Episode 309: The Red Panda

Thanks to Zola for suggesting this week’s topic, the red panda!

Further reading:

Study Reveals Key Differences in Skulls of Red and Giant Panda

A red panda:

A red panda asleep in a tree [photo by By Aconcagua – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2169002]:

Not exactly a real red panda but pretty darn cute (from the Disney/Pixar movie Turning Red):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Happy new year! I’m still getting over covid but feeling much better and have mostly regained my sense of smell and taste. I’m still coughing, though, so apologies that my voice doesn’t sound great (at least, I don’t think it does).

One of my goals for this year is to really clear out the backlog of suggested topics. So many people have sent me such great ideas for episodes, and while I really do try to get to as many of them as possible, some people have been waiting literally years for me to cover their suggestion. So I’m just going to pick one every week until we’re more or less caught up.

We’ll start with someone who’s probably used to being at the end of the line when you have to line up alphabetically. Zola suggested the red panda and I have no idea why we’ve never talked about this amazing animal!

The red panda lives in parts of the Himalaya Mountains in various countries, including China, India, Tibet, Myanmar, and Nepal, where it mostly lives in high elevations where there’s plenty of water and bamboo. When it gets really cold, it can lower its metabolism and enter a torpid state something like hibernation, although only for short amounts of time, and it also wraps itself up in its big fluffy tail to stay warm. It’s mostly nocturnal and spends a lot of time in trees, although it’s perfectly comfortable on the ground too, although it almost always sleeps in a tree.

The red panda is about the size of a dog but with short legs. It’s bigger than a raccoon but resembles one superficially, including a bushy ringed tail and a dark stripe across the eyes that continues down the cheeks. It’s mostly reddish-brown or orangey in color, with white markings on the ears and face and darker red or black belly and legs. Its tail is almost as long as its body, around 19 inches long for a big male, or 48 cm, while its head and body is about 25 inches long, or 63 cm. It has a round head with a short muzzle and big triangular ears.

The red panda has a lot in common with the giant panda, and that has caused a lot of confusion in the past and even today. We talked about the giant panda in episode 42, including its extra toe. It’s not really a toe although it acts like a thumb. The giant panda’s front paws have five toes just like all bears, and also a modified wrist bone that juts out from the base of the paw and helps the panda hold bamboo stalks as it eats the leaves.

The red panda has a false thumb too, also formed from a projecting wrist bone. It’s not as dexterous as the giant panda’s false thumb, but both animals use it to help it hold bamboo. In the red panda’s case, though, the false thumb probably originally evolved to help it climb trees. It also has flexible joints in its legs that allow it to climb more easily, including straight down a tree head-first, and it has semi-retractable claws.

The red panda even lives in some of the same places as the giant panda. Researchers weren’t sure how the two species could live in the same places and eat the same foods without one species out-competing the other. The red panda mostly eats bamboo just as the giant panda does, and both are considered carnivores even though they hardly eat anything but plants, but a study published in 2014 determined that the two animals actually eat different parts of the bamboo plant. The red panda is able to climb up to eat the smaller, more tender leaves and stems while the giant panda has a stronger jaw that allows it to eat larger, tougher leaves and shoots.

But is the red panda closely related to the giant panda? Scientists still aren’t completely sure. The red panda was known to science long before the giant panda was, and was just called the panda. After the giant panda was discovered, scientists thought that it had to be related to the red panda, which they started calling the lesser panda or red panda to differentiate it from the giant panda. The two animals eat the same thing and have some traits in common, so it made sense that they were related. But that was before the giant panda was well understood.

Once scientists figured out that the giant panda is actually a type of weird bear, they reclassified it and determined that the red panda was probably more closely related to procyonids, which includes the raccoon and the coatimundi we talked about a few weeks ago. After genetic studies, currently the red panda is placed in its own family and is probably most closely related to the family Mephitidae, which includes skunks, but is also closely related to procyonids like raccoons and mustelids like weasels and otters. While it is distantly related to the giant panda, its false thumb and other similarities to the giant panda are probably due to convergent evolution.

In the wild red pandas seem to be mostly solitary except during breeding season, which is in winter, although it’s difficult to observe in the wild so we don’t know for sure. In captivity it’s more sociable and will play-fight with its friends. While it mostly eats bamboo, it will also eat flowers, bird eggs, berries, and leaves from other plants.

The female red panda gives birth to three or four cubs in summer, and while they’re born with fur they need their mother’s care for several months before they can start to learn independence. They’re usually old enough to leave their mother at around 7 or 8 months old, at which point they set off to find small territories of their own.

The red panda is endangered by habitat loss, pollution, competition with livestock, and poaching for its fur. This is despite the animal being a protected species everywhere it lives. Fortunately, more and more people in the countries where it lives are helping to protect the red panda’s habitat. In Nepal, for instance, lots of schoolchildren have learned about the red panda and are helping with conservation efforts, including putting up fences to keep livestock out of bamboo forests. Red pandas also do well in captivity and are popular zoo exhibits because one thing I haven’t mentioned is that they’re completely adorable!

The third Saturday in every September is International Red Panda Day to raise awareness and money for conservation efforts. You have approximately 9 and a half months to prepare for International Red Panda Day 2023.

This is what a red panda sounds like:

[red panda sound]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 304: Animals of the Paleogene

Thanks to Pranav for suggesting this week’s topic, animals of the Paleogene, the period after the Cretaceous! Thanks also to Llewelly for suggesting the horned screamer, now one of my favorite birds.

Further watching:

Southern Screamers making noise

Horned Screamers making noise

Further reading:

The Brontotheres

Presbyornis looked a lot like a long-legged goose [art by Smokeybjb – CC BY-SA 3.0]

The southern screamer (left) and horned screamer (right), probably the closest living relation to Presbyornis:

Megacerops was really really big:

All four of these illustrated animals are actually megacerops, showing the variation across individuals of nose horn size:

Uintatherium had a really weird skull and big fangs:

Pezosiren didn’t look much like its dugong and manatee descendants:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at some strange animals of the Paleogene period, a suggestion from Pranav. Pranav also suggested the naked mole-rat that we talked about in episode 301, but I forgot to credit him in that one.

As we talked about in episode 240, about 66 and a half million years ago, a massive asteroid smashed into the earth and caused an extinction event that ended the era of the dinosaurs. The geologic time period immediately after that event is called the Paleogene, and paleontologists study this era to learn how life rebounded after the extinction event. We’re going to learn about a few animals that evolved to fill ecological niches left vacant after dinosaurs went extinct.

These days, mammals fill a whole lot of these ecological niches, so it’s easy to assume that mammals have been successful for the last 66 million years. But while that’s true now, birds were incredibly successful for a long time. Basically for millions of years after the non-avian dinosaurs died out, it was dinosaurs 2.0 as the avian dinosaurs, better known as birds, spread throughout the world and evolved into some amazing organisms.

This included terror birds, which we talked about in episode 202. They lived in South America, except for one species from North America, and evolved really soon after the dinosaurs went extinct, appearing in the fossil record about 60 million years ago. They lasted a long time, too, only going extinct around 2 million years ago.

The earliest known terror bird was about three feet tall, or 91 cm, but its descendants became larger and more fearsome until they were apex predators throughout South America. The biggest species grew up to ten feet tall, or three meters, with a massive beak and sharp claws on its toes. It couldn’t fly but was a fast runner. You would not want a terror bird chasing you.

Lots of other birds evolved throughout the Paleogene, but most of them would look pretty familiar to us today. Paleontologists have found fossils of the ancestors of many modern birds, including penguins, hummingbirds, and parrots, which shows that they were already specialized some 25 or 35 million years ago or even more. In the case of penguins, we have fossils of penguin ancestors dating back to the late Cretaceous, before the extinction event. Those ancient penguins could probably still fly, but it didn’t take too long to evolve to be a fully aquatic bird. The species Waimanu manneringi lived around 62 million years ago in what is now New Zealand. It resembled a loon in a lot of ways, with its legs set well back on its body, and it probably spent much of its time floating on the water between dives. But unlike a loon, it had lost the ability to fly and its wings were already well adapted to act as flippers underwater.

Another bird would have looked familiar at first glance, but really weird when you gave it a second look. Presbyornis lived between about 62 and 55 million years ago in what is now North America, and it lived in flocks around shallow lakes. It was the size of a swan or goose and mostly shaped like a goose, with a fairly chonky body and a long neck. It had a large, broad duckbill that it used to filter small animals and plant material from the water and its feet were webbed…but its legs were really long, more like a heron’s legs.

When the first Presbyornis fossils were found in the 1920s, the scientists thought they’d found ancient flamingos. But when a skull turned up, Presbyornis was classified with ducks and geese. It wasn’t very closely related to modern ducks and geese, though. Researchers now think its closest modern relation is a South American bird called the screamer. Llewelly suggested the horned screamer a long time ago and now that I have learned more about these birds, I love them so much!

The screamer looks sort of like a goose but has long, strong legs and a sharp bill more like a chicken’s. It lives in marshy areas and eats pretty much anything, although it prefers plant material. It has two curved spurs that grow on its wings that it uses to defend its territory from predators or other screamers, and if a spur breaks off, which it does pretty often, it grows back. The screamer mates for life and both parents build the nest together and help take care of the eggs and chicks when they hatch.

The horned screamer has a long, thin structure that grows from its forehead and looks sort of like a horn, although it’s not a horn. It’s wobbly, for one thing, but it’s also not a wattle. It grows throughout the bird’s life and may break off at the end every so often, and it’s basically unlike anything seen in any other bird. Maybe presbyornis had something similar, who knows?

The screamer gets its name from its habit of screaming if it feels threatened or if it just encounters something new or that it doesn’t like. The screaming is actually more of a honking call that sounds like this:

[screamer call]

People sometimes raise screamers with chickens to act as guard birds. It can run fast but it can swim faster, and it can also fly although it doesn’t do so very often. Although it’s distantly related to ducks, its meat is spongy and full of air sacs that help keep it afloat in the water, so people don’t eat it. It is vulnerable to habitat loss, though.

One organism that evolved early in the Paleogene was grass. You know, the plant that a whole lot of animals eat. There are lots and lots of different types of grass, not just the kind we’re used to mowing, and as the Paleogene progressed, it became more and more widespread. But it wasn’t as ubiquitous as it is now, so even though the ancestors of modern grazing animals evolved around the same time, they weren’t grazers yet. The word graze comes from the word grass, but ancient ancestors of horses and other grazing animals were still browsers. They ate all kinds of plants, and didn’t specialize as grazers until grasses really took off and huge grasslands developed in many parts of the world, around 34 million years ago.

Because the Paleogene lasted so long, between about 66 and 23 million years ago, there’s literally no way we can talk about more than a few animals that lived during that time, not in a single 15-minute episode. We’ve also covered a lot of Paleogene animals in previous episodes, like paraceratherium in episode 50, the largest land mammal known. It probably grew up to about 16 feet tall at the shoulder, or 5 meters, and taller if you measured it at the top of its head. Other examples are moeritherium, an ancient elephant relation we talked about in episode 18, the giant ground sloth that we talked about in episode 22, and the ancient whale relation basilosaurus that we talked about in episode 132. Patrons also got a bonus basilosaurid episode this month. But I’m pretty sure we’ve never talked about brontotheres.

Brontotheres first appear in the fossil record around 56 million years ago and they lived until at least 34 million years ago. All animals in the family Brontotheriidae are extinct, but they were closely related to horses. They didn’t look like horses, though; they looked a lot like weird rhinoceroses, although remember that rhinos are also related to horses. They were members of the odd-toed ungulates, along with tapirs and the gigantic Paraceratherium.

Fossil remains of brontotheres have been found in North America, a few parts of eastern Europe, and Asia, although they might have been even more widespread. The earliest species were only about three and a half feet tall at the shoulder, or about a meter, but later species were much larger. While they looked a lot like rhinos, they didn’t have the kind of keratin hose horns that rhinos have. Instead, some species had a pair of horns made of bone that varied in shape and size depending on species. The horns were on the nose as in rhinos, but were side-by-side.

Brontotheres developed before grasslands became widespread, and instead they were browsers that mostly ate relatively soft vegetation like leaves and fruit. Grass is really tough and animals had to evolve specifically to be able to chew and digest it. In fact, the rise of grasslands as the climate became overall much drier around 34 million years ago is probably what drove the brontotheres to extinction. They lived in semi-tropical forests and probably occupied the same ecological niche that elephants do today. This was before elephants and their relations had evolved to be really big, and brontotheres were the biggest browsing animals of their time.

Brontotheres probably lived in herds or groups of some kind. They were widespread and common enough that they left lots of fossils, so many that they were found relatively often in North America even before people knew what fossils were. The Sioux Nation people were familiar with the bones and called them thunder horses. When they were scientifically described in 1873 by Othniel Marsh, he named them after the Sioux term, since brontotherium means “thunder beast.”

Two of the biggest brontotheres lived at about the same time as each other, around 37 to 34 million years ago. Megacerops lived in North America while Embolotherium lived in Asia, specifically in what is now Mongolia. Megacerops is the same animal that’s sometimes called brontotherium or titanotherium in older articles and books.

Megacerops and Embolotherium were about the same size, and they were huge, although Embolotherium was probably just a bit larger than Megacerops. They stood over 8 feet tall at the shoulder, or 2.5 meters, and were more than 15 feet long, or 4.6 meters. This is much larger than any rhinos alive today and as big as some elephants. Their legs would probably have looked more like an elephant’s legs than a rhinoceros’s.

Brontothere nose horns weren’t true horns, since they don’t seem to have been covered with a keratin sheath, but they were formed from protrusions of the nasal bones. They might have been more like ossicones, covered with skin and hair. Megacerops had a pair of nose horns that were much larger in some individuals than others, and scientists hypothesize that males had the larger horns and used them to fight each other.

But this can’t have been the case for embolotherium. It had even bigger nose horns that were fused together in a wedge-shaped plate sometimes referred to as a ram, but they contained empty chambers inside that were a continuation of the nasal cavities. They wouldn’t have been strong enough to bash other embolotheriums with, but they might have acted as resonating chambers, allowing embolotherium to communicate with loud sounds. All individuals had these nose horns, even juveniles, and they were all about the same size, which further suggests that they had a purpose unrelated to fighting.

At about the same time the brontotheres were evolving, another big browsing animal also lived in what are now China and the United States. Two species are known, one in each country, and both stood about 5 feet tall at the shoulder, or 1.5 meters. It looked sort of like a brontothere in some ways, but very different in other ways, especially its weird skull, and anyway it was already big around 56 million years ago when brontotheres were still small and unspecialized.

Scientists aren’t sure what uintatherium was related to. It’s been placed in its own genus, family, and order, although some other uintatherium relations have been discovered that share its weird traits. Most scientists these days think it was probably an ungulate.

Uintatherium’s skull was extremely strong and thick, which didn’t leave a whole lot of room for brains. But what uintatherium lacked in brainpower, it made up for in sheer defensive ability. It had huge canine teeth that hung down like a sabertooth cat’s fangs, although males had larger fangs than females. Males also had three pairs of ossicones or horns on the top of the skull that pointed upwards. One pair was on the nose, one pair over the eyes, and one pair almost on the back of the skull. They could be as much as 10 inches long, or 25 cm, and paleontologists think that males wrestled with these horns the same way male deer will lock antlers and wrestle.

Uintatherium lived in the same habitat and probably ate more or less the same type of plants that later brontotheres did. They went extinct around the time that brontotheres evolved to be much larger, which suggests that brontotheres may have outcompeted uintatherium.

We’ll finish with one more Paleogene mammal, Pezosiren. It was only described in 2001 from several incomplete specimens discovered in Jamaica in the 1990s, and it lived between 49 and 46 million years ago.

Pezosiren was about the size of a pig, although it had a longer, thicker tail compared to pigs. It wasn’t any kind of pig, though, and in fact it was distantly related to elephants. It was the oldest known ancestor of modern sirenians. Pezosiren is also called the walking siren, because it still had four legs and probably spent at least part of the time on land, although it could swim well. Scientists think it probably swam more like an otter than a sirenian, propelling itself through the water with its hind legs instead of its tail.

Pezosiren was probably semi-aquatic, sort of like modern hippos, and already shows some details specific to sirenians, especially its heavy ribs that would help it stay submerged when it wanted to. It ate water plants and probably stayed in shallow coastal water. At different times in the past, Jamaica was connected to the North American mainland or was an island on its own as it is now, or occasionally it was completely submerged. About 46 million years ago it submerged as sea levels rose, and that was the end of Pezosiren as far as we know. But obviously Pezosiren either survived in other areas or had already given rise to an even more aquatic sirenian ancestor, because while Pezosiren is the only sirenian known that could walk, its descendants were well adapted to the water. They survive today as dugongs and manatees.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 301: Hairless Mammals

Thanks to Liesbet for this week’s suggestion, about two mammals that have evolved to be hairless!

Happy birthday this week to Declan and Shannon!

The hairless bat has a doglike face and a doglike tail but (and this is important) it is not a dog [photos from this site]:

The naked mole-rat’s mouth is behind its teeth instead of the usual “my teeth are in my mouth” kind of thing:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Liesbet, who asked about furless animals. We’re going to learn about two mammals that don’t have fur, and they’re not ones you may be thinking of.

But first, we have two birthday shout-outs! Happy birthday to Declan and Shannon! I hope both your birthdays are so amazing that whatever town you live in finishes off the day by giving you the key to the city. What do you do with the key? I don’t know, but it sounds like something to brag about.

Mammals are famous for having hair, but not all mammals actually have hair. Cetaceans like whales and dolphins have lost all their hair during their evolution into marine animals, although before a baby whale is born it has a little bit of fuzzy hair on its head. Other mammals, like humans, pigs, walruses, and elephants, have evolved to only have a little hair. There are also domesticated mammals that have been bred to have no hair, like sphynx cats and Chinese crested dogs.

There are other domesticated hairless mammals, though, including two types of guinea pig. The skinny pig only has a little bit of fuzzy hair on its face and ears, while the baldwin pig only has a tuft of hair on its nose. But the animals we’re going to talk about today are hairless animals you may not have heard of.

For instance, the hairless bat, which lives in parts of Southeast Asia. Its dark gray body is almost completely hairless, although it does sometimes have little patches of fuzz on the head and tail, and longer bristles around the neck. It’s nocturnal and eats insects, but since it’s a fairly large bat, around 6 inches long, or 15 cm, it can eat fairly large insects. It especially likes grasshoppers, termites, and moths.

The hairless bat roosts in colonies of up to a thousand individuals, and it lives in caves, hollow trees, or rock crevices. Although it uses echolocation, it doesn’t have a nose leaf like many microbats have, but instead has a little doglike snout. Its tail is skinny like a little dog’s tail instead of being connected to the hind legs or body by patagia. It has a little throat pouch that secretes strong-smelling oil.

It also has a sort of pocket on either side of the body. Originally people thought that mother bats used these pouches to carry their babies, since hairless bats usually have two babies at a time. Instead, it turns out that mother bats leave their babies at home when they go out to hunt, and the pockets are used for something else. The pockets are formed by a fold of skin and the end of the wing fingers and membranes fit into them. The bat uses its hind feet to push the wings into the pockets, sort of like stuffing an umbrella into the little cover that it comes in when you first buy it. This allows the bat to run around on all fours without its wings getting in the way. Since most bats can’t walk on all fours at all, this is pretty amazing.

Our other hairless animal today is the naked mole-rat, which is not a mole or a rat. It is a type of rodent but it’s more closely related to porcupines than to rats. It lives in tropical grasslands in parts of East Africa and spends almost its entire life underground. It lives in colonies of up to 300 individuals, and the colony’s tunnels and nesting burrows are extensive, often covering up to 3 miles, or 5 km. It eats roots of plants and the colony carefully only eats part of each root so that they don’t kill the plant. The roots continue to grow, providing the colony with lots of food.

The naked mole-rat grows about 4 inches long, or 10 cm, although dominant females are larger. It has tiny eyes and doesn’t see very well, since most of the time it doesn’t need to see, and it has a chonky body but short, spindly legs. It pretty much has no hair except for whiskers and some tiny hairs between the toes, and its skin is so pale it’s almost translucent. It digs with its protruding front teeth, and these teeth are not in its mouth. They grow out through the skin and the animal’s mouth is actually behind the teeth. This way the mole-rat can dig without getting dirt in its mouth, but it sure looks weird to us.

But that’s not even close to the weirdest thing about the naked mole-rat. We haven’t even scratched the surface of weirdness!

The naked mole-rat lives underground in a part of the world where it’s always warm, and its tunnel system has no exits to the surface except for temporary exits when new tunnels are being excavated, because the dirt has to go somewhere. Its environment is so consistent in temperature that it doesn’t need to regulate its body temperature like every other mammal known. It’s ectothermic, which is sometimes called cold-blooded. Reptiles and amphibians are ectothermic but all other mammals known are endothermic. It’s kind of our thing. But the naked mole-rat is different. Its metabolism is extremely low, and as a result it can live for more than 30 years when most rodents the same size are lucky to live 2 or 3 years.

The naked mole-rat’s skin isn’t just hairless, it also lacks neurotransmitters. This means its skin doesn’t feel pain. The animal also lives in an environment that’s remarkably low in oxygen, and scientists think this contributes to the fact that the mole-rat never shows evidence of cancer except in captivity where its environment is higher in oxygen.

The naked mole-rat’s colony is led by a dominant female, called a queen, and she’s the only female in the colony that has babies. When a female achieves dominance, either by founding a new colony, taking over after the current queen dies, or defeating the current queen in a fight, she then grows larger and becomes able to reproduce. Only a few males in the colony mate with her. All the other members of the colony are unable to reproduce. They’re considered workers and help take care of the queen’s babies, maintain tunnels, forage for food, or act as soldiers to keep snakes and other predators out. If this sounds like the way some insect colonies are structured, especially bees and ants, you’re right. It’s called eusociality and the mole-rat is the only type of mammal known with this sort of social structure. There’s another type of mole-rat from southern Africa that’s also eusocial, but it has fur.

All that is so weird that I almost forgot the mole-rat is hairless. That now seems like the most normal thing about it.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 297: Dinosaur Mummies

This week we have a two-ghost rating for our episode about dinosaur mummies! It’s a little spooky because we talk about mummies, but it’s mostly an episode about dinosaurs, which are not spooky.

Further reading:

The lost Tarbosaurus mummy

Dinosaur Mummy Found with Fossilized Skin and Soft Tissues

Dakota the Dinomummy: Millenniums in the Making

Spectacularly Detailed Armored Dinosaur “Mummy” Makes Its Debut

Was a Dinosaur Mummy Dubbed ‘Appalachiosaurus’ Found in Tennessee?

An Edmontosaurus mummy found in 1908:

A 3D model of Dakota’s skin [photo from third link above]:

The Nodosaurid ankylosaur mummy:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s monster month and this week we’ve got a monster from ancient times—really ancient times. We’re talking about mummies today, DINOSAUR mummies! On our spooky scale, this one rates two ghosts out of five since we do talk about mummies, but it’s not too spooky because we mostly talk about dinosaurs!

A dinosaur named Tarbosaurus lived around 70 million years ago in what is now Mongolia. It was probably closely related to Tyrannosaurus rex and would have looked very similar, with a big strong body but teeny-tiny front legs. Its front legs were even smaller than T. rex’s in relation to its body. It grew up to about 33 feet long, or 10 meters, and probably stood about 10 feet high at the hip, or 3 meters, and its big head had a big mouth full of really big teeth. It probably killed and ate hadrosaurs, sauropods, and other big dinosaurs. Some scientists think it was so closely related to T. rex that it should be classified as another species in the genus Tyrannosaurus.

We have quite a few Tarbosaurus fossils, including some very well-preserved skulls, so we know quite a bit about it. It had a good sense of smell and good hearing, but its vision wasn’t all that great. Some paleontologists think it might have been nocturnal. We’ve also found lots of bones of big dinosaurs with bite marks from teeth the size and shape of Tarbosaurus’s.

In 1991, though, a team of scientists found something even more incredible. They found a partial skeleton of a Tarbosaurus with lots of skin impressions. In short, they’d sort of found a mummified dinosaur. (It’s not really a mummy.)

The mummy consisted of the back end of the dinosaur, including the pelvis, tail, and hind legs. It had fallen onto sandy sediment that was especially fine-grained, so when the sediment transformed into sandstone over many millennia, it retained an exceptionally clear impression of the skin, including every small pebbly scale.

The expedition members took pictures and measurements, but they didn’t collect the specimen. Another expedition returned to the area to do so in 1993, but by then the specimen was gone. It was probably stolen by fossil poachers, who probably didn’t even realize the skin impressions were far more valuable than the bones and may have destroyed them while removing the skeleton.

The lost Tarbosaurus specimen is called a fossilized mummy since a dead animal’s skeleton with skin is sort of like a mummy. When the soft tissues of a dead animal or person are preserved in some way that causes them to stop decaying, that’s considered a mummy, and there are a lot of causes.

The most famous mummies, of course, are from ancient Egypt. It was important in Egyptian culture at the time to preserve a dead person’s body, and dead animals were also mummified sometimes, especially cats. The body was treated with salt and spices that helped dry the tissues and preserve them from bacteria, and once it was fully dehydrated the body was wrapped in linen bandages, covered with a natural waterproofing material made from plant resins, and placed in a wooden coffin. Sometimes the coffin was then put into a stone sarcophagus to keep it extra safe.

Other cultures across the world have practiced mummification too, and sometimes mummification happens naturally. This mostly happens in deserts and other dry areas, or in places where it’s very cold and the body freezes before it can decay, then dries out slowly. Sometimes a body is preserved after it’s buried, when the soil of the grave or the conditions in an underground crypt are just right, although bodies found in bogs are mummified too since bogs lack oxygen and that stops the decay of soft tissues.

Another dinosaur mummy was found in 1910 in the western United States, in Wyoming. It’s an Edmontosaurus specimen that’s remarkably well preserved and nearly complete, including skin impressions and even the horny beak. Initially the scientists who studied the animal thought the stomach contents had been preserved too, but more modern studies have concluded that the plant material was probably deposited in the body cavity after death. The dinosaur died near water and flooding may have washed plants into the partially decomposed carcass. There was even a little fish among the plant material, which was probably already dead when it was washed into the body cavity.

Edmontosaurus lived in what is now North America around 67 million years ago, surviving right up to the extinction event that killed off the non-avian dinosaurs. It’s one of many species of hadrosaurid, which are often called duck-billed dinosaurs. It could grow up to 39 feet long, or 12 meters, and possibly larger, and it was relatively common throughout its range. It probably walked on all fours most of the time but could stand or walk on its hind legs only, when it wanted to. It ate plants and may have migrated long distances to find food. It probably lived in groups.

The skin impressions of the 1910 specimen were impressive, but it isn’t the only edmontosaurus mummy ever found. We have several, in fact. The earliest was found in 1908, known as specimen AMNH 5060, and it was discovered by a man named Charles Sternberg and his three sons, who all three became paleontologists later in life. They were hoping to find a good triceratops skull to sell to a museum, but they found something even better when one of the sons realized the dinosaur they were uncovering was wrapped in skin impressions.

AMNH 5060 had died in an area that was very dry, so instead of rotting away, all the moisture in the body dried out and the skin remained stretched across the bones. It was essentially a natural mummy at that point. Then, as in the 1910 specimen, flooding probably covered the dead animal with sediment that preserved it in fine detail. Not only is the skeleton mostly intact, it’s also articulated so that the fossilized body parts are in the same places they were when the animal died, instead of having been scattered around after death.

More edmontosaurus mummies were found later, too, but it wasn’t until 2006 when the most important find so far was discovered in North Dakota, part of the United States. It isn’t just skin impressions we have from this specimen, which is nicknamed Dakota. We have actual fossilized skin and muscles and tendons, along with bones.

Dakota was discovered by Tyler Lyson on his uncle’s ranch when he was still in high school. He knew the dinosaur was there but he didn’t realize how important the find was until five years later when he was a paleontology student. The specimen was excavated in 2006 and was identified as an adolescent edmontosaurus that died about 67 million years ago. It was recently given a new 3D scan and results will hopefully be published soon, letting us all know if there are any fossilized organs inside the body.

Because so much of the soft tissues were preserved in place, we know a lot about how edmontosaurus looked when it was alive. For instance, the intervertebral discs that act as little shock absorbers between vertebrae are still in place, which means we know exactly how long Dakota was when it was alive, about 40 feet long, or 12 meters. Because so many of its tendons and muscles are preserved, scientists can calculate how fast it could run. Dakota could probably run 28 mph, or 45 km/hour. We even have a clue about Dakota’s pattern, if not its coloration. Differences in scale size and texture suggest that the dinosaur might have had stripes on at least part of its body.

Edmontosaurus fossils aren’t the only dinosaur mummies, though. In 2011, an amazing ankylosaur fossil was discovered in a Canadian mine. Ankylosaurs had short legs and wide bodies covered in armor, and while some had club-like tails, Nodosaurids had regular tails but spikes on their backs that pointed sideways. The Canadian ankylosaur mummy is a nodosaurid.

Researchers think the dinosaur was probably caught in a flash flood, which swept it out to sea. It probably swam as long as it could, but its armored body made it heavy and it eventually drowned. Its body sank into the bottom sediment, which protected it from decay, scavengers, weathering, and other things that might have destroyed it. 110 million years later, an equipment operator fortunately noticed how weird the rock was that he’d just uncovered, and the world now has an amazing idea of what a living ankylosaur looked like.

The animal’s armored plates from the front of its body, some skin, and even its stomach contents are beautifully preserved, and the body is still articulated. It looks like it lay down to sleep and turned to stone. Some chemical pigments called melanosomes were discovered during study of the skin, which suggests that its skin was probably reddish-brown in color with a lighter-colored belly. It had massive spikes on its shoulders and along the sides of its neck, along with the smaller osteoderms that made up its armor on the rest of its body.

We know it mostly ate ferns because that was mostly what was in its stomach when it died. There was also some charcoal in its stomach, and researchers think it was probably eating ferns that had grown in an area where a wildfire had been recently. The ferns are so well preserved that scientists can determine their stage of growth, which means the dinosaur probably died in early to mid-summer.

Another dinosaur mummy is a Brachylophosaurus nicknamed Leonardo. Leonardo was found in July 2000 and wasn’t full grown when it died, only maybe three or four years old. Its skin and some of its internal organs are fossilized, and 3D scans have allowed scientists to learn a lot about it.

Brachylophosaurus was a hadrosaurid that lived around 80 million years ago in North America, and it could grow up to around 36 feet long, or 11 meters. It may have lived and migrated in groups. It had a flat crest on its head and a frill down the back, although some individuals had big crests and some had small ones. Paleontologists think big crests might have been a trait found only in males or only in females, we’re not sure which.

It ate plants, and we know from studies of Leonardo’s fossilized digestive system that it had eaten a lot of ferns right before it died, as well as leaves and other material from ancient relatives of conifers and magnolias. It also had worms. That’s right, even the parasites in Leonardo’s digestive system were fossilized. They were needle-like bristly worms who left more than 200 tiny burrows in the digestive lining, fossilized for eternity. Leonardo also had an internal pouch in its neck that was similar to a modern bird’s crop, where food was stored immediately after swallowing and where the digestive process may have started.

We’ll finish by talking about a story from April 2022, which discusses a dinosaur mummy found in my own state of Tennessee. The dinosaur was called Appalachiosaurus and was at least 77 million years old, and its skin and even some of its internal organs were reportedly intact—so much so that DNA was able to be extracted from them. The problem is that this particular story was posted to Facebook on April 1, also known as April Fool’s Day, and yes, it was a hoax. But Appalachiosaurus is a real species of dinosaur, a theropod that grew at least 21 feet long, or 6.5 meters, and probably quite a bit longer since the most complete specimen found so far is a juvenile. We don’t know a lot about Appalachiosaurus since only a few partial remains have ever been discovered. It would be fantastic if a fossilized mummy of one really did turn up one day.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 296: The Hide and the Blood-Sucking Blanket

Monster month is upon us, October, where all our episodes are about spooky things! This episode is only a little bit spooky, though. I give it one ghost out of a possible five ghosts on the spooky scale.

Happy birthday to Casey R.!

Further reading:

All you ever wanted to know about the “Cuero”

Mystery Creatures of China by David C. Xu

Freshwater stingrays chew their food just like a goat

A 1908 drawing of the hide (in the red box) [picture taken from first link above]:

The Caribbean whiptail stingray actually lives in the ocean even though it’s related to river stingrays:

The short-tailed river stingray lives in rivers in South America and is large. Look, there’s Jeremy Wade with one!

The bigtooth river stingray is awfully pretty:

Asia’s giant freshwater stingray is indeed giant:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s finally October, and you know what that means. Monster month! We have five Mondays in October this year, including Halloween itself—and, in the most amazing twist of fate, our 300th episode falls on Halloween!

I know some of our listeners don’t like the really spooky episodes because they’re too scary, especially for our younger listeners. To help people out, I’m going to rate this year’s monster month episodes on a scale of one ghost, meaning it’s only a little tiny bit spooky, to five ghosts, which means really spooky. This week’s episode is rated one ghost, so it’s interesting but won’t make you need to sleep with a night light on.

Before we get started, we have two quick announcements. Some of you may have already noticed that if you scroll all the way down in your podcast app to find the first episode of Strange Animals Podcast, it doesn’t appear. In fact, the first several episodes are missing. That’s because we actually passed the 300 episode mark several weeks ago, because of the occasional bonus episode and so forth, and podcast platforms only show the most recent 300 episodes of any podcast. That’s literally the most I can make appear. However, the early podcasts are still available for you to listen to, you’ll just have to click through to the website to find them.

Second, we have a birthday shout-out this week! A very very happy birthday to Casey R! I hope your birthday is full of all your favorite things.

Now, let’s learn about the hide of South America and the blood-sucking blanket of Asia.

The first mention of a creature called El Cuero in print comes from 1810, in a book called Essay on the Natural History of Chile by a European naturalist named Fr. Juan Ignacio Molina. In his book Molina wrote, “The locals assure that in certain Chilean lakes there is an enormous fish or dragon…which, they say, is man-eating and for this reason they abstain from swimming in the water of those lakes. But they are not in agreement the appearance that they give it: now they make it long, like a serpent with a fox head, and now almost circular, like an extended bovine hide.”

Later scholars pointed out that the reason Molina thought the locals couldn’t decide what the animal looked like was because locals were talking about two different monsters. Molina just confused them. One monster was called a fox-snake and one was the cuero, which means “cow hide” in Spanish. And it’s the hide we’re going to talk about.

During the century or so after Molina wrote his book, folklorists gathered stories and legends from the native peoples of South America, trying to record as much about the different cultures as they could before those cultures were destroyed or changed forever by European colonizers. The hide appears to be a monster primarily from the Mapuche people of Patagonia.

Most stories about the hide go something like this: a person goes into the water to wash, or maybe they have to cross the lake by swimming. The hide surfaces and folds its body around the person like a blanket, dragging them under the water, and the person is never seen again. Sometimes the monster is described as resembling a cowskin or calfskin, sometimes a goat- or sheepskin. It’s usually black or brown and sometimes is reported as having white spots, and some reports say it has hooks or thorns around its edges. It may bask at the water’s surface or in shallow water in daytime, waiting for a person or animal to come too close.

The safest way to kill a hide is to trick it into coming to the surface to catch an animal or person. When it’s close enough, people throw the branches of a cactus with really long, sharp thorns at it. The hide folds its body around the cactus pieces, which pierce it through and kill it. The least safest way to kill a hide is to make sure you’re carrying a sharp knife, and when the hide grabs you, cut your way out of its enveloping folds before you drown or are eaten.

The main suggestion, starting in 1908, was that the hide was a giant octopus that lived in freshwater and had hooks on its legs or around the edges of its mantle. The main problem with this hypothesis is that there are no known freshwater octopuses. There aren’t any freshwater squid either, another suggestion.

A much better suggestion is that the hide is actually some kind of freshwater ray. And, as it happens, there are lots of freshwater stingrays native to South America. Specifically, they’re members of the family Potamotrygonidae, river stingrays.

River stingrays are pretty much round and flat with a slender tail equipped with a venomous stinger. The round part is called a disc, and some species can grow extremely large. The largest is actually a marine species called the Caribbean whiptail stingray, which can grow about 6 1/2 feet across, or 2 meters. But the short-tailed river stingray can grow about 5 feet across, or 1.5 meters, and it lives in the Río de la Plata basin in South America. The short-tailed river stingray is dark gray or brown mottled with lighter spots, while many other river stingrays are black or dark brown with light-colored spots.

Even better for our hypothesis, river stingrays are covered with dermal denticles on their dorsal surface, more commonly called the back. Dermal denticles are also called placoid scales even though they’re not actually scales. They’re covered with enamel to make them even harder, like little teeth. If that sounds strange, consider that rays are closely related to sharks, and sharks are well known to have skin so rough that you can hurt your hand if you try to pet a shark. Please don’t try to pet a shark. Admire sharks from a safe distance like you should with any wild animal.

River stingrays don’t eat people, of course. They mostly eat fish, crustaceans, worms, insects, mollusks, and other small animals. Females are much larger than males and give birth to live young. The ray’s mouth is underneath on the bottom of the disc near the front, and it has sharp teeth. Unlike pretty much every fish known, it chews its food with little bites like a mammal, which if you think about it too much is kind of creepy.

River stingrays also don’t hunt by wrapping animals in their disc, but the disc is involved in hunting in a way. The disc is formed by the ray’s fins, which are extremely broad and encircle the center part of its body, and the disc as a whole is pretty flat. The stingray will lie on the bottom of the river until a little fish or an insect gets too close. Then it will lift the front part of its disc quickly, which sucks water under it. If you’ve ever stood up in the bathtub before the water has completely drained, you can feel the suction as your body leaves the water. Quite often, the stingray’s prey gets sucked under it with the water. The ray then drops back down, trapping the animal underneath it, and chews it up.

That doesn’t mean stingrays aren’t dangerous to humans, though. The stingray’s sting is barbed and very strong, and can cause a painful wound even without its venom. A ray often hides by burying itself in the sand or mud, and if someone steps on it by accident, the ray whips its tail up and jabs its sting into their leg.

In other words, we have a large, flat creature with little pointy denticles on its back that may be dark-colored with white spots, and it’s dangerous to people and animals. That sounds a lot like the hide. There’s just one problem with this theory.

The stingray is a tropical or temperate animal. It needs warm water to survive. Patagonia is at the extreme southern end of South America, much closer to Antarctica than to the equator. No river stingray known lives within at least 500 miles of Patagonia, or 800 km, and the Patagonian lakes where the hide is supposed to live are extremely cold even in summer.

That doesn’t mean there isn’t a stingray unknown to science living in remote areas of Patagonia, of course. Many river stingray species were only discovered in the last decade or so, some of them quite large, and there are still some undescribed species. There’s always the possibility that at least one river stingray species has become adapted to the cold but hasn’t been discovered by scientists yet. It might be endangered now or even extinct.

Or the hide might not be a real animal, just a legend inspired by the river stingrays in other parts of South America. The Mapuche people are not closely related to the other peoples of Patagonia, even though they’ve lived there for at least 2,500 years, and some archaeologists think they might have migrated to Patagonia relatively late. If they brought memories of big river stingrays from their former home north of Patagonia, the memories might have inspired stories of the hide.

On the other side of the world, in China, there’s a similar legend of a monster sometimes called the xizi. The name means “mat” but it’s also referred to as a blood-sucking blanket. It lives in rivers and other waterways, and can even slide out of the water onto land. And like the hide, it’s described as a sort of living blanket that wraps itself around people or animals that venture into the water, where it pulls them under and sucks all the blood out of them.

In the case of the blood-sucking blanket, though, it’s supposed to have sharp round suckers on its underside that it uses to stick to its victims and slurp up their blood. It varies in size, sometimes about a foot across, or 30 cm, sometimes as much as 6 1/2 feet across, or 2 meters. Sometimes it’s described as reddish, sometimes green or covered with fuzzy moss on its back.

One story is that a hunter witnessed an elephant and her calf crossing a shallow river when the calf was dragged underwater by something. The mother elephant grabbed her calf and pulled it to safety, then trampled its attacker. Once the elephants were gone, the hunter went to investigate and found a dead creature that resembled a wool blanket, with a greenish, mossy back but with big suckers underneath the size of rice bowls, sort of like an octopus’s suckers.

And there is a freshwater stingray that lives in Asia, although it isn’t closely related to the river stingrays found in South America. Most of its closest relatives live in the ocean, but the giant freshwater stingray lives in rivers in southeast Asia. It’s dark gray-brown on its back and white underneath, and it has a little pointy nose at the front of its disc. It has denticles on its back and tail just like its distant South American cousins.

It’s also enormous. A big female can grow over 7 feet across, or 2.2 meters. Its tail is long and thin with the largest spine of any stingray known, up to 15 inches long, or 38 cm. In fact, its tail is so long that if you measure the giant freshwater stingray by length including its tail, instead of by width of its disc, it can be as much as 16 feet long, or about 5 meters. Some researchers think there might be individuals out there much larger than any ever measured, possibly up to 16 feet wide. The length and thinness of the tail gives the ray its other common name, the giant freshwater whipray, because its tail looks like a whip.

Even though it’s endangered due to habitat loss and hunting, and it only lives in a few rivers in South Asia these days, the giant freshwater stingray was once much more widespread. Because stingrays have cartilaginous skeletons the same way sharks do, we don’t have very many fossils or subfossil remains except for stingray teeth and denticles, so we don’t know for sure where the giant freshwater stingray used to live. But even if it didn’t live in China, travelers who had seen one in other places might have brought stories of it to China, where it spread as a scary legend.

Or, of course, there might be another freshwater stingray in China that’s unknown to science, possibly endangered or even extinct. It might even still be around, just waiting for someone to go swimming.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

 

Episode 293: Bat-Winged Dinosaurs and an Actual Bat

We’ll have a real episode next week but for now, here are two Patreon episodes smashed together into one!

Happy birthday to Speed!

Further reading:

Yi qi Is Neat But Might Not Have Been the Black Screaming Dino-Dragon of Death

Yi qi could probably glide instead of actually flying:

The Dayak fruit bat [photo by Chien C. Lee]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’ve finally finished moving, although I’m still in the process of unpacking and finding places for all my stuff. I haven’t had the chance to do any research this week, so this episode is actually two repurposed Patreon episodes, one from June of 2019 and one from May of 2021. They’re both short episodes so I put them together. I apologize to patrons for not getting something new this week, but I think everyone else will find these animals interesting.

But first, we have a birthday shout-out! A great big happy birthday to Speed! I hope this next year is the very best one yet for you!

Please excuse the varying quality of audio.

Listener Simon sent me an article about a recently discovered dinosaur with batlike wings, only the second batwinged dinosaur ever discovered. I thought that would make a really neat episode, so thank you, Simon!

These are really recent discoveries, both from the same area of northeastern China. In 2007 a small fossil found by a farmer was bought by a museum. A paleontologist named Xing Xu thought it looked interesting. Once the fossil had been cleaned and prepared for study, Xing saw just how interesting it was.

The dinosaur was eventually named Yi qi, which means strange wing. It was found in rocks dated to about 163 million years ago. Yi qi was about the size of a pigeon and was covered with feathers. The feathers were probably fluffy rather than the sleek feathers of modern birds. But most unusual was a long bony rod that grew from each wrist, called a styliform element. Yi qi also had very long third fingers on each hand. The long finger was connected to the wrist rod by a patagium, or skin membrane, and another patagium connected the wrist rod to the body. So even though it had feathers on its body, it probably didn’t have feathered wings. Instead, its forelimbs would have somewhat resembled a bat’s wings.

Paleontologists have studied the fossilized feathers with an electron microscope and discovered the structures of pigments that would have given the feathers color. Yi qi was probably mostly black with yellow or brown feathers on the head and arms. It probably also had long tail feathers to help stabilize it in the air.

Ambopteryx longibrachium was only discovered in 2017, also in northeastern China. It also lived around 163 million years ago and looked a lot like Yi qi. The fossil is so detailed it shows an impression of fuzzy feathers and even the contents of the animal’s digestive tract. Its body contained tiny gizzard stones to help it digest plants but also some bone fragments from its last meal, so paleontologists think it was an omnivore. Its hands have styliform elements, although not a wrist rod like Yi qi, and there’s a brownish film preserved across one of its arms that researchers think are remains of a wing membrane.

Paleontologists think the bat-winged dinosaurs were technically gliders. Careful examination of the wrist rods show no evidence that muscles were attached, so the dinosaurs wouldn’t have been able to adjust the wings well enough to actually fly. Modern bats have lots of tiny muscles in their wing membranes to help them fly.

Yi qi’s wrist rod isn’t unique in the animal world. The flying squirrel has styliform rods made of cartilage that project from the wrists, with the patagia attached to them. When a squirrel wants to glide, it extends its arms and legs and also extends the wrist rods, stretching the patagia taut. It can even control its glide to some extent by adjusting the wrist rods.

These two bat-winged dinosaurs were related, but they aren’t direct ancestors to modern-day birds. They’re scansoriopterygids,[scan-soarie-OPterigid] which are related to the group of dinosaurs that gave rise to birds. We only have five scansoriopterygid fossils, all found in the same area of China, but they’re all exceptionally well preserved fossils. Scansoriopterygids all appear to have been good climbers. They probably mostly lived in trees and mostly ate insects and small animals, gliding from branch to branch like modern flying squirrels do.

Researchers suggest the bat-winged dinosaurs might have gone extinct when bird ancestors evolved true flight with feathered wings, outcompeting the bat-winged dinosaurs’ more limited gliding flight. But with so few fossils, it’s impossible to say how successful the bat-winged dinosaurs were. All we know is they are rare in the fossil record and left no descendants.

So were scansoriopterygids related to pterosaurs? Nope. Pterosaurs weren’t even dinosaurs. They were reptiles and the first vertebrates we’ve found that could actually fly instead of just glide. Pterosaurs first appear in the fossil record around 228 million years ago and they all went extinct about 66 million years ago in the Cretaceous-Paleogene extinction event.

When Yi qi’s description was first published in 2015, the media acted as though it was a radical new find that would change the way we looked at dinosaurs forever. Some people even claimed the fossil was a fake, either a deliberate fraud by Xing and the other paleontologists that worked on the specimen, or that Xing and the others actually had a fossil made up of more than one animal with the bones jumbled together, which they had mistaken for a single animal. But this isn’t the case. Yi qi has been studied extensively with all the technology paleontologists have available these days. It’s the fossil of a single animal and it hadn’t been touched up or altered or messed with in any way before it was prepared by an expert. But while it is a radical new finding, it’s not as radical as some articles made it seem.

In 2008, the description was published of another scansoriopterygid called Epidexipteryx. Epidexipteryx appears to be closely related to Yi qi. It doesn’t have a wrist rod, but its arms were long and its fingers were especially elongated. It had forward-pointing teeth in the front of its jaw and probably had long tail feathers. Paleontologists think it was most likely a strong climber that may have spent most of its time in and around trees. But after that publication, paleontologist Andrea Cau published a paper suggesting that Epidexipteryx’s elongated arms and fingers might have been connected with patagia that allowed it to glide short distances. This was before the first paper about Yi qi was published and before Ambopteryx was even discovered. So the idea of a dinosaur with gliding membranes was already out there.

Hopefully, more scansoriopterygid fossils will be found and studied soon, which will give us more knowledge about what these little animals really looked and acted like. I want one as a pet.

Next, let’s go from bat-winged dinosaurs to some actual bats, specifically an unusual feature found in at least one species of bat, and something of a mystery.

As you probably know, only female mammals lactate. That just means that after a mammal gives birth, the mother produces milk for her baby to drink until it’s old enough to eat the same food that its parents do. All mammals do this, from whales to vampire bats, from humans to kangaroos, from mice to lions. The word mammal actually comes from mammary gland, which is the gland that allows a mother animal to produce milk after she has a baby.

Researchers have examined the genes that allow for milk production and determined that the genes probably developed over 200 million years ago in the common ancestor of all mammals alive today. The genes responsible for making egg yolk proteins started to be lost around 70 million years ago, except in monotremes that still lay eggs. Monotremes are platypuses and echidnas, and while they’re mammals, they retain some features that modern mammals have lost, like egg-laying. But even monotreme mothers produce milk.

Once our far-distant mammal ancestors evolved the ability to feed its babies with milk, the babies didn’t need as much yolk in their eggs. Gradually, over millions of generations, mammals lost the ability to produce egg yolks completely. I mean, except for the monotremes. From now on just assume that any time I talk about modern mammals, in this episode at least, I’m excluding monotremes, because they’re weird.

Ancient mammals laid eggs like reptiles and birds do, with a shell protecting the yolk and other fluids inside, that in turn protected and nourished the growing baby. But eventually a mammal mother retained her eggs in the body, which meant they didn’t need an eggshell since they were safely inside her, and because she was able to feed them nutritious, easy to digest milk as soon as they were born, they didn’t need an egg yolk either. So mammals eventually lost the ability to produce eggs at all.

This gets confusing, of course, because we use the same word, “egg,” to refer to the egg that a chicken or turtle lays, and to refer to the cell that a mother animal produces that can develop into a baby if it’s fertilized by sperm. Obviously I’m just talking about the first kind of egg here.

Anyway, milk production is a complex process that can be hard on the mother’s body, since she has to produce enough nutrients to feed all her babies, whether that’s just one human infant or twin fawns or a whole litter of puppies or kittens. Researchers have compared the genes associated with milk production and discovered that it’s pretty standard across all mammals. While the nutrients available in milk vary from species to species, since not every mammal has the same nutritional needs, how the body produces milk is pretty much identical across the board. All female mammals produce milk after they give birth, but only the females.

If that’s the case, though, why do male mammals have nipples? It turns out that nipples are just part of the basic body plan of a mammal. Some researchers think that originally both males and females lactated, but over the generations males lost the ability.

Except in one case. In that species, the females produce milk…and so do the males.

The Dayak fruit bat lives in parts of southeast Asia and is quite rare. It lives in rainforests and mostly eats fruit, especially figs. It has short, gray-brown fur and only weighs a little more than three ounces, or 95 grams. That’s about the same weight as a deck of cards. Its wingspan is about 18 inches across, or 46 cm. It’s a nocturnal bat but it’s also a megabat, which if you remember episode 88 means that it doesn’t have the advanced echolocation ability that microbats have. It may only navigate through the trees using its vision, since it has large eyes, but it may have some form of echolocation ability we don’t know about yet. There’s a whole lot we don’t know about the Dayak fruit bat.

What we do know is that in summer, female Dayak fruit bats give birth to one or two babies. We also know that in summer, when researchers net bats to examine, both males and females have enlarged breasts that produce milk. The bat, by the way, has breasts toward the sides of its body, basically in the armpits of its wings because that’s most convenient for the baby bats to grab hold of.

That’s all we know so far. We don’t know for sure that the males actually nurse their babies. They don’t produce nearly as much milk as females do, only about 1/10th as much. Some researchers think the father bat may take care of his babies while the mother finds food, but that she takes care of them the rest of the time. That’s just speculation, though, because so little is known about the bat.

Sometimes various diseases, genetic issues, or pollutants in the environment will cause a male animal to produce a little milk, but that’s rare. All the male Dayak fruit bats caught in summer were lactating, as were the females. Males and females caught at other times of the year weren’t lactating. Since mammals stop producing milk after their babies no longer need it, that means both males and females are probably producing milk for babies.

There may be one other bat where males lactate, although I can’t find enough information to verify it. The Bismarck masked flying fox, which sounds like an old-timey superhero, is related to the Dayak fruit bat, since they’re both megabats, but they’re not closely related.

The Bismarck masked flying fox lives in Papua New Guinea and eats fruit and other plant material. Like other flying foxes, it probably finds its food by smell and can’t echolocate. We don’t know much about it either, though, and until 2001 researchers thought it was a subspecies of Temminck’s flying fox. If you do a search for it online, every entry you find will mention that the males lactate, but never with any documentation to back up the claim. So that’s a mystery for now, although I’ll keep trying to find out more.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 292: The Kunga

This week let’s learn about a mystery that was solved by science!

Happy birthday to Zoe!

Further reading:

Let’s all do the kunga!

The kunga, as depicted in a 4500-year-old mosaic:

The Syrian wild ass as depicted in a 1915 photograph (note the size of the animal compared to the man standing behind it):

Domestic donkeys:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As this episode goes live, I should be on my way home from Dragon Con, ready to finish moving into my new apartment! It’s been an extremely busy week, so we’re just going to have a short episode about a historical mystery that was recently solved by science.

But first, we have another birthday shout-out! Happy birthday to Zoe, and I hope you have the most sparkly and exciting birthday ever, unless you’d rather have a chill and low-key birthday, which is just as good depending on your mood.

This week we’re going to learn about an animal called the kunga, which I learned about on Dr. Karl Shuker’s blog. There’s a link in the show notes if you’d like to read his original post.

The mystery of the kunga goes back thousands of years, to the fertile crescent in the Middle East. We’ve talked about this area before in episode 177, about the sirrush, specifically Mesopotamia. I’ll quote from that episode to give you some background:

“These days the countries of Iraq and Kuwait, parts of Turkey and Syria, and a little sliver of Iran are all within what was once called Mesopotamia. It’s part of what’s sometimes referred to as the Fertile Crescent in the Middle East. The known history of this region goes back five thousand years in written history, but people have lived there much, much longer. Some 50,000 years ago humans migrated from Africa into the area, found it a really nice place to live, and settled there.

“Parts of it are marshy but it’s overall a semi-arid climate, with desert to the north. People developed agriculture in the Fertile Crescent, including irrigation, but many cultures specialized in fishing or nomadic grazing of animals they domesticated, including sheep, goats, and camels. As the centuries passed, the cultures of the area became more and more sophisticated, with big cities, elaborate trade routes, and stupendous artwork.”

The domestic horse wasn’t introduced to this area until about 4,000 years ago, although donkeys were common. The domestic donkey is still around today, of course, and is descended from the African wild ass. Researchers estimate it was domesticated 5- or 6,000 years ago by the ancient nomadic peoples of Nubia, and quickly spread throughout the Middle East and into southern Asia and Europe.

But although horses weren’t known in the Middle East 4,500 years ago, we have artwork that shows an animal that looks like a really big donkey, much larger than the donkeys known at the time. It was called the kunga and was highly prized as a beast of burden since it was larger and stronger than an ordinary donkey. It was also rare, bred only in Syria and exported at high prices. No one outside of Syria knew what kind of animal the kunga really was, but we have writings that suggest it was a hybrid animal of some kind. This explains why its breeding was such a secret and why it couldn’t be bred elsewhere. Many hybrid animals are infertile and can’t have babies.

If the artwork was from later times, we could assume it showed mules, the offspring of a horse and a donkey. But horses definitely weren’t known in the Middle East or nearby areas at this time, so it can’t have been a mule.

The kunga was used as a beast of burden to pull plows and wagons, but the largest individuals were used to pull the chariots of kings. Fortunately, the kunga was so highly prized that it was sometimes sacrificed and buried with important people as part of their grave goods. Archaeologists have found a number of kunga skeletons, together with ceremonial harnesses. Unfortunately, it’s actually difficult to tell the difference between the skeletons of various equids, including horses, donkeys, zebras, and various hybrid offspring like mules. All scientists could determine is that the kunga most closely resembled various species and subspecies of donkey.

In January 2022, the mystery was finally solved. A genetic study of kunga remains was published that determined that the kunga was the offspring of a female domesticated donkey and a male Syrian wild ass.

The Syrian wild ass was native to many parts of western Asia. It was barely more than three feet tall at the shoulder, or about a meter, and while it was admired as a strong, beautiful animal that was sometimes hunted for its meat and skin, it couldn’t be tamed.

Because the Syrian wild ass was a different species of equid from the domesticated donkey, and because it couldn’t be tamed and was hard to catch, breeding kungas would be difficult. Male wild asses had to be captured, probably when young, and kept with female donkeys in hopes that they would mate eventually and offspring would result. Obviously the kunga showed what’s called hybrid vigor, where a hybrid is stronger than either of its parents, but because it was also infertile, the largest and strongest kungas couldn’t be bred together. Each kunga had to be bred from a pairing of wild ass and domestic donkey. No wonder it was expensive!

When the horse was introduced to the Middle East, it took the place of the kunga quickly and before long everyone had forgotten what the kunga even was.

Sadly, we can’t try to breed a kunga today to see what it was really like, because the Syrian wild ass went extinct in 1927. But the endangered Persian wild ass was introduced to parts of the Middle East starting in 2003, including Saudi Arabia, Iran, and Israel, to take the place of its extinct Syrian relation, and its numbers are increasing.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 289: Weird Worms

This week we learn about some weird worms!

Further reading:

Otherworldly Worms with Three Sexes Discovered in Mono Lake

Bizarre sea worm with regenerative butts named after Godzilla’s monstrous nemesis

Underground giant glows in the dark but is rarely seen

Giant Gippsland earthworm (you can listen to one gurgling through its burrow here too)

Further watching:

A giant Gippsland earthworm

Glowing earthworms (photo by Milton Cormier):

This sea worm’s head is on the left, its many “butts” on the right [photo from article linked to above]:

A North Auckland worm [photo from article linked to above]:

A giant beach worm:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we continue Invertebrate August with a topic I almost saved for monster month in October. Let’s learn about some weird worms!

We’ll start with a newly discovered worm that’s very tiny, and we’ll work our way up to larger worms.

Mono Lake in California is a salty inland lake that probably started forming after a massive volcanic eruption about 760,000 years ago. The eruption left behind a crater called a caldera that slowly filled with water from rain and several creeks. But there’s no outlet from the lake—no river or even stream that carries water from the lake down to the ocean. As a result, the water stays where it is and over the centuries a lot of salts and other minerals have dissolved into the lake from the surrounding rocks. The water is three times as salty as the ocean and very alkaline.

No fish live in the lake, but some extremophiles do. There’s a type of algae that often turns the water bright green, brine shrimp that eat the algae, some unusual flies that dive into the water encased in bubbles, birds that visit the lake and eat the brine shrimp and flies, and eight species of worms that have only been discovered recently. All the worms are weird, but one of them is really weird. It hasn’t been described yet so at the moment is just going by the name Auanema, since the research team thinks it probably belongs in that genus.

Auanema is microscopic and lives throughout the lake, which is unusual because the lake contains high levels of arsenic. You know, a DEADLY POISON. But the arsenic and the salt and the other factors that make the lake inhospitable to most life don’t bother the worms.

Auanema produces offspring that can have one of three sexes: hermaphrodites that can self-fertilize, and males and females that need each other to fertilize eggs. Researchers think that the males and females of the species help maintain genetic diversity while the hermaphrodites are able to colonize new environments, since they don’t need a mate to reproduce.

When some of the worms were brought to the laboratory for further study, they did just fine in normal lab conditions, without extreme levels of arsenic and so forth. That’s unusual, because generally extremophiles are so well adapted for their extreme environments that they can’t live anywhere else. But Auanema is just fine in a non-harsh environment. Not only that, but the team tested other species in the Auanema genus that aren’t extremophiles and discovered that even though they don’t live in water high in arsenic, they tolerate arsenic just as well as the newly discovered species.

The team’s plan is to sequence Auanema’s genome to see if they can determine the genetic factors that confer such high resistance to arsenic.

Next, we go up in size from a teensy worm to another newly discovered worm, this one only about 4 inches long at most, or 10 cm. It’s a marine polychaete worm that lives inside sea sponges, although we don’t know yet if it’s parasitizing the sponge or if it confers some benefit to the sponge that makes this a symbiotic relationship. The worm was only discovered in 2019 near Japan and described in early 2022 as Ramisyllis kingghidorahi.

Almost all worms known are shaped, well, like worms. They have a mouth at one end, an anus at the other, and in between they’re basically just a tube. Ramisyllis is one of only three worms known that have branched bodies, which is why they’re called branching sea worms. In this case, Ramisyllis has a single head, which stays in the sponge, but its other end branches into multiple tail ends that occasionally break off and swim away. The tails are specialized structures called stolons. When a stolon breaks off, it swims away and releases the eggs or sperm it contains into the water before dying. The worm then regenerates another stolon in its place.

Ramisyllis’s branches are asymmetrical and the worms found so far can have dozens of branches. Its close relation, a species that lives in sponges off the coast of northern Australia, can have up to 100 branches. Researchers suspect that there are a lot more species of branching sea worms that haven’t been discovered yet.

Next, let’s head back to land to learn about a regular-sized earthworm. There are quite a few species across three different earthworm families that exhibit a particular trait, found in North and South America, Australia and New Zealand, and parts of Africa. A few species have been introduced to parts of Europe too. What’s the trait that links all these earthworms? THEY CAN GLOW IN THE DARK.

Bioluminescent earthworms don’t glow all the time. Most of the time they’re just regular earthworms of various sizes, depending on the species. But if they feel threatened, they exude a special slime that glows blue or green in the dark, or sometimes yellowish like firefly light. The glow is caused by proteins and enzymes in the slime that react chemically with oxygen.

Researchers think that the light may startle predators or even scare them away, since predators that live and hunt underground tend to avoid light. The glow may also signal to predators that the worm could taste bad or contain toxins. The light usually looks dim to human eyes but to an animal with eyes adapted for very low light, it would appear incredibly bright.

One bioluminescent earthworm is called the New Zealand earthworm. It can grow up to a foot long, or 30 cm, although it’s only about 10 mm thick at most, and while it’s mostly pink, it has a purplish streak along the top of its body (like a racing stripe).

Like other earthworms, the New Zealand earthworm spends most of its time burrowing through the soil to find decaying organic matter, mostly plant material, and it burrows quite deep, over 16 feet deep, or 5 meters. If a person tried to dig a hole that deep, without special materials to keep the hole from collapsing, it would fall in and squish the person. Dirt and sand are really heavy. The earthworm has the same problem, which it solves by exuding mucus from its body that sticks to the dirt and hardens, forming a lining that keeps the burrow from collapsing. This is a different kind of mucus than the bioluminescent kind, and all earthworms do this. Not only does the burrow lining keep the worm safe from being squished by cave-ins, it also contains a toxin that kills bacteria in the soil that could harm the worm.

Worms that burrow as deep as the New Zealand earthworm does are called subsoil worms, as opposed to topsoil worms that live closer to the surface. Topsoil contains a lot more organic material than subsoil, but it’s also easier for surface predators to reach. That’s why topsoil worms tend to move pretty fast compared to subsoil worms.

The New Zealand earthworm glows bright orange-yellow if it feels threatened, so bright that the Maori people used the worm as bait when fishing since it’s basically the best fish lure ever.

Another New Zealand earthworm is called the North Auckland worm, and while it looks like a regular earthworm that’s mostly pink or greenish, it’s also extremely large. Like, at least four and a half feet long, or 1.4 meters, and potentially much longer. It typically lives deep underground in undisturbed forests, so there aren’t usually very many people around on the rare occasion when heavy rain forces it to the surface. Since earthworms of all kinds absorb oxygen through the skin, instead of having lungs or gills, they can’t survive for long in water and have to surface if their burrow completely floods.

We don’t actually know that much about the North Auckland worm. Like the New Zealand earthworm, it’s a subsoil worm that mostly eats dead plant roots. Some people report that it glows bright yellow, although this hasn’t been studied and it’s not clear if this is a defensive reaction like in the New Zealand earthworm. It’s possible that people get large individual New Zealand earthworms confused with smaller North Auckland worm individuals. Then again, there’s no reason why both worms can’t bioluminesce.

An even bigger worm is the giant beach worm. It’s a polychaete worm, not an earthworm, and like other polychaete worms, including the branching sea worm we talked about earlier, it has a segmented body with setae that look a little like legs, although they’re just bristles. The giant beach worm’s setae help it move around through and over the sand. It hides in a burrow it digs in the sand between the high and low tide marks, but it comes out to eat dead fish and other animals, seaweed, and anything else it can find. It has strong jaws and usually will poke its head out of its burrow just far enough to grab a piece of food. It has a really good sense of smell but can’t see at all.

There are two species of giant beach worm that live in parts of Australia, especially the eastern and southeastern coasts, where people dig them up to use as fish bait. The largest species can grow up to 8 feet long, or 2.4 meters, and possibly even longer. There are also two species that live in Central and South America, although we don’t know much about them.

Another huge Australian worm is the endangered Giant Gippsland earthworm that lives in Victoria, Australia. It’s also a subsoil worm and is about 8 inches long, or 20 cm…when it’s first hatched. It can grow almost ten feet long, or 3 meters. It’s mostly bluish-gray but you can tell which end is its head because it’s darker in color, almost purple. It lives beneath grasslands, usually near streams, and is so big that if you happen to be in the right place at the right time on a quiet day and listen closely, you might actually hear one of the giant worms moving around underground. When it moves quickly, its body makes a gurgling sound as it passes through the moist soil in its burrow.

The Giant Gippsland earthworm is increasingly endangered due to habitat loss. It also reproduces slowly and takes as much as five years to reach maturity. Conservationists are working to protect it and its remaining habitat in Gippsland. The city of Korumburra used to have a giant worm festival, but it doesn’t look like that’s been held for a while, which is too bad because there aren’t enough giant worm festivals in the world.

To finish us off, let’s learn what the longest worm ever reliably measured is. It was found on a road in South Africa in 1967 and identified as Microchaetus rappi, or the African giant earthworm. It’s mostly dark greenish-brown in color and it looks like an earthworm, because it is an earthworm. On average, this species typically grows around 6 feet long, or 1.8 meters, which is pretty darn big, but this particular individual was 21 feet long, or 6.7 meters. It’s listed in the Guinness Book of World Records as the longest worm ever measured. Beat that, other worms. I don’t think you can.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 288: Mystery Invertebrates

Thanks to Joel for suggesting this week’s topic!

Happy birthday to Fern this week!

Further reading:

Small, rare crayfish thought extinct is rediscovered in cave in Huntsville city limits

Hundreds of three-eyed ‘dinosaur shrimp’ emerge after Arizona monsoon

An invertebrate mystery track in South Africa

The case of the mysterious holes in the sea floor

Contemplating the Con Rit

The Shelton Cave crayfish, rediscovered:

The three-eyed “tadpole shrimp” or “dinosaur shrimp,” triops [photo from article linked above]:

A leech track in South Africa [photo from article linked above]:

A track, or at least a series of holes, discovered in the deep seafloor [photos from article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Thanks to Joel who suggested we do an episode about mystery invertebrates! It took me a while, but I think you’re really going to like this episode. Some of the mysteries are solved and some are not, but they’re all fun.

Before we get to the mystery animals, though, we have a birthday shout-out! A great big happy birthday to Fern! I hope you have your favorite type of birthday cake or other treat and get to enjoy it with your loved ones.

Our first mystery starts in a cave near Huntsville, Alabama in the southern United States, which is in North America. Shelta Cave is a relatively small cave system, only about 2,500 feet long, or 760 meters. That’s about half a mile. It’s a nature preserve now but in the early 1900s it was used as an underground dance hall with a bar and everything.

Biologist John Cooper studied the cave’s aquatic ecosystem in the 1960s when he was doing his dissertation work. His wife Martha helped him since they were both active cavers. At the time, the cave ecosystem was incredibly diverse, including three species of crayfish. One was called the Shelta Cave crayfish, which was only a few inches long, or about 5 cm, mostly translucent or white since it didn’t have any pigment in its body, and with long, thin pincers.

It was rarer than the cave’s other two crayfish species, and unlike them it had only ever been found in Shelta Cave. From 1963 to 1975, only 115 individuals had been confirmed in repeated studies of the cave’s ecosystem.

Then, in the 1970s, several things happened that caused a serious decline in the diversity of life in the cave.

The first was development of the land around the cave into subdivisions, which meant that more pesticides were used on lawns and flower beds, which made its way into the groundwater that entered the cave. It also meant more people discovering the cave and going in to explore, which was disturbing a population of gray bats who also lived in the cave. To help the bats and keep people out, the park service put a gate over the entrance, but the initial gate’s design wasn’t a very good one. It kept people out but it also made it harder for the bats to go in and out, and eventually the bats gave up and moved out of the cave completely. This really impacted the cave’s ecosystem, since bats bring a lot of nutrients into a cave with their droppings and the occasional bat who dies and falls to the cave floor.

The gate has since been replaced with a much more bat-friendly one, but studies afterwards showed that a lot of the animals found in the cave had become rare. The Shelta Cave crayfish had disappeared completely. One was spotted in 1988 but after that, nothing, and the biologists studying the cave worried that it had gone extinct.

Then, in 2019, a team of scientists and students surveying life in the cave spotted a little white crayfish with long, thin pincers in the water. The team leader dived down and scooped it up with his net to examine more closely. The crayfish turned out to be a female Shelta Cave crayfish with eggs, which made everyone excited, and after taking a tiny tissue sample for DNA testing, and lots of photographs, they released her back into the water. The following year they found a second Shelta Cave crayfish.

The Shelta Cave crayfish is so little known that we don’t even know what it eats or how it survives in the same environment with two larger crayfish species. Biologist Dr. Matthew Niemiller is continuing Dr. Cooper’s initial studies of the cave and will hopefully be able to learn more about the crayfish and its environment.

Next let’s travel from a cool, damp, flooded cave in Alabama to northern Arizona. Arizona is in the western United States and this particular part of the state has desert-like conditions most of the year. Almost a thousand years ago, people built what is now called Wupatki Pueblo, a 100-room building with a ballcourt out front and a big community room. It was basically a really nice apartment building. Wupatki means “tall house” in the Hopi language, and while the pueblo people who built it are long gone, Wupatki is still an important place for the Hopi and other Native American tribes in the area. It’s also a national monument that has been studied and restored by archaeologists and is open to the public.

In late July 2021, torrential rain fell over the area, so much rain that it pooled into a shallow temporary lake around Wupatki, including flooding the ballcourt. The ballcourt is 105 feet across, or 32 meters, and surrounded by a low wall. One day while the ballcourt was still flooded, a tourist came up to the lead ranger, Lauren Carter. The visitor said there were tadpoles in the ballcourt.

There are toads in the area that live in burrows and only come out during the wet season when there’s rain, and Carter thought the tadpoles might be from the toads. She went to investigate, saw what looked like tadpoles swimming around, and scooped one up in her hands to take a closer look. But the tadpoles were definitely not larval toads. In fact, they kind of looked like teensy horseshoe crabs, with a rounded shield over the front of the body and a segmented abdomen and tail sticking out from behind, with two long, thin spines at the very end that are called caudal extensions. It had two pairs of antennae and lots of small legs underneath, some adapted for swimming. The largest of the creatures were about two inches long, or 5 cm.

What on earth were they, and where did they come from? This area is basically a desert. Carter stared at the weird little things and remembered hearing about something similar when she worked at the Petrified Forest National Park, also in Arizona. She looked the animal up and discovered what it was.

It’s called Triops and is in the order Notostraca. Notostracans are small crustaceans shaped sort of like tadpoles, which is why it’s sometimes called the tadpole shrimp, but it’s not a shrimp. It has two eyes on the top of its head visible through its flattened, smooth carapace. Species in the genus Triops also have a so-called third eye between the two ordinary eyes, although it’s a very simple eye that probably only detects light and dark. Many crustaceans have these third eyes in their larval forms but very few retain them into adulthood.

Notostracans have been around for about 365 million years, and haven’t changed much in the last 250 million years. It’s an omnivore that mostly lives on the bottom of freshwater pools and shallow lakes, often temporary ones like the flooded ballcourt, although some species live in brackish water and saline pools, or permanent waterways like peat bogs.

Triops eggs are able to tolerate high temperatures and dry conditions, with the eggs remaining viable for years or even decades in the sediment of dried-up ponds. When enough water collects, the eggs hatch and within 24 hours are miniature versions of the adult Triops. They grow up quickly, lay lots of eggs, and die within a few months or when the water dries up again.

Triops eggs are even sold as aquarium pets, since they’re so unusual looking and are easy to care for. They basically eat anything. They especially like mosquito larvae, so if you see some in your local pond or other waterway, give them a tiny high-five.

In 1996, some workers near Indianapolis, Indiana were servicing a tank full of chemical byproducts from making plastic auto parts when they noticed movement in the toxic goo. They investigated and saw several squid-like creatures swimming around. They were red-brown and about 8 inches long, or 20 cm, including their arms or tentacles, but were only about an inch wide, or 2.5 cm.

The workers managed to capture one and put it in a jar, which they stuck in the break room refrigerator. By the time someone in management arranged to have it examined by a scientist, the jar had been thrown out. If you’ve ever tried to keep food in a break room fridge, you’ll know that there’s always someone who will throw out everything in the fridge that isn’t theirs, no matter whether it’s labeled or brand new or not. I have had my day’s lunch thrown out that had only been in the fridge a few hours. Anyway, when the tank was cleaned out the following year, no one found any creatures in it at all.

This sounds really interesting, but there’s precious little information to go on. The story appeared in a few newspapers but we have no names of the people who reportedly saw the creatures, no follow-up information. It has all the hallmarks of a hoax or urban legend. The creatures’ size also seems quite large for extremophiles in a small, closed environment. What would they find to eat to get so big?

Next let’s talk about some mysterious tracks made by invertebrates, as far as we know. We’ll start with a track on land that was a mystery at first, but was solved. A man in the Kruger National Park in South Africa named Rudi Hulshof came across a weird track in the sandy dirt that he didn’t recognize. It was maybe 10 mm wide and kind of looked like a series of connected rectangles, as though a tiny person was moving a tiny cardboard box by rolling it over and over, but there weren’t any footprints, just the body track.

Curious, Hulshof followed the track to find what had made it, and finally discovered the culprit. It was a leech! Most leeches live in water, whether it’s the ocean, a pond or swamp, a river, or just flooded ground. Most species are parasitic worms that attach to other animals with suckers, then pierce the animal’s skin and suck its blood. The leech stays on the animal until it’s full, then drops off. Some leeches are terrestrial, but it appears that this one was a freshwater leech that had attached to an animal passing through the water, then dropped off onto land. It had crawled as far as it could trying to find a better environment, but when Hulshof found it it was dead, so it had not had a good day.

The leech moves on land by stretching the front of its body forward, then dragging its tail end up in a bunch kind of like a worm (it is a kind of worm), so that’s why its track was so unusual-looking. It’s a good thing Hulshof found the leech before something ate it, or else he’d probably still be wondering what had made that track.

We have photographs of other tracks that are still mysterious. You may have heard about one that’s been in the news lately. This one was found by a deep-sea rover in July 2022, more than a mile and a half deep, or 2500 meters, in the north Atlantic Ocean.

The track may or may not actually be a track, although it looks like one at first glance. It consists of a line of little holes in the seafloor, one after the other, although they’re not all the same distance apart. The rover saw them on two separate dives in different locations, so it wasn’t just one track, but although the scientists operating the rover remotely tried to look into the holes, they couldn’t get a good enough view. It does look like there’s sediment piled up next to the holes, so researchers think something might actually be digging the holes, either digging down from the surface to find food hidden in the sediment, or digging up from inside the sediment to find food in the water. The rover did manage to get a sample of sediment from next to one of the holes and a water sample from just above it, and eventually those samples will be tested for possible environmental DNA that might help solve the mystery.

This wasn’t the first time these holes have been seen in the area, though. An expedition in 2004 saw them and hypothesized that the holes are made by an invertebrate with a feeding appendage of some kind that it uses to dig for food. Not only that, we have similar-looking fossil holes in rocks formed from deep marine sediments millions of years ago.

Other deep-sea tracks have a known cause, and humans are responsible. In the 1970s and 1980s, ships with deep-sea dredging equipment traveled through parts of the Pacific Ocean, testing the ocean floor to see whether the minerals in and beneath the sediment were valuable for mining. A few years ago scientists revisited the same areas to see how the ecosystems impacted by test mining had responded.

The answer is, not well. Even after 40 years or so since the deep-sea mining equipment sampled the sea floor, the marks remain. The deep sea is a fragile ecosystem to start with, and any disturbance takes a long, long time to recover—possibly thousands of years. So while the holes discovered in 2022 were almost certainly made by an animal or animals, they might be quite old.

Let’s finish with a mystery animal we’ve talked about before, but a really long time ago—way back in episode 6. It’s definitely time to revisit it.

In 1883 when he was 18 years old, a Vietnamese man named Tran Van Con had seen the body of an enormous creature washed up on shore at Hongay in Vietnam. Van Con said it was probably 60 feet long, or 18 meters, but less than three wide wide, or 90 cm. It had dark brown plates on its back with long spines sticking out from them to either side, and the segment at its tail end had two more spines pointing straight back. It didn’t have a head, which had presumably already rotted off, or something bit it off before the animal washed ashore. It had been dead for a long time considering the smell. In fact, it smelled so terrible that locals finally towed it out to sea to get rid of it. It sank and that was the last anyone ever saw of it. The locals referred to it as a con rit, which means “millipede,” since the armor plates made it look like the segmented body of an immense millipede.

Lots of people have made suggestions as to what the con rit could be, but nothing really fits. It was the length of a whale, but it doesn’t sound like any kind of whale known. The armored plates supposedly rang like metal when hit with a stick. Even if this was an exaggeration, it probably meant the armor plates were really hard, not just the skin of a dead whale that had hardened in the sun. It also implies that the plates had empty space under them, allowing them to echo when hit. Zoologist Dr. Karl Shuker suggests that the plates might have been the exoskeleton of a crustacean of some kind, which makes a lot more sense than a whale, but the sheer size of the carcass is far larger than any crustacean, or even any arthropod, ever known.

There’s also some doubt that the story is accurate. It might even be a hoax. We only know about the con rit at all because the director of Indochina’s Oceanographic and Fisheries service, Dr. A. Krempf, talked to Tran Van Con about it in 1921. That was 38 years after Van Con said he saw the creature, so he might have misremembered details. Not only that, Krempf translated the story from Vietnamese, and there’s no way of knowing how accurate his translation was.

The con rit is also a monster from Vietnamese folktales, a sort of sea serpent that had lots of feet. It was supposed to attack fishing boats to eat the sailors, until a king caught it and chopped it up into pieces. A local mountain was supposedly formed from its head, and the other pieces of its body turned into the unusual stones found on a nearby island.

There’s always the possibility that Tran Van Con actually told Krempf this folktale, but that Krempf misunderstood and thought he was telling him something he actually witnessed. Then again, there are eight reports from ships in the area between 1893 and 1915 of creatures that might have been a con rit. One account from 1899 was a sighting of a creature estimated as being 135 feet long, or 41 meters, which was rowing itself along at the surface by means of multiple fins along its sides.

Whatever the con rit was, there haven’t been any sightings since 1915. That doesn’t mean there isn’t a population of incredibly long invertebrates living in the deep ocean in southeast Asia. If it does exist, maybe one day a deep-sea rover will spot one. Maybe it dug those little holes, who knows?

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 282: Little Longtailed Birds

Sign up for our mailing list!

Thanks to Elaine for suggesting one of our long-tailed birds this week!

Happy birthday to Jasper!! Have a great birthday!

Further reading:

Fossil of Ancient Long-Tailed Bird Found in China

All adult scissor-tailed flycatchers have long tails:

The long-tailed sylph male is the one with the long tail:

The long-tailed widowbird male has a long tail:

The long-tailed widowbird female has a short tail:

The pin-tailed whydah male has a long tail:

A pin-tailed whydah baby (left) next to a common waxbill baby (right):

Kompsornis longicaudus had a really long tail:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw. This week is a short episode all about little birds with really long tails. The tails are longer than the episode. Thanks to Elaine for suggesting one of the birds we talk about today!

But before we start learning about birds, we have a birthday shout-out! Happy birthday to Jasper, who has the best name and who will hopefully have the best birthday to go along with it!

Let’s start with Elaine’s suggestion, the scissor-tailed flycatcher. I’m embarrassed to admit that Elaine suggested this bird way back in 2020, so it’s about time we talked about it.

The scissor-tailed flycatcher lives in south-central North America during the summer, especially Texas and Oklahoma, and migrates to parts of Mexico and Central America in winter. It’s pale gray with black and white wings and tail, and salmon pink markings on its sides and under its wings. It also has a really long tail. It gets the name scissor-tail because its tail is so long and forked that it’s sort of the shape of an open pair of scissors. The male’s tail is typically longer than the female’s, longer than the rest of its body. The bird is about the size of an average songbird, with a body length of about 5 inches, or 13 centimeters, but with a tail that can increase its overall length to over 14 inches, or 36 cm.

The scissor-tailed flycatcher prefers open areas like pastures and fields, where there’s lots of space but some brush, trees, or fences nearby to perch in. It mostly eats insects, but it will also eat berries, especially in winter. It’s related to kingbirds and pewees and will even hybridize with the western kingbird where their ranges overlap. Its long tail is partly for display, but mostly it helps the bird maneuver in midair as it chases insects, or hover in midair as it looks around for an insect to catch. It especially likes grasshoppers, and when it catches one, it will usually kill it before eating it by smashing it against a tree limb or other perch.

Another little bird with a long tail is the long-tailed sylph, which is a type of hummingbird! It lives on the eastern slopes of the Andes Mountains in northwestern South America, mostly along forest edges, in gardens, grasslands, and other mostly open areas. It migrates to different parts of the mountains at different times of year to follow the flowering of its favorite plants. It’s larger than many species of hummingbird even if you don’t count the tail.

It eats nectar like other hummingbirds do, but also eats tiny insects and spiders. Its bill is black and not very long compared to most of its relations. Sometimes it will jab the tip of its bill straight through the base of a flower to get at the nectar, instead of inserting it into the flower like other hummingbirds do, and while it can hover, sometimes it perches to feed instead.

Both the male and female long-tailed sylph are a beautiful metallic blue and green in color, although the male is brighter and has purplish-brown wings. The female is about 4 inches long, or 10 cm, including her tail, and while the male is about the same size as the female, his tail is really long—up to 4.5 inches long, or 12 cm. His tail is forked like the scissor-tailed flycatcher’s, but unlike the flycatcher, the sylph’s tail makes it harder for the bird to fly. During breeding season the male attracts a mate by flying in a U-shaped pattern that shows off his tail and his flying ability.

The male long-tailed widowbird also attracts a mate with a flying display to show off his long tail. It lives in grasslands in a few parts of Africa, with the biggest population in South Africa. It forages in small flocks looking for seeds, and it also eats the occasional insect or spider. It’s a sparrow-like bird only about 4 inches long, or 10 cm, not counting its tail. The female is mostly brown with darker streaks and has a short tail. The male is black with red and white patches on the shoulders of his wings, called epaulets. His coloring, including the epaulets, is almost identical to that of a totally unrelated bird, the red-winged blackbird of North America, but he has something the blackbird doesn’t: a gigantically long tail.

The male widowbird’s tail is made up of twelve feathers, and about half of them grow up to 20 inches long. That’s nearly two feet long, or half a meter. Like the long-tailed sylph, the long-tailed widowbird’s tail actually makes it harder for him to fly. If it’s raining, he can’t fly at all. Fortunately for him, outside of the breeding season his tail is much shorter. During display flights, he spreads his tail feathers to show them off better and flies very slowly. Males with the longest tails attract the most females.

Similarly, the pin-tailed whydah is another little sparrow-like bird where the male grows a really long tail to attract females. It lives in grasslands, savannas, and open woodlands in sub-Saharan Africa, which just means south of the Sahara Desert. It mostly eats seeds.

During breeding season, the male is a striking pattern of black and white with a bright orangey-red bill and really long tail plumes. He’s about the size of the long-tailed widowbird but his tail grows about 8 inches long, or 20 cm. The female is brown with darker streaks and looks a lot like a sparrow, although it’s not related to sparrows. To impress a female, the pin-tailed whydah will hover in place near her, showing off his long tail plumes and his flying ability.

A lot of whydah species grow long tails. A lot of whydahs are also brood parasites, including this one, meaning that instead of building a nest and taking care of her own eggs, the female sneaks in and lays her eggs in the nest of a different species of bird. Then she flies away, probably whistling to make her seem extra nonchalant, and leaves the other bird to take care of her eggs and the babies when they hatch. She mostly lays her eggs in the nests of various species of finch, and not only do her eggs resemble the finch’s eggs except that they’re bigger, the babies resemble finch babies when they hatch, except they’re bigger.

Specifically, the babies have a really specific gape pattern. When an adult bird approaches its nest, a baby bird will gape its mouth wide to beg for food. This prompts the parent bird to shove some food down into that mouth. The more likely a baby is to be noticed by its parent, the more likely it is to get extra food, so natural selection favors babies with striking patterns and bright colors inside their mouths. Many finches, especially ones called waxbills, have a specific pattern of black and white dots in their mouths that pretty much acts as a food runway. Insert food here. The whydah’s mouth gape pattern mimics the waxbill’s almost exactly. But as I said, the whydah chick is bigger, which means it can push the finch babies out of the way and end up with more food.

The pin-tailed whydah is a common bird and easily tamed, so people sometimes keep it as a pet. This is a problem when it’s brought to places where it isn’t a native bird, because it sometimes escapes or is set free by its owners. If enough of the birds are released in one area, they can become invasive species. This has happened with the pin-tailed whydah in many parts of the world, including parts of Portugal, Singapore, Puerto Rico, and most recently southern California. Since they’re brood parasites, they can negatively impact a lot of other bird species in a very short time. But a study released in 2020 about the California population found that they mostly parasitize the nests of a bird called the scaly-breasted munia, a species of waxbill from southern Asia that’s been introduced to other places, including southern California, where it’s also an invasive species. So I guess it could be worse.

There are lots of other birds with long tails we could talk about, way too many to fit into one episode, but let’s finish with an extinct bird, since that seems to be the theme lately. In May 2020, an ancient bird was described as Kompsornis longicaudus, and it lived 120 million years ago in what is now China. Its name means long-tailed elegant bird. It was bigger than the other birds we’ve talked about today, a little over two feet long, or 70 cm, but a lot of that length was tail.

Kompsornis is only known from a single fossil, but that fossil is amazing. Not only is it almost a complete skeleton, it’s articulated, meaning it was preserved with all the body parts together as they were in life, instead of the bones being jumbled up. That means we know a lot about it, including the fact that unlike other birds of the time, it didn’t appear to have any teeth. It also shows other features seen in modern birds but not always found in ancient birds, including a pronounced keel, which is where wing muscles attach. That indicates it was probably a strong flier. It also had a really long tail, but unlike modern birds its tail was bony like a lizard’s tail although it was covered with feathers.

During their study of Kompsornis, the research team compared it to other birds in the order Jeholornithiformes, which seem to be its closest relations. There were six species known, with Kompsornis making a seventh—except that during the study, the team discovered that one species was a fake! Dalianraptor was also only known from one fossil, and that fossil was of a different bird with the arms of a flightless theropod added in place of its missing wings. Send that fossil to fossil jail!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!