Episode 373: The Tasmanian Devil and the Thylacine

Thanks to Carson, Mia, Eli, and Pranav for their suggestions this week!

Further reading:

RNA for the first time recovered from an extinct species

Study finds ongoing evolution in Tasmanian Devils’ response to transmissible cancer

Tasmanian devil research offers new insights for tackling cancer in humans

The Tasmanian devil looks really cute but fights all the time [picture by JJ Harrison (https://www.jjharrison.com.au/) – Own work, CC BY-SA 3.0]:

The Thylacine could opens its jaws verrrrrrry wide:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to cover two animals that a lot of people have suggested. Carson and Mia both want to learn about the Tasmanian tiger, and Eli and Pranav both want to hear about the Tasmanian devil. We talked about the Tasmanian tiger, AKA the thylacine, in episode 1, and I thought we’d had a Tasmanian devil episode too but it turns out I was thinking of a March 2019 Patreon bonus episode. So it’s definitely time to learn about both!

The thylacine was a nocturnal marsupial native to New Guinea, mainland Australia, and the Australian island of Tasmania, and the last known individual died in captivity in 1936. But thylacine sightings have continued ever since it was declared extinct. It was a shy, nervous animal that didn’t do well in captivity, so if the animal survives in remote areas of Tasmania, it’s obviously keeping a low profile.

The thylacine was yellowish-brown with black stripes on the back half of its body and down its tail. It was the size of a big dog, some two feet high at the shoulder, or 61 cm, and over six feet long if you included the long tail, or 1.8 meters. It had a doglike head with rounded ears and could open its long jaws extremely wide. Some accounts say that it would sometimes hop instead of run when it needed to move faster, but this seems to be a myth. It was also a quiet animal, rarely making noise except while hunting, when it would give frequent double yips.

A 2017 study discovered that the thylacine population split into two around 25,000 years ago, with the two groups living in eastern and western Australia. Around 4,000 years ago, climate change caused more and longer droughts in eastern Australia and the thylacine population there went extinct. By 3,000 years ago, all the mainland thylacines had gone extinct, leaving just the Tasmanian population. The Tasmanian thylacines underwent a population crash around the same time that the mainland Australia populations went extinct—but the Tasmanian population had recovered and was actually increasing when Europeans showed up and started shooting them.

Because the thylacine went extinct so recently and scientists have access to preserved specimens less than a hundred years old, and since the thylacine’s former habitat is still in place, it’s a good candidate for de-extinction. As a result, it’s been the subject of many genetic studies recently, to learn as much about it as possible. It’ll probably be quite a while before we have the technology to successfully clone a thylacine, but in the meantime people in Australia keep claiming to see thylacines in the wild. Maybe they really aren’t extinct.

The Tasmanian devil is related to the thylacine. It’s about the size of a small to average dog, maybe a bulldog, which it resembles in some ways. It’s compact and muscular with a broad head, relatively short snout, and a big mouth with prominent lower fangs. It’s not related to canids at all, of course, and if you just glanced at a Tasmanian devil, your first thought wouldn’t be “dog” or “thylacine,” it would probably be “giant mouse.”

The Tasmanian devil is black or grayish-brown, usually with patches of white on the chest and rump. It also has rounded pinkish ears, long whiskers, paws with relatively long toes, and a long tail. Since the devil stores fat in its tail, a fat-tailed devil is a happy, healthy devil.

It’s mainly a scavenger and will eat roadkill and other dead animals, although it will also kill and eat small or even large animals, and will also eat plant material and insects. It often eats every trace of a carcass, including bones and fur. This is good for other animals and for ranchers, since it reduces the presence of insects attracted to dead animals and reduces the spread of disease. Its digestion is extremely fast and efficient, and its jaws are extremely strong.

The Tasmanian devil is usually solitary, but it does get together with other devils to socialize and fight while eating. When a devil finds a carcass, it will make extremely loud calls to alert other devils to come share its meal. Then, because they’re called devils and not angels for a reason, the animals will fight over the food.

Tasmanian devils fight a lot. Researchers think the white markings help direct other devils to attack parts of the body that are less vulnerable to injury. The white fur is more visible in the dark, giving other devils a target. The white markings are usually on the devil’s chest, sides, and rump, with none on the face or legs. Males fight each other during breeding season, and the females pick the winners to mate with. If a female doesn’t like a male, she’ll fight him.

Devils are marsupials, which means babies are born very early and finish developing in their mother’s pouch. The Tasmanian devil’s pouch is rear-facing and contains four teats. The problem is, the mother has 20 or even 30 babies at a time. They’re born about the size of a jellybean and the only part that’s developed at that point is the forelegs so it can crawl into the mother’s pouch. The legs have claws and—you guessed it—the little squidge babies fight for a teat. Once one gets to a teat, it clamps on and doesn’t let go for the next three months. Babies that don’t get a teat die.

Like the thylacine, the Tasmanian devil once lived on mainland Australia but is now restricted to the island of Tasmania. Also like the thylacine, it shows low genetic diversity and was once killed for bounty by early settlers. It’s affected by habitat loss like many other animals, and it’s especially vulnerable to being run over by cars because it eats so much roadkill.

But the devil’s biggest issue today is a disease called devil facial tumor disease, or DFTD. DFTD is spread when an infected animal bites another one, which causes cancerous growths in and around the mouth. After a few months the tumors get so big that the devil can no longer eat and starves to death. Since devils bite each other all the time, the disease spreads quickly throughout a population.

In 2019 some researchers predicted the Tasmanian devil would be extinct by 2024. But here it is 2024 and not only is the devil not extinct, it’s actually doing a lot better now than it was just a few years ago.

Part of that is due to conservation efforts, where healthy devils are quarantined from infected ones in captive breeding programs. But part of it is natural. In 2018 a small population of devils was discovered that appeared to have developed a natural resistance to DFTD. Genetic studies done since then revealed some surprises. Not only are younger devils showing a genetic resistance to DFTD, there’s evidence that resistance to other transmissible cancers has developed in the past. Researchers think the Tasmanian devil might be especially prone to transmissible cancers but is also able to develop resistance relatively quickly. The devils with this resistance start growing tumors, but then the tumors stop growing and soon just disappear. Naturally, scientists are looking at the genetics of this trait to see if it can be applied to humans with certain types of cancer.

While Tasmanian devils fight each other, they don’t actually fight humans. Scientists report that it’s actually quite easy to work with. This makes it a lot easier to check the health of a captured animal. Hopefully it won’t be long before the entire population of Tasmanian devils is healthy and its numbers start to increase again.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 365: A New Temnospondyl

Let’s take a look at some new findings about the temnospondyls this week!

Further reading:

Ancient giant amphibians swam like crocodiles 250 million years ago

Fossil of Giant Triassic Amphibian Unearthed in Brazil

Kwatisuchus rosai was an early amphibian [picture taken from article linked above]:

Koolasuchus was a weird big-headed boi:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to revisit an animal we talked about way back in episode 172, the temnospondyl. That’s because a new species of temnospondyl has been named that lived about 250 million years ago, and some other new information has been published about temnospondyls in general.

In case you haven’t listened to episode 172 in a while, let’s brush up on some history. The temnospondyls arose about 330 million years ago during the Carboniferous period. Ocean levels were high, the continents were coming together slowly to form the supercontinent Pangaea, and much of the land was flooded with warm, shallow water that created enormous swampy areas full of plants. Naturally, a whole lot of animals evolved to live in the swamps, and the temnospondyls were especially successful.

Temnospondyls were semi-aquatic animals that probably looked a lot like really big, really weird salamanders. This was before modern amphibians evolved, and scientists still aren’t sure if the temnospondyls are the direct ancestors of modern amphibians or just cousins that died out with no living descendants. Temnospondyls do share many traits with modern amphibians, but they still had a lot in common with their fish ancestors.

Most temnospondyls had large heads that were broad and flattened in shape, often with a skull that was roughly triangular. Some had smooth skin but many had scales, including some species with scales that grew into armor-like plates. The earliest species had relatively small, weak legs and probably spent most of their time in the water, but it wasn’t long before species with stronger legs developed that probably lived mostly on land.

Many temnospondyls were small, but some grew really big. The biggest found so far is Prionosuchus, which is only known from fragmentary specimens discovered in Brazil in South America. It had an elongated snout something like a ghavial’s, which is a type of crocodilian that mostly eats fish, and a similar body shape. That’s why its name ends in the word “suchus,” which refers to a crocodile or an animal that resembles a crocodilian. Inside, though, prionosuchus probably had more in common with its fish ancestors than with modern crocodiles, and of course it wasn’t a reptile at all. It was an amphibian, possibly the largest one that’s ever lived. The biggest specimen found so far had a skull that measured just over 5 feet long, or 1.6 meters. That was just the skull! The whole animal, tail and all, might have measured as much as 30 feet long, or about 9 meters, although most paleontologists think it was probably more like 18 feet long, or 5-1/2 meters. That’s still incredibly big, as large as the average saltwater crocodile that lives today.

The resemblance of many temnospondyls to crocodilians is due to convergent evolution, since researchers think a lot of temnospondyls filled the same ecological niche as modern crocodiles. If you’re an ambush predator who spends a lot of time hiding in shallow water waiting for prey to get close enough, the best shape to have is a long body, short legs, a long tail that’s flattened side to side to help you swim, and a big mouth for grabbing, preferably with a lot of teeth. A study published in March of 2023 examined some trace fossils found in South Africa that scientists think were made about 255 million years ago by a temnospondyl. The fossils were found in what had once been a tidal flat or lagoon along the shore of the ancient Karoo Sea. You didn’t need to know it was called the Karoo Sea but I wanted to say it because it sounds like something from a fantasy novel. Truly, we live in a wonderful world. Anyway, there aren’t very many footprints but there are swirly marks made by a long tail and body impressions where the animal settled onto the floor to rest.

From those trace fossils, scientists can learn a lot about how the animal lived and moved. The swirly tail marks show that it used it tail to swim, not its legs. Since there are hardly any footprints, it probably kept its legs folded back against its body while it was swimming. When it stopped to rest, it may have been watching for potential prey approaching from above, since its eyes were situated on the top of its head to allow it to see upward easily. All these traits are also seen in crocodiles even though temnospondyls aren’t related to crocodilians at all.

Other big temnospondyls that filled the same ecological niche as crocodiles were species in the family Benthosuchidae. Some grew over 8 feet long, or 2.5 meters. That may not seem very big compared to a dinosaur or a whale, but this is your reminder that it was an early amphibian, and that amphibians are usually little guys, like frogs and newts.

The newly discovered fossil I mentioned at the beginning of this episode has been identified as a member of the family Benthosuchidae. It’s been named Kwatisuchus rosai and was discovered in Brazil in 2022. That’s a big deal, because while temnospondyl fossils have been found throughout the world, until Kwatisuchus, benthosuchids have only been found in eastern Europe. It was five feet long, or 1.5 meters, and it was probably an ambush predator that mostly ate fish.

Kwatisuchus lived only a few million years after the end-Permian extinction event, also called the Great Dying, which we talked about in episode 227. That extinction event wiped out entire orders of animals and plants. Temnospondyls in general survived the Great Dying and hung on for another 100 million years afterwards.

The last temnospondyl that lived, as far as the fossil record shows, was Koolasuchus. It lived in what is now Australia and went extinct about 120 million years ago. This is a lot more recent than most temnospondyls, so much so that when it was first discovered, scientists at first didn’t think it could be a temnospondyl. It was only described in 1997, although it was first discovered in 1978.

Not only was Koolasuchus the most recently living temnospondyl, it was also big and heavy and very weird-looking. It was about 10 feet long, or about 3 meters, and might have weighed as much as 1,100 lbs, or 500 kg. It lived in fast-moving streams and filled the same ecological niche as crocodiles, which eventually replaced it after it went extinct.

Like its relations, Koolasuchus had a roughly crocodile-shaped body with short legs and a fairly long tail, but its head was almost as big as its body. Most temnospondyls had big heads, and Koolasuchus’s was broad and rounded with a blunt nose. It also had what are called tabular horns that projected from the rear of the skull, which gave its head a triangular appearance. Its body was relatively slender compared to the chonky head, which made it look kind of like a really really big tadpole.

Remember, as an amphibian, Koolasuchus would have laid eggs that hatched into a larval form the same way frogs do today. We have a lot of larval temnospondyl fossils and even some fossilized eggs that paleontologists think were laid by a temnospondyl, which were attached to water plants the same way many species of frog do today. Larval temnospondyls did look a lot like tadpoles. In other words, Koolasuchus looked like a tadpole in shape but its larval form was also probably tadpole-like. Extra, extra tadpole-shaped.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 363: The Dodo and Friends

Thanks to Wilmer and Carson for suggesting we revisit the dodo!

Further reading:

Dodos and spotted green pigeons are descendants of an island-hopping bird

On the possible vernacular name and origin of the extinct Spotted Green Pigeon Caloenus maculata

Giant, fruit-gulping pigeon eaten into extinction on Pacific islands

A taxidermied dodo:

The Nicobar pigeon, happily still alive [photo by Devin Morris – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=110541928]:

The 1823 illustration of the spotted green pigeon:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to revisit a bird that everyone’s heard of but no one has seen alive, because it’s famously extinct. We talked about the dodo way back in episode 19, so it’s definitely time we talked about it again. Thanks to Wilmer and Carson for suggesting it! We’re also going to learn about some of the close relations of the dodo.

The first report of a dodo was in 1598 by Dutch sailors who stopped by the island of Mauritius in the Indian Ocean. Mauritius is east of Madagascar, which is off the eastern coast of Africa. The last known sighting of a dodo was in 1662, just 64 years later. The dodo went extinct so quickly, and was so little known, that for a couple of centuries afterwards many people assumed it was just a sailor’s story. But there were remains of dodos, and in the 19th century scientists gathered up everything they could find to study the birds. More remains were found on Mauritius.

In the wild, the dodo was a sleek bird that could run quite fast. It may have eaten crabs and other small animals as well as roots, nuts, seeds, and fruit. It was also probably pretty smart. People only thought it was dumb because it didn’t run away from sailors—but it had no predators on Mauritius so never had to worry about anything more dangerous than an occasional egg-stealing crab before.

When humans arrived on Mauritius, they killed and ate dodos and their eggs. What the sailors didn’t eat, the animals they brought with them did, like pigs and rats. It was a stark and clear picture of human-caused extinction, shocking to the Victorian naturalists who studied it.

A lot of the drawings and paintings we have of dodos were made from badly taxidermied birds or from overfed captive birds. At least eleven live dodos were brought to Europe and Asia, some bound for menageries, some intended as pets. The last known captive dodo was sent to Japan in 1647.

The dodo grew over three feet tall, or almost a meter, with brown or gray feathers, a floofy tuft of gray feathers as a tail, big yellow feet, and a weird head. The feathers stopped around the forehead, making it look sort of like it was wearing a hood. Its face was bare and the bill was large, bulbous at the end with a hook, and was black, yellow, and green. The dodo looks, in fact, a lot like what you might expect pigeons to evolve into if pigeons lived on an island with no predators, and that’s exactly what happened.

The dodo’s closest living relation is the Nicobar pigeon, which can grow 16 inches long, or over 40 cm. Like other pigeons, the dodo’s feathers probably had at least some iridescence, but the Nicobar pigeon is extra colorful. Its head is gray with long feathers around its shoulders like a fancy collar, and the rest of its body is metallic blue, green, and bronze with a short white tail. Zoos love to have these pigeons on display because they’re so pretty. It’s a protected animal, but unfortunately it’s still captured for sale on the pet black market or just hunted for food. It only lays one egg a year so it doesn’t reproduce very quickly, and all this combined with habitat loss make it an increasingly threatened bird. Scientists are trying to learn more about it so it can be better protected.

The Nicobar pigeon lives on a number of islands in the South Pacific and it can fly. Sometimes an errant individual is discovered in Australia, often after storms. Imagine going into your back yard one day and seeing a 40-centimeter-long bird whose feathers shine like jewels! The Nicobar pigeon lives in small flocks and eats seeds, fruit, and other plant material.

An even closer relative to the dodo is also the most mysterious. We don’t even know for sure if it’s extinct, although that’s very likely. It’s the spotted green pigeon and we only have one specimen–and we don’t even know where it was collected, just that it was an island somewhere in the South Pacific. There used to be two specimens, but no one knows what happened to the second one.

For a long time researchers weren’t even sure the spotted green pigeon was a distinct species or just a Nicobar pigeon with weird-colored feathers, but in 2014, DNA testing on two of the remaining specimen’s feathers showed it was indeed a separate species. Researchers think the spotted green pigeon, the dodo, and another extinct bird, the Rodrigues solitaire, all descended from an unknown pigeon ancestor that liked to island hop. Sometimes some of those pigeons would decide they liked a particular island and would stay, ultimately evolving into birds more suited to the habitat.

The specimen we have of the spotted green pigeon is 13 inches long, or 32 cm. Its feathers are dark brown with green iridescence and it has long neck feathers like the Nicobar pigeon. It also has little yellowish spots on its wings and a yellow tip to its bill. Researchers think it was probably a fruit-eating bird that lived in treetops.

The only reason we know there were once two specimens of this mystery bird is from a book about birds published in 1783, where the author mentions having seen two specimens. There was also an 1823 book about birds with an illustration of the spotted green pigeon that differs from the known specimen in some details. Researchers think the illustration might have been painted from the now-missing specimen.

There’s more to this mystery, though, because in 2020 an ornithologist studied a 1928 book about Tahiti that mentioned a bird that sounds a lot like the spotted green pigeon. It was even called a pigeon in the book. Since the author of that book had drawn on studies made by her grandfather almost a hundred years before, and since her grandfather had interviewed Tahitians about their history and traditions and they told him about the pigeon, the ornithologist suggested the spotted green pigeon might actually be from Tahiti. Now that scientists have a clue about where to start looking for remains of the bird, we might learn more about it soon.

Also in 2020, a study was published about another pigeon from the Pacific Islands. Fossils of it were found on the island of Tonga, and the scientists determined that the bird probably went extinct soon after humans first arrived on the island 2,850 years ago. The pigeon has been named Tongoenas burleyi. It grew about 20 inches long, or 50 cm, not counting its tail. It could fly and probably spent a lot of its time in trees, eating fruit. There are lots of different trees on the island that produce really big fruit, some of it as big as a tennis ball. Scientists think the pigeon was adapted to swallow these huge fruits whole, digest them, and poop out the seeds. The trees still exist but they’re in decline and scientists think it may be because no birds remain on the island that can spread their seeds effectively.

We don’t have any feathers from the newly described pigeon, but it was probably colorful. We do have a lot of bones, because many charred bones have been discovered in cooking pits excavated by archaeologists.

We don’t know yet how or if Tongoenas is related to the dodo. The Pacific islands are home to at least 90 living species of pigeon, and many of them we don’t know much about. There are undoubtedly many more waiting to be discovered by scientists, whether living or extinct.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 360: The Emu War

Apologies to patrons for redoing an old Patreon episode, but I have a cold and it’s the holidays.

The noble emu:

A baby emu (picture from this site, which has lots of good info about emus and lots more great pictures):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I had a different episode planned to finish off the year, but I had lots of stuff to do for the holidays so I put it off, and then I came down with a cold. It’s just a cold, at least, and it’s not too serious, but I decided to repurpose a Patreon episode from early 2020 instead of making a new episode, because I don’t feel good. Apologies to my patrons for getting a rerun, but I did give the episode a brush-up and re-recorded it.

Our topic this week is a bird from Australia, the emu, but mostly we’re going to learn about the emu war that happened in 1932.

The emu is a large, flightless bird almost as big as an ostrich, over 6 feet tall, or 2 meters. Like the ostrich, it can run really fast, over 30 miles per hour, or 50 km/hour. It’s only distantly related to the ostrich, though, and in fact it’s much more closely related to the tiny kiwi of New Zealand.

The emu has long legs and a long neck, soft feathers that are gray and brown, and three toes on each foot. It also has small vestigial wings that are only about eight inches long, or 20 cm. The body feathers make the emu look shaggy, but the head and the upper portion of the neck are less heavily feathered so that it sort of looks like it’s wearing a fancy coat with a high collar. It also looks like it has a poofy wedge of a downward-pointing tail, but it actually doesn’t have much of a tail at all. What looks like a tail is mostly part of the body. The emu’s skeleton is built for running, which includes a modified pelvis and leg bones for the attachment of strong leg muscles.

In winter, the female puffs out her feathers and struts around to attract a mate while making drumlike calls. Females sometimes fight each other by kicking, especially if a female approaches a male who already has a mate. The male builds a nest on the ground by placing dry grass, sticks, bark, and other plant materials on a flat, open area where he can see any predators that might approach.

The female lays up to 15 green eggs that are around five inches long, or 13 cm. The male broods the eggs for the next eight weeks and doesn’t eat during that entire time, and only drinks whatever dew he can gather from the plants around the nest without leaving the nest. A male can lose a third of his weight while brooding. Meanwhile, the female often leaves and finds another mate, sometimes laying several clutches of eggs during the nesting season.

When the babies hatch, the father takes care of them for the next six or seven months, at which point they’re fully grown. While he’s in charge, the father won’t let any other emus near the chicks, even their mother. He teaches them to find food and if the babies feel threatened, they’ll run underneath him to hide. Baby emus have gray and white longitudinal stripes and are super cute.

The emu eats plants and insects, and will sometimes travel long distances to find enough food and water. It can go a long time without eating and several days without drinking. It usually only drinks once a day but it will drink a whole lot of water during that one time.

Some populations of emu migrate to the coast after breeding season, where they can find more food and cooler weather. But in 1932 in western Australia, migrating emus didn’t find their usual food supplies. They found a whole lot of wheat fields cultivated by former soldiers, who had been given land after World War I. The Australian government had encouraged the soldiers to clear the land of native vegetation and grow lots of wheat, which they did. Then the emus showed up.

Naturally, without their usual food to eat, the emus sampled the wheat plants. And they found the plants yummy. Also, even though there was a drought that year, there was plenty of water for the wheat, which meant plenty of water for emus. So the emus showed up and showed up and showed up, an estimated 20,000 emus eating as much wheat as they could hold and crashing through fences to get to it.

The farmers sent a group to speak to the Minister of Defence to get help. The Minister of Defence sent a major with a small handful of soldiers to deal with the birds, with the soldiers armed with two lightweight machine guns.

On November 2, 1932, the men encountered their first emus. The birds were too far away to shoot so the men tried to herd them closer, but the emus scattered instead of staying in a group. Two days later, the men encountered approximately a thousand emus and lay in wait until the birds were close enough to shoot at–but the gun jammed and the birds scattered again. At this point the soldiers had killed maybe two dozen birds in all.

That was enough that the emus had figured out the men were a danger. The men reported that each group of birds now had a lookout. The rest of the flock would eat while the lookout kept watch. When the lookout spotted the men, it warned the others and all the emus would scatter.

The men even tried mounting a machine gun on a truck to run the emus down. But the ground was too bumpy to aim while the truck was moving, plus it couldn’t outrun the emus. On one occasion a dead emu got tangled in the steering equipment and the truck crashed into a fence, destroying both the truck and the fence.

On November 8, the men were withdrawn after having only killed around 200 emus, but they’d used a quarter of the ammunition they’d been allotted to do that. One politician suggested sarcastically that the soldiers deserved a medal for their part in the war, and another politician pointed out that the medal should properly go to the emus.

But the emus were still a problem, so after more entreaties from farmers, the same men and guns were sent back to try again. They kept at it for the next month or so and did manage to kill maybe a few thousand birds, but for every bird they killed, they shot ten bullets. Finally they were recalled for good. The government put a bounty on dead emus instead, and the farmers put up larger and stronger fences. It wasn’t until the late 1960s that the bounty was canceled and the emu protected. The current population is large and healthy.

There used to be several smaller subspecies of emu, but they went extinct basically as soon as Europeans showed up. We’re lucky that the mainland emu survived the war and the bounty hunting so that we can appreciate it today.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 351: The Bunyip and the Kelpie

Thanks to Will and Henry for their suggestions this week! This episode is two bats out of five on the spookiness scale for monster month, so it’s only a little spooky.

Further reading:

Does the Bunyip Really Haunt the Australian Wetlands?

A map and drawing of the original earth carving of a bunyip, from the mid-19th century:

An elephant seal can really look like a monster:

So can a leopard seal [photo by Greg Barras and taken from this site]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week, as we get closer and closer to Halloween, we’re taking a break from spooky bigfoot monsters. Instead, we’re in the water with some spooky monsters suggested by Henry and Will! This episode is rated two bats out of five on our spookiness scale, so it’s not too scary.

We’ll start with Will’s suggestion, the bunyip. We talked about it a long, long time ago in episode 36, so it’s definitely time to revisit it.

The bunyip is supposed to be a monster that attacks and eats people who come too near the waterholes or lagoons where it lives. It’s sometimes said to be gray and covered with feathers, or is described as a humongous starfish or snake, or is supposed to be yellow with black stripes, but the earliest reports in English, back in 1812, describe it as looking like a huge black seal. It was supposed to warn people away with a terrifying bellow or roar.

By about the 1850s the word bunyip had been adopted into Australian English as a term meaning something like humbug or poser. As early as 1933, at least one non-Aboriginal person suggested that the bunyip was inspired by seals that sometimes come up into rivers. If someone who had never seen or heard of a seal before saw one up close, it would definitely look like a monster.

That’s mainly what we talked about in episode 36. An Aboriginal sacred site near Ararat, Victoria once had the outline of a bunyip carved into the ground and the turf removed from within the figure. Every year the local indigenous people would gather to re-carve the figure so it wouldn’t become overgrown, because it symbolized an important event. At that spot, two brothers had been attacked by a bunyip. It killed one of the men and the other speared the bunyip and killed it. When he brought his family and others back to retrieve his brother’s body, they traced around the bunyip’s body.

The bunyip carving was 26 feet long, or 8 meters. Unfortunately it’s long gone, since eventually the last Aborigine who was part of the ritual died sometime in the 1850s and the site was fenced off for cattle grazing. But we have a drawing of the geoglyph from 1867. A copy of it is in the show notes. It’s generally taken to be a two-legged sea serpent type monster with a small head and a relatively short, thick tail. Some people think it represents a bird like an emu.

But if you turn it around, with the small head being the end of a tail, and the blunt tail being a head, suddenly it makes sense. It’s the shape of a seal.

The Southern elephant seal lives around the Antarctic, but is a rare visitor to Australia. It’s also enormous, twice the size of a walrus, six or seven times heavier than a Polar bear. The males can grow over 20 feet long, or over six meters, while females are typically about half that length. The male also has an inflatable proboscis which allows him to make a roaring or grunting sound, although he usually only does this when he’s about to fight another male. This is what it sounds like:

[southern elephant seal sound]

The leopard seal also lives in the Antarctic Ocean but sometimes it’s found around Australia, especially the western coast. It’s not as big as the elephant seal but it can grow up to 11 ½ feet long, or 3.5 meters, the size of a walrus although it’s not as heavy. It’s an active, streamlined animal with large jaws. Its teeth that lock together to allow it to filter small animals from the water by pushing the water out of its mouth through its teeth and swallowing any tiny food that remains in its mouth. In addition to filter feeding, the leopard seal can kill and eat fish and even large animals like penguins and even other species of seal, including young southern elephant seals. Its only natural predator is the orca. It’s a fast swimmer with large front flippers to help it maneuver. It’s also quite vocal, especially the males, and even though it mostly makes sounds underwater, they’re often loud enough to hear above the water too. This is what a leopard seal sounds like (admittedly it does not sound scary, unless perhaps you are a small fish):

[leopard seal sound]

Even though the bunyip carving was bigger than the largest known leopard seal or southern elephant seal, it’s possible the carving was enlarged by accident over the years. Then again, maybe there really was a truly enormous seal or other animal that attacked two brothers centuries ago. But the bunyip is much more than this one event.

“Bunyip” isn’t even the word that all Aboriginal Australians use for this monster, it’s just the one that got picked up by English speakers and popularized. It probably came from the word “banib” from the Wemba-Wemba language spoken around what is now Victoria.

The monster known as the bunyip in English is a creature of folklore, religion, history, and storytelling to the people whose ancestors have lived in Australia for probably 50,000 years. That’s an astounding amount of time, and naturally that means that the cultures of Aboriginal Australians are complex. All this is complicated because of how disrupted the Aboriginal cultures were when Europeans showed up and decided that they were just going to take Australia for themselves, leading to the often-deliberate and sometimes accidental destruction of the ancient cultures they encountered.

One aspect of the bunyip story is similar to many of the monster stories we’ve talked about this month. It was often used as a way to keep children away from dangerous places, especially water. A little kid might not understand that a placid-looking pond can be dangerous, but they do understand that monsters are scary.

That’s the case for our other monster this week, the kelpie. That’s Henry’s suggestion, and one that we talked about briefly in episode 317. The kelpie is a Scottish water spirit that’s supposed to appear as a pony wandering by itself, but if someone tries to catch the pony or get on its back to ride it, suddenly it drags the person into the water and either drowns them or eats them.

The story comes from the olden days when it was common to see ponies wandering around loose in Scotland and other parts of the British Isles. Some of the ponies in these areas were semi-feral, meaning they lived a lot of the time like wild animals. Some ponies were kept in stables and farmyards as working animals, but others were allowed to roam around and feed themselves as they liked. The problem is that many places where these ponies lived could be dangerous, especially boggy areas, swift-moving rivers, or lochs with deep water.

A typical kelpie story goes like this. Once some children were playing near the local loch when they saw a beautiful gray pony grazing by itself near the water. All the children wanted to ride the pony, so they climbed onto its back. Even though there were eight children, somehow they all fit on its back, all but the youngest boy who wasn’t so sure that this was a good idea. He’d been told never to go near strange ponies near the water for fear of kelpies. The other children jeered at him and dared him to climb up. Against his better judgment, he started to do so but as soon as he brushed the pony’s side with one finger he realized that finger was stuck fast to the animal. He stopped but it was too late. The kelpie, for of course that’s what it was, took off at a gallop toward the water. The children on its back screamed and realized they were also stuck fast and couldn’t jump off the pony even when it plunged into the water. Meanwhile, the youngest boy was dragged into the water too by his stuck finger.

Fortunately for him, the youngest boy had a pen-knife with him. He took it out of his pocket with his free hand and cut his own finger off, freeing him from the kelpie just in time. All the other children were drowned, but the youngest was able to swim to shore and run home to safety, but for the rest of his life he only had nine fingers.

And that’s why this episode is two bats on the spookiness scale instead of just one. Next week is our big Halloween episode, so be prepared for a whole lot of spookiness, and while you’re at it, it’s probably best to stay away from the water and any strange ponies you encounter.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 350: Bigfeet and Littlefeet

It’s another spooky episode (three out of five bats on this year’s spookiness scale), with suggestions from Will and Pranav!

Further reading:

Tracking the Swamp Monsters

Further watching:

The Harlan Ford Footage (Honey Island Swamp Monster)

A crab-eating macaque:

A plaster cast purportedly from the Honey Island Swamp Monster’s footprints [photo from article linked above]:

Alligator tracks in the mud [photo from this site]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week as monster month continues, we’ll learn about three more strange bipedal monsters suggested by Will and Pranav. This is another episode that I’ll give three out of five bats for spookiness. We’ve definitely got some spooky monsters this year (also you may be sensing a theme).

We’ll start with Will’s suggestion, the yara-ma-yha-who. We talked about it once before back in episode 219, but it’s such a strange monster that it definitely deserves more attention.

According to a 1932 book called Myths and Legends of the Australian Aboriginals, the yara-ma-yha-who is a little red goblin creature that stands about four feet tall, or 1.2 meters. It’s skinny all over except for its head and belly, and its mouth is especially big, like a frog’s mouth. It doesn’t have any teeth, but it can open its jaws incredibly wide like a snake, which allows it to swallow its food whole. And what is its food? People!

The yara-ma-yha-who was supposed to live in trees, especially the wild fig tree that has thick branches. In the summer when someone would stop under the tree for shade, or in the winter when it was rainy and someone would stop for shelter, the yara-ma-yha-who would drop down and grab the person.

The ends of the yara-ma-yha-who’s fingers were said to be cup-shaped suckers, and when the suckers fastened onto a person’s arm, they were able to suck blood right through the person’s skin. After the person became weak from blood loss and fainted, the yara-ma-yha-who was able to swallow them whole.

After that, the yara-ma-yha-who would drink a lot of water and fall asleep, and when it woke up it would vomit up its meal. If the person was still alive, they were supposed to lie still and pretend to be dead even while the yara-ma-yha-who poked at them to see if they responded. If the person moved, the yara-ma-yha-who would swallow them again and the whole thing would start over. But every time a person was swallowed by the little red goblin, when they were vomited up again they were shorter and redder, until after three or four times if they couldn’t get away, the person was transformed into another yara-ma-yha-who.

Some cryptozoologists speculate that the yara-ma-yha-who may be based on the tarsier, which is the subject of episode 219 and why we talked about this particular monster in that episode. The tarsier has never lived in Australia, although it does live in relatively nearby islands. Most tarsier species have toe pads that help them cling to branches, but so do many frogs that do live in Australia. It’s much more likely that the legend of the yara-ma-yha-who was inspired by frogs, snakes, monitor lizards, and other Australian animals. More importantly, the monster was used as a cautionary tale to warn children not to go off by themselves into the bush.

Unfortunately, the only information about the yara-ma-yha-who comes from this 1932 book. We don’t know which Aboriginal peoples this story was collected from, and we don’t know how much it was changed in translation to English. It’s still a fun story, though.

Next, we’ll talk about Pranav’s suggestions. Last week we talked about the monkey-man of New Delhi, and one of the monsters we’ll cover today is also a monkey-man from Asia, this time from Singapore. It’s the Bukit Timah Monkey-Man, said to mainly live in the Bukit Timah rainforest nature reserve but occasionally seen in the city surrounding the nature reserve.

The Bukit Timah Monkey-Man is supposed to look like a monkey the size of a human. It walks like a human on two legs and otherwise looks like a person, but is covered in gray hair and has a monkey-like face. It’s only ever seen at night and although people are scared when they see it, the monster has never attacked anyone and doesn’t seem to be interested in people at all. The oldest report possibly dates back to 1805, or to the 1940s according to other accounts, but sightings are rare.

One very common monkey that lives in Bukit Timah is the crab-eating macaque, also called the long-tailed macaque and I bet you can guess why. Its tail is longer than its body, although its arms and legs are shorter than in most monkeys. It mostly lives on the ground and eats pretty much anything, although most of its diet is fruit and other plant materials. It does sometimes eat crabs, and is good at swimming and diving to find them, but it also eats bird eggs and nestlings, lizards, frogs, insects, and other small animals. It even has a cheek pouch where it can store extra food to eat later.

Like the rhesus macaque we talked about last week, the crab-eating macaque is pretty small, with a big male weighing about 20 lbs, or 9 kg, at most. That’s about the size of a small dog. The fur on its back and head is a light golden brown, and its face, arms and legs, and underparts are gray with white markings. Its tail is usually darker brown. In other words, in the dark it might look like it’s pale gray all over but its tail is harder to see, and the monkey-man isn’t reported to have a tail.

The crab-eating macaque is common in the city of Bukit Timah, and in fact it’s common in a lot of cities and is even an invasive species in some parts of the world. People in Bukit Timah are used to seeing this particular type of monkey, but it’s so small that no one could mistake it for a human-sized monster. Then again, most of the stories about the monkey-man are friend-of-a-friend stories, often told by children to scare each other. It’s very likely that the Bukit Timah monkey-man is just an urban legend.

Our last monster this week is another suggestion by Pranav, the Honey Island Swamp monster. This one is from the United States, specifically the Honey Island Swamp in St. Tammany Parish, Louisiana.

In 1974, a couple of hunters claimed they found strange footprints in the swamp, and had seen the monster itself back in 1963. They said it stood seven feet tall, or over 2 meters, and was covered with long gray hair. Its eyes were a brilliant amber in color. The monster was on all fours at first, but when it heard the men talking it stood up to look at them, then ran away. Heavy rain later that day washed its tracks away.

When the men saw the same tracks in 1974, they used plaster to make copies of the footprints. But the footprints don’t look like plaster casts of other bigfoot-type tracks, which resemble giant human footprints. The swamp monster appears to have four toes that are spread widely apart, with one sticking out to the side like a thumb, and show the impression of webbing in between. It’s also not that big of a foot, not quite 10 inches long, or 25 cm.

Both the hunters were air traffic controllers, which is a job that requires people to make decisions carefully and remain calm in stressful situations, in order to keep airplanes from crashing into each other. These were the sort of people you’d trust if they told you they’d seen something really weird in the swamp. The two men were even interviewed for an episode of the TV show “In Search Of” that aired in 1978, which popularized the Honey Island Swamp monster outside of the local area. Both men continued to search for the monster, reporting that they’d caught at least one more glimpse of it and had even shot at it without apparently hitting it.

One of the men, Harlan Ford, died in 1980. He had taken up wildlife photography after his retirement and when his granddaughter was going through his belongings, she found some Super 8 film footage that showed something very peculiar. It was a brief video of the swamp, but if you look closely, a shadowy human-sized figure crosses behind trees from right to left, visible for maybe half a second. I put a link in the show notes if you want to look at the footage yourself. It took me two watches before I noticed the figure and to me it looks like the shadow of a human walking normally, but it’s so grainy it’s hard to tell.

It’s possible that the two men decided to have fun with a harmless prank about a monster in the swamp, but so many people took them seriously that it kind of got out of hand. Then again, maybe they did genuinely see something unusual. That doesn’t mean it was an actual monster, though. Black bears do live in the swamp, and my personal theory is that bears are responsible for a whole lot of bigfoot sightings.

The American alligator is also common in the area. The gator’s front feet have five toes, but the hind feet only have four. The toes are webbed to help the gator swim more easily, and the front foot’s pinkie toe usually sticks out to the side. Sometimes the first two toes of the front foot are held close enough together that they look like one big toe. Usually an alligator drags its tail as it walks, but it also has a gait called the high walk where its tail is completely off the ground. The plaster tracks found by the two hunters in 1974 look suspiciously like a really big alligator print, probably twice the size of an ordinary adult gator.

More importantly, people who have lived in the Honey Island swamp their entire lives, fishing and hunting and running boat tours, don’t report ever seeing an animal they don’t recognize. Maybe there is an incredibly rare monster that lives in the swamps and walks bipedally at least part of the time, but more likely the Honey Island Swamp Monster is a tall tale.

There are a lot of reasons why people tell stories about swamp monsters or monkey-men or murderous red goblins. It’s a good way to stop little kids from wandering around in dangerous places, and it’s fun to scare yourself and others with a story when you know you’re actually safe. There are plenty of dangerous animals in the world, many of which are completely unknown to science. I just don’t think these three are ones you need to worry about.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 342: Giant Snails and Giant Crabs

Thanks to Tobey and Anbo for their suggestions this week! We’re going to learn about some giant invertebrates!

Further reading:

The Invasive Giant African Land Snail Has Been Spotted in Florida

A very big shell:

The giant African snail is pretty darn giant [photo from article linked above]:

The largest giant spider crab ever measured, and a person:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some giant invertebrates, suggested by Tobey and Anbo. Maybe they’re not as big as dinosaurs or whales, but they’re surprisingly big compared to most invertebrates.

Let’s start with Tobey’s suggestion, about a big gastropod. Gastropods include slugs and snails, and while Tobey suggested the African trumpet snail specifically, I couldn’t figure out which species of snail it is. But it did lead me to learning a lot about some really big snails.

The very biggest snail known to be alive today is called the Australian trumpet snail, Syrinx aruanus. This isn’t the kind of snail you’d find in your garden, though. It’s a sea snail that lives in shallow water off the coast of northern Australia, around Papua New Guinea, and other nearby areas. It has a coiled shell that’s referred to as spindle-shaped, because the coils form a point like the spindle of a tower. It’s a pretty common shape for sea snails and you’ve undoubtedly seen this kind of seashell before if you’ve spent any time on the beach. But unless you live in the places where the Australian trumpet lives, you probably haven’t seen a seashell this size. The Australian trumpet’s shell can grow up to three feet long, or 91 cm. Not only is this a huge shell, the snail itself is really heavy. It can weigh as much as 31 lbs, or 14 kg, which is as heavy as a good-sized dog.

The snail eats worms, but not just any old worms. If you remember episode 289, you might remember that Australia is home to the giant beach worm, a polychaete worm that burrows in the sand between high and low tide marks. It can grow as much as 8 feet long, or 2.4 meters, and probably longer. Well, that’s the type of worm the Australian trumpet likes to eat, along with other worms. The snail extends a proboscis into the worm’s burrow to reach the worm, but although I’ve tried to find out how it actually captures the worm in order to eat it, this seems to be a mystery. Like other gastropods, the Australian trumpet eats by scraping pieces of food into its mouth using a radula. That’s a tongue-like structure studded with tiny sharp teeth, and the Australian trumpet has a formidable radula. Some other sea snails, especially cone snails, are able to paralyze or outright kill prey by injecting it with venom via a proboscis, so it’s possible the Australian trumpet does too. The Australian trumpet is related to cone snails, although not very closely.

Obviously, we know very little about the Australian trumpet, even though it’s not hard to find. The trouble is that its an edible snail to humans and humans also really like those big shells and will pay a lot for them. In some areas people have hunted the snail to extinction, but we don’t even know how common it is overall to know if it’s endangered or not.

Tobey may have been referring to the giant African snail, which is probably the largest living land snail known. There are several snails that share the name “giant African snail,” and they’re all big, but the biggest is Lissachatina fulica. It can grow more than 8 inches long, or 20 cm, and its conical shell is usually brown and white with pretty banding in some of the whorls. It looks more like the shell of a sea snail than a land snail, but the shell is incredibly tough.

The giant African snail is an invasive species in many areas. Not only will it eat plants down to nothing, it will also eat stucco and concrete for the minerals they contain. It even eats sand, cardboard, certain rocks, bones, and sometimes other African giant snails, presumably when it runs out of trees and houses to eat. It can spread diseases to plants, animals, and humans, which is a problem since it’s also edible.

Like many snails, the African giant snail is a simultaneous hermaphrodite, meaning it can produce both sperm and eggs. It can’t self-fertilize its own eggs, but after mating a snail can keep any unused sperm alive in its body for up to two years, using it to fertilize eggs during that whole time, and it can lay up to 200 eggs five or six times a year. In other words, it only takes a single snail to produce a wasteland of invasive snails in a very short amount of time.

In June 2023, some African giant snails were found near Miami, Florida and officials placed the whole area under agricultural quarantine. That means no one can move any soil or plants out of the area without permission, since that could cause the snails to spread to other places. Meanwhile, officials are working to eradicate the snails. Other parts of Florida are also under the same quarantine after the snails were found the year before. Sometimes when people go on vacation in the Caribbean they bring back garden plants, without realizing that the soil in the pot contains giant African snail eggs, because the giant African snail is also an invasive species throughout the Caribbean.

Next, Anbo wanted to learn about the giant spider crab, also called the Japanese spider crab because it lives in the Pacific Ocean around Japan. It is indeed a type of crab, which is a crustacean, which is an arthropod, and it has the largest legspan of any arthropod known. Its body can grow 16 inches across, or 40 cm, and it can weigh as much as 42 pounds, or 19 kg, which is almost as big as the biggest lobster. But its legs are really really really long. Really long! It can have a legspan of 12 feet across, or 3.7 meters! That includes the claws at the end of its front legs. Most individual crabs are much smaller, but since crustaceans continue to grow throughout their lives, and the giant spider crab can probably live to be 100 years old, there’s no reason why some crabs couldn’t be even bigger than 12 feet across. Its long legs are delicate, though, and it’s rare to find an old crab that hasn’t had an injury to at least one leg.

The giant spider crab is orange with white spots, sort of like a koi fish but in crab form. Its carapace is also bumpy and spiky. You wouldn’t think a crab this size would need to worry about predators, but it’s actually eaten by large octopuses. The crab sticks small organisms like sponges and kelp to its carapace to help camouflage it.

The giant spider crab is considered a delicacy in some places, which has led to overfishing. It’s now protected in Japan, where people are only allowed to catch the crabs during part of the year. This allows the crabs to safely mate and lay eggs.

There’s another species called the European spider crab that has long legs, but it’s nowhere near the size of the giant spider crab. Its carapace width is barely 8 ½ inches across, or 22 cm, and its legs are about the same length. Remember that the giant spider crab’s legs can be up to six feet long each, or 1.8 meters. While the European spider crab does resemble the giant spider crab in many ways, it’s actually not closely related to it. They two species belong to separate families.

The giant spider crab spends most of its time in deep water, although in mating season it will come into shallower water. It uses its long legs to walk around on the sea floor, searching for food. It’s an omnivore that eats pretty much anything it can find, including plants, dead animals, and algae, but it will also use its claws to open mollusk shells and eat the animals inside. It prefers rocky areas of the sea floor, since its bumpy carapace blends in well among rocks.

Scientists report that the giant spider crab is mostly good-natured, even though it looks scary. Some big aquariums keep giant spider crabs, and the aquarium workers say the same thing. But it does have strong claws, and if it feels threatened it can seriously injure divers. I shouldn’t need to remind you not to pester a crab with a 12-foot legspan.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 338: Updates 6 and an Arboreal Clam!?!

This week we have our annual updates and corrections episode, and at the end of the episode we’ll learn about a really weird clam I didn’t even think was real at first.

Thanks to Simon and Anbo for sending in some corrections!

Further reading:

Lessons on transparency from the glass frog

Hidden, never-before-seen penguin colony spotted from space

Rare wild asses spotted near China-Mongolia border

Aye-Ayes Use Their Elongated Fingers to Pick Their Nose

Homo sapiens likely arose from multiple closely related populations

Scientists Find Earliest Evidence of Hominins Cooking with Fire

153,000-Year-Old Homo sapiens Footprint Discovered in South Africa

Newly-Discovered Tyrannosaur Species Fills Gap in Lineage Leading to Tyrannosaurus rex

Earth’s First Vertebrate Superpredator Was Shorter and Stouter than Previously Thought

252-Million-Year-Old Insect-Damaged Leaves Reveal First Fossil Evidence of Foliar Nyctinasty

The other paleo diet: Rare discovery of dinosaur remains preserved with its last meal

The Mongolian wild ass:

The giant barb fish [photo from this site]:

Enigmonia aenigmatica, AKA the mangrove jingle shell, on a leaf:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week is our annual updates and corrections episode, but we’ll also learn about the mangrove jingle shell, a clam that lives in TREES. A quick reminder that this isn’t a comprehensive updates episode, because that would take 100 years to prepare and would be hours and hours long, and I don’t have that kind of time. It’s just whatever caught my eye during the last year that I thought was interesting.

First, we have a few corrections. Anbo emailed me recently with a correction from episode 158. No one else caught this, as far as I can remember. In that episode I said that geckos don’t have eyelids, and for the most part that’s true. But there’s one family of geckos that does have eyelids, Eublepharidae. This includes the leopard gecko, and that lines up with Anbo’s report of having a pet leopard gecko who definitely blinked its eyes. This family of geckos are sometimes even called eyelid geckos. Also, Anbo, I apologize for mispronouncing your name in last week’s episode about shrimp.

After episode 307, about the coquí and glass frogs, Simon pointed out that Hawaii doesn’t actually have any native frogs or amphibians at all. It doesn’t even have any native reptiles unless you count sea snakes and sea turtles. The coqui frog is an invasive species introduced by humans, and because it has no natural predators in Hawaii it has disrupted the native ecosystem in many places, eating all the available insects. Three of the Hawaiian islands remain free of the frogs, and conservationists are working to keep it that way while also figuring out ways to get them off of the other islands. Simon also sent me the chapter of the book he’s working on that talks about island frogs, and I hope the book is published soon because it is so much fun to read!

Speaking of frogs, one week after episode 307, an article about yet another way the glass frog is able to hide from predators was published in Science. When a glass frog is active, its blood is normal, but when it settles down to sleep, the red blood cells in its blood collect in its liver. The liver is covered with teensy guanine crystals that scatter light, which hides the red color from view. That makes the frog look even more green and leaf-like!

We’ve talked about penguins in several episodes, and emperor penguins specifically in episode 78. The emperor penguin lives in Antarctica and is threatened by climate change as the earth’s climate warms and more and more ice melts. We actually don’t know all that much about the emperor penguin because it lives in a part of the world that’s difficult for humans to explore. In December 2022, a geologist named Peter Fretwell was studying satellite photos of Antarctica to measure the loss of sea ice when he noticed something strange. Some of the ice had brown stains.

Dr Fretwell knew exactly what those stains were: emperor penguin poop. When he obtained higher-resolution photos, he was able to zoom in and see the emperor penguins themselves. But this wasn’t a colony he knew about. It was a completely undiscovered colony.

In episode 292 we talked about a mystery animal called the kunga, and in that episode we also talked a lot about domestic and wild donkeys. We didn’t cover the Mongolian wild ass in that one, but it’s very similar to wild asses in other parts of the world. It’s also called the Mongolian khulan. It used to be a lot more widespread than it is now, but these days it only lives in southern Mongolia and northern China. It’s increasingly threatened by habitat loss, climate change, and poaching, even though it’s a protected animal in both Mongolia and China.

In February of 2023, a small herd of eight Mongolian wild asses were spotted along the border of both countries, in a nature reserve. A local herdsman noticed them first and put hay out to make sure the donkeys had enough to eat. The nature reserve has a water station for wild animals to drink from, and has better grazing these days after grassland ecology measures were put into place several years ago.

In episode 233 we talked about the aye-aye of Madagascar, which has weird elongated fingers. Its middle finger is even longer and much thinner than the others, which it uses to pull invertebrates from under tree bark and other tiny crevices. Well, in October of 2022 researchers studying aye-ayes started documenting another use for this long thin finger. The aye-ayes used it to pick their noses. It wasn’t just one aye-aye that wasn’t taught good manners, it was widespread. And I hope you’re not snacking while I tell you this, the aye-aye would then lick its finger clean. Yeah. But the weirdest thing is that the aye-aye’s thin finger is so long that it can potentially reach right through the nose right down into the aye-aye’s throat.

It’s pretty funny and gross, but wondering why some animals pick their noses is a valid scientific question. A lot of apes and monkeys pick their noses, as do humans (not that we admit it most of the time), and now we know aye-ayes do too. The aye-aye is a type of lemur and therefore a primate, but it’s not very closely related to apes and monkeys. Is this just a primate habit or is it only seen in primates because we have fingers that fit into our nostrils? Would all mammals pick their nose if they had fingers that would fit up in there? Sometimes if you have a dried snot stuck in your nose, it’s uncomfortable, but picking your nose can also spread germs if your fingers are dirty. So it’s still a mystery why the aye-aye does it.

A recent article in Nature suggests that Homo sapiens, our own species, may have evolved not from a single species of early human but from the hybridization of several early human species. We already know that humans interbred with Neandertals and Denisovans, but we’re talking about hybridization that happened long before that between hominin species that were even more closely related.

The most genetically diverse population of humans alive today are the Nama people who live in southern Africa, and the reason they’re so genetically diverse is that their ancestors have lived in that part of Africa since humans evolved. Populations that migrated away from the area, whether to different parts of Africa or other parts of the world, had a smaller gene pool to draw from as they moved farther and farther away from where most humans lived.

Now, a new genetic study of modern Nama people has looked at changes in DNA that indicate the ancestry of all humans. The results suggest that before about 120,000 to 135,000 years ago, there was more than one species of human, but that they were all extremely closely related. Since these were all humans, even though they were ancient humans and slightly different genetically, it’s probable that the different groups traded with each other or hunted together, and undoubtedly people from different groups fell in love just the way people do today. Over the generations, all this interbreeding resulted in one genetically stable population of Homo sapiens that has led to modern humans that you see everywhere today. To be clear, as I always point out, no matter where people live or what they look like, all people alive today are genetically human, with only minor variations in our genetic makeup. It’s just that the Nama people still retain a lot of clues about our very distant ancestry that other populations no longer show.

To remind everyone how awesome out distant ancestors were, here’s one new finding of how ancient humans lived. We know that early humans and Neandertals were cooking their food at least 170,000 years ago, but recently archaeologists found the remains of an early hominin settlement in what is now Israel where people were cooking fish 780,000 years ago. There were different species of fish remains found along with the remains of cooking fires, and some of the fish are ones that have since gone extinct. One was a carp-like fish called the giant barb that could grow 10 feet long, or 3 meters.

In other ancient human news, the oldest human footprint was discovered recently in South Africa. You’d think that we would have lots of ancient human footprints, but that’s actually not the case when it comes to footprints more than 50,000 years old. There are only 14 human footprints older than that, although there are older footprints found made by ancestors of modern humans. The newly discovered footprint dates to 153,000 years ago.

It wouldn’t be an updates episode without mentioning Tyrannosaurus rex. In late 2022 a newly discovered tyrannosaurid was described. It lived about 76 million years ago in what is now Montana in the United States, and while it wasn’t as big as T. rex, it was still plenty big. It probably stood about seven feet high at the hip, or a little over 2 meters, and might have been 30 feet long, or 9 meters. It probably wasn’t a direct ancestor of T. rex, just a closely related cousin, although we don’t know for sure yet. It’s called Daspletosaurus wilsoni and it shows some traits that are found in older Tyrannosaur relations but some that were more modern at the time.

Dunkleosteus is one of a number of huge armored fish that lived in the Devonian period, about 360 million years ago. We talked about it way back in episode 33, back in 2017, and at that time paleontologists thought Dunkleosteus terrelli might have grown over 30 feet long, or 9 meters. It had a heavily armored head but its skeleton was made of cartilage like a shark’s, and cartilage doesn’t generally fossilize, so while we have well-preserved head plates, we don’t know much about the rest of its body.

With the publication in early 2023 of a new study about dunkleosteus’s size, we’re pretty sure that 30 feet was a huge overestimation. It was probably less than half that length, maybe up to 13 feet long, or almost 4 meters. Previous size estimates used sharks as size models, but dunkleosteus would have been shaped more like a tuna. Maybe you think of tuna as a fish that makes a yummy sandwich, but tuna are actually huge and powerful predators that can grow up to 10 feet long, or 3 meters. Tuna are also much heavier and bigger around than sharks, and that was probably true for dunkleosteus too. The study’s lead even says dunkleosteus was built like a wrecking ball, and points out that it was probably the biggest animal alive at the time. I’m also happy to report that people have started calling it chunk-a-dunk.

We talked about trace fossils in episode 103. Scientists can learn a lot from trace fossils, which is a broad term that encompasses things like footprints, burrows, poops, and even toothmarks. Recently a new study looked at insect damage on leaves dating back 252 million years and learned something really interesting. Some modern plants fold up their leaves at night, called foliar nyctinasty, which is sometimes referred to as sleeping. The plant isn’t asleep in the same way that an animal falls asleep, but “sleeping” is a lot easier to say than foliar nyctinasty. Researchers didn’t know if folding leaves at night was a modern trait or if it’s been around for a long time in some plants. Lots of fossilized leaves are folded over, but we can’t tell if that happened after the leaf fell off its plant or after the plant died.

Then a team of paleontologists from China and Sweden studying insect damage to leaves noticed that some leaves had identical damage on both sides, exactly as though the leaf had been folded and an insect had eaten right through it. That’s something that happens in modern plants when they’re asleep and the leaves are folded closed.

The team looked at fossilized leaves from a group of trees called gigantopterids, which lived between 300 and 250 million years ago. They’re extinct now but were advanced plants at the time, some of the earliest flowering plants. They also happen to have really big leaves that often show insect damage. The team determined that the trees probably did fold their leaves while sleeping.

In episode 151 we talked about fossils found with other fossils inside them. Basically it’s when a fossil is so well preserved that the contents of the dead animal’s digestive system are preserved. This is incredibly rare, naturally, but recently a new one was discovered.

Microraptor was a dinosaur that was only about the size of a modern crow, one of the smallest dinosaurs, and it probably looked a lot like a weird bird. It could fly, although probably not very well compared to modern birds, and in addition to front legs that were modified to form wings, its back legs also had long feathers to form a second set of wings.

Several exceptionally well preserved Microraptor fossils have been discovered in China, some of them with parts of their last meals in the stomach area, including a fish, a bird, and a lizard, so we knew they were generalist predators when it came to what they would eat. Now we have another Microraptor fossil with the fossilized foot of a mammal in the place where the dinosaur’s stomach once was. So we know that Microraptor ate mammals as well as anything else it could catch, although we don’t know what kind of mammal this particular leg belonged to. It may be a new species.

Let’s finish with the mangrove jingle shell. I’ve had it on the list for a long time with a lot of question marks after it. It’s a clam that lives in trees, and I actually thought it might be an animal made up for an April fool’s joke. But no, it’s a real clam that really does live in trees.

The mangrove jingle shell lives on the mangrove tree. Mangroves are adapted to live in brackish water, meaning a mixture of fresh and salt water, or even fully salt water. They mostly live in tropical or subtropical climates along coasts, and especially like to live in waterways where there’s a tide. The tide brings freshly oxygenated water to its roots. A mangrove tree needs oxygen to survive just like animals do, but it has trouble getting enough through its roots when they’re underwater. Its root system is extensive and complicated, with special types of roots that help it stay upright when the tide goes out and special roots called pneumatophores, which stick up above the water or soil and act as straws, allowing the tree to absorb plenty of oxygen from the air even when the rest of the root system is underwater. These pneumatophores are sometimes called knees, but different species of mangrove have different pneumatophore shapes and sizes.

One interesting thing about the mangrove tree is that its seeds actually sprout while they’re still attached to the parent tree. When it’s big enough, the seedling drops off its tree into the water and can float around for a long time before it finds somewhere to root. If can even survive drying out for a year or more.

The mangrove jingle shell clam lives in tropical areas of the Indo-Pacific Ocean, and is found throughout much of coastal southeast Asia all the way down to parts of Australia. It grows a little over one inch long, or 3 cm, and like other clams it finds a place to anchor itself so that water flows past it all the time and it can filter tiny food particles from the water. It especially likes intertidal areas, which happens to be the same area that mangroves especially like.

Larval jingle shells can swim, but they need to find somewhere solid to anchor themselves as they mature. When a larva finds a mangrove root, it attaches itself and grows a domed shell. If it finds a mangrove leaf, since mangrove branches often trail into the water, it attaches itself to the underside and grows a flatter shell. Clams attached to leaves are lighter in color than clams attached to roots or branches. Fortunately, the mangrove is an evergreen tree that doesn’t drop its leaves every year.

So there you have it. Arboreal clams! Not a hoax or an April fool’s joke.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 336: The Turtle Ant and the Alien Butt Spider

Thanks to Kari for suggesting this week’s topics! Definitely check out her book Butt or Face?, which is funny and has lots of animal information!

Further reading:

Butt or Face? by Kari Lavelle

GBIF: Araneus praesignis [the spider pictures below come from this site]

The turtle ant’s body is flattened and the soldier caste ants have specialized head shapes to block the nest entrances:

The alien butt spider has a butt that looks like an alien’s face!

The alien butt spider hides during the day in its leaf fort:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two really weird invertebrates suggested by Kari. One of these two animals is her favorite and the other is a weird ant from a book she wrote. Kari’s full name is Kari Lavelle and her book is for kids, called Butt or Face? It actually releases tomorrow as this episode goes live, so if you’re listening to this episode on Monday, July 10, 2023, you still have time to preorder the book, or you can just wait a day and run out to your local bookstore or library to get a copy.

Kari was nice enough to send me a copy of the book and it’s really funny and interesting. It’s partly a game where you look at a picture and decide whether it shows an animal’s butt or its face. It’s a lot harder than you’d think! You make your guess and turn the page to find out if you’re right and learn about the animal. It’s very fun and I actually guessed wrong on one animal, but I’m not telling you which one. There’s a link in the show notes if you want to learn more about the book and maybe order a copy for yourself.

Anyway, let’s talk about the ant first, because it’s actually one I’ve had on the list to talk about for a while. I was really excited to see it in Kari’s book. It’s called the turtle ant, sometimes called the “door head” ant. That gives you a clue as to whether its picture in the book features its butt or its face.

The turtle ant is any of the well over 100 species of ant in the genus Cephalotes, which are native to the Americas. Most live in Central and South America, especially in tropical and subtropical areas. Almost all species live in trees, nesting in cavities originally made by beetle larvae.

For the most part, turtle ants are pretty typical compared to other ant species. They have a generalized diet, eating pretty much anything they find. This includes plant material, dead insects and other animals they find, bird poop, nectar, and even pollen in some species. Each colony has a single queen that mates with multiple males and lays all the eggs for the colony. Worker ants tend the eggs and larvae, gather food, and keep the colony clean. But as in some other ants, many species of turtle ant have a soldier caste. These are worker ants who are specialized to defend the nest. We talked about army ants recently, in episode 328, and also back in episode 185, and army ant soldiers have massive sharp mandibles that can inflict painful bites. But the turtle ant soldiers don’t have sharp mandibles and aren’t aggressive. They have one job, and that job is to stand at the nest’s entrances and stop them up with their heads, only moving when another ant needs to get through.

As a result, turtle ant soldiers have weird-shaped heads. The head shape varies from species to species, with some looking more normal and some being heavily armored and strangely shaped. Well, they’re not strangely shaped except in comparison to an ordinary ant head. They’re shaped exactly right to do the job they’ve evolved to do, be a door. In some species, the top of the soldier’s head is completely round and flattened, just the right size and shape to block the entrance.

Turtle ants have another ability that they share with some other ants. If an ant falls from the twig or branch it’s climbing on, instead of just falling to the ground, it can glide back to the tree trunk. Turtle ants have flattened bodies, which helps catch the air like a tiny ant-shaped parachute. Unlike other ants that do this, which glide head-first, the turtle ant glides abdomen-first. It uses its legs and head to adjust which way it’s gliding, and most of the time it lands safely on the tree trunk.

There are undoubtedly more turtle ant species than we know about so far, and we actually don’t know very much about most of the species we have discovered. Most turtle ants live in trees, and that makes them hard to study.

There’s actually a spider called the ant-mimicking crab spider that eats turtle ants. It looks so much like a turtle ant worker that it can get close to the actual ants before it’s recognized as a predator, at which point it has a good chance of grabbing an ant to eat before the ant can run away. But that’s not actually the type of spider we’re talking about next.

The other animal we’re talking about today isn’t one from the book, it just happens to be one of Kari’s favorite animals *cough*sequel*cough*. It’s called the alien butt spider and it is completely awesome, as you can tell from the name.

The alien butt spider lives in Queensland, Australia, and it gets its name because—maybe you should just guess. I’ll wait.

Yes, you’re right! The abdomen of the spider has black or dark blue-green markings that look for all the world like the face of a tiny space alien from a movie. The spider itself is mostly green and very small, with a big female only growing about 8 mm long, although its legspan can be 20 mm across. Males are smaller, mostly because the male has a much smaller abdomen.

Its scientific name is Bijoaraneus praesignis, changed in December 2021 from Araneus praesignis. It’s also called the outstanding orbweaver or green orbweaver. Like many spiders, especially orbweavers, it’s mostly active at night. It spins a big round web that looks like the kind you see on Halloween decorations, because that’s the kind of web most orbweavers make, and at night it waits on or near the web for an insect to get stuck in it. During the day, though, the alien butt spider needs to hide. It makes what’s called a retreat in a leaf that’s partially closed or curled. The spider spins a thick layer of silk across the edges of the leaf that turns it into basically a little leaf fort, then crawls inside. The underside of the spider is plain greenish-yellow with no markings, so it’s hard to see against the leaf, especially through the layer of silk.

The spider’s abdomen is green with a yellow or white pattern on top, with black eye spots visible from the rear. The eye spots show up really well against the yellow or white pattern. But the spider also has black markings at the front of its abdomen, which also look like eyespots from some angles. The rest of its body is green, greeny-yellow, and brown, which helps it blend into leafy backgrounds.

Naturally, the alien butt spider is not actually trying to look like an alien. That’s something humans have decided it looks like because it’s green and the eyespots are so large. The spider just wants potential predators to see the eyespots and think, “Darn, that animal already saw me so I can’t sneak up on it. I won’t waste my energy trying to grab it.” Or maybe, “Uh oh, look at the size of that animal’s eyes! I must be looking at the head of a very large animal that might eat me, plus it’s looking right at me. I’d better run.”

Even though it looks kind of spooky, the alien butt spider is completely harmless to humans. We also don’t know much about it, so while it seems to be a common spider within its range, we don’t know for sure if it’s potentially endangered. It’s best to leave this little alien alone no matter how cute it is (and it is very cute).

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 331: Ompax, the Mystery Fish

This week we have a mystery fish from Australia, the ompax!

Main source consulted:

Whitley, G. P. (1933). Ompax spatuloides Castelnau, a Mythical Australian Fish. The American Naturalist, 67(713), 563–567. http://www.jstor.org/stable/2456813

The fateful Ompax drawing:

The freshwater longtom (picture by Barry Hutchins):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

For the Patreon episode this month, we had a bird mystery from Queensland, Australia. While I was researching it I came across this mystery fish, also from Queensland.

In 1872, a man named Karl Staiger visited the town of Gayndah as part of his job. He was a chemist, but he also had an interest in nature and years later he worked for the Queensland Museum. One morning in Gayndah he went to breakfast and was served a strange-looking fish—so strange-looking that he asked what it was. He was told it was a very rare fish found in the nearby Burnett River.

Staiger was interested enough that he asked the road inspector, presumably one of his coworkers, to draw the fish for him. But the drawing wasn’t made until after Staiger ate the fish. It was his breakfast and he was hungry and, as he wrote later, he didn’t know he should have at least saved the head for study. Presumably he also didn’t want his breakfast to get cold while the drawing was being made.

The road inspector was a careful artist although he wasn’t a naturalist himself, so he did what he could to draw the fish accurately from the remains of Staiger’s meal. According to the drawing, the fish had a long, flattened rostrum that looked a little like a very long, thin duckbill, big scales on its body, and a fin that went all the way around the edges of the tail starting about halfway down the back, which appeared to be connected dorsal, caudal, and ventral fins. Its pectoral fins were small, and its eyes were also small and near the top of its head. The fish was brown in color and about 18 inches long, or 46 cm.

Staiger eventually wrote to a French naturalist and sent him the drawing. The French naturalist has about 500 names and titles, usually shortened to something like Francis de Laporte de Castelnau. I’m going to call him Francis because obviously I can’t pronounce any of those names properly.

Francis saw at a glance that the fish was unlike anything he’d ever seen before. He suspected it didn’t just deserve its own genus but its own family. Staiger had reported what he’d been told, that the fish was known from a particular part of the Burnett River, and he’d also mentioned that it lived in the same area as another strange fish, the Australian lungfish.

The Australian lungfish had only been described a few years before, in 1870, and it’s a very big fish. It can grow up to 5 feet long, or 1.5 meters, and is greenish in color. It has big overlapping scales on its body and four strong fins that look more like flippers than ordinary fish fins, which it uses to stand and walk on the bottom of the river. Its tail comes to a single rounded point and it has tooth plates instead of regular teeth, which it uses to crush the small animals it eats. It also has a single lung in addition to gills, and like other lungfish it comes to the surface every so often to replace the air in its lung. When it’s especially active it will breathe at the surface more often. The ability to breathe air allows it to survive in water with low oxygen.

Francis noted that there were some similarities between the new fish and the Australian lungfish, but he thought it was more likely to be related to the alligator gar of North America. It had the same type of scales as the alligator gar. He also noted that its duckbill rostrum resembled the rostrum of the American paddlefish, which is similarly shaped but even longer than the new fish’s, but that the rest of the new fish was very different from the paddlefish.

Francis described the new fish in 1879 and gave it the name Ompax spatuloides, but as early as 1881 some fish experts wondered if the original drawing was misleading. They pointed out that the fish wasn’t drawn by someone with a knowledge of fish and that it had already been cooked and eaten, so the details might be completely wrong.

As it happens, the details were completely wrong, but not in a way anyone expected.

There’s actually some confusion as to whether the drawing of the fish was made before or after Staiger ate it, but it doesn’t actually matter after all. In 1930, an article in the Sydney Bulletin claimed that Ompax was a hoax to fool Staiger, made up of a lungfish head, a mullet body, and an eel tail.

The 1930 article isn’t available online, but one published in 1933 is, and it quotes the 1930 article. The 1933 article appears in a periodical called The American Naturalist and discusses the history of Ompax from start to finish, which is where most of our information comes from. The article finishes by pointing out that the Ompax’s head can’t have been made from a lungfish head unless a platypus bill or something like that was added, and suggests that the head might actually have been that of a fish of the family Belonidae. These are commonly called needlefish because they have long thin rostrums lined with teeth.

Needlefish are long, slender fish that resemble gars, although gars are native to North America and mostly live in freshwater. Needlefish live throughout much of the world’s oceans although some do live in brackish or freshwater. The needlefish swims near the surface of the water and will leap out of the water at high speed to jump obstacles like floating logs or boats. Since needlefish rostrums really do have a sharp point like a needle, it sometimes badly injures or even kills people who are fishing in boats by accidentally stabbing them.

One species, the freshwater longtom, is not only found in Australian rivers, it’s found in Queensland and occasionally even in the Burnett River. Its rostrum is the right size and shape to be the Ompax’s rostrum, while the platypus’s so-called duckbill is much too large to match the drawing. The freshwater longtom can grow almost three feet long, or about 85 cm, but is usually much smaller than that.

Like most needlefish, the freshwater longtom eats small fish, insects, and crustaceans. Also like other needlefish, it has no stomach. It swallows its prey whole and instead of the food going into its stomach, it just goes directly into its intestines, which excrete an enzyme called trypsin that breaks down proteins so they can be absorbed. This isn’t as efficient as stomach acids, but it also takes less energy to digest food this way.

The freshwater longtom’s dorsal and anal fins are long but fairly low and set well back on its body. Its pectoral fins are very small. While it does have an ordinary-looking tail fin, this might easily appear different after being cooked. And the longtom is edible, although it has a lot of thin bones that make it difficult to eat. Its bones are also green in color, which can be offputting to some people. Some needlefish also have greenish meat.

Staiger didn’t recount any details about the edibility and taste and texture of the fish he ate, so we don’t know if he actually ate a mullet that had a needlefish head and an eel tail stuck to it. The sea mullet and the sand mullet are both common fish around Australia and considered excellent eating fish. But if there really was that much of an eel’s tail stuck onto the fish’s body, you’d think Staiger would have noticed the difference in meat texture. The eels found in Australia are edible and considered a delicacy, but they wouldn’t look or taste the same as the rest of the fish.

The only reason we know the Ompax fish was a hoax is because of the 1930 article written by someone who called himself Waranbini. Waranbini’s article was published 58 years after the fish was served to Staiger for his breakfast.

I think the only hoax here was the 1930 article. I think Waranbini, whoever he was, looked at the picture, thought, “That looks like someone stuck three different types of animal together,” and wrote his article.

I think Staiger was actually served a freshwater longtom, and I think the people who served it to him were sincere that it was a rare fish. It is rare in the Burnett River. Staiger wasn’t an ichthyologist, nor was the man who drew the fish. They did the best they could, and Francis did the best he could to decipher from Staiger’s notes and the drawing what the fish was.

So from this we can learn three important things: Don’t use a drawing of a cooked and possibly mostly eaten fish to describe a new species, don’t assume people in the olden days were stupid, and don’t trust anonymous newspaper articles with no sources listed.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!