Episode 322: The Javelina and Other Peccaries

Thanks to Oceana and Leo for suggesting this week’s episode about the javelina! We’ll even learn about a mystery peccary too.

Further reading:

New Species of Peccary–Pig-Like Animal–Discovered in Amazon Region

A javelina, also called the collared peccary [By Wing-Chi Poon – Own work by uploader; at Cottonwood Campground, Big Bend National Park, Texas, USA, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4394434]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion by Oceana and Leo, the javelina! It’s an animal native to the Americas, also called the collared peccary. We’re going to learn about it and its close relations, including a mystery animal.

The javelina is in the family Tayassuidae, called the New World pigs. The rest of the world’s pigs, including the warthog and the babirusa and the domestic pig, belong to the family Suidae. While the two families are related, the ancestors of the New World pigs, or peccaries, split off from the ancestors of other pigs around 40 million years ago and they’ve been evolving separately for all that time.

Peccaries live throughout almost all of Central and South America up to southwestern North America and some of the Caribbean islands. All peccaries look like little hairy pigs, including a flat-ended pig snout that it uses to root in the ground, small eyes, short tusks, slender legs with cloven hooves, and a thin little tail. It’s relatively small compared to domestic pigs, about the size of a big dog at most, and is covered with a thick coat of bristly hair. When it’s angry or frightened, it can raise the bristles along its back to make it look larger. It also has scent glands that give off a pungent smell, which is how members of the same herd recognize each other, since peccaries have poor eyesight.

Peccaries mostly eat plant material, but they’re omnivores and will eat meat when they find it, from insects and grubs to frogs and even carrion. Because they root around in the ground and leaf litter, they stir up nutrients in a way that benefits other animals and the environment in general. In the case of the javelina, also called the collared peccary, musk hog, or skunk pig, it’s sometimes considered a pest since it will root up people’s flowerbeds and gardens. But the javelina doesn’t know the difference between a garden and a not-garden. It just wants to find some tasty grubs and roots.

Peccaries are social animals that usually live in small herds. The white-lipped peccary is widespread in the forests of Central and South America, and sometimes lives in herds of 300 animals or more, even as many as 2,000 according to some reports. It requires an enormous range as a result, and travels a lot of the day to find new areas to forage. It’s threatened by habitat loss, mostly deforestation. Like other peccaries, it smells sort of skunky and can be aggressive if threatened. It eats a lot of fruit in addition to other plant material, and because it has stronger jaws than the javelina, it can eat seeds and nuts that the javelina can’t, so the two species can coexist in the same environment without competing for the same food sources.

Until 1972, the Chacoan peccary was only known from some fossils found in 1930. Not only did scientists think it was extinct, they thought it had been extinct for a long time. But in the early 1970s, rumors about a new peccary species started to circulate. A team of biologists followed up with locals and discovered the peccary living in a small area of South America called Chaco. Surprise! New peccary just dropped.

The Chacoan peccary, also known as the tagua, looks a lot like a javelina although it doesn’t have a dew claw on its hind feet. It has a tough snout and brown and gray bristles, with white on its shoulders and around its mouth. It lives in small bands of around a dozen individuals that roam across a large range, eating tough vegetation that other animals wouldn’t even consider food—cacti, for instance. A peccary will roll a cactus around on the ground with its snout and hooves, rubbing the spines off so it can eat it. If that doesn’t work, it will pull the spines out with its teeth. Cacti contain acids that other animals can’t digest, but the Chacoan peccary has specialized kidneys that are adapted to break down those acids.

The Chacoan peccary is endangered due to hunting, habitat loss, and disease. The area where it lives is being rapidly deforested to make way for huge cattle ranches. This is bad enough, but when ranchers move in, they want roads to get to their land more easily, and once the roads are in place, not only can more hunters get to the area, but more peccaries are killed by traffic. It’s estimated that only about 3,000 Chacoan peccaries are alive today. The government of Paraguay is trying to reduce the impact of habitat loss by protecting key areas of forest, and breeding populations are kept in a number of zoos across the world.

There are only three living species of peccary known: the javelina, the white-lipped peccary, and the Chacoan peccary. But there may be a fourth, the giant peccary.

In 2000, a Dutch biologist named Marc van Roosmalen was researching animals in Brazil, and as part of his studies he talked to some local hunters. They showed him the hides of three big peccaries, but they looked different from the ordinary javelinas that lived in the area. Van Roosmalen had already spotted some javelinas that he’d thought seemed too big to be ordinary javelinas, so when he saw the hides he started wondering if there were two peccary species in that part of the Amazon region.

He returned in 2003 with a German filmmaker, who got video footage of a group of these mystery peccaries. They even found a skull. Van Roosmalen described the giant peccary as a new species in 2007, but not everyone agreed it was a new species.

The giant peccary is larger than the javelina but otherwise looks and acts very much like it. Since the javelina is common pretty much everywhere that peccaries are found, and can show a lot of variation in size and appearance, many scientists think the giant peccary is just a population of unusually large javelinas.

The giant peccary reportedly lives in pairs or small family groups instead of herds. The local people have a different name for it to differentiate it from the javelina, a name which means “the big javelina that lives in pairs.” But while a genetic study of the skull found in 2003 determined that the giant peccary diverged from all other peccary species around a million years ago, later analysis is less conclusive.

As of 2011, the giant peccary is in a sort of scientific limbo, waiting for more evidence and further studies to determine whether it’s actually a new species or just a bunch of big javelinas. Let’s hope we learn more about it soon and can clear up the mystery.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 320: More Elephants

Thanks to Connor and Pranav who suggested this week’s episode about elephants! It’s been too long since we had an elephant episode and there’s lots more to learn.

Further reading:

Asian elephants could be the maths kings of the jungle

Many wild animals ‘count’

A big difference between Asian and African elephants is diet

Study reveals ancient link between mammoth dung and pumpkin pie

The Asian elephant (left) and the African elephant (right):

The African bush elephant (left) and the African forest elephant (right) [photo taken from this page]:

The osage orange is not an orange and nothing wants to eat it these days:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We haven’t talked about elephants since episode 200! It’s definitely time for some elephant updates, so thanks to Conner and Pranav for their suggestions!

Conner suggested we learn more about the Asian elephant, which was one we talked about way back in episode 200. The biggest Asian elephant ever reliably measured was a male who stood 11.3 feet tall, or 3.43 meters, although on average a male Asian elephant, also called a bull, stands about 9 feet tall, or 2.75 meters. Females, called cows, are smaller. For comparison, the official height of a basketball hoop is 10 feet, or 3 meters. An elephant could dunk the ball every single time, no problem.

The Asian elephant used to live throughout southern Asia but these days it’s endangered and its range is reduced to fragmented populations in southeast Asia. There are four living subspecies recognized today although there used to be more in ancient times.

Elephants are popular in zoos, but the sad fact is that zoo elephants often don’t live as long as wild elephants, even with the best care. The elephant is adapted to roam enormous areas in a family group, which isn’t possible in captivity. In the wild, though, the elephant is increasingly endangered due to habitat loss and poaching. Even though the Asian elephant is a protected species, people kill elephants because their tusks are valuable as ivory. Tusks are a modified form of really big tooth, and it’s valuable to some people because it can be carved into intricate pieces of art that can sell for a lot of money. That’s it. That’s the main reason why we may not have any elephants left in another hundred years at this rate, because rich people want carvings made in a dead animal’s tooth. People are weird, and not always the good kind of weird.

In happier Asian elephant news, though, a 2018 study conducted in Japan using zoo elephants replicated the results of previous studies that show Asian elephants have numeric competence that’s surprisingly similar to that in humans. That means they understand numbers at least up to ten, and can determine which group of items has more or less items than another group. That sounds simple because humans are really good at this, but most animals can only understand numbers up to three. It goes one, two, three, lots.

Many animals do have a good idea of numbers in a general way even if they can’t specifically count. Gray wolves, for instance, know how many wolves need to join the hunt to successfully bring down different prey animals. Even the humble frog will choose the larger group of food items when two groups are available. But the Asian elephant seems to have an actual grasp of numbers. I specify the Asian elephant because studies with African elephants haven’t found the same numeric ability.

Elephants make a lot of sounds, such as the iconic trumpeting that they make using the trunk. Way back in episode 8 we talked about the infrasonic sounds elephants also make with their vocal folds, sounds that are too low for humans to hear. But the Asian elephant also sometimes makes a high-pitched squeaking sound and until recently, no one was sure how it was produced. It turns out that the elephant makes this sound by buzzing its lips the same way a human does when playing a brass instrument. It’s the first time this particular method of sound production has been found outside of humans.

This is what a squeaking Asian elephant sounds like:

[elephant squeak]

Pranav suggested we learn more about the African forest and bush elephants. Those are the two species of African elephants that are still alive, and they’re also endangered due to habitat loss and poaching. The forest elephant is critically endangered. The forest elephant lives in forests, as you probably guessed, especially rainforests, while the bush elephant lives in grasslands and open forests. It’s sometimes called the savanna elephant since it’s well adapted to life on the savanna.

The forest elephant is only a little larger on average than the Asian elephant, while the bush elephant is much bigger on average. A big bull bush elephant can stand as much as 13 feet tall, or 4 meters, which means it might not dunk the basketball every time because the basketball hoop is awkwardly low.

The bush elephant lives in areas where it’s often extremely hot and dry. Since large animals retain heat, the bush elephant has many adaptations to stay cool. Its ears are really big, for instance, and have lots of blood vessels. This means the blood is close to the surface of the skin where it can shed heat into the air. In hot weather the elephant can flap its ears to help cool its blood faster. But one big adaptation has to do with its skin. The bush elephant’s skin is covered with what look like wrinkles but are actually crevices in the skin only a few micrometers wide. The crevices retain tiny amounts of water that help keep the elephant cool. Since elephants don’t have sweat glands the way people do, they have to bathe in water and mud to get moisture in the crevices in the first place.

Elephants are megaherbivores, meaning they eat mega amounts of plants. This has an impact on forest dynamics, but until recently the only studies on elephant diets and ecological effects were on African elephants. A 2017 study on Asian elephants in Malaysia found that instead of mostly eating sapling trees, the elephants preferred to eat bamboo, grasses, and especially palms.

In comparison, the African bush elephant eats plant parts that other animals can’t chew or digest, including tough stems, bark, and roots. It also eats grass, leaves, and fruit. The African forest elephant eats a lot more fruit and softer plant parts than the bush elephant, and in fact the forest elephant is incredibly important as a seed disperser. Seeds that pass through the forest elephant’s digestive system sprout a lot faster than seeds that don’t, and they also have the added benefit of sprouting in a pile of elephant dung. Instant fertilizer! At least 14 species of tree need the elephant to eat their fruit in order for the seeds to sprout at all. If the forest elephant goes extinct, the trees will too.

Around 11,000 years ago, when the North American mammoths went extinct, something similar happened. Mammoths and other megafauna co-evolved with many plants and trees to disperse their seeds, and in return the animals got to eat some yummy fruit. But when the mammoths went extinct, many plants seeds couldn’t germinate since there were no mammoths to eat the fruit and poop out the seeds. Some of these plants survive but have declined severely, like the osage orange. It produces giant yellowish-green fruits that look like round greenish brains, and although it’s related to the mulberry, you wouldn’t be able to guess that from the fruit. Nothing much eats the fruit these days, but mammoths and other megafauna loved it. The osage orange mostly survives today because the plant can clone itself by sending up fresh sprouts from old roots.

Another plant that nearly went extinct after the mammoth did is a surprising one. Wild ancestors of modern North American squash plants relied on mammoths to disperse their seeds and create the type of habitat where the plants thrived. Mammoths probably behaved a lot like modern elephants, pulling down tree limbs to eat and sometimes pushing entire trees over. This disturbed land is what wild squash plants loved, and if you’ve ever prepared a pumpkin or squash you’ll know that it’s full of seeds. The wild ancestors of these modern cultivated plants didn’t have delicious fruits, though, at least not to human taste buds. The fruit contained toxins that made them bitter, which kept small animals from eating them, because the small animals would chew up the seeds instead of swallowing them whole. But the mammoths weren’t bothered by the toxins and in fact probably couldn’t even taste the bitterness. They thought these wild squash were delicious and they ate a lot of them.

After the mammoth went extinct, the wild squash lost its main seed disperser. As forests grew thicker after mammoths weren’t around to keep the trees open, the squash also lost a lot of its preferred habitat. The main reason why we have pumpkins and summer squash is because of our ancient ancestors. They bred for squash that weren’t bitter, and they planted them and cared for the plants. So even though the main cause of the mammoth’s extinction was probably overhunting by ancient humans, at least we got pumpkin pies out of the whole situation. I mean, I personally would prefer to have both pumpkin pie AND mammoths, but no one asked me.

World Elephant Day is on August 12, and this episode is going live in late March. That means you have a little over four months to get your elephant celebration plans ready!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 317: Wild Ponies

Thanks to Leo for suggesting this week’s topic, the ponies of Assateague Island!

Further reading:

Assateague Wild Ponies

Some ponies running free on Assateague Island [photo taken from the site linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about the feral horses of Assateague! Thanks to Leo for the suggestion! That’s the grown-up Leo; we also have a young Leo who’s sent some great suggestions, including one we’re hopefully going to get to pretty soon.

Before we talk about Assateague ponies, though, we need to start somewhere else. The kelpie is a Scottish water spirit that’s supposed to appear as a pony wandering by itself, but if someone tries to catch the pony or get on its back to ride it, suddenly it drags the person into the water and either drowns them or eats them. It’s said that the only way to tell that the pony isn’t really a pony is to examine its feet. A real pony has hooves, but a kelpie has claws.

The story comes from the olden days when it was common to see ponies wandering around loose in Scotland and other parts of the UK. Some of the ponies in these areas were semi-feral, meaning they lived a lot of the time like wild animals. Some ponies were kept in stables and farmyards as working animals, but others were allowed to roam around and feed themselves as they liked. Every so often the wild ponies would be rounded up and any young ones branded by their mother’s owner. Sometimes the owner would need another pony to pull a cart or something, and they’d catch one of their ponies and bring it home to train. Sometimes the owner needed money so would catch some of their ponies to sell. The ponies that lived this way had to be tough and hardy to survive almost without human care, but luckily ponies are famously tough.

Ponies are a type of small horse, but they’re still horses. They’re generally sturdy, with a thicker coat than a full-sized horse, and usually stand around 14 hands high at the withers at most. The withers is the little bump of shoulder at the base of a horse’s neck, and the horse’s back starts behind the withers. A hand is an old horse measurement that has been standardized to four inches, or just over 10 cm, roughly the width of an adult person’s hand. 14 hands is equivalent to about 4 and a half feet tall, or 1.4 meters.

One of the best-known pony breeds is the Shetland pony, which also happens to be one of the smallest. It only stands 42 inches tall at most, or 107 cm. That’s about 3 and a half feet tall. It’s mostly used as a child’s mount but originally the Shetland was used to pull carts and plows and carry heavy loads, since despite its small size the Shetland pony is incredibly strong.

The Shetland comes from the Shetland Isles off the northeastern coast of Scotland, where it’s lived for at least two thousand years and probably more like 3,000. The islands get very cold in winter and there isn’t a lot of food, so over time the ponies evolved to be small and tough to survive.

On the other side of the Atlantic Ocean, there are feral horses living on an island called Assateague. Assateague Island is off the eastern coast of the United States, closest to the states of Virginia and Maryland. They’re actually not technically ponies except that they’re small, since ponies actually share certain traits that differentiate them from horses, even though these differences aren’t enough to call ponies a subspecies of horse. But because the Assateague horses rarely grow taller than 4 and a half feet tall, or 140 cm, people call them ponies.

I’m going to stop here and tell you a personal story, because I’ve actually seen the Assateague ponies myself. I lived in Pennsylvania for a little while after I finished grad school, and at the time I had an awesome dog named Jasper, a Newfoundland I got through Newf rescue. Newfies are bred to be water dogs in the harsh coastal regions of Newfoundland, Canada, but Jasper had never seen the ocean. I knew he didn’t know or care, but it mattered to me that he got to experience the ocean at least once in his life. I had also wanted to see the Assateague ponies since I was a little girl and read Misty of Chincoteague and its sequels approximately 10,000 times, books by Marguerite Henry.

So I planned a trip to Assateague Island, which is a wildlife refuge these days. I decided to go over a weekend in October, when it wouldn’t be crowded. At the time I was working in a sales office while I tried to find a job I actually liked, and I mentioned my trip to my boss. He said he’d been to the island, and of course I asked if he’d seen the ponies. He said yes, and said, “We brought a picnic and put all the food on a picnic table while we looked around, and when we came back to our table the ponies had eaten all our food. I cried. As a grown man, I cried.”

That’s literally what he said, and he wasn’t kidding. He was genuinely mad at those ponies for eating his picnic, which I find hilarious even though at the same time, yes, getting your picnic eaten by wild ponies is no fun. I’m sorry I laughed. Still, it’s really funny. Also, you’re not supposed to leave food out where the ponies can find it so it was his fault.

Anyway, I took Jasper to Assateague Island not knowing what to expect, except that if I left any food out, ponies would eat it. This was the first time I’d visited the ocean so far north and so late in the year, so I was surprised that the water was actually chilly. It was beautiful, though, and I enjoyed walking along the beach with Jasper. I thought he might have fun chasing waves, but he was quite an old dog at this point and was happy just to walk with me, although what he really wanted to do was go home to his regular routine. So we didn’t stay long, but we did see ponies! (Unfortunately I have lost all the pictures I took of the ponies and of Jasper, since this was before I got my first smartphone and all I had was a terrible little camera.)

About 75 ponies live in the northern part of Assateague, which is controlled by the state of Maryland, with about 150 more living in the southern part of the island, which is controlled by the state of Virginia. It gets confusing here because the Virginia part of Assateague is the Chincoteague National Wildlife Refuge, but Chincoteague is actually a neighboring island that’s smaller than Assoteague but has a town, also named Chincoteague.

These islands are really very small. They’re barrier islands not far from the mainland coast, and while they change shape over time since they’re mostly just formed of sand, Assateague is only about 37 miles long, or 60 km, and only about 7 miles wide, or 11 km. Chincoteague is separated from Assateague by a small bay. The ponies in the Chincoteague National Wildlife Refuge are taken care of by the Chincoteague Volunteer Fire Department, and if you’ve read Misty of Chincoteague you probably already know what I’m about to tell you.

There are too many ponies on the island to thrive, no matter how small they are, because the island is so small. There’s just not enough food. The ponies eat whatever plants they can find in the salt marshes that make up large parts of the island, and they eat brush and seaweed and sometimes people’s picnics. Its small stature is mainly from its poor diet, since the foals don’t get enough nutrition when they’re growing.

In the early 19th century, the people of Chincoteague periodically rounded up some of the ponies and captured them, bringing them home to train and use as farm and riding animals. Hey, free horses! In 1924, the Chincoteague Volunteer Fire Department took over the task of pony penning, making it into an annual event in July that attracts thousands of tourists.

The ponies are rounded up and made to swim across the bay, which sounds horrible but it’s a short swim, only five or maybe ten minutes long. Mounted riders swim alongside to help any foals who have trouble. When the horses arrive on Chincoteague, they’re given a good feed and a veterinarian checks them over and treats them if needed. Then the older foals are separated from the herd to auction off. The proceeds of the auction fund the fire department, the ponies are saved from starving to death by keeping their numbers down, and the ponies that aren’t sold are allowed to return home. To solve the same issue in the northern part of the island, members of the Maryland herd are given contraceptives that stop them from having very many babies.

More recently, starting in 1990, veterinarians have started treating the Virginia ponies twice a year to vaccinate them and treat any injuries or illnesses. This helps keep the herd healthy since so many of the foals born will eventually go on to live on the mainland around other horses, so it’s important that the ponies don’t carry diseases.

Another reason to keep the number of ponies low is because ponies aren’t the only animals that live on Assateague Island. Whitetail deer live on the island along with a whole lot of birds, some of which are endangered. Sika deer also live in marshy areas of the island, although it’s not native to North America. It was introduced to the island from Asia in 1923, although I have no idea why. The sika is mostly dark brown but it retains its white fawn spots into adulthood, and it’s a large, attractive animal.

The ponies have been on Assateague for several hundred years, and by the 1920s they were in genetically poor shape overall. To reduce the effects of inbreeding, Shetland and Welsh ponies were added to the herd, and later twenty mustangs were released on the island too. Arabian stallions were also allowed to mate with some of the Assateague mares who were captured and later returned to the island when they were in foal. This helped the Assateague pony survive with improved genetic health, but it also made it harder to determine where the ponies came from in the first place.

The big mystery about the Assateague ponies is how they got to the island. No one knows. Some historians think white colonists set their horses loose on the island in the 17th century so they wouldn’t have to pay livestock taxes, and this is very likely. Many colonists were from parts of the UK where letting your ponies roam free until you needed them was a normal practice. Other animals were allowed to roam free on the island at the time too, including cattle and sheep, but there’s another possibility.

A local legend claims that the ponies originated from horses brought by Spanish Conquistadors traveling to Peru. When one of the Spanish ships wrecked nearby, the horses swam to Assateague Island and survived there. There are plenty of shipwrecks along that part of the coast, including Spanish galleons. Maybe one of those ships had tough little horses aboard, and now we have tough little horses on Assateague Island. Just be glad they’re not kelpies, and hide your picnics.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 314: Animals Discovered in 2022

Let’s learn about some of the animals discovered in 2022! There are lots, so let’s go!

Further Reading:

In Japanese waters, a newly described anemone lives on the back of a hermit crab

Rare ‘fossil’ clam discovered alive

Marine Biologists Discover New Giant Isopod

Mysterious ‘blue goo’ at the bottom of the sea stumps scientists

New Species of Mossy Frog Discovered in Vietnam

A Wildlife YouTuber Discovered This New Species of Tarantula in Thailand

Meet Nepenthes pudica, Carnivorous Plant that Produces Underground Traps

Scientists discover shark graveyard at the bottom of the ocean

Further Watching:

JoCho Sippawat’s YouTube channel

A newly discovered sea anemone (photo by Akihiro Yoshikawa):

A mysterious blue blob seen by a deep-sea rover:

A newly discovered frog:

A newly discovered tarantula (photo by JoCho Sippawat):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s the 2022 discoveries episode, where we learn about some of the animals discovered in 2022! Most of the time these animals were actually discovered by scientists before 2022, but the description was published in that year so that’s when we first learned about them. And, of course, a lot of these animals were already known to the local people but had never been studied by scientists before. There are lots of animals in the world but not that many scientists.

The great thing is, so many animals get discovered in any given year that I have to pick and choose the ones I think listeners will find most interesting, which in a stunning coincidence turns out to be the ones that I personally find most interesting. Funny how that works out.

We’ll start in the ocean, which is full of weird animals that no human has ever seen before. It’s about a hermit crab who carries a friend around. The hermit crab was already known to science, but until a team of scientists observed it in its natural habitat, the deep sea off the Pacific coast of Japan, no one realized it had an anemone friend.

The sea anemone is related to jellyfish and is a common animal throughout the world’s oceans. Some species float around, some anchor themselves to a hard surface. Many species have developed a symbiotic relationship with other animals, such as the clownfish, which is sometimes called the anemonefish because it relies on the anemone to survive. Anemones sting the way jellyfish do, but it doesn’t sting the clownfish. Researchers aren’t sure why not, but it may have something to do with the clownfish’s mucus coating. Specifically, the mucus may have a particular taste that the anemone recognizes as belonging to a friend. If the anemone does accidentally sting the clownfish, it’s still okay because the fish is generally immune to the anemone’s toxins.

The clownfish lives among the anemone’s tentacles, which protects it from predators, and in return its movements bring more oxygen to the anemone by circulating water through its tentacles, its droppings provide minerals to the anemone, and because the clownfish is small and brightly colored, it might even attract predators that the anemone can catch and eat.

Anemones also develop mutualistic relationships with other organisms, including a single-celled algae that lives in its body and photosynthesizes light into energy. The algae has a safe place to live while the anemone receives some of the energy from the algae’s photosynthesis. But some species of anemone have a relationship with crabs, including this newly discovered anemone.

The anemone anchors itself to the shell that the hermit crab lives in. The crab gains protection from predators, who would have to go through the stinging tentacles and the shell to get to the crab, while the anemone gets carried to new places where it can find more food. It also gathers up pieces of food that the crab scatters while eating, because crabs are messy eaters.

The problem is that hermit crabs have to move into bigger shells as they grow. Anemones can move, but incredibly slowly. Like, snails look like racecar drivers compared to anemones. The anemone moves so slowly that the human eye can’t detect the movement.

What the team of scientists witnessed was a hermit crab spending several days carefully pushing and pinching the anemone to make it move onto its new shell. If it wasn’t important, the crab wouldn’t bother. The sea anemone hasn’t yet been officially described since it’s still being studied, but it appears to be closely related to four other species of anemone that also attach themselves to the shells of other hermit crab species.

In other marine invertebrate news, a researcher named Jeff Goddard was turning rocks over at low tide at Naples Point, California a few years ago. He was looking for sea slugs, but he noticed some tiny clams. They were only about 10 mm long, but they extended a white-striped foot longer than their shells. Goddard had never seen anything quite like these clams even though he was familiar with the beach and everything that lived there, so he took pictures and sent them to a clam expert. The expert hadn’t seen these clams before either and came to look for the clams in person. But they couldn’t find the clams again. It took ten trips to the beach and an entire year before they found another of the clams.

They thought the clam might be a new species, but part of describing a new species is examining the literature to make sure the organism wasn’t already described a long time ago. Eventually the clam research team did find a paper with illustrations of a clam that matched, published in 1937, but that paper was about a fossilized clam.

They examined the 1937 fossil shell and compared it to their modern clam shell. It was a match! But why hadn’t someone else noticed these clams before? Even Goddard hadn’t seen them, and he’s a researcher that spends a lot of time along the coast looking specifically for things like little rare clams. Goddard thinks the clam has only recently started extending its range northward, especially during some marine heatwaves in 2014 through 2016. He suspects the clam’s typical range is farther south in Baja California, so hopefully a future expedition to that part of the Pacific can find lots more of the clams and we can learn more about it.

We talked about deep-sea isopods just a few weeks ago, in episode 311. They’re crustaceans related to crabs and lobsters, but also related to roly-polies that live on land. The deep-sea species often show deep-sea gigantism and are referred to as giant isopods, and that’s what this newly discovered species is. It was first found in 2017 in the Gulf of Mexico and is more slender than other giant isopods. The largest individual measured so far is just over 10 inches long, or 26 cm, which is almost exactly half the length of the longest giant isopod ever measured. It’s still pretty big, especially if you compare it to its roly-poly cousins, also called pillbugs, sow bugs, or woodlice, who typically grow around 15 mm at most.

Before we get out of the water, let’s talk about one more marine animal. This one’s a mystery that I covered in the October 2022 Patreon episode. It was suggested by my brother Richard, so thank you again, Richard!

On August 30, 2022, a research team was off the coast of Puerto Rico, collecting data about the sea floor. Since the Caribbean is an area of the ocean with high biodiversity but also high rates of fishing and trawling, the more we can learn about the animals and plants that live on the sea floor, the more we can do to help protect them.

When a remotely operated vehicle dives, it sends video to a team of scientists who can watch in real time and control where the rover goes. On this particular day, the rover descended to a little over 1,300 feet deep, or around 407 meters, when the sea floor came in view. Since this area is the site of an underwater ridge, the sea floor varies by a lot, and the rover swam along filming things and taking samples of the water, sometimes as deep as about 2,000 feet, or 611 meters.

The rover saw lots of interesting animals, including fish and corals of various types, even a fossilized coral reef. Then it filmed something the scientists had never seen before. It was a little blue blob sitting on the sea floor.

The blue blob wasn’t moving and wasn’t very big. It was shaped roughly like a ball but with little points or pimples all over it and a wider base like a skirt where it met the ground, and it was definitely pale blue in color.

Then the rover saw more of the little blue blobs, quite a few of them in various places. The scientists think it may be a species of soft coral or a type of sponge, possibly even a tunicate, which is also called a sea squirt. All these animals are invertebrates that don’t move, which matches what little we know about the blue blob.

The rover wasn’t able to take a sample from one of the blue blobs, so for now we don’t have anything to study except the video. But we know where the little blue blobs are, so researchers hope to visit them again soon and learn more about them.

It wouldn’t be a newly discovered species list without at least one new frog. Quite a few frogs were discovered in 2022, including a tree frog from Vietnam called Khoi’s mossy frog. It lives in higher elevations and is pretty big for a tree frog, with a big female growing over 2 inches long, or almost 6 cm, from snout to vent. Males are smaller. It’s mostly brown and green with little points and bumps all over that help it blend into the moss-covered branches where it lives. That’s just about all we know about it so far.

Our next discovery is an invertebrate, a spider that lives in bamboo. Specifically it lives in a particular species of Asian bamboo in Thailand, and when I say it lives in the bamboo, I mean it really does live inside the bamboo stalks. Also, when I say it’s a spider, specifically it’s a small tarantula.

It was first discovered by a YouTuber named JoCho Sippawat, who travels around his home in Thailand and films the animals he sees. I watched a couple of his videos and they’re really well done and fun, and he’s adorable even when he’s eating gross things he finds, so I recommend his videos even if you don’t speak the language he speaks. I’m not sure if it’s Mandarin or another language, and I’m not sure if I’m pronouncing his name right either, so apologies to everyone from Thailand for my ignorance.

Anyway, Sippawat found a tarantula where no tarantula should be, inside a bamboo stalk, and sent pictures to an arachnologist. That led to a team of scientists coming to look for more of the spiders, and to their excitement, they found them and determined right away that they’re new to science. It was pretty easy to determine in this case because even though there are more than 1,000 species of tarantula in many parts of the world, none of them live in bamboo stalks. The new spider was placed in a genus all to itself since it’s so different from all other known tarantulas.

It’s mostly black and dark brown with narrow white stripes on its legs, and its body is only about an inch and a half long, or 3 1/2 cm. It can’t make holes into the bamboo plants itself, so it has to find a hole made by another animal or a natural crack in the bamboo. It lines its bamboo stalk with silk to make a little home, and while there’s a lot we don’t know yet about how it lives, it probably comes out of its home to hunt insects and other small animals since tarantulas don’t build webs.

Finally, let’s wrap around to the sea anemone again, at least sort of. If you remember episode 129, we talked about the Venus flytrap sea anemone, which is an animal that looks kind of like a carnivorous plant called the Venus flytrap. We then also talked about a lot of other carnivorous plants, including the pitcher plant. Well, in 2022 a new species of pitcher plant was discovered that has underground traps.

The pitcher plant has a type of modified leaf that forms a slippery-sided pitcher filled with a nectar-like liquid. When an insect crawls down to drink the liquid, it falls in and can’t get out. It drowns and is dissolved and digested by the plant. Almost all known carnivorous plants are pretty small, but the largest are pitcher plants. The biggest pitcher plant known is from a couple of mountains in Malaysian Borneo, and its pitchers can hold over 2 ½ liters of digestive fluid. The plant itself is a messy sort of vine that can grow nearly 20 feet long, or 6 meters. Mostly pitcher plants just attract insects, especially ants, but these giant ones can also trap frogs, lizards, rats and other small mammals, and even birds.

The newly discovered pitcher plant grows in the mountainous rainforests of Indonesian Borneo and is relatively small. Unlike every other pitcher plant known, its pitchers develop underground and can grow a little over 4 inches long, or 11 cm. Sometimes they grow just under the surface, with leaf litter or moss as their only covering, but sometimes they grow deeper underground. Either way, they’re very different from other pitcher plants in other ways too. For one thing, scientists found a lot of organisms actually living in the pitchers and not getting eaten by the plant, including a new species of worm. Scientists aren’t sure why some animals are safe in the plant but some animals get eaten.

The new pitcher plant is found in parts of Indonesian Borneo that’s being turned into palm oil plantations at a devastating rate, leading to the extinction or threatened extinction of thousands of animal and plant species. The local people are also treated very badly. Every new discovery brings more attention to the plight of the area and makes it even more urgent that its ecosystems are protected from further development. The fastest way to do this would be for companies to stop using so much palm oil. Seriously, it’s in everything, just look at the ingredients list for just about anything. I try to avoid it when I’m grocery shopping but it’s just about impossible. I didn’t mean to rant, but the whole palm oil thing really infuriates me.

You know what? Let’s have one more discovery so we don’t end on a sour note.

A biodiversity survey of two of Australia’s marine parks made some really interesting discoveries in 2022. This included a new species of hornshark that hasn’t even been described yet. It’s probably related to the Port Jackson shark, which grows to around five and a half feet long, or 1.65 meters, and is a slow-moving shark that lives in shallow water off the coast of most of Australia. Instead of a big scary mouth full of sharp teeth, the Port Jackson shark has a small mouth and flattened teeth that allow it to crush mollusks and crabs. The newly discovered shark lives in much deeper water than other hornsharks, though, around 500 feet deep, or 150 meters.

Another thing they found during the survey wasn’t a new species of anything, but it’s really cool so I’ll share it anyway. It was a so-called shark graveyard over three miles below the ocean’s surface, or 5400 meters. The scientists were trawling the bottom and when they brought the net up to see what they’d found, it was full of shark teeth–over 750 shark teeth! They were fossilized but some were from modern species while some were from various extinct species of shark, including a close relative of Megalodon that grew around 39 feet long, or 12 meters. No one has any idea why so many shark teeth are gathered in that particular area of the sea floor.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 313: The Wolverine and the Kakapo

This week we learn about two interesting animals from opposite parts of the world! Thanks to Felix and Jaxon for suggesting the wolverine and the kakapo.

Further reading:

Study: Wolverines need refrigerators

Kakapo Comeback [this article has some fantastic pictures!]

The wolverine likes cold weather:

So many young kakapos!

The kakapo is a really big bird:

(Photo by Matu Booth)

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to cover two animals suggested by listeners who spell their names with an X. I had already picked out these topics from the list and just now noticed both suggesters have X’s in their names. Thanks to Jaxon and Felix for these suggestions!

First, Felix suggested we learn about the wolverine. We’ve talked about it before in episode 62, but there’s a whole lot more to learn about this uncommon animal.

The wolverine is a mustelid, which is a family that includes weasels, ferrets, and other small, long, skinny animals with short legs. But the wolverine is big and broad, although its legs are pretty short. It kind of looks like a small bear and stands about 18 inches tall at the shoulder, or 45 cm. It’s light brown with darker brown or black legs, muzzle, tail, and back, and some have silvery-gray markings too. Its tail is short but fluffy. It lives in cold, mountainous areas, including northern Canada and Alaska, Siberia, and parts of Norway, Sweden, and Finland.

The wolverine is mainly a scavenger of animals that are already dead, but it will also kill and eat pretty much anything it can catch. This includes rabbits, mice, rats, porcupines, geese, and other small or relatively small animals, but it sometimes kills animals a lot bigger than it is, like deer. It will also eat eggs, berries, seeds, and anything else it can find. It’s not a picky eater.

The wolverine nearly went extinct in the 19th century due to overhunting for its fur, which is mostly waterproof and frost-proof. People used it to line winter clothes. The wolverine is also vulnerable to habitat loss and climate change, since it needs deep snow and cold temperatures to survive.

Because the wolverine lives where winters are harsh, when it finds a lot of food, it will sometimes bury it in snow to eat later. It chooses a protected area between boulders or a natural crevice in rocks to put the dead animal, then covers it with deep snow to keep it fresh for longer, just like putting meat in a freezer. Females in particular need this stored food, because they give birth in winter and need lots of food so they can produce milk for their babies.

But if you’ve ever taken food out of the freezer, you know it’s hard as a rock. How does the wolverine eat meat that’s frozen solid? Not only does the wolverine have strong jaws and teeth, it actually has a special tooth in the back of the mouth that points inward, one on each side of the upper jaw. The inward-pointing tooth allows the wolverine to tear off chunks of frozen meat more easily. Other mustelids have this arrangement of teeth too.

A male wolverine roams widely through a large territory, which can sometimes be hundreds of square miles. Pairs often mate for life although they don’t spend a lot of time together, and sometimes a male will have two or three mates. In winter, the female digs a den deep into the snow to have her babies, and while she mostly takes care of them by herself, the father wolverine will visit from time to time and bring everyone food. The babies stay with their mother for up to a year, and sometimes the half-grown wolverines will go traveling with their dad for a while.

The wolverine is sometimes called the nasty cat because it has a strong smell, which it uses to mark its territory. “Nasty cat” is the funniest name for an animal I’ve ever heard.

Next, Jaxon suggested the kakapo, which is a weird and adorable bird. It’s flightless and nocturnal, lives only in New Zealand, and is a type of parrot. A flightless, nocturnal parrot!

The kakapo is really big even for a parrot. It can grow over two feet long, or 64 cm, but since it’s flightless its wings and tail aren’t very big. Its legs are relatively short considering it has to walk everywhere. It has green feathers with speckled markings, blue-gray feet, and discs of feathers around its eyes that make its face look a little like an owl’s face. That’s why it’s sometimes called the owl parrot. Males are almost twice the size of females on average.

The kakapo evolved on New Zealand where it had almost no predators. A few types of eagle hunted it during the day, which is why it evolved to be mostly nocturnal. Its only real predator at night was one type of owl. As a result, the kakapo was one of the most common birds throughout New Zealand when humans arrived.

The Maori discovered New Zealand around 700 years ago. They killed the kakapo to eat and to use its feathers in clothing, and they also brought dogs and the Polynesian rat that also liked to kill and eat the kakapo. Then a few hundred years ago Europeans arrived, bringing all sorts of invasive animals with them, and they also chopped down forests to create more farmland.

By the end of the 19th century, the kakapo was becoming increasingly rare everywhere. When Resolution Island was declared a nature reserve in 1891, early conservationists brought kakapos and kiwis to the island in an attempt to save them. But stoats and feral cats killed them all. Attempts to establish captive breeding programs weren’t successful either. By 1970, scientists worried that the kakapo was already extinct.

Fortunately, a few of the birds survived in remote areas. By now conservationists understood that they had to provide a safe environment for the birds, and that took a lot of effort. Several islands were chosen as kakapo refuges, and then all the introduced mammals on the islands had to be eradicated or relocated. This included animals like deer that ate the same plants that the kakapo relied on, as well as predators. Then native plants and trees had to be transplanted to the islands since they’d been mostly killed off by deer and other introduced animals.

Then, finally, all the kakapos scientists could find were relocated to the islands. There weren’t very many, and most of them were males. 65 birds were introduced to four islands and monitored carefully, both to make sure they settled in well and to make sure no predators found their way to the islands.

Kakapo females only lay eggs when they have plenty of high-protein food, especially the fruit of the rimu tree that only ripens every four or five years, so the females were given extra food to encourage them to breed more often. The extra food helped, but it turns out that when the females were allowed to eat as much as they wanted, most of the eggs they laid hatched male chicks. That was the opposite of what the kakapo needed, so conservationists experimented with the amounts of extra food they gave the birds until finally the eggs were hatching equal numbers of females and males.

Many parrot species mate for life and both parents help take care of the eggs and babies, but the kakapo handles things differently. Males gather on hilltops during breeding season and each male digs out a shallow bowl well apart from other males, sometimes several bowls connected with little trails. If a male gets too close to another male, they’ll fight. Each male stands in his bowl and makes a booming call by inflating a special sac in his throat. The bowl helps amplify the sound and often the male will construct his bowl near a surface that reflects sound, like rock. His calls can be heard three miles away in good conditions, or 5 km, and the sound attracts females.

This system of males competing in one area to attract females is called lekking, spelled L-E-K. We’ve actually talked about lekking before but I don’t remember if I specifically mentioned the term. The area where the males gather is called a lekking ground or an arena or sometimes just a lek. The females walk around inspecting each male, who booms and struts to show how strong and fit he is. If a female is especially interested in one male, she’ll approach him and he starts his courtship dance. This sounds fancy but for the kakapo, it basically means he turns his tail with his wings spread, then walks backwards towards the female. Weird dance, but the female kakapo thinks it’s cool.

After a female chooses a male, they mate and then the female leaves him and walks home. She builds a nest in a hollow tree or in a hidden crevice among roots or rocks, and lays one to four eggs. She takes care of the eggs and the babies by herself, and may continue to feed the babies until they’re around six months old.

The kakapo eats nuts, seeds, fruit, leaves, and other plant material. Its legs are short but strong, and it will jog for long distances to find food. It can also climb really well, right up into the very tops of trees. It uses its strong legs and its large curved bill to climb. Then, to get down from the treetop more efficiently, the kakapo will spread its wings and parachute down, although its wings aren’t big enough or strong enough for it to actually fly. A big heavy male sort of falls in a controlled plummet while a small female will land more gracefully.

While the kakapo is doing a lot better now than it has in decades, it’s still critically endangered. The current population is 249 individuals according to New Zealand’s Department of Conservation. Scientists and volunteers help monitor the birds, especially newly hatched chicks. If a mother bird is having trouble finding enough food for all her babies, or if any of the babies appear sick or injured, a team of conservationists will decide if they need to help out. They sometimes move a chick from a nest where the mother bird has a lot of other babies to one where there are only one or two babies. Some chicks are raised in nurseries if necessary and reintroduced to the wild when they’re old enough.

The kakapo can live for a long time. This isn’t unusual for parrots, which can live as long as a human, but the kakapo is especially long-lived. There are reports of individuals who have reached 120 years old. This means that potentially, only six kakapo generations ago, the first East Polynesian sailors, ancestors of the modern Maori, became the first humans ever to set foot on the shores of New Zealand. And there were some weird parrots there.

This is what the male kakapo sounds like when it’s booming:

[booming call]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 312: Little Bouncy Animals

Thanks to Zachary and Oran for this week’s topic, some little animals that bounce around like tiny kangaroos!

Further reading:

Evolution of Kangaroo-Like Jerboas Sheds Light on Limb Development

Supposedly extinct kangaroo rat resurfaces after 30 years

High-Speed Videos Show Kangaroo Rats Using Ninja-Style Kicks to Escape Snakes

Williams’s jerboa [picture by Mohammad Amin Ghaffari – https://www.inaturalist.org/photos/177950563, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=115769436]:

A drawing of a jerboa skeleton. LEGS FOR DAYS:

The San Quintin kangaroo rat lives! [photo from article linked above]

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about two cute little animals suggested by Zachary and Oran! Both of these animals are rodents but although they look remarkably alike in some unusual ways, they’re not actually all that closely related.

First, Zachary suggested the jerboa. We talked about the pygmy jerboa in episode 136, but we haven’t talked about jerboas in general. It’s a small rodent that’s native to the deserts of Asia, north Africa, and the Middle East. It’s usually brown or tan with some darker shading on the back and tail. It looks sort of like a gerbil with long ears, long hind legs, and a tuft at the end of the tail. Its front legs are short and it has an adorable whiskery nose.

The reason the jerboa’s hind legs are so long while its front legs are really short is that it jumps around on its hind legs like a kangaroo. Not only can it jump really fast, up to 15 mph, or 24 km/h, it can change directions incredibly fast too. This helps it evade predators, because most animals are fastest when running in a straight line. The jerboa bounces in all sorts of directions, hopping or just running on its long hind legs, with its long tail held out for balance. It can also run on all fours with its short front legs helping it maneuver, but for the most part it’s a bipedal animal. It has tufts of stiff hairs under its toes that help it run through loose sand.

The jerboa eats plants, although sometimes if it finds a nice juicy insect it will eat it too. Mostly it just eats leaves, bulbs, roots, and some seeds. It gets all of the moisture it needs from its diet, which is good because it lives in the desert where there’s not much water available.

Some species of jerboa mainly eat insects and spiders, and some have short ears instead of long ears. This is the case for the thick-tailed pygmy jerboa that lives in parts of China, Mongolia, and Russia. Its head and body only measures about two inches long, or almost 5 cm, but its tail is twice that length. The reason it’s called a thick-tailed jerboa is because it stores fat at the base of its tail, which makes the tail look thick compared to many rodent tails.

The jerboa is mostly active at dawn and dusk, although some species are fully nocturnal. It spends the day in a burrow it digs in sand or dirt. A jerboa will usually have more than one burrow in its territory, with the entrances usually hidden under a bush or some other plant. Different burrows have different purposes. Some have numerous entrances and lots of side tunnels but are relatively shallow, which is useful if the jerboa lives in an area with a rainy season. A shallow burrow won’t flood if it rains a lot. Some burrows are temporary, which the jerboa may dig if it’s out and about during the day looking for food. A mother jerboa will dig a burrow with a roomy nesting chamber to raise her babies, and a jerboa’s winter burrow has a nesting chamber that’s deep underground to help it stay warm. Some species of jerboa construct unusual burrows, like the lesser Egyptian jerboa that has spiral-shaped burrows with storage chambers. Most jerboas are solitary animals, although sometimes a group will hibernate together in winter to help everyone stay warmer.

Scientists have been studying the jerboa to learn how different animals have evolved radically different leg lengths. The jerboa’s incredibly long hind legs are very different from its very short front legs, but it evolved from animals that had four short legs. But jerboas are born with four short legs, and as the babies grow up their hind legs grow longer and longer.

The jerboa is an incredibly efficient runner. Some species can jump as far as six feet in a single bound, or 1.8 meters, and up to three feet, or 90 cm, straight up.

The jerboa isn’t the only rodent that hops on its hind legs like a kangaroo. The kangaroo rat does too, and it’s Oran’s suggestion. Oran pointed out that a long time ago, I think in the humans episode, I said that humans are the only fully bipedal mammal, meaning we only ever walk on our hind legs. (Crawling when you’re a baby or trying to find something under the couch don’t count.) I was wrong about that for sure, because the kangaroo rat, the jerboa, and a few other mammals are also bipedal.

The kangaroo rat is native to parts of western North America. It looks a lot like a jerboa, with long hind legs and a long tail, although its ears are smaller. But the kangaroo rat and the jerboa aren’t closely related, although both are rodents. Their similarities are due to convergent evolution, since both animals live in very similar environments with the same selective pressures.

The largest species of kangaroo rat, the giant kangaroo rat, grows around 6 inches long, or 15 cm, with a tail about 8 inches long, or 20 cm. It can jump even longer than the jerboa although it doesn’t move as fast on average.

Like the jerboa, the kangaroo rat can change directions quickly, and it’s also mostly nocturnal and spends the day in a burrow. Some species spend almost all the time in burrows, only emerging for about an hour a night to gather seeds. Since owls like to eat kangaroo rats, you can’t blame them for wanting to stay underground as much as possible.

Snakes also like to eat kangaroo rats, especially the sidewinder rattlesnake. It’s a fast predator with venom that can easily kill a little kangaroo rat, but the kangaroo rat isn’t helpless. A study published in 2019 filmed interactions in the wild between the desert kangaroo rat and the sidewinder, using high-speed cameras. They had to use high-speed cameras because the snakes can go from completely unmoving to a strike in under 100 milliseconds. That’s less time than it takes you to blink. But the kangaroo rat can react in even less time, as little as 38 milliseconds after the snake starts to move. A lot of time the kangaroo rat will completely leap out of range of the snake, but if it can’t manage that, it will kick the snake with its long hind legs, which are strong enough to knock the snake away. Little fuzzy ninjas.

Unlike the jerboa, the kangaroo rat mostly eats seeds. The jerboa’s teeth aren’t very strong so it can’t bite through hard seeds, but the kangaroo rat’s teeth are just fine with seeds. The kangaroo rat also has cheek pouches, and it will carry lots of seeds home to its burrow. It keeps extra seeds in special burrow chambers called larders.

The kangaroo rat sometimes lives in colonies that can number in the hundreds, but it’s still a mostly solitary animal. It has its own burrow that’s separate from the burrows of other members of its colony, and it doesn’t share food or interact very much with its neighbors. It will communicate with other kangaroo rats by drumming its hind feet on the ground, including warning its neighbors to stay away and alerting them to predators in the area.

The kangaroo rat is vulnerable to habitat loss, since it mostly lives in desert grassland and humans tend to view that kind of land as useless and in need of development. An example of this is the San Quintin kangaroo rat, which is only found in western Baja California in Mexico. Only two large colonies were known when it was discovered by science in 1925, although it used to be much more widespread. But in the decades since 1925, the land was developed for agriculture until by 1986 the two colonies were completely wiped out. Scientists worried the species had gone extinct. Then, in 2017, a colony was discovered in a nature preserve and everyone breathed a sigh of relief. Other colonies have been discovered on farmland that has been abandoned due to drought. Still, the San Quintin kangaroo rat is critically endangered.

The kangaroo rat is actually helpful for the environment. Because it stores seeds underground, and sometimes forgets where it put them, it helps native plants spread. Its burrows help increase soil fertility and the spread of water through the soil. This is similar to the jerboa, which also eats enough insects to help reduce the number of agricultural pests in some areas.

There are also two species of kangaroo mouse, which are closely related to kangaroo rats. They mostly live in the state of Nevada in North America. There are also jumping mice that look like ordinary mice but with long hind legs. It also has cheek pouches. While some jumping mice live in western North America, some live in northeastern North America and Canada and are adapted to cold weather and long winters. One species of jumping mouse lives in the mountains in parts of China. There’s also a larger jumping rodent called the springhare that lives in parts of Africa, and which is about the size of a squirrel or a small rabbit. Like all these other rodents, it’s bipedal and hops on its hind legs like a little kangaroo, using its long tail for balance and to prop itself up when it’s standing. It mostly eats plants but will sometimes eat insects, and it spends most of the day in burrows. There’s also a hopping mouse native to Australia, which is a rodent with long hind legs and a long tail and long ears. It’s not closely related to the jerboa or the kangaroo rat, but it looks a lot like both because of convergent evolution. It mostly eats seeds.

All these animals are rodents, but Australia also has another animal called the kultarr that looks a lot like the kangaroo rat and the jerboa. It’s not a rodent, though. It’s actually a marsupial that’s completely unrelated to rodents although it looks like a rodent. That’s definitely what you call convergent evolution.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 310: The Crab-Eating Fox

Thanks to Dean for this week’s suggestion, the crab-eating fox!

Further reading:

Jaguars could prevent a not-so-great American biotic exchange

The crab-eating fox is not actually a fox:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I’m happy to report that I’m feeling healthy and testing negative for covid now. Even my lingering cough has pretty much cleared up! I hope you’re healthy too. Anyway, this week let’s learn about an unusual animal suggested by Dean, the crab-eating fox.

The crab-eating fox lives in parts of South America east of the Andes Mountains. It likes forests and open woodlands, and sometimes lives in savannas too although it prefers areas with a lot of tree cover and rivers. It’s a fairly small animal that rarely weighs more than 18 pounds, or 8 kg, and stands about 16 inches tall at the shoulder, or 40 cm. It has a thick coat that’s mostly gray or brown with reddish ears and paws, black markings on the ears, tail, and legs, and a black stripe down its spine. It also has a bushy tail and a relatively short muzzle.

There are two important questions we need to answer about the crab-eating fox. First, does it actually eat crabs? Second, is it actually a fox?

The crab-eating fox does indeed eat crabs, although it’s an omnivore and will eat pretty much anything it can find. This includes insects, eggs, fruit, carrion, and small animals of various kinds, especially rodents. But during the wet season, when it rains a whole lot and rivers flood and ebb repeatedly, the crab-eating fox eats a whole lot of crabs and other crustaceans.

The crab-eating fox is not, in fact, a fox. It’s definitely related to foxes, since it’s a canid and the family Canidae includes foxes as well as wolves, dogs, coyotes, and all their relations, and it looks like a fox. It’s the only member of its own genus, but it’s grouped together with some other South American canids that look like foxes but are more closely related to wolves. But they’re not all that closely related to either foxes or wolves. Another member of this group is the maned wolf, the one with super long legs, which we talked about most recently in episode 167.

Scientists think that the crab-eating fox’s closest relation is another South American canid called the short-eared dog, which we talked about in episode 195. Unlike the crab-eating fox, the short-eared dog likes heavy forests and lives in the Amazon rainforest. We know so little about it that researchers sometimes refer to it as the ghost dog.

The crab-eating fox is nocturnal and spends most of the daytime sleeping in a den. Sometimes it makes a den by burrowing into thick grass, sometimes it will dig a burrow, but it prefers to find a den made by another animal and move into it if it’s empty. It may have several dens in its territory, which it often shares with its mate. Both parents help take care of the babies, and a female may have two litters a year.

I’m happy to report that the crab-eating fox is not endangered. It’s doing just fine in most places. It’s an adaptable, intelligent animal, which helps it thrive in a changing environment the same way coyotes do in North America. In fact, it fills the same ecological niche in South America that the coyote fills in North America, and this has led to a really weird potential problem.

The crab-eating fox is native to South America, but it has been spreading northward into Central America. Likewise, the coyote is native to North America, but it has been spreading southward into Central America. Neither species likes thick forested areas, but as more rainforests are cleared for agriculture and housing, people have inadvertently made a sort of corridor for both species. Having people around doesn’t bother either the crab-eating fox or the coyote. Coyotes have made it as far south as Panama, almost to South America.

If this continues, with crab-eating foxes migrating north and coyotes migrating south in ever greater numbers, eventually they’ll start to compete with each other. This isn’t good for either of them.

The only thing stopping coyotes from migrating farther south at this point is a thick strip of tropical forest called Darien National Park in Panama, where jaguars live. Unlike coyotes and crab-eating foxes, jaguars are very shy of humans and need a lot of dense forest to live in. This is exactly the kind of place that coyotes and crab-eating foxes like least, not to mention that a jaguar would be more than happy to catch and eat either species of canid. So as long as the forest in the national park remains intact, it acts as a barrier to keep both canid species apart, and that’s good. It’s also good for the jaguars and lots of other animals. Hooray for protected forests!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 307: Coquí Frogs and Glass Frogs

Thanks to Miranda and Henry for this week’s frog suggestions!

Further reading:

Shattering the Glass Frog Ceiling

The Puerto Rican wetland frog, AKA coquí llanero:

The golden coquí in happier times:

Glass frog from above and below:

A female granulosa glass frog named Millie (in one of the few successful breeding programs of these frogs), looking demure:

Laura’s glass frog, rediscovered after almost 70 years [photos from this article]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have suggestions from Henry and Miranda, so we’re going to learn about some weird but cute frogs!

First, Miranda listened to episode 270 about the tapir frog and commented about a little frog native to Puerto Rico that sounds very similar. It’s call the coquí frog and it has an adorable beep! It sounds like this:

[frogs beeping]

You can definitely hear why the coquí frog is called that. It sounds like it’s saying “coquí.”

The coquí is a type of tree frog although most species prefer to live on or near the ground. Instead of webbed toes, their toes have discs that act sort of like suction cups that help them stick to leaves. Different species of coquí frogs are different colors, including brown, green, gray, and yellow. Their tummies are usually white or yellow. Most species are quite small, although a few species grow as big as 3 inches long, or about 8 cm.

There are at least 17 species of coquí frog known in Puerto Rico, with more species found in other parts of the Caribbean and in Central and South America. New species are discovered from time to time, including the tiniest species, the Puerto Rican wetland frog. It was only discovered in 2005 and described in 2007. It’s about 15 mm long from nose to butt, or more properly snout to vent, and while males are bright yellow, females are browner. It lays its eggs on the leaves of a plant called the bulltongue arrowhead, and it only lays one to five eggs at a time. Instead of hatching into tadpoles, the eggs hatch into miniature frogs which are ready to hop out and eat lots of ticks, because that’s mainly what this species of coquí eats. And that’s about all we know about this particular species except that it only lives in one small area of Puerto Rico and is critically endangered.

Another species of coquí is the golden coquí, which is almost as small as the Puerto Rican wetland frog. It’s yellow or golden in color, or sometimes a more olive green. Instead of laying eggs that hatch into tadpoles that develop into frogs, the golden coquí skips most of these steps and just gives birth to fully developed teeny baby frogs, three to six of them at a time.

The golden coquí lives in a small, specific habitat, a moist subtropical forest where bromeliad plants grow. Bromeliads are shrubby plants with succulent-type leaves that retain water. Pineapples are a type of bromeliad, although not the ones the golden coquí lives in. Unfortunately, the golden coquí is also critically endangered and may actually be extinct. No one has seen one since 1981.

Most species of coquí lay their eggs on leaves instead of in water. The eggs still need to stay moist, though, so in many species the male will bring water to the eggs. He does this by just dunking himself in water, then returning to the leaf where the eggs are and plunking himself down on the eggs. He will also guard the eggs from potential predators. The eggs of all coquí species hatch into frogs instead of tadpoles.

A few species of coquí have been introduced to other parts of the world, either by accident or on purpose, and have become invasive species. This is especially true in Hawaii, where the coquí has become incredibly common and as a result is causing some native frogs to decline in numbers, along with other animals. But in Puerto Rico, where the coquí belongs, people are naturally proud of their loud little frogs. The indigenous people of Puerto Rico, the Taíno, incorporated the frog into their legends, and there’s even 700-year-old cave art on nearby Mona Island that includes paintings of coquí frogs.

The coquí frog mostly eats small invertebrates, including lots of cockroaches and other beetles, so they’re good to have around. Unfortunately, as is the case with so many frog species around the world, their numbers are in decline due to habitat loss, climate change, pollution, introduced predators, and a deadly fungus that we talked about in episode 250. Studies have shown that some populations of the coquí show a natural resistance to the fungus, so if we can just protect their habitats, the frogs will be okay.

Next, Henry wanted to learn more about the glass frog, which lives in Central and South America. We’ve talked about it very briefly in episode 148 and a couple of old Patreon episodes, but we’ve never really gone in-depth about it. Let’s do that now, because this is a really weird and interesting frog!

The glass frog lives in forests of Central and South America, mostly in treetops. They’re small frogs, no longer than about three inches, or 7.5 cm, from snout to vent. Most species are bright green, and in many species, the belly skin is almost completely transparent. You can see right through to their insides: guts, blood vessels, even bones. One newly discovered species from the Amazon also has a translucent chest so you can see its heart. In some species, even the organs are translucent. Some species even have green bones.

The blue-green color of the bones comes from high levels of biliverdin [bill-uh-ver-din] in the blood, which has evolved at least 40 times in 11 different frog families, with more species that have blue-green blood and bones discovered all the time.

In most animals, high levels of biliverdin are a result of liver disease, since it’s a toxin, but in these frogs, the biliverdin is retained in the blood instead of filtered out by the kidneys. Researchers think the biliverdin serves two purposes. Because it makes the frog green all the way through, it helps camouflage the frog among the leaves where it lives, even in infrared light. Researchers recently discovered that at least two species of glass frog reflect infrared light, which may also help keep them concealed from predators that can see in infrared. The high levels of biliverdin may also make the frog taste bad. Some researchers also think it may help protect the frog from parasites.

This doesn’t appear to be related to their see-through tummies, though. No one’s sure why glass frogs are see-through from underneath. Most species have green backs, which helps them blend in to the leaves they live on. Since the glass frog’s legs are usually partially transparent along with its belly, one study has determined that it’s actually the legs that help with camouflage. When the frog sits on a leaf with its legs folded up on either side, the way frogs often sit, the color of the leaf is partially visible through the legs. This helps make the frog look less frog-shaped since its edges sort of blend in with the leaf.

Most of the time glass frogs live high in the treetops, but during breeding season they come down closer to the ground. The female lays her eggs on leaves hanging over running water, which the male fertilizes. In some species, males guard the eggs until they hatch. When the eggs hatch, the tadpoles drop into the water.

Not all glass frogs have translucent undersides, though. Most are ordinary-looking frogs that may be green or occasionally brown or orangey in color, sometimes with little spots. There are also probably a whole lot more of these frogs than scientists know about, since they live in such hard-to-study areas. Several new species have been discovered in just the last few years, including one rediscovery of a species called Laura’s glass frog.

Until a few years ago, the only specimen of Laura’s glass frog was a male collected in 1955 in the foothills of the Andes Mountains in Ecuador. Then a team of scientists studying frogs in the Colonso-Chalupas Biological Reserve, also in Ecuador, found two frogs that weren’t familiar to them. One was male and the other a young female, both living near small creeks where lots of other frog species were common. They were green with tiny yellow spots surrounded by black rings, and were only a few centimeters long, or less than an inch. After several years of study, the team determined that the frogs were Laura’s glass frogs, and they published their findings almost exactly one year ago, in December 2021.

Hopefully, in 2023 scientists will discover and rediscover even more frog species, and we’ll be able to learn more about them so they and their habitats can be protected.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 306: Two Million Years Ago in Greenland

This week we’re going to learn about a brand new study in Nature about animals and plants that lived in Greenland about two million years ago.

Happy birthday to Dillon!

Further reading:

A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA

Scientists Reconstruct 2-Million-Year-Old Ecosystem from Environmental DNA

No bones? No problem: DNA left in cave soils can reveal ancient human occupants

Greenland now:

Greenland two million years ago [art by Beth Zaiken, taken from the second article linked above]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to do something a little different and talk about a new study just published in the journal Nature. A little section of this episode is taken from a recent Patreon episode, for those of you who listen and think, “Wait, I’m pretty sure I’ve heard that before.”

Before we get started, though, we have a birthday shoutout! A great big happy birthday to Dillon! I hope you do something really silly and fun on your birthday, like dance around wearing a ridiculous party hat and then eat cake.

Greenland is a big island off the eastern coast of Canada, but way far north, more or less in the Arctic. Even though it’s off the coast of North America, it’s considered part of Europe because for the last thousand years, it’s been controlled by Norway or Denmark at various times. Denmark’s got it right now. A little over 56,000 people live there today, most of them Inuit.

A big part of Greenland is covered in an ice sheet over a mile thick, which is so heavy it has pushed the central section of the island down so that it’s almost a thousand feet, or over 300 meters, below sea level. The land is much higher around the edges of the country. Basically Greenland is a gigantic bowl full of ice.

In 1966, the U.S. Army drilled into the ice to see what was under it, and the answer is dirt, as you might have expected. They took a 15-foot, or 4.5 meter, core sample and stuck it in a freezer, where everyone promptly forgot about it for 51 years. At some point it ended up in Denmark, where someone noticed it in 2017.

In 2019, the frozen core sample was finally studied by scientists. They expected to find mostly sand and rock. Instead, it was full of beautifully fossilized leaves and other plant material.

The main reason scientists were so surprised to find leaves and soil instead of just rock is that ice is really heavy, and it moves—slowly, but a mile-thick sheet of ice cannot be stopped. If you remember episode 277 about the rewilding of Scotland, you may remember that Scotland doesn’t have a lot of fossils from the Pleistocene because it was covered in glaciers that scoured the soil and everything in it down to bedrock, destroying everything in its path. But this hasn’t happened in Greenland.

Where the ice sheet now is, there used to be a forest. Obviously, the ice sheet hasn’t always covered Greenland. Research is ongoing, but a study of the sediment published in 2021 indicates that Greenland was ice free within the last million years, and possibly as recently as a few hundred thousand years.

If you go back a little farther, around two million years ago, Greenland was radically different. Not only was it ice free, it was much warmer than it is today. In north Greenland, which is now a polar desert, there was once an open forest where an incredible number of plants and animals lived. We know because of environmental DNA sequencing, often referred to as eDNA.

At this point most of us have a good understanding of what DNA is, but I’ll give you a quick explanation in case you’re not sure. DNA stands for Deoxyribonucleic acid, and it’s a polymer chain found in every organism’s cells that contains genetic instructions, essentially a guide on how to grow a particular type of animal. It’s way more complicated than that, but that gives you a basic idea. When cells replicate as an organism develops, either from an egg cell or a seed, the DNA directs what sequences of development happen at what stages. You inherit DNA from your parents but your personal DNA is always a little different from both parents’.

True crime podcasts talk about DNA a lot because every individual organism has a unique DNA profile, and since every single cell in our bodies contains DNA, criminals leave their unique signature at every crime scene. Now that scientists can sequence DNA from really tiny samples, many crimes have been solved when the only evidence was something like “this criminal murdered someone and then smoked a cigarette, and left the cigarette butt, and the DNA from their saliva on the cigarette butt was sequenced and run through a database of criminal DNA profiles, and now we know who the murderer is.” And then you get six commercials for mattresses and phone games.

But animal podcasts talk about DNA a lot because every species of organism has a unique genetic profile in addition to having a unique personal genetic profile. Scientists can retrieve DNA from a poop found in the forest and determine what species of animal left that poop. It probably wasn’t a Bigfoot. Scientists can also compare DNA from different animal populations to learn how closely related they are.

The most recent advance in DNA studies is environmental DNA, and it’s increasing our knowledge of the world in amazing ways. If you look at a lake, even if you go Scuba diving in the lake, even if you send a rover down to look at things in the lake, you won’t be able to see every single animal and plant and other organism that lives there. Fish are always moving around and may swim away from a diver or rover, or the water may be murky, and lots of animals stay hidden in the mud at the lake’s bottom. But if you take samples of the lake water and test it for DNA, suddenly you’re going to have more information than what you’d gather in days or weeks of just looking. Of course it’s important to observe animals in their natural habitats, but if you need to know whether an invasive species is living in the lake, or if an animal that hasn’t been seen for a long time is still extant in the lake, or if there are animals in the lake that no one’s ever seen before, eDNA can do that. The water is full of genetic material shed by different organisms.

It’s not just water, either, although testing water samples is pretty easy. DNA degrades quickly in ordinary circumstances, so while you can test soil to see what animals and plants live nearby, in most cases you’ll only find DNA that was deposited recently. But if the soil has been protected from sunlight, weather, and oxygen, such as soil found in a cave, there’s a chance that some ancient DNA can be found in it. That can tell us a lot about what animals lived in the cave a long time ago.

It’s not a few genetic sequences found in a single sample, either. As one scientist put it, there are trillions of DNA fragments in every single spoonful of dirt. Not all the samples are complete enough to sequence, but the ones that are can tell us a lot about the organisms that encountered that spoonful of dirt when it was at the surface of the cave. In Denisova Cave in Siberia, where a few remains of the Denisovan people were first discovered, researchers have learned that Denisovans and Neandertals lived in the cave for tens of thousands of years at different times, even though there aren’t any bones or artifacts remaining.

But the sediment from the Greenland eDNA study wasn’t from a cave. It had been preserved in permafrost for two million years without anything disturbing it, especially humans. It’s the oldest eDNA that’s been studied so far, more than a million years older than the previously oldest DNA. That was also found in permafrost and was recovered from a mammoth tooth.

Two million years ago in northern Greenland, poplar, birch, and thuja trees grew in an open forest along with various shrubs and other plants like ferns and moss. The thuja is sometimes called the tree of life or arborvitae and it’s an evergreen tree that’s related to junipers, sequoias, and cypresses. A lot of the plant DNA found was a surprise, since pollen from the plants had never been recovered in the area. Lots of plants related to modern roses and azaleas grew in the area, so we know there were flowers in spring and summer.

The area is called Kap København, and while it was still pretty cold, it was warm enough that much of the Greenland ice sheet had melted. In winter the temperature might have sometimes been as warm as 50 degrees Fahrenheit, or 10 Celsius, and only dipped to around 2 degrees Fahrenheit on average, or -17 Celsius. This is a whole lot warmer than modern days, where the winter temperature can drop to -50 Celsius, which is about the same in Fahrenheit, and almost never climbs above freezing except in summer.

Some of the animals that lived in the forest two million years ago were mastodons, reindeer, hares, geese, and various rodents related to voles and lemmings. There was even horseshoe crab DNA found from coastal water that had been pushed farther inland during flooding. All the animals found are related to modern animals that still live today, but only one, the Arctic hare, had actually been found in the fossil record in Greenland. They also found DNA of ants and fleas, plankton, algae, and lots of microbial life.

There is no ecosystem on earth today that quite matches that of Kap København from two million years ago. Until this study, scientists thought that not much lived in the area at the time, certainly not mastodons. Hopefully, environmental DNA can be recovered from even older sediments so we can learn more about the ancient world.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 304: Animals of the Paleogene

Thanks to Pranav for suggesting this week’s topic, animals of the Paleogene, the period after the Cretaceous! Thanks also to Llewelly for suggesting the horned screamer, now one of my favorite birds.

Further watching:

Southern Screamers making noise

Horned Screamers making noise

Further reading:

The Brontotheres

Presbyornis looked a lot like a long-legged goose [art by Smokeybjb – CC BY-SA 3.0]

The southern screamer (left) and horned screamer (right), probably the closest living relation to Presbyornis:

Megacerops was really really big:

All four of these illustrated animals are actually megacerops, showing the variation across individuals of nose horn size:

Uintatherium had a really weird skull and big fangs:

Pezosiren didn’t look much like its dugong and manatee descendants:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at some strange animals of the Paleogene period, a suggestion from Pranav. Pranav also suggested the naked mole-rat that we talked about in episode 301, but I forgot to credit him in that one.

As we talked about in episode 240, about 66 and a half million years ago, a massive asteroid smashed into the earth and caused an extinction event that ended the era of the dinosaurs. The geologic time period immediately after that event is called the Paleogene, and paleontologists study this era to learn how life rebounded after the extinction event. We’re going to learn about a few animals that evolved to fill ecological niches left vacant after dinosaurs went extinct.

These days, mammals fill a whole lot of these ecological niches, so it’s easy to assume that mammals have been successful for the last 66 million years. But while that’s true now, birds were incredibly successful for a long time. Basically for millions of years after the non-avian dinosaurs died out, it was dinosaurs 2.0 as the avian dinosaurs, better known as birds, spread throughout the world and evolved into some amazing organisms.

This included terror birds, which we talked about in episode 202. They lived in South America, except for one species from North America, and evolved really soon after the dinosaurs went extinct, appearing in the fossil record about 60 million years ago. They lasted a long time, too, only going extinct around 2 million years ago.

The earliest known terror bird was about three feet tall, or 91 cm, but its descendants became larger and more fearsome until they were apex predators throughout South America. The biggest species grew up to ten feet tall, or three meters, with a massive beak and sharp claws on its toes. It couldn’t fly but was a fast runner. You would not want a terror bird chasing you.

Lots of other birds evolved throughout the Paleogene, but most of them would look pretty familiar to us today. Paleontologists have found fossils of the ancestors of many modern birds, including penguins, hummingbirds, and parrots, which shows that they were already specialized some 25 or 35 million years ago or even more. In the case of penguins, we have fossils of penguin ancestors dating back to the late Cretaceous, before the extinction event. Those ancient penguins could probably still fly, but it didn’t take too long to evolve to be a fully aquatic bird. The species Waimanu manneringi lived around 62 million years ago in what is now New Zealand. It resembled a loon in a lot of ways, with its legs set well back on its body, and it probably spent much of its time floating on the water between dives. But unlike a loon, it had lost the ability to fly and its wings were already well adapted to act as flippers underwater.

Another bird would have looked familiar at first glance, but really weird when you gave it a second look. Presbyornis lived between about 62 and 55 million years ago in what is now North America, and it lived in flocks around shallow lakes. It was the size of a swan or goose and mostly shaped like a goose, with a fairly chonky body and a long neck. It had a large, broad duckbill that it used to filter small animals and plant material from the water and its feet were webbed…but its legs were really long, more like a heron’s legs.

When the first Presbyornis fossils were found in the 1920s, the scientists thought they’d found ancient flamingos. But when a skull turned up, Presbyornis was classified with ducks and geese. It wasn’t very closely related to modern ducks and geese, though. Researchers now think its closest modern relation is a South American bird called the screamer. Llewelly suggested the horned screamer a long time ago and now that I have learned more about these birds, I love them so much!

The screamer looks sort of like a goose but has long, strong legs and a sharp bill more like a chicken’s. It lives in marshy areas and eats pretty much anything, although it prefers plant material. It has two curved spurs that grow on its wings that it uses to defend its territory from predators or other screamers, and if a spur breaks off, which it does pretty often, it grows back. The screamer mates for life and both parents build the nest together and help take care of the eggs and chicks when they hatch.

The horned screamer has a long, thin structure that grows from its forehead and looks sort of like a horn, although it’s not a horn. It’s wobbly, for one thing, but it’s also not a wattle. It grows throughout the bird’s life and may break off at the end every so often, and it’s basically unlike anything seen in any other bird. Maybe presbyornis had something similar, who knows?

The screamer gets its name from its habit of screaming if it feels threatened or if it just encounters something new or that it doesn’t like. The screaming is actually more of a honking call that sounds like this:

[screamer call]

People sometimes raise screamers with chickens to act as guard birds. It can run fast but it can swim faster, and it can also fly although it doesn’t do so very often. Although it’s distantly related to ducks, its meat is spongy and full of air sacs that help keep it afloat in the water, so people don’t eat it. It is vulnerable to habitat loss, though.

One organism that evolved early in the Paleogene was grass. You know, the plant that a whole lot of animals eat. There are lots and lots of different types of grass, not just the kind we’re used to mowing, and as the Paleogene progressed, it became more and more widespread. But it wasn’t as ubiquitous as it is now, so even though the ancestors of modern grazing animals evolved around the same time, they weren’t grazers yet. The word graze comes from the word grass, but ancient ancestors of horses and other grazing animals were still browsers. They ate all kinds of plants, and didn’t specialize as grazers until grasses really took off and huge grasslands developed in many parts of the world, around 34 million years ago.

Because the Paleogene lasted so long, between about 66 and 23 million years ago, there’s literally no way we can talk about more than a few animals that lived during that time, not in a single 15-minute episode. We’ve also covered a lot of Paleogene animals in previous episodes, like paraceratherium in episode 50, the largest land mammal known. It probably grew up to about 16 feet tall at the shoulder, or 5 meters, and taller if you measured it at the top of its head. Other examples are moeritherium, an ancient elephant relation we talked about in episode 18, the giant ground sloth that we talked about in episode 22, and the ancient whale relation basilosaurus that we talked about in episode 132. Patrons also got a bonus basilosaurid episode this month. But I’m pretty sure we’ve never talked about brontotheres.

Brontotheres first appear in the fossil record around 56 million years ago and they lived until at least 34 million years ago. All animals in the family Brontotheriidae are extinct, but they were closely related to horses. They didn’t look like horses, though; they looked a lot like weird rhinoceroses, although remember that rhinos are also related to horses. They were members of the odd-toed ungulates, along with tapirs and the gigantic Paraceratherium.

Fossil remains of brontotheres have been found in North America, a few parts of eastern Europe, and Asia, although they might have been even more widespread. The earliest species were only about three and a half feet tall at the shoulder, or about a meter, but later species were much larger. While they looked a lot like rhinos, they didn’t have the kind of keratin hose horns that rhinos have. Instead, some species had a pair of horns made of bone that varied in shape and size depending on species. The horns were on the nose as in rhinos, but were side-by-side.

Brontotheres developed before grasslands became widespread, and instead they were browsers that mostly ate relatively soft vegetation like leaves and fruit. Grass is really tough and animals had to evolve specifically to be able to chew and digest it. In fact, the rise of grasslands as the climate became overall much drier around 34 million years ago is probably what drove the brontotheres to extinction. They lived in semi-tropical forests and probably occupied the same ecological niche that elephants do today. This was before elephants and their relations had evolved to be really big, and brontotheres were the biggest browsing animals of their time.

Brontotheres probably lived in herds or groups of some kind. They were widespread and common enough that they left lots of fossils, so many that they were found relatively often in North America even before people knew what fossils were. The Sioux Nation people were familiar with the bones and called them thunder horses. When they were scientifically described in 1873 by Othniel Marsh, he named them after the Sioux term, since brontotherium means “thunder beast.”

Two of the biggest brontotheres lived at about the same time as each other, around 37 to 34 million years ago. Megacerops lived in North America while Embolotherium lived in Asia, specifically in what is now Mongolia. Megacerops is the same animal that’s sometimes called brontotherium or titanotherium in older articles and books.

Megacerops and Embolotherium were about the same size, and they were huge, although Embolotherium was probably just a bit larger than Megacerops. They stood over 8 feet tall at the shoulder, or 2.5 meters, and were more than 15 feet long, or 4.6 meters. This is much larger than any rhinos alive today and as big as some elephants. Their legs would probably have looked more like an elephant’s legs than a rhinoceros’s.

Brontothere nose horns weren’t true horns, since they don’t seem to have been covered with a keratin sheath, but they were formed from protrusions of the nasal bones. They might have been more like ossicones, covered with skin and hair. Megacerops had a pair of nose horns that were much larger in some individuals than others, and scientists hypothesize that males had the larger horns and used them to fight each other.

But this can’t have been the case for embolotherium. It had even bigger nose horns that were fused together in a wedge-shaped plate sometimes referred to as a ram, but they contained empty chambers inside that were a continuation of the nasal cavities. They wouldn’t have been strong enough to bash other embolotheriums with, but they might have acted as resonating chambers, allowing embolotherium to communicate with loud sounds. All individuals had these nose horns, even juveniles, and they were all about the same size, which further suggests that they had a purpose unrelated to fighting.

At about the same time the brontotheres were evolving, another big browsing animal also lived in what are now China and the United States. Two species are known, one in each country, and both stood about 5 feet tall at the shoulder, or 1.5 meters. It looked sort of like a brontothere in some ways, but very different in other ways, especially its weird skull, and anyway it was already big around 56 million years ago when brontotheres were still small and unspecialized.

Scientists aren’t sure what uintatherium was related to. It’s been placed in its own genus, family, and order, although some other uintatherium relations have been discovered that share its weird traits. Most scientists these days think it was probably an ungulate.

Uintatherium’s skull was extremely strong and thick, which didn’t leave a whole lot of room for brains. But what uintatherium lacked in brainpower, it made up for in sheer defensive ability. It had huge canine teeth that hung down like a sabertooth cat’s fangs, although males had larger fangs than females. Males also had three pairs of ossicones or horns on the top of the skull that pointed upwards. One pair was on the nose, one pair over the eyes, and one pair almost on the back of the skull. They could be as much as 10 inches long, or 25 cm, and paleontologists think that males wrestled with these horns the same way male deer will lock antlers and wrestle.

Uintatherium lived in the same habitat and probably ate more or less the same type of plants that later brontotheres did. They went extinct around the time that brontotheres evolved to be much larger, which suggests that brontotheres may have outcompeted uintatherium.

We’ll finish with one more Paleogene mammal, Pezosiren. It was only described in 2001 from several incomplete specimens discovered in Jamaica in the 1990s, and it lived between 49 and 46 million years ago.

Pezosiren was about the size of a pig, although it had a longer, thicker tail compared to pigs. It wasn’t any kind of pig, though, and in fact it was distantly related to elephants. It was the oldest known ancestor of modern sirenians. Pezosiren is also called the walking siren, because it still had four legs and probably spent at least part of the time on land, although it could swim well. Scientists think it probably swam more like an otter than a sirenian, propelling itself through the water with its hind legs instead of its tail.

Pezosiren was probably semi-aquatic, sort of like modern hippos, and already shows some details specific to sirenians, especially its heavy ribs that would help it stay submerged when it wanted to. It ate water plants and probably stayed in shallow coastal water. At different times in the past, Jamaica was connected to the North American mainland or was an island on its own as it is now, or occasionally it was completely submerged. About 46 million years ago it submerged as sea levels rose, and that was the end of Pezosiren as far as we know. But obviously Pezosiren either survived in other areas or had already given rise to an even more aquatic sirenian ancestor, because while Pezosiren is the only sirenian known that could walk, its descendants were well adapted to the water. They survive today as dugongs and manatees.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!