year and is a lot of fun, as well as being full of interesting science! He also has a free children’s story called Arrow, the Lucky Planarian that you can download and read. It’s completely charming and you’ll learn a lot about planarians, which are also called flatworms, which are invertebrates, so this is all coming together!

This week’s episode isn’t about planarians, though, but about lobsters. I don’t think we’ve ever discussed lobsters on the podcast before, oddly enough, but it’s been on my ideas list for a long time. When Pranav emailed me recently to suggest we do a lobster episode, I realized it was time! Time for lobsters!

The lobster is a crustacean, and while there are plenty of different lobsters in the world, we’re going to focus on the clawed lobsters this time. There are lots of them, all grouped in the family Nephropidae.

The lobster has eight legs that it walks on, and two more legs with pincers. That’s why it’s in the order Decapoda. Deca means ten and poda means feet. Ten feet. Some of which can pinch you if you’re not careful.

The lobster uses its claws to defend itself from potential predators, and uses them to grab and kill small animals. It eats pretty much anything it can find, from fish and squid to sea stars and mollusks, to dead animals and some plant material. But its claws are too big and clumsy to use to eat with, which is why it has much smaller pincers on its next pairs of legs. These pincers are equipped with chemoreceptors that allow the lobster to taste its food before it actually eats it, which is a neat trick.

The lobster uses these small claws to pull its food into smaller pieces and convey it to the mouthparts, which are under its head. Some mouthparts have sensory hairs that can taste food, some have sharp spines that act as teeth to tear food into smaller pieces, and others are small and just flutter to help keep pieces of food from floating away. The stomach is only about an inch away from the mouth, or about 2.5 cm, no matter the size of the lobster. The stomach itself, and the short esophagus leading to the stomach, are lined with chitin spines that act like teeth to grind food up while enzymes break it down to fully digest it. This seems like a really complicated way to eat, but it’s actually not all that different from the way we eat, it’s just that instead of mouthparts and stomach teeth, we do all our grinding up of food in the mouth with just one set of teeth.

The lobster’s body is protected by an exoskeleton made of chitin, but the trouble with exoskeletons is that they don’t grow. The lobster has to shed its exoskeleton every so often and grow a new one that fits better, and until the new exoskeleton has hardened, the lobster is vulnerable and will usually hide. This can take several weeks. When a lobster is young and growing rapidly, it may molt its exoskeleton every few months or even more often, while an adult lobster typically only molts once every year or two.

Molting takes energy, though, and the bigger a lobster is, the more energy it takes to molt. It’s not like taking off a shirt. The lobster has to wriggle carefully out of its exoskeleton through a split between its tail and abdomen, making sure not to hurt its soft body in the process, and it even molts its stomach teeth, more properly called a gastric mill.

It’s a long, difficult process, during which time the lobster is mostly helpless. Some studies indicate that something like 10% of all lobsters actually die during the molting process. A lobster usually eats its shed exoskeleton in order to extract calcium from it, which helps its new exoskeleton harden faster.

Unlike many animals, lobsters keep growing throughout their lives. Since they can live a long time, that means sometimes people catch really big lobsters. The biggest ever reliably measured was an American lobster caught in 1977 off the coast of Nova Scotia, Canada in North America. It weighed 44 lbs, 6 oz, or 20.14 kg and was 3.5 feet long, or 106 cm. A more ordinary weight of a good-sized lobster is about 2 lbs, or 910 grams.

The lobster can definitely live at least 50 years, and some researchers suggest it can live much longer than that. But it’s really hard to tell the age of a lobster. You can’t go by size since individual lobsters grow at different rates depending on how much food they can find and other factors. A study published in September 2021 reports that a DNA test of genetic modifications that lobsters and other animals accumulate during their lives can determine a lobster’s age with a good degree of accuracy. This is important since it will help conservationists learn more about lobster populations, many of which are under increasing pressure from commercial fishing.

There’s a lot of talk online about how the lobster is actually immortal, and that if nothing kills it, it will just live forever. This rumor got started when scientists reported that lobsters express an enzyme called telomerase that repairs damage to DNA sequences at the ends of chromosomes. Most adult animals lose the ability to express telomerase, but the lobster doesn’t.

But lobsters aren’t immortal. A really old lobster stops shedding its exoskeleton, which slowly becomes more and more battered. The exoskeleton is part of the lobster’s body and can contract bacterial infections when it’s injured. Sometimes the infections are bad enough that it fuses the exoskeleton to the body permanently, so if the lobster does eventually get to the point where it can molt, it gets stuck trying to and dies. Sometimes the exoskeleton just rots away, which leads to the lobster’s death.

Still, the telomerase probably helps the lobster live for such a long time. Now that scientists have a way to determine a lobster’s actual age without harming it, hopefully soon we’ll learn more about how old they really get. We might be surprised, who knows?

Most species of lobster are brown, black, or greenish, which helps them hide on the sea floor. When a lobster is cooked by boiling, chemicals in its exoskeleton react with the hot water and turn it bright red. But sometimes—like, once every 10 million lobsters—a live lobster is found that is red. Researchers aren’t sure what causes this coloration.

Sometimes lobsters can be blue too. It’s still rare but not as rare as red coloration, estimated at about one every two million lobsters. While some species of lobster are naturally dark blue or even dark purple, a blue lobster is a really pretty shade of bright blue. It’s caused by a genetic mutation that results in it producing more of a protein that reacts with the pigments in its body, turning it blue. Since blue lobsters are so striking and attractive, lobster fishers usually either throw blue lobsters back or donate them to local aquariums. People sometimes assume blue lobsters are poisonous even though they’re not, so mostly no one wants to eat them anyway.

Lobsters are closely related to crabs and shrimp, and some clawed lobsters look a lot like their close relatives. This includes the scampi, which is the pinkish and silvery-white coloration of a prawn or shrimp, and only grows about 10 inches long at most, or 25 cm. It lives in parts of the northeastern Atlantic and parts of the Mediterranean Sea, where it digs a burrow in the muddy sea floor and spends most of its time hiding. It eats worms, small fish, jellyfish, and anything else it can catch. There are other species of scampi that live in other parts of the world’s oceans too.

Another lobster that looks even more like a shrimp is the rosy lobsterette, which only grows about 5 inches long, or 13 cm, and which is naturally red. This isn’t a rare coloration but an adaptation to its habitat. Unlike most lobsters, which live in shallow coastal waters, the rosy lobsterette lives in much deeper water where there’s very little light. As we’ve talked about before, the wavelength of light that is red can’t penetrate very far into water, so a red animal in the deep sea is basically invisible. A lot of deep-sea animals can’t even perceive the color red. The rosy lobsterette lives in the Gulf of Mexico, around the Caribbean, and in the western Atlantic Ocean.

There are actually quite a few species of lobster that live in the deep sea, with more being discovered every so often. In 2010 a new species of deep-sea lobster was described, Dinochelus ausubeli, which lives near the Philippines in South Asia. It was discovered during the ten-year Census of Marine Life, which sponsored 540 expeditions by thousands of scientists all over the world. It only grows a few inches long, or about 5 cm, and is mostly transparent with some pinkish coloring. It has one really long, thin, spiny claw with a bulbous base, while the other claw is much smaller.

There are a whole lot of other clawed lobster species, some of them known from only a few specimens. The Cape lobster, for instance, lives off the coast of South Africa in rocky areas, and even though it’s been known to science since the late 18th century, we don’t know much about it. It’s small, only growing about 4 inches long, or 10 cm, and ranges in coloration from greenish to yellowish to brown, even sometimes red, and it looks like a miniature version of the European or American lobsters although it’s not very closely related. In 1992 someone found one, which was such a rare occurrence that it was reported in the news. It was only the 14th specimen ever found at the time, although the publicity it received got other people out looking for the little lobster and more have been found since.

In other words, there are undoubtedly lots more species of lobster than we know about, just waiting to be discovered.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 289: Weird Worms

This week we learn about some weird worms!

Further reading:

Otherworldly Worms with Three Sexes Discovered in Mono Lake

Bizarre sea worm with regenerative butts named after Godzilla’s monstrous nemesis

Underground giant glows in the dark but is rarely seen

Giant Gippsland earthworm (you can listen to one gurgling through its burrow here too)

Further watching:

A giant Gippsland earthworm

Glowing earthworms (photo by Milton Cormier):

This sea worm’s head is on the left, its many “butts” on the right [photo from article linked to above]:

A North Auckland worm [photo from article linked to above]:

A giant beach worm:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we continue Invertebrate August with a topic I almost saved for monster month in October. Let’s learn about some weird worms!

We’ll start with a newly discovered worm that’s very tiny, and we’ll work our way up to larger worms.

Mono Lake in California is a salty inland lake that probably started forming after a massive volcanic eruption about 760,000 years ago. The eruption left behind a crater called a caldera that slowly filled with water from rain and several creeks. But there’s no outlet from the lake—no river or even stream that carries water from the lake down to the ocean. As a result, the water stays where it is and over the centuries a lot of salts and other minerals have dissolved into the lake from the surrounding rocks. The water is three times as salty as the ocean and very alkaline.

No fish live in the lake, but some extremophiles do. There’s a type of algae that often turns the water bright green, brine shrimp that eat the algae, some unusual flies that dive into the water encased in bubbles, birds that visit the lake and eat the brine shrimp and flies, and eight species of worms that have only been discovered recently. All the worms are weird, but one of them is really weird. It hasn’t been described yet so at the moment is just going by the name Auanema, since the research team thinks it probably belongs in that genus.

Auanema is microscopic and lives throughout the lake, which is unusual because the lake contains high levels of arsenic. You know, a DEADLY POISON. But the arsenic and the salt and the other factors that make the lake inhospitable to most life don’t bother the worms.

Auanema produces offspring that can have one of three sexes: hermaphrodites that can self-fertilize, and males and females that need each other to fertilize eggs. Researchers think that the males and females of the species help maintain genetic diversity while the hermaphrodites are able to colonize new environments, since they don’t need a mate to reproduce.

When some of the worms were brought to the laboratory for further study, they did just fine in normal lab conditions, without extreme levels of arsenic and so forth. That’s unusual, because generally extremophiles are so well adapted for their extreme environments that they can’t live anywhere else. But Auanema is just fine in a non-harsh environment. Not only that, but the team tested other species in the Auanema genus that aren’t extremophiles and discovered that even though they don’t live in water high in arsenic, they tolerate arsenic just as well as the newly discovered species.

The team’s plan is to sequence Auanema’s genome to see if they can determine the genetic factors that confer such high resistance to arsenic.

Next, we go up in size from a teensy worm to another newly discovered worm, this one only about 4 inches long at most, or 10 cm. It’s a marine polychaete worm that lives inside sea sponges, although we don’t know yet if it’s parasitizing the sponge or if it confers some benefit to the sponge that makes this a symbiotic relationship. The worm was only discovered in 2019 near Japan and described in early 2022 as Ramisyllis kingghidorahi.

Almost all worms known are shaped, well, like worms. They have a mouth at one end, an anus at the other, and in between they’re basically just a tube. Ramisyllis is one of only three worms known that have branched bodies, which is why they’re called branching sea worms. In this case, Ramisyllis has a single head, which stays in the sponge, but its other end branches into multiple tail ends that occasionally break off and swim away. The tails are specialized structures called stolons. When a stolon breaks off, it swims away and releases the eggs or sperm it contains into the water before dying. The worm then regenerates another stolon in its place.

Ramisyllis’s branches are asymmetrical and the worms found so far can have dozens of branches. Its close relation, a species that lives in sponges off the coast of northern Australia, can have up to 100 branches. Researchers suspect that there are a lot more species of branching sea worms that haven’t been discovered yet.

Next, let’s head back to land to learn about a regular-sized earthworm. There are quite a few species across three different earthworm families that exhibit a particular trait, found in North and South America, Australia and New Zealand, and parts of Africa. A few species have been introduced to parts of Europe too. What’s the trait that links all these earthworms? THEY CAN GLOW IN THE DARK.

Bioluminescent earthworms don’t glow all the time. Most of the time they’re just regular earthworms of various sizes, depending on the species. But if they feel threatened, they exude a special slime that glows blue or green in the dark, or sometimes yellowish like firefly light. The glow is caused by proteins and enzymes in the slime that react chemically with oxygen.

Researchers think that the light may startle predators or even scare them away, since predators that live and hunt underground tend to avoid light. The glow may also signal to predators that the worm could taste bad or contain toxins. The light usually looks dim to human eyes but to an animal with eyes adapted for very low light, it would appear incredibly bright.

One bioluminescent earthworm is called the New Zealand earthworm. It can grow up to a foot long, or 30 cm, although it’s only about 10 mm thick at most, and while it’s mostly pink, it has a purplish streak along the top of its body (like a racing stripe).

Like other earthworms, the New Zealand earthworm spends most of its time burrowing through the soil to find decaying organic matter, mostly plant material, and it burrows quite deep, over 16 feet deep, or 5 meters. If a person tried to dig a hole that deep, without special materials to keep the hole from collapsing, it would fall in and squish the person. Dirt and sand are really heavy. The earthworm has the same problem, which it solves by exuding mucus from its body that sticks to the dirt and hardens, forming a lining that keeps the burrow from collapsing. This is a different kind of mucus than the bioluminescent kind, and all earthworms do this. Not only does the burrow lining keep the worm safe from being squished by cave-ins, it also contains a toxin that kills bacteria in the soil that could harm the worm.

Worms that burrow as deep as the New Zealand earthworm does are called subsoil worms, as opposed to topsoil worms that live closer to the surface. Topsoil contains a lot more organic material than subsoil, but it’s also easier for surface predators to reach. That’s why topsoil worms tend to move pretty fast compared to subsoil worms.

The New Zealand earthworm glows bright orange-yellow if it feels threatened, so bright that the Maori people used the worm as bait when fishing since it’s basically the best fish lure ever.

Another New Zealand earthworm is called the North Auckland worm, and while it looks like a regular earthworm that’s mostly pink or greenish, it’s also extremely large. Like, at least four and a half feet long, or 1.4 meters, and potentially much longer. It typically lives deep underground in undisturbed forests, so there aren’t usually very many people around on the rare occasion when heavy rain forces it to the surface. Since earthworms of all kinds absorb oxygen through the skin, instead of having lungs or gills, they can’t survive for long in water and have to surface if their burrow completely floods.

We don’t actually know that much about the North Auckland worm. Like the New Zealand earthworm, it’s a subsoil worm that mostly eats dead plant roots. Some people report that it glows bright yellow, although this hasn’t been studied and it’s not clear if this is a defensive reaction like in the New Zealand earthworm. It’s possible that people get large individual New Zealand earthworms confused with smaller North Auckland worm individuals. Then again, there’s no reason why both worms can’t bioluminesce.

An even bigger worm is the giant beach worm. It’s a polychaete worm, not an earthworm, and like other polychaete worms, including the branching sea worm we talked about earlier, it has a segmented body with setae that look a little like legs, although they’re just bristles. The giant beach worm’s setae help it move around through and over the sand. It hides in a burrow it digs in the sand between the high and low tide marks, but it comes out to eat dead fish and other animals, seaweed, and anything else it can find. It has strong jaws and usually will poke its head out of its burrow just far enough to grab a piece of food. It has a really good sense of smell but can’t see at all.

There are two species of giant beach worm that live in parts of Australia, especially the eastern and southeastern coasts, where people dig them up to use as fish bait. The largest species can grow up to 8 feet long, or 2.4 meters, and possibly even longer. There are also two species that live in Central and South America, although we don’t know much about them.

Another huge Australian worm is the endangered Giant Gippsland earthworm that lives in Victoria, Australia. It’s also a subsoil worm and is about 8 inches long, or 20 cm…when it’s first hatched. It can grow almost ten feet long, or 3 meters. It’s mostly bluish-gray but you can tell which end is its head because it’s darker in color, almost purple. It lives beneath grasslands, usually near streams, and is so big that if you happen to be in the right place at the right time on a quiet day and listen closely, you might actually hear one of the giant worms moving around underground. When it moves quickly, its body makes a gurgling sound as it passes through the moist soil in its burrow.

The Giant Gippsland earthworm is increasingly endangered due to habitat loss. It also reproduces slowly and takes as much as five years to reach maturity. Conservationists are working to protect it and its remaining habitat in Gippsland. The city of Korumburra used to have a giant worm festival, but it doesn’t look like that’s been held for a while, which is too bad because there aren’t enough giant worm festivals in the world.

To finish us off, let’s learn what the longest worm ever reliably measured is. It was found on a road in South Africa in 1967 and identified as Microchaetus rappi, or the African giant earthworm. It’s mostly dark greenish-brown in color and it looks like an earthworm, because it is an earthworm. On average, this species typically grows around 6 feet long, or 1.8 meters, which is pretty darn big, but this particular individual was 21 feet long, or 6.7 meters. It’s listed in the Guinness Book of World Records as the longest worm ever measured. Beat that, other worms. I don’t think you can.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 288: Mystery Invertebrates

Thanks to Joel for suggesting this week’s topic!

Happy birthday to Fern this week!

Further reading:

Small, rare crayfish thought extinct is rediscovered in cave in Huntsville city limits

Hundreds of three-eyed ‘dinosaur shrimp’ emerge after Arizona monsoon

An invertebrate mystery track in South Africa

The case of the mysterious holes in the sea floor

Contemplating the Con Rit

The Shelton Cave crayfish, rediscovered:

The three-eyed “tadpole shrimp” or “dinosaur shrimp,” triops [photo from article linked above]:

A leech track in South Africa [photo from article linked above]:

A track, or at least a series of holes, discovered in the deep seafloor [photos from article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Thanks to Joel who suggested we do an episode about mystery invertebrates! It took me a while, but I think you’re really going to like this episode. Some of the mysteries are solved and some are not, but they’re all fun.

Before we get to the mystery animals, though, we have a birthday shout-out! A great big happy birthday to Fern! I hope you have your favorite type of birthday cake or other treat and get to enjoy it with your loved ones.

Our first mystery starts in a cave near Huntsville, Alabama in the southern United States, which is in North America. Shelta Cave is a relatively small cave system, only about 2,500 feet long, or 760 meters. That’s about half a mile. It’s a nature preserve now but in the early 1900s it was used as an underground dance hall with a bar and everything.

Biologist John Cooper studied the cave’s aquatic ecosystem in the 1960s when he was doing his dissertation work. His wife Martha helped him since they were both active cavers. At the time, the cave ecosystem was incredibly diverse, including three species of crayfish. One was called the Shelta Cave crayfish, which was only a few inches long, or about 5 cm, mostly translucent or white since it didn’t have any pigment in its body, and with long, thin pincers.

It was rarer than the cave’s other two crayfish species, and unlike them it had only ever been found in Shelta Cave. From 1963 to 1975, only 115 individuals had been confirmed in repeated studies of the cave’s ecosystem.

Then, in the 1970s, several things happened that caused a serious decline in the diversity of life in the cave.

The first was development of the land around the cave into subdivisions, which meant that more pesticides were used on lawns and flower beds, which made its way into the groundwater that entered the cave. It also meant more people discovering the cave and going in to explore, which was disturbing a population of gray bats who also lived in the cave. To help the bats and keep people out, the park service put a gate over the entrance, but the initial gate’s design wasn’t a very good one. It kept people out but it also made it harder for the bats to go in and out, and eventually the bats gave up and moved out of the cave completely. This really impacted the cave’s ecosystem, since bats bring a lot of nutrients into a cave with their droppings and the occasional bat who dies and falls to the cave floor.

The gate has since been replaced with a much more bat-friendly one, but studies afterwards showed that a lot of the animals found in the cave had become rare. The Shelta Cave crayfish had disappeared completely. One was spotted in 1988 but after that, nothing, and the biologists studying the cave worried that it had gone extinct.

Then, in 2019, a team of scientists and students surveying life in the cave spotted a little white crayfish with long, thin pincers in the water. The team leader dived down and scooped it up with his net to examine more closely. The crayfish turned out to be a female Shelta Cave crayfish with eggs, which made everyone excited, and after taking a tiny tissue sample for DNA testing, and lots of photographs, they released her back into the water. The following year they found a second Shelta Cave crayfish.

The Shelta Cave crayfish is so little known that we don’t even know what it eats or how it survives in the same environment with two larger crayfish species. Biologist Dr. Matthew Niemiller is continuing Dr. Cooper’s initial studies of the cave and will hopefully be able to learn more about the crayfish and its environment.

Next let’s travel from a cool, damp, flooded cave in Alabama to northern Arizona. Arizona is in the western United States and this particular part of the state has desert-like conditions most of the year. Almost a thousand years ago, people built what is now called Wupatki Pueblo, a 100-room building with a ballcourt out front and a big community room. It was basically a really nice apartment building. Wupatki means “tall house” in the Hopi language, and while the pueblo people who built it are long gone, Wupatki is still an important place for the Hopi and other Native American tribes in the area. It’s also a national monument that has been studied and restored by archaeologists and is open to the public.

In late July 2021, torrential rain fell over the area, so much rain that it pooled into a shallow temporary lake around Wupatki, including flooding the ballcourt. The ballcourt is 105 feet across, or 32 meters, and surrounded by a low wall. One day while the ballcourt was still flooded, a tourist came up to the lead ranger, Lauren Carter. The visitor said there were tadpoles in the ballcourt.

There are toads in the area that live in burrows and only come out during the wet season when there’s rain, and Carter thought the tadpoles might be from the toads. She went to investigate, saw what looked like tadpoles swimming around, and scooped one up in her hands to take a closer look. But the tadpoles were definitely not larval toads. In fact, they kind of looked like teensy horseshoe crabs, with a rounded shield over the front of the body and a segmented abdomen and tail sticking out from behind, with two long, thin spines at the very end that are called caudal extensions. It had two pairs of antennae and lots of small legs underneath, some adapted for swimming. The largest of the creatures were about two inches long, or 5 cm.

What on earth were they, and where did they come from? This area is basically a desert. Carter stared at the weird little things and remembered hearing about something similar when she worked at the Petrified Forest National Park, also in Arizona. She looked the animal up and discovered what it was.

It’s called Triops and is in the order Notostraca. Notostracans are small crustaceans shaped sort of like tadpoles, which is why it’s sometimes called the tadpole shrimp, but it’s not a shrimp. It has two eyes on the top of its head visible through its flattened, smooth carapace. Species in the genus Triops also have a so-called third eye between the two ordinary eyes, although it’s a very simple eye that probably only detects light and dark. Many crustaceans have these third eyes in their larval forms but very few retain them into adulthood.

Notostracans have been around for about 365 million years, and haven’t changed much in the last 250 million years. It’s an omnivore that mostly lives on the bottom of freshwater pools and shallow lakes, often temporary ones like the flooded ballcourt, although some species live in brackish water and saline pools, or permanent waterways like peat bogs.

Triops eggs are able to tolerate high temperatures and dry conditions, with the eggs remaining viable for years or even decades in the sediment of dried-up ponds. When enough water collects, the eggs hatch and within 24 hours are miniature versions of the adult Triops. They grow up quickly, lay lots of eggs, and die within a few months or when the water dries up again.

Triops eggs are even sold as aquarium pets, since they’re so unusual looking and are easy to care for. They basically eat anything. They especially like mosquito larvae, so if you see some in your local pond or other waterway, give them a tiny high-five.

In 1996, some workers near Indianapolis, Indiana were servicing a tank full of chemical byproducts from making plastic auto parts when they noticed movement in the toxic goo. They investigated and saw several squid-like creatures swimming around. They were red-brown and about 8 inches long, or 20 cm, including their arms or tentacles, but were only about an inch wide, or 2.5 cm.

The workers managed to capture one and put it in a jar, which they stuck in the break room refrigerator. By the time someone in management arranged to have it examined by a scientist, the jar had been thrown out. If you’ve ever tried to keep food in a break room fridge, you’ll know that there’s always someone who will throw out everything in the fridge that isn’t theirs, no matter whether it’s labeled or brand new or not. I have had my day’s lunch thrown out that had only been in the fridge a few hours. Anyway, when the tank was cleaned out the following year, no one found any creatures in it at all.

This sounds really interesting, but there’s precious little information to go on. The story appeared in a few newspapers but we have no names of the people who reportedly saw the creatures, no follow-up information. It has all the hallmarks of a hoax or urban legend. The creatures’ size also seems quite large for extremophiles in a small, closed environment. What would they find to eat to get so big?

Next let’s talk about some mysterious tracks made by invertebrates, as far as we know. We’ll start with a track on land that was a mystery at first, but was solved. A man in the Kruger National Park in South Africa named Rudi Hulshof came across a weird track in the sandy dirt that he didn’t recognize. It was maybe 10 mm wide and kind of looked like a series of connected rectangles, as though a tiny person was moving a tiny cardboard box by rolling it over and over, but there weren’t any footprints, just the body track.

Curious, Hulshof followed the track to find what had made it, and finally discovered the culprit. It was a leech! Most leeches live in water, whether it’s the ocean, a pond or swamp, a river, or just flooded ground. Most species are parasitic worms that attach to other animals with suckers, then pierce the animal’s skin and suck its blood. The leech stays on the animal until it’s full, then drops off. Some leeches are terrestrial, but it appears that this one was a freshwater leech that had attached to an animal passing through the water, then dropped off onto land. It had crawled as far as it could trying to find a better environment, but when Hulshof found it it was dead, so it had not had a good day.

The leech moves on land by stretching the front of its body forward, then dragging its tail end up in a bunch kind of like a worm (it is a kind of worm), so that’s why its track was so unusual-looking. It’s a good thing Hulshof found the leech before something ate it, or else he’d probably still be wondering what had made that track.

We have photographs of other tracks that are still mysterious. You may have heard about one that’s been in the news lately. This one was found by a deep-sea rover in July 2022, more than a mile and a half deep, or 2500 meters, in the north Atlantic Ocean.

The track may or may not actually be a track, although it looks like one at first glance. It consists of a line of little holes in the seafloor, one after the other, although they’re not all the same distance apart. The rover saw them on two separate dives in different locations, so it wasn’t just one track, but although the scientists operating the rover remotely tried to look into the holes, they couldn’t get a good enough view. It does look like there’s sediment piled up next to the holes, so researchers think something might actually be digging the holes, either digging down from the surface to find food hidden in the sediment, or digging up from inside the sediment to find food in the water. The rover did manage to get a sample of sediment from next to one of the holes and a water sample from just above it, and eventually those samples will be tested for possible environmental DNA that might help solve the mystery.

This wasn’t the first time these holes have been seen in the area, though. An expedition in 2004 saw them and hypothesized that the holes are made by an invertebrate with a feeding appendage of some kind that it uses to dig for food. Not only that, we have similar-looking fossil holes in rocks formed from deep marine sediments millions of years ago.

Other deep-sea tracks have a known cause, and humans are responsible. In the 1970s and 1980s, ships with deep-sea dredging equipment traveled through parts of the Pacific Ocean, testing the ocean floor to see whether the minerals in and beneath the sediment were valuable for mining. A few years ago scientists revisited the same areas to see how the ecosystems impacted by test mining had responded.

The answer is, not well. Even after 40 years or so since the deep-sea mining equipment sampled the sea floor, the marks remain. The deep sea is a fragile ecosystem to start with, and any disturbance takes a long, long time to recover—possibly thousands of years. So while the holes discovered in 2022 were almost certainly made by an animal or animals, they might be quite old.

Let’s finish with a mystery animal we’ve talked about before, but a really long time ago—way back in episode 6. It’s definitely time to revisit it.

In 1883 when he was 18 years old, a Vietnamese man named Tran Van Con had seen the body of an enormous creature washed up on shore at Hongay in Vietnam. Van Con said it was probably 60 feet long, or 18 meters, but less than three wide wide, or 90 cm. It had dark brown plates on its back with long spines sticking out from them to either side, and the segment at its tail end had two more spines pointing straight back. It didn’t have a head, which had presumably already rotted off, or something bit it off before the animal washed ashore. It had been dead for a long time considering the smell. In fact, it smelled so terrible that locals finally towed it out to sea to get rid of it. It sank and that was the last anyone ever saw of it. The locals referred to it as a con rit, which means “millipede,” since the armor plates made it look like the segmented body of an immense millipede.

Lots of people have made suggestions as to what the con rit could be, but nothing really fits. It was the length of a whale, but it doesn’t sound like any kind of whale known. The armored plates supposedly rang like metal when hit with a stick. Even if this was an exaggeration, it probably meant the armor plates were really hard, not just the skin of a dead whale that had hardened in the sun. It also implies that the plates had empty space under them, allowing them to echo when hit. Zoologist Dr. Karl Shuker suggests that the plates might have been the exoskeleton of a crustacean of some kind, which makes a lot more sense than a whale, but the sheer size of the carcass is far larger than any crustacean, or even any arthropod, ever known.

There’s also some doubt that the story is accurate. It might even be a hoax. We only know about the con rit at all because the director of Indochina’s Oceanographic and Fisheries service, Dr. A. Krempf, talked to Tran Van Con about it in 1921. That was 38 years after Van Con said he saw the creature, so he might have misremembered details. Not only that, Krempf translated the story from Vietnamese, and there’s no way of knowing how accurate his translation was.

The con rit is also a monster from Vietnamese folktales, a sort of sea serpent that had lots of feet. It was supposed to attack fishing boats to eat the sailors, until a king caught it and chopped it up into pieces. A local mountain was supposedly formed from its head, and the other pieces of its body turned into the unusual stones found on a nearby island.

There’s always the possibility that Tran Van Con actually told Krempf this folktale, but that Krempf misunderstood and thought he was telling him something he actually witnessed. Then again, there are eight reports from ships in the area between 1893 and 1915 of creatures that might have been a con rit. One account from 1899 was a sighting of a creature estimated as being 135 feet long, or 41 meters, which was rowing itself along at the surface by means of multiple fins along its sides.

Whatever the con rit was, there haven’t been any sightings since 1915. That doesn’t mean there isn’t a population of incredibly long invertebrates living in the deep ocean in southeast Asia. If it does exist, maybe one day a deep-sea rover will spot one. Maybe it dug those little holes, who knows?

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 287: Sand Crabs, Sea Slugs, and a Mystery Octopus

Sign up for our mailing list! Even though I hardly ever send an email to it!

It’s INVERTEBRATE AUGUST! Thanks to Elizabeth, Richard, and Llewelly for their suggestions this week!

Further reading:

Meet Phylliroe: the sea slug that looks and swims like a fish

Hey, so these sea slugs decapitate themselves and grow new bodies

Found, Then Lost, Then Found Again: Scientists Have Rediscovered the Sand Octopus

A sand crab in the air:

Sand crabs in the water, feeding:

Phylliroe is a sea slug that looks like a fish (pictures from article linked to above):

How I used to draw snails when I was a kid, adding an extra foot because I didn’t understand that the “foot” of a snail/slug is the flat part of the body that touches the ground:

The mysterious sand octopus in mid-swim:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the first week of invertebrate August and we’re heading to the ocean for our first episode! Let’s jump right in with an episode about sand crabs, a couple of sea slugs, and an octopus mystery that was recently solved. Thanks to Elizabeth, my brother Richard, and Llewelly for their suggestions!

We’ll start with Elizabeth’s suggestion. The sand crab is also called the sand bug, the mole crab, or similar names that refer to its habit of burrowing into the sand. It’s common throughout much of the world’s oceans, especially in warm areas, and can be extremely numerous. It’s also sometimes called the sand flea, but it’s not the kind of tiny jumping crustacean that bites, also called the sand flea. This little crustacean is harmless to humans. It doesn’t even have pincers.

The sand crab isn’t a true crab although it is closely related to them. It’s gray-brown and has a tough carapace to protect it when it’s washed around by waves and to help protect it from predators. Females are larger than males and can grow up to an inch and a half long in the largest species, or about 35 mm, and an inch wide, or 25 mm. So it’s longer than it is wide, unlike most crabs, and its carapace is domed sort of like a tiny tortoise shell. Overall, it’s shaped sort of like a streamlined barrel. I saw one site that called it the sand cicada and it is actually about the same size and shape as a cicada, which it isn’t related to at all except that they’re both invertebrates. Some species have little spines on the carapace while others are smooth.

The sand crab lives in the ocean, specifically in the intertidal zone right at the area where waves wash up on the beach. This is called the swash, by the way, which is a great word. The sand crab burrows into the sand tail-first, using its strong rear legs, and during the time that there’s water over the sand, it unfurls its feathery antennae to filter tiny food particles from the water. When the wave goes out, it retracts its antennae and works on staying buried in the sand as the next wave rolls in.

In some species, males are very similar to females, but smaller. In other species, they’re tiny, barely 3 mm long at most, and even as adults they resemble larvae. The male finds a female and grabs hold of her leg, and there he stays. I tried to find out more about this, but it doesn’t look like the humble sand crab gets a lot of attention. If you’re interested in becoming a scientist who studies invertebrates and you want to spend a lot of time on the beach, the sand crab would make a good study buddy.

Lots of fish and birds eat sand crabs, and people do too. In many places they’re considered a delicacy and grilled as a snack. This isn’t surprising since they’re related to other crustaceans people like to eat, like crabs and lobsters.

Next, let’s learn about two strange sea slugs. We’ve talked about sea slugs a few times before, including in episodes 215 and 129, but there are a lot of species, with more being discovered pretty often.

Llewelly sent me a link ages ago about a sea slug that’s related to the sea bunny, which we talked about in the cutest invertebrates episode, 215. It’s called Phylliroe and doesn’t look like a little bunny or a slug. It looks like a fish.

Phylliroe grows a few inches long at most, or 5 cm, and the article Llewelly sent, which I’ve linked to in the show notes, points out that it’s about the size of a goldfish. Its rear end is shaped roughly like a fish tail, which it uses just like a fish tail to propel itself through the water. It’s probable that Phylliroe’s shape doesn’t have anything to do with disguising it, but instead is just the result of convergent evolution. A body streamlined to move through the water with minimal resistance is always going to be fish-shaped, because that’s why fish are shaped the way they are. The fish-like tail is also an efficient way to move through the water relatively quickly.

Phylliroe mostly eats tiny jellyfish, which it grabs with its small foot. It doesn’t need a big flat foot to glide on, since it doesn’t live on the sea floor like some of its relations, so over many, many generations its foot has become smaller and smaller until it’s just a little tiny foot near its mouth. It’s still sticky, though, which means jellies stick to it, which means it’s easier for Phylliroe to eat the jellies.

Phylliroe is mostly see-through, although you can see its digestive system. It also has two so-called horns, called rhinophores, that it probably uses to sense the chemical signature of its prey in the water. If you remember the sea bunny, its rhinophores look like bunny ears. Phylliroe’s look more like thick antennae or barbels. Phylliroe also exhibits bioluminescence, which is not a typical trait for a sea slug.

My brother Richard alerted me to another sea slug a while back, this one referred to as the Deadpool slug. The reason why it’s called the Deadpool slug is lost on me because I haven’t seen that movie or read the comic book, but the sea slug can separate its head from its body when it wants to, and it just grows a new body. The old body eventually dies instead of growing a new head.

The Deadpool slug is one of a type of sea slug that we talked about back in episode 129, about the blurry line between plants and animals. It eats algae and incorporates the algae’s chloroplasts into its body to use. Chloroplasts are what allows a plant to photosynthesize energy from sunlight, and the sea slug absolutely uses them for the same thing. Researchers think the Deadpool slug uses the energy from photosynthesis to regrow its body even though it has no digestive system after it separates its head from its body.

The big question is why the Deadpool slug wants to grow a new body in the first place. It doesn’t seem to be a defensive strategy if the sea slug is attacked. Instead, researchers think it often happens when the body contains too many parasites, specifically a type of tiny parasitic copepod, which is a crustacean. It might also happen after a predator bites a big chunk off the slug. Instead of hauling around a damaged body, the sea slug just jettisons the old body and regrows it.

Let’s finish with a recently solved octopus mystery that goes back almost 200 years. In 1838, the United States launched a scientific expedition throughout the Pacific Ocean and parts of the Atlantic that lasted four years. While it was mostly for exploration and mapping of places seldom or never visited by outsiders, the expedition also brought along a team of scientists and artists to document and study all the animals and plants they found. One of the things they found was an octopus.

The scientists didn’t fish the octopus up themselves. They actually bought several of them at a fish market in Brazil. It was red with little white spots all over it and not very big, although a dead octopus tends to shrink, especially when it’s out of water. The specimens were preserved in a jar of alcohol and brought back to the United States, where in 1852 they were studied by an expert on mollusks, Augustus Addison Gould. Octopuses are in the phylum Mollusca and Gould had examined lots and lots of octopuses. He decided this one was a new species and named it Callistoctopus furvus.

At some point the specimens were either lost or destroyed. Decades passed, then a century, then almost two centuries. Modern scientists thought Gould was probably wrong and that the little red octopus was one known from the Mediterranean Sea, Calistoctopus macropus. It’s red with little white spots, and has a mantle length only about 8 inches long, or 20 cm, although it has long arms and has been measured as almost five feet long, or 1.5 meters, if you include the arms. It lives in shallow water, where it spends a lot of time hunting for small animals that live in coral or in sea grass. It’s sometimes called the grass octopus.

Then a graduate student in Brazil named Manuella Dultra was studying octopuses, and part of her research involved talking to local fishers. They told her about an octopus that lived in shallow water and often buried itself in sand to hide, which is why they called it the sand octopus. They also said it was generally only seen when the wind blew from the east, and was more likely to be out and about during the new moon. Naturally Dultra wanted to find one. She asked the fishers to keep an eye out, and in 2013 she was given a freshly caught specimen.

The biologists at Dultra’s university identified the octopus as C. macropus, the grass octopus. Dultra wasn’t so sure. She noticed a lot of differences that seemed significant, and decided to do more research. She and her team gathered genetic material from specimens the local fishers caught, and sure enough, it was different from the grass octopus.

At the same time, researchers in Mexico had also found a sand octopus that they thought might be C. furvus. When Dultra compared her specimens’ DNA profile with the DNA profile from the Mexican octopus, it matched.

The discovery is still very new and isn’t accepted by all scientists yet, not until more studies are completed. The sand octopus appears to be rare, and once it’s definitely identified as its own species or subspecies and we learn more about it, we can do more to protect it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 286: Chimerism, Mosaicism, and Venus the Cat

Thanks to Vaughn for suggesting this week’s episode topic about Venus the cat and her unusual coat pattern!

Further reading:

Mystery Cats of the World Revisited by Dr. Karl P.N. Shuker

Further listening:

Half-siders and sea monkeys Patreon episode from December 2018 (unlocked episode)

Venus the cat:

“Half-sider” birds can be spectacular:

Half-side chimeras are not just restricted to birds:

Ranger the “black lion” (photo by Peter Adamson, from this site which you should also read). Note the black patch on his right front leg:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week I had planned to release our updates episode, but I didn’t have time to finish it. The 2022 updates episode will run in September instead, since we’re doing Invertebrate August again this year!

Way back at least a year ago and possibly more, Vaughn suggested we do an episode about “rare two-tone animals like Venus the cat.” I put the suggestion on my list and totally forgot about it until today, when I saw it and thought, “hmm, who’s Venus the cat?”

If you don’t already know, Venus is a beautiful cat whose coloration is mostly what’s called tortoiseshell, meaning she has a mixture of colors on her body, in her case black and orange. But Venus’s face is completely black on one side with a green eye, but orange tabby on the other side with a blue eye. She also has a white bib and white on her paws.

Venus became famous after the family who adopted her as a stray in 2009 posted pictures of her online. Her coloration is so unusual that everyone wondered what caused it. The answer is that we aren’t exactly sure, but veterinarians and experts in cat genetics do have some pretty good ideas.

There are probably several things going on genetically with Venus that resulted in her interesting coloration. Her different-colored eyes are one result. When an animal has different-colored eyes, called heterochromia iridis, there are a number of possible causes, from an injury to one eye to various genetic conditions. Sometimes it’s not complete, meaning one eye may be partly a different color. It even happens in people sometimes, although it’s rare.

In Venus’s case, researchers think her heterochromia may be due to a gene that produces what’s called piebaldism. A piebald animal has white markings when an ordinary animal of the same species doesn’t have any white markings. Some animals who naturally have a white pattern may have the word pie or pied or just bald hidden in their name, such as the magpie and the bald eagle, because it used to mean just an outfit with different contrasting colors. In the story of the pied piper, the piper had on a suit made of different colors.

The white patches of a piebald animal actually don’t have any pigment, and if a white patch is over an eye, the eye may also lack pigment and appear blue. That’s pretty common in piebald or pinto horses or in some dog breeds with white markings. The piebald gene may also affect one or both eyes even if a white patch doesn’t cover the eye, which some researchers think may be the case in Venus. Her left eye is blue even though the left side of her face is orange tabby.

Venus’s unusual facial fur coloration may be due to a condition called chimerism. Chimerism happens long before an animal is born—in fact, it happens within a few hours after an egg cell is fertilized. I’ll do my best to explain it. A lot of the next section comes from a Patreon episode from 2018, and if you want to listen to the original I’ve unlocked it for anyone to listen to and put a link in the show notes.

As soon as an egg cell is fertilized, it starts to divide into more cells, which divide into more cells, which divide into more cells, and on and on. After a while, the groups of cells start to differentiate into parts of the body. Some cells become a heart, others become toes, and so on. Eventually there’s a whole finished baby ready to be born or hatched.

If there are two fertilized egg cells, they develop into two separate babies, which are fraternal twins that don’t necessarily look alike. Occasionally, a fertilized egg cell will split and each of the two resulting cells will start to develop separately. In that case, you get identical twins.

But very rarely, you start with two egg cells that should develop into fraternal twins—but for some reason, in those very first hours when each egg cell has only divided a few times, the egg cells fuse together. The cells continue to divide and develop into not two babies, but one that contains the genetic markers for both twins.

Since the resulting single baby has genes for both twins, sometimes it will show physical traits of both twins. For instance, if one twin’s genetic makeup would have developed into a green budgie, and the other twin’s genetic makeup would have developed into a blue budgie, you get a budgie that’s green on one side and blue on the other. Occasionally one side has the markings and coloration of a male, and the other side has the markings and coloration of a female. An animal with this kind of genetic anomaly is properly called a tetragametic chimera, but it’s often called a half-sider.

This doesn’t just happen in birds. Occasionally someone will come across a butterfly where the pair of wings on one side is colored like a male of that species and the pair of wings on the other side is colored like a female. Occasionally someone will adopt a kitten that’s one color on one side and a totally different color and pattern on the other side.

So I bet now you’re wondering if it happens in humans. Yes, it does! It happens occasionally in everything, including plants. Usually no one knows if a particular animal is a chimera because most of the time it doesn’t show. It’s only when it produces a spectacular coloration difference like in half-siders that anyone takes a second look.

Venus’s facial markings look a lot like those of a half-sider, but the markings on the rest of her body don’t, so she’s probably not a half-sider. That doesn’t mean she isn’t a chimera, since while all half-siders are chimeras, not all chimeras are half-siders. However, she might have a genetic mutation called mosaicism instead.

Mosaicism is similar to chimerism, but instead of being caused by two fertilized egg cells fusing together, it’s caused by a chromosomal mutation in one cell during the embryo’s very early development. The mutation is replicated as that cell divides, and then replicated in the divided cells, and so on, so that when the organism has finished developing into a baby, part of its body contains the mutation while the rest doesn’t. The part of the body with the mutation has a different genetic profile from the rest of the body.

Mosaicism can result in various physical conditions, but for the most part you can’t tell by looking if an organism exhibits mosaicism. But sometimes you can. In 1975 a lion cub was born in Glasgow Zoo in Scotland, and he had a big black patch on his chest and right front leg, with a less dark patch on his left hind leg. Since black lions are rumored to exist but have never been scientifically documented, or even photographed, this was a big deal. When Ranger the lion grew up he was introduced to several different females in hopes that he would sire cubs that also had black patches, or which were even black all over. Unfortunately Ranger seemed to be sterile and none of his mates got pregnant.

Ranger lived to be 22 years old but died before genetic testing became widespread and sophisticated. These days we know a lot more about big cat genetics and researchers are pretty sure Ranger’s black patches resulted from somatic mosaicism, which affected some of his skin cells. Since the right side of Venus’ face is solid black, some researchers think she might have a similar condition.

Whatever the cause or causes of Venus the cat’s coloration, though, one thing is for sure. She’s an absolutely beautiful cat!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 285: The Mysterious Hueque

This week we have a mystery animal from South America, the hueque!

Further reading:

Llamas are having a moment in the U.S., but they’ve been icons in South America for millennia

Whatever happened to the hueque? Seeking the lost llama of Chile

First complete mitochondrial genome data from ancient South American camelids – The mystery of the chilihueques from Isla Mocha (Chile)

A dressed up person and her dressed up llama (picture from llama article linked above):

The noble guanaco:

Cuddly alpacas!

The noble vicuña:

A 1646 picture of a hueque:

A 1776 engraving of four camelids of South America, including the hueque. The “guemul” in the upper left is actually a llama (the huemul is a type of deer found in a small part of southern Patagonia):

A 1716 engraving supposedly depicting a hueque (central figure) alongside a llama (on the left with the carry-bags over its back):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We’ve done a lot of listener suggestions lately and I still have lots more, but this week let’s look at a mystery animal that I really want to learn more about. It’s a South American animal, specifically from central Chile, called the chilihueque or hueque.

Whether the heuque turns out to be an animal unknown to science or not, it’s definitely a camelid of some kind. Camelids include camels, llamas, and their relations, four of which are native to South America. Those four are the guanaco, the llama, the vicuña, and the alpaca, which are all closely related.

The vicuña lives in high elevations in the Andes Mountains while the guanaco lives in lower elevations. The vicuña is smaller and more delicate than the guanaco. It grows not quite three feet tall at the shoulder, or about 85 cm, with a long, slender neck and small head, and a short fuzzy tail. Its legs are long and slender too. It’s white and light brown with thick, incredibly soft fur that keeps it warm in its mountain home. It eats grass and other plants.

The vicuña lives in small groups, usually consisting of a male, several females, and their babies. When the babies are about a year old or a little older, males leave and initially form small bachelor groups while females leave and form small groups too, called sororities. Eventually both males and females of various bachelor groups and sororities will seek each other out during mating season.

Vicuña wool is extremely soft and fine, and in the days of the Inca Empire, around 500 to 600 years ago, only royalty were allowed to wear clothes made of it. It’s actually not wool like sheep wool but a fiber similar to cashmere from goats or angora from bunnies. Because the vicuña is a wild animal, it has to be captured and its fur cut off, or shorn, but it’s hard to catch. Not only that, since the vicuña is small, it doesn’t give very much fiber so you need to shear a whole lot of the animals to get enough to make a single piece of clothing.

In the olden days, the Inca people constructed traps and worked together to herd vicuña into the traps. Then they would shear the animals and release them again, but only once every four years. These days the practice has been re-instituted by the Peruvian government, although the capture and shearing is done every three years. The fiber is only supposed to be sold outside of Peru after it has been certified by the government as being gathered lawfully and humanely, and most of the money remains with the villagers who gather it. It’s extremely expensive to buy, but unfortunately that means that poachers will sometimes kill the animals to shear and sell the fiber illegally, even though it’s a protected species.

I don’t remember if I’ve ever mentioned this on the podcast, but one of my hobbies is spinning. I can take raw wool from a sheep or fiber from some other animal and turn it into yarn or thread using my spinning wheel or hand spindle, and yes, I have bought legal vicuña fiber and spun it into thread. I bought a single gram of it ages ago, and spun it using a very small support spindle, because the fibers are so fine and short that they’re hard to spin any other way. My single gram produced enough thread to knit into a square about the size of a small handkerchief, which I made for a quilt the handspinning guild I was part of at the time was putting together to showcase all sorts of different animal fibers. It was a pretty amazing quilt, by the way. One woman cut her own hair short and spun her hair into thread which she then wove into a square with a small hand loom. Human hair is actually really coarse when you spin it, because the ends stick out and are prickly.

Anyway, the guanaco is very similar to the vicuña but it’s a larger, more robust animal that’s brown above and white underneath, with a gray face. It’s common in the lower elevations of the Andes and throughout much of Patagonia. It also produces soft fiber, but it’s not quite as fine or soft as the vicuña’s.

The alpaca is the domestic descendant of the vicuña while the llama is the domestic descendant of the guanaco. One interesting thing is that all four of these animals have quite thick skin on the neck. This helps protect their necks from the bites of predators.

All these animals are in the genus Lama, and they all look very similar, like small, delicate camels without humps. But until just a few hundred years ago, there might have been a fifth member of the genus Lama in parts of Chile, the hueque.

As reported by Spanish and Dutch explorers and colonizers, the hueque was a domesticated animal kept for its meat and its fine, soft, very long fur. Its fur was so long that it supposedly brushed the ground. It wasn’t supposed to be the same animal as the guanaco, which lived in the area and was also sometimes kept as a semi-domesticated animal. It was smaller than a llama or guanaco but larger than a vicuña, standing up to four feet tall at the shoulder, or about 1.2 meters.

As more Spanish colonized Chile and other parts of South America, bringing sheep and cattle with them, the hueque became less and less common. Not only did the introduced animals compete with the hueque and other South American camelids for resources, they brought diseases that camelids could catch. Eventually the local people switched to raising sheep for wool and meat and the hueque was supposed to have died out completely by the late 18th century.

Many people have suggested that the hueque was actually another word for the alpaca, which did decline in numbers during this time, although of course it didn’t go extinct. The hueque might have been a particular variety of alpaca or even a subspecies that looked somewhat different. Remember that the alpaca is a domesticated animal descended from the vicuña. Other people hypothesize that the hueque was a type of llama or guanaco, and remember that the llama is the domesticated descendant of the guanaco.

In December of 2016, the scientific journal Nature published a genetic study of camelid remains found on Isla Mocha, a volcanic island off the coast of Chile. The people living on the island in the early 17th century kept hueques, according to reports of Dutch and Spanish explorers. People have lived on the island for about 1,500 years but the hueque probably didn’t. Instead, it was transported to the island in small boats on special occasions, to be used as ritual sacrifices where the meat was then eaten. Then again, there is at least one report that the animal did live on the island and was used to pull plows or possibly wagons.

A 1615 report by a Dutch captain who saw the hueque is that it was like a “sheep of a very wonderful shape, having a very long neck and a hump like a camel, a hare lip and very long legs.” This is strange because while it is otherwise a good description of any South American camelid, no South American camelid has a hump like a camel. The hump the captain reported might actually have been thick fur that can look a little bit like a hump above the shoulders.

The 2016 report looked at DNA samples extracted from the subfossil remains of 14 camelids found on the island, including the complete genomes of three individual animals. Then the samples were compared to those of other South American camelids. They most closely matched the DNA profile of the guanaco.

The study suggests that “chilihueque” was the local term for the guanaco, especially a guanaco kept as a domesticated or semi-domesticated animal.

That’s just one study of one specific island, of course. Hopefully genetic analysis of other camelid remains will be made soon and we can learn more about what exactly the hueque might have been.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 284: Billy Possum and Teddy Bear

Thanks to Pranav and Zachary for their suggestions this week, where we learn the story behind two cuddly toys and the animals that inspired them!

The cartoon that inspired the toy:

My own teddy bear:

An American black bear (not William Taft although yes, there is a resemblance, including a willingness to eat entire possums in one sitting):

William Taft:

A Virginia opossum:

A possum with babies!

Stop trying to make Billy Possum a thing:

Admittedly it was pretty cute:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two cuddly animals, one of which you’ve definitely heard of, the other you might not have. Oh wait, you’ve heard of both animals for sure—but you might not have heard about the toys based on the animals. Thanks to Pranav and Zachary for their suggestions.

The president of the United States at the beginning of the 20th century was Theodore Roosevelt, who served from 1901 to 1909. He was sometimes called Teddy instead of Theodore, although he didn’t actually like the nickname. Roosevelt is widely considered to have been a very good president, as well as an interesting and sometimes eccentric man, but his main contribution to history as far as most people are concerned is the teddy bear.

Roosevelt was an active man who spent a lot of time horseback riding, playing tennis, hiking, swimming, boxing, and lots of other things. He also liked to read, spoke several languages, and wrote poetry—and he was an avid hunter and would travel the world to kill things. That’s what he was doing in November 1902, when the governor of Mississippi invited him on a bear hunting trip.

The hunting party killed several bears that day, but Roosevelt hadn’t shot anything. Some of the president’s attendants decided to help things along, and they chased a bear down with hounds until it was exhausted, beat it until it was almost dead, and tied it to a tree. I know, this is awful. I’m sorry. Then they said, “Hey, Mr. President, we found you a bear to shoot.”

Not only did Roosevelt refuse to kill the bear, he was angry at the people who had treated it so badly. He requested that the poor animal be shot to put it out of its misery, since by that point it was already dying from its treatment.

Because Roosevelt was the president, everything he did made its way into the newspapers, including this event. A political cartoonist used the bear hunt in a cartoon, only instead of an adult bear he made the bear a cute little cub. This inspired an inventor named Morris Michtom and his wife Rose to make a little bear cub doll to sell at their candy shop in Brooklyn, New York. They labeled it “Teddy’s bear” and the rest is history.

Most teddy bears don’t look much like an actual American black bear. The black bear lives in forested areas throughout much of North America and used to be even more widespread, but was hunted to extinction in many areas. It’s more closely related to the Asian black bear than it is to other bears found in North America, including the grizzly and polar bears. Its fur is usually black although some black bears are gray, various shades of brown, or sometimes even a rare cream color. The biggest American black bear ever measured was just barely under 8 feet long, or 2.41 meters, and probably weighed 1,100 pounds, or 500 kg. Most black bears are a lot smaller than that, though.

Black bears mate in summer but the fertilized egg cells don’t start developing until November. This gives the female plenty of time to gain lots of healthy weight before she finds a safe place to spend the winter. Black bears hibernate in cold weather, although scientists are still debating whether its metabolic changes constitute true hibernation. A bear will use a hollow tree or small cave as a den, or will dig a den. It gets comfortable in its den and soon its heart rate starts to drop until it only beats about 8 times a minute. Its body temperature stays about the same as usual and unlike many other animals that hibernate, it’s not sound asleep the whole time. It spends a lot of time awake and may even get up and move around, maybe even go out on nice days and look for food. Mostly, though, a hibernating bear doesn’t eat or drink, and it doesn’t need to defecate or urinate. Once the weather starts warming up, it emerges from its den and spends a few weeks just roaming around, eating whatever it can find while its body returns to non-hibernation status.

Babies are born during the winter, and they’re extremely small and underdeveloped at birth, only about 8 inches long on average, or 20 cm. A mother bear usually has two or three cubs, sometimes just one and occasionally four. The mother bear nurses her babies and keeps them warm through the rest of the winter, and once the weather warms up they’re big enough to come outside with her for the first time.

The American black bear is an omnivore, but it eats a lot more plant materials than it does meat. It especially likes berries and other fruit. It also eats a lot of insects, including ants, bees, and an especially nasty type of wasp called a yellow jacket. The bear has thick fur to help protect it from stings, but it also eats up the insects really fast. You can’t sting a bear if a bear just crunched you up with its big teeth. The black bear will catch fish whenever it can, will eat fawns and other baby animals when it can find them, will eat small animals like rodents when it gets the chance, will eat eggs when it comes across a nest, and will eat carrion, especially when it first emerges from hibernation.

Although black bears are dangerous, they’re also shy and avoid people when they can. The exception is when they get used to people food, either because they were given food by people, or because they found food that people left. That’s why it’s so incredibly important to never feed wild animals, especially dangerous ones like bears, and why you should learn how to properly hang your backpack from a tree when you’re camping so a bear can’t get it. If a bear learns to associate humans with food, it will become aggressive. When that happens, forest rangers have to make the hard decision to kill the bear before it hurts or kills a person.

While other species of bear growl, the American black bear doesn’t. The closest it comes to a growl is a deep call it makes in its throat, and it also makes huffing sounds, moans and grunts, squeals, clicks and pops that it makes with its mouth, including tongue clicking, and when it’s comfortable a bear may make a rumbling sound something like a hum or a purr.

This is what a black bear sounds like:

[bear sounds]

So, back to teddy bears. Plush toy bears were incredibly popular while Teddy Roosevelt was in office, but toy manufacturers were pretty sure the fad would drop in popularity once Roosevelt was no longer president. William H. Taft became president after Roosevelt, and in January 1909 he attended a banquet in Atlanta, Georgia where the main course served was possum and sweet potatoes.

These days most people don’t eat the Virginia opossum, more commonly called the possum in the United States, but it used to be considered a delicacy. Taft wolfed down an entire roast possum by himself, so fast that a doctor sitting at the table with him said he needed to slow down. Taft liked his food and he especially liked possum, and when his supporters presented him with a plush toy possum after the meal, he found it amusing.

But the people who’d given him the toy possum weren’t playing around. Ha ha, get it? Playing? Toy? They were certain their possum was going to be the next big thing. They formed a company called the Georgia Billy Possum Company and advertised the toys with the slogan, “Good-bye, Teddy Bear. Hello, Billy Possum.” They also released postcards, pins, songs and sheet music, and all sorts of other stuff branded with Billy Possum in hopes of hyping up their toy and becoming millionaires.

The problem, of course, is that while everyone cared about the poor bear that Roosevelt refused to kill, no one cared that Taft could eat a whole roast possum in one sitting. Besides, Taft was boring. Billy Possum never took off and people kept their teddy bears.

In many articles about Billy Possum, the whole idea of a possum being cute enough to make a cuddly toy from is laughed at. But possums are adorable! The Virginia opossum is a nocturnal marsupial that lives throughout much of the eastern United States, especially the southeast, and just about all of Mexico. It’s gray and white with a bare pink nose and bare pink toes, and it also has a long prehensile tail that’s mostly bare of fur that it uses to help it climb around in trees. Most possums are about the size of a cat but with much shorter legs. It’s the only marsupial that lives in North America.

The possum is omnivorous and eats fruit, carrion, eggs, nuts, vegetables, insects, and other small animals like mice and frogs. It’s resistant to the venom of snakes, bees, and scorpions, and will happily eat all three of these types of animals. It’s even less picky than the bear about what it eats and will genuinely eat pretty much anything, from birdseed and cat food it finds in people’s yards, to crayfish and baby rabbits, to ticks and persimmons, to slugs and snails.

The possum doesn’t live very long, and pretty much anything that can catch it will eat it, but it reproduces efficiently. Like other marsupials, the female has two vaginas and wombs and the male has a double penis. The female can have more than 20 babies at a time, although 8 or 9 is more common, and like other marsupials they’re born extremely early. The newborn babies are the size of a bean or a honeybee, but they’re strong enough to crawl into their mother’s pouch to find a teat. Since the possum has 13 teats, and each baby needs a teat to stay latched onto while it finishes developing, even if the mother has more than 13 babies, only 13 babies will survive.

The babies stay in their mother’s pouch for 2 1/2 months, at which point they start riding on her back instead. She carries them around for the next couple of months, teaching them how to be possums.

The possum has one real defense against predators, which it only resorts to when running away or hissing with its fur puffed up doesn’t help. It will flop onto its side with its tongue hanging out but its eyes open, and its heart rate drops and its breathing becomes shallow and slow. It also expels a stinky fluid from its anal glands. In short, it looks, acts, and smells like it’s already dead. It’s called “playing possum,” and it actually works pretty well…until the possum plays dead when threatened by a car. That’s why possums are so often killed by cars.

Many people think the possum is dirty or carries diseases, but this isn’t actually true. The possum grooms its fur and keeps it clean, and it’s actually less likely to have a disease than many other mammals. It’s even resistant to rabies, possibly because its body temperature is lower than that of most mammals and this helps keep the rabies virus from reproducing.

The Virginia opossum also has a secret that scientists only recently discovered. Its fur glows bright pink under ultraviolet light. No one is sure why.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 283: Crocodylomorphs and Friends

Thanks to Max and Pranav for their suggestions this week! We’re going to learn about some crocodylomorphs and a few other ancient non-dinosaur reptiles.

Further reading:

Mammal-like crocodile fossil found in East Africa, scientists report

Ancient crocodiles walked on two legs like dinosaurs

Fossil Footprints Help Uncover the Mysteries of Bipedal Crocodiles

Fossil mystery solved: super-long-necked reptiles lived in the ocean, not on land

Kaprosuchus had TEETH:

Anatosuchus earned its name “duck crocodile”:

Ancient bipedal croc footprints (picture taken from link above):

Tanystropheus had a super long neck:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going back in time to learn about some prehistoric reptiles that aren’t dinosaurs. Most are crocodylomorphs, which Pranav suggested a while back, but not all. Thanks to Pranav and Max for their suggestions this week! Max even made some clay models of two of these animals and sent me pictures, which was amazing! I have some really talented listeners.

Pranav and Max both wanted to know about kaprosuchus, also called the boar crocodile. The boar croc lived around 95 million years ago and probably grew nearly 20 feet long, or 6 meters, although all we know about it right now comes from a single nearly complete fossilized skull. The skull was found in Niger, a country in West Africa, and only described in 2009.

The boar croc gets its name from its teeth. It had lots of teeth, because it was a crocodyliform, although not actually an ancestral crocodile. It was related to modern crocs, though. Three sets of its teeth were especially long and large and projected out of its mouth much farther than ever found in any croc or croc relative, with one pair of teeth so big the upper jaw had little grooves for them to fit into so it could actually close its mouth. The teeth look like boar tusks, especially warthog tusks.

The boar croc also had some other differences from other croc relatives. The tip of its snout is unusually heavy, and some researchers think it might have had a keratin sheath over it. It might have used its heavy snout as a battering ram, possibly to stun prey before grabbing it with its huge teeth. It most likely hunted on land instead of in the water, since its eyes were lower on its head than crocs that hunt in water. Modern crocodiles and their relations mostly have eyes at the top of the head, which allows them to stay submerged except for their eyes. Whether it hunted in water or on land, though, the boar croc definitely killed and ate small dinosaurs, or maybe not so small dinosaurs.

The boar croc also had some horn-like projections on the back of its head. I don’t want to alarm you, because this animal went extinct millions and millions of years ago, but this thing was basically a dragon.

Anatosuchus was another crocodylomorph whose fossils have been found in Niger, but it’s much smaller and weirder than you’d expect. It was a tiny little thing, estimated to grow only a little more than 2 feet long, or 70 cm, and it was lightly built with relatively long legs for a croc relation, although it was still smaller than a cat. Its small teeth curve backwards but its snout has a little pointy projection at the front, although its head is broad and flat so that from above, its snout looks kind of like a duck’s bill. That’s why it’s sometimes called the duck crocodile. It lived around 145 million to 100 million years ago. Researchers think it may have waded in shallow water to catch small animals like fish and frogs, something like a heron.

Around 105 million years ago, another small croc relation lived in what is now Tanzania in East Africa. It was first discovered in 2008 and has been named Pakasuchus, which means cat crocodile. It was even smaller than the duck crocodile, only 20 inches long, or 50 cm, with long legs and a delicate build. The really weird thing, though, is its teeth. Unlike other crocodile relations and in fact unlike reptiles in general, it had teeth that were specialized for different functions. Its teeth looked like they belonged to a mammal. It had sharp teeth at the front of its short jaws and broader teeth in the back of its mouth that it used to chew its food. It was a terrestrial animal that would have been active and fast-moving. It probably ate insects and other small animals, but some researchers think it may have eaten plants.

There were definitely some croc relatives that were herbivorous, like the aetosaurs. Aetosaurs lived a little over 200 million years ago and were a successful group, with fossils found in Europe, India, Africa, and North and South America. They had osteoderms that are really common in the fossil record, so common that they’re used as index fossils to date fossil sites. If you’re not sure how old a layer of rock is, and you find some aetosaur osteoderms, you can be pretty certain you’re looking at the late Triassic. The osteoderms are flattened like big scales, and in fact when they were first discovered, people thought they were actually fish scales. Aetosaurs were probably terrestrial animals and most were either herbivorous or omnivorous, although at least one known species had the kind of teeth that indicate it hunted small animals.

A typical aetosaur had a small head and a bulky body with relatively small front legs but stronger hind legs. Its tail was long and tapering like a modern crocodile’s tail. It had lots of armor in the form of interlocking osteoderms, including armor on its belly and the underside of its tail. It might have looked like it had a carapace something like a weird reptilian armadillo. Depending on its species, our typical aetosaur may have also had spikes or spines on its back sort of like modern crocodiles have.

One species of aetosaur, Desmatosuchus spurensis, had massive shoulder spikes. Desmatosuchus grew almost 15 feet long, or 4.5 meters, and was heavily armored, with a spike on each shoulder blade. The spikes curved up and out kind of like a bull’s horns, but instead of pointing forward, they pointed backwards. It also had smaller spikes down its sides, some of which pointed out, some up. The big shoulder spikes could be almost a foot long, or 28 cm.

If you look at Desmatosuchus’s skeleton, it looked like it must have been a dangerous animal, and this would have been true when it comes to worms and plants. Its head was small and ended in a shovel-like snout, probably covered in a keratin sheath like a turtle’s beak. Scientists think it probably used its snout to dig plants up from soft mud along waterways, and it would probably also eat any small animals it found in the mud too. It lived in groups and despite its size and all its spikes, it got eaten a lot by an even bigger reptile, Postosuchus.

Postosuchus wasn’t a dinosaur, and was in fact a crocodylomorph just like the other reptiles we’ve talked about so far, but it sure looked like a dinosaur in a lot of ways. Its front legs were about half the length of and not very strong compared to its hind legs, so it probably walked on its hind legs only. It also had an oversized claw on one of its toes that it probably used to slash at prey, while its big head had a mouth full of big, sharp teeth. In other words, it looked a lot like a theropod dinosaur and lived at about the same time as the first theropods.

Despite not being a dinosaur, Postosuchus was one of the biggest land animals around, growing up to about 23 feet long, or 7 meters, although it probably only stood about 4 feet high, or 1.2 meters. Its remains have only been found in North America.

Other bipedal croc relations have been found in Asia, though, specifically in South Korea where almost 100 beautifully preserved footprints have been found. The tracks are of hind feet only, and from their size, depth, and the length of stride, the animals were probably almost 10 feet long, or 3 meters, and had hind legs the length of an average adult human’s legs. The footprints are almost 9 ½ inches long, or 24 cm.

At first researchers thought the tracks belonged to giant pterosaurs, which were flying reptiles, and that the pterosaurs were walking on their hind legs so their wings would stay out of the mud. But the footprints are so well preserved that it was obvious they belonged to a crocodylomorph once paleontologists examined them closely. In fact, all footprints supposed to belong to pterosaurs walking on their hind legs have turned out to belong to bipedal croc relations. Pterosaurs had to use their wings as front legs when walking on the ground, like bats do but not like birds, and some crocs, which ordinarily walk on four legs, were walking on two. It’s topsy-turvy land!

The tracks in South Korea are dated to a little over 113 million years ago, which is something like 100 million years more recent than Postosuchus. Postosuchus went extinct around 201 million years ago, at the end of the Triassic. By the time the Korean croc relation was walking around, it was the middle of the Cretaceous and dinosaurs ruled the earth. Gondwana was breaking up, the climate was warm worldwide and sea levels were high, mammals were tiny and unimportant, and little birds were flying around along with gigantic pterosaurs like Quetzalcoatlus. Crocodile relations lived in the mid-Cretaceous, sure, but not bipedal ones…or so paleontologists thought.

All we have of these croc relations are their tracks. We don’t have any fossils so we don’t know what they looked like. Hopefully one day some fossils will come to light and paleontologists will be able to match them up with their footprints.

Max specifically asked about Titanoboa, a gigantic extinct snake that lived around 58 million years ago in what is now northern South America. We talked about Titanoboa in episode 197 but I was certain I could find some new information for this episode. Unfortunately, there haven’t been any new studies about Titanoboa published recently, so Max, I’m going to keep it on the suggestions list until I find some interesting new information to share.

Titanoboa is estimated to have grown as much as 42 feet long, or 13 meters, and it probably spent most of its time in the water, eating giant lungfish and other animals. But, to wrap things back around to crocodylomorphs, it probably also ate a croc relation called Cerrejonisuchus. Cerrejonisuchus had a short, narrow snout and probably ate lots of frogs, fish, and other small animals. It grew a little over 7 feet long, or 2.2 meters, which is small but respectable for a crocodile but nowhere near big enough to make Titanoboa think twice about eating it. It wasn’t even the biggest croc relation living in its river habitat. Acherontisuchus grew to an estimated 21 feet long, or almost 6.5 meters. It had a long snout and lots and lots of big teeth, and probably ate the same fish that Titanoboa also liked.

Let’s finish with a non-crocodylomorph ancient reptile, Tanystropheus, and two mysteries associated with it that science solved in 2020. Tanystropheus lived during the mid to late Triassic, around 240 million years ago, and its fossils have been found in parts of Europe, the Middle East, and in China. It grew up to 20 feet long, or 6 meters, but literally half its length was its incredibly long neck.

When the first Tanystropheus fossils were discovered in the 19th century, paleontologists didn’t know what it was. There were some long, thin bones associated with the skeleton and they thought those might be elongated finger bones. Tanystropheus was classified as a type of pterosaur. But as more and better fossils were discovered, it was obvious that this animal wasn’t flying anywhere. The finger bones were actually cervical ribs, rod-like structures that helped stabilize the long neck and keep it from bending very far.

Tanystropheus was reclassified as a long-necked reptile, but no one was sure if it lived in water or just around water. Even more confusing, fossils of smaller long-necked reptiles, only about 4 feet long, or 1.2 meters, started being found too. No one was sure if this was a different species or juvenile Tanystropheus specimens.

To solve the first mystery, a research team took CT scans of some complete but crushed Tanystropheus skulls and generated a 3D image, which allowed them to put the pieces together and examine an image of a complete, un-crushed skull.

The skull had nostrils at the top of its snout, indicating that it probably spent a lot of time in the water. Some researchers suggest it was an ambush predator in shallow water, resting on the bottom of the ocean with its long neck raised so its nostrils were just above the surface. When a fish or other animal swam by, it could grab it without needing to move more than its head. Since its body was chonky with short legs, it probably wasn’t a very fast mover.

Next, the team took cross sections of bones from the smaller long-necked reptile and examined them for growth rings. They found a lot of them, indicating that the animals weren’t juvenile Tanystropheus hydroides, they were adults of another species, which has been named Tanystropheus longobardicus. The two species also had differently shaped teeth, which suggests that they were eating different types of food.

Even though Tanystropheus’s neck was really long, it was also much lighter than the rear half of its body, which had strongly muscled hind legs. Some researchers think it swam by kicking its hind legs sort of like a gigantic frog’s. We have some fossilized trackways from a shallow marine environment that show paired prints from hind legs, but no front leg prints, which may be from a small species of Tanystropheus.

There’s still a lot we don’t know about Tanystropheus, just as there’s a lot we don’t know about a lot of long-extinct animals. All we know for sure is that they were awesome.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes. There are links in the show notes to join our mailing list and to our merch store.

Thanks for listening!

Episode 282: Little Longtailed Birds

Sign up for our mailing list!

Thanks to Elaine for suggesting one of our long-tailed birds this week!

Happy birthday to Jasper!! Have a great birthday!

Further reading:

Fossil of Ancient Long-Tailed Bird Found in China

All adult scissor-tailed flycatchers have long tails:

The long-tailed sylph male is the one with the long tail:

The long-tailed widowbird male has a long tail:

The long-tailed widowbird female has a short tail:

The pin-tailed whydah male has a long tail:

A pin-tailed whydah baby (left) next to a common waxbill baby (right):

Kompsornis longicaudus had a really long tail:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week is a short episode all about little birds with really long tails. The tails are longer than the episode. Thanks to Elaine for suggesting one of the birds we talk about today!

But before we start learning about birds, we have a birthday shout-out! Happy birthday to Jasper, who has the best name and who will hopefully have the best birthday to go along with it!

Let’s start with Elaine’s suggestion, the scissor-tailed flycatcher. I’m embarrassed to admit that Elaine suggested this bird way back in 2020, so it’s about time we talked about it.

The scissor-tailed flycatcher lives in south-central North America during the summer, especially Texas and Oklahoma, and migrates to parts of Mexico and Central America in winter. It’s pale gray with black and white wings and tail, and salmon pink markings on its sides and under its wings. It also has a really long tail. It gets the name scissor-tail because its tail is so long and forked that it’s sort of the shape of an open pair of scissors. The male’s tail is typically longer than the female’s, longer than the rest of its body. The bird is about the size of an average songbird, with a body length of about 5 inches, or 13 centimeters, but with a tail that can increase its overall length to over 14 inches, or 36 cm.

The scissor-tailed flycatcher prefers open areas like pastures and fields, where there’s lots of space but some brush, trees, or fences nearby to perch in. It mostly eats insects, but it will also eat berries, especially in winter. It’s related to kingbirds and pewees and will even hybridize with the western kingbird where their ranges overlap. Its long tail is partly for display, but mostly it helps the bird maneuver in midair as it chases insects, or hover in midair as it looks around for an insect to catch. It especially likes grasshoppers, and when it catches one, it will usually kill it before eating it by smashing it against a tree limb or other perch.

Another little bird with a long tail is the long-tailed sylph, which is a type of hummingbird! It lives on the eastern slopes of the Andes Mountains in northwestern South America, mostly along forest edges, in gardens, grasslands, and other mostly open areas. It migrates to different parts of the mountains at different times of year to follow the flowering of its favorite plants. It’s larger than many species of hummingbird even if you don’t count the tail.

It eats nectar like other hummingbirds do, but also eats tiny insects and spiders. Its bill is black and not very long compared to most of its relations. Sometimes it will jab the tip of its bill straight through the base of a flower to get at the nectar, instead of inserting it into the flower like other hummingbirds do, and while it can hover, sometimes it perches to feed instead.

Both the male and female long-tailed sylph are a beautiful metallic blue and green in color, although the male is brighter and has purplish-brown wings. The female is about 4 inches long, or 10 cm, including her tail, and while the male is about the same size as the female, his tail is really long—up to 4.5 inches long, or 12 cm. His tail is forked like the scissor-tailed flycatcher’s, but unlike the flycatcher, the sylph’s tail makes it harder for the bird to fly. During breeding season the male attracts a mate by flying in a U-shaped pattern that shows off his tail and his flying ability.

The male long-tailed widowbird also attracts a mate with a flying display to show off his long tail. It lives in grasslands in a few parts of Africa, with the biggest population in South Africa. It forages in small flocks looking for seeds, and it also eats the occasional insect or spider. It’s a sparrow-like bird only about 4 inches long, or 10 cm, not counting its tail. The female is mostly brown with darker streaks and has a short tail. The male is black with red and white patches on the shoulders of his wings, called epaulets. His coloring, including the epaulets, is almost identical to that of a totally unrelated bird, the red-winged blackbird of North America, but he has something the blackbird doesn’t: a gigantically long tail.

The male widowbird’s tail is made up of twelve feathers, and about half of them grow up to 20 inches long. That’s nearly two feet long, or half a meter. Like the long-tailed sylph, the long-tailed widowbird’s tail actually makes it harder for him to fly. If it’s raining, he can’t fly at all. Fortunately for him, outside of the breeding season his tail is much shorter. During display flights, he spreads his tail feathers to show them off better and flies very slowly. Males with the longest tails attract the most females.

Similarly, the pin-tailed whydah is another little sparrow-like bird where the male grows a really long tail to attract females. It lives in grasslands, savannas, and open woodlands in sub-Saharan Africa, which just means south of the Sahara Desert. It mostly eats seeds.

During breeding season, the male is a striking pattern of black and white with a bright orangey-red bill and really long tail plumes. He’s about the size of the long-tailed widowbird but his tail grows about 8 inches long, or 20 cm. The female is brown with darker streaks and looks a lot like a sparrow, although it’s not related to sparrows. To impress a female, the pin-tailed whydah will hover in place near her, showing off his long tail plumes and his flying ability.

A lot of whydah species grow long tails. A lot of whydahs are also brood parasites, including this one, meaning that instead of building a nest and taking care of her own eggs, the female sneaks in and lays her eggs in the nest of a different species of bird. Then she flies away, probably whistling to make her seem extra nonchalant, and leaves the other bird to take care of her eggs and the babies when they hatch. She mostly lays her eggs in the nests of various species of finch, and not only do her eggs resemble the finch’s eggs except that they’re bigger, the babies resemble finch babies when they hatch, except they’re bigger.

Specifically, the babies have a really specific gape pattern. When an adult bird approaches its nest, a baby bird will gape its mouth wide to beg for food. This prompts the parent bird to shove some food down into that mouth. The more likely a baby is to be noticed by its parent, the more likely it is to get extra food, so natural selection favors babies with striking patterns and bright colors inside their mouths. Many finches, especially ones called waxbills, have a specific pattern of black and white dots in their mouths that pretty much acts as a food runway. Insert food here. The whydah’s mouth gape pattern mimics the waxbill’s almost exactly. But as I said, the whydah chick is bigger, which means it can push the finch babies out of the way and end up with more food.

The pin-tailed whydah is a common bird and easily tamed, so people sometimes keep it as a pet. This is a problem when it’s brought to places where it isn’t a native bird, because it sometimes escapes or is set free by its owners. If enough of the birds are released in one area, they can become invasive species. This has happened with the pin-tailed whydah in many parts of the world, including parts of Portugal, Singapore, Puerto Rico, and most recently southern California. Since they’re brood parasites, they can negatively impact a lot of other bird species in a very short time. But a study released in 2020 about the California population found that they mostly parasitize the nests of a bird called the scaly-breasted munia, a species of waxbill from southern Asia that’s been introduced to other places, including southern California, where it’s also an invasive species. So I guess it could be worse.

There are lots of other birds with long tails we could talk about, way too many to fit into one episode, but let’s finish with an extinct bird, since that seems to be the theme lately. In May 2020, an ancient bird was described as Kompsornis longicaudus, and it lived 120 million years ago in what is now China. Its name means long-tailed elegant bird. It was bigger than the other birds we’ve talked about today, a little over two feet long, or 70 cm, but a lot of that length was tail.

Kompsornis is only known from a single fossil, but that fossil is amazing. Not only is it almost a complete skeleton, it’s articulated, meaning it was preserved with all the body parts together as they were in life, instead of the bones being jumbled up. That means we know a lot about it, including the fact that unlike other birds of the time, it didn’t appear to have any teeth. It also shows other features seen in modern birds but not always found in ancient birds, including a pronounced keel, which is where wing muscles attach. That indicates it was probably a strong flier. It also had a really long tail, but unlike modern birds its tail was bony like a lizard’s tail although it was covered with feathers.

During their study of Kompsornis, the research team compared it to other birds in the order Jeholornithiformes, which seem to be its closest relations. There were six species known, with Kompsornis making a seventh—except that during the study, the team discovered that one species was a fake! Dalianraptor was also only known from one fossil, and that fossil was of a different bird with the arms of a flightless theropod added in place of its missing wings. Send that fossil to fossil jail!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!