Episode 415: Animals with Names

This week we’re going to learn about some animals that seem to have individual names!

Further reading:

Bottlenose dolphins can use learned vocal labels to address each other

How Do Dolphins Choose Their Name?

Vertical transmission of learned signatures in a wild parrot

Baby Parrots Learn Their Names from Their Parents

Study: African Elephants Address Each Other With Name-Like Calls

Marmoset Monkeys Use Names to Communicate with Each Other

The green-rumped parrotlet (photo by Rick Robinson, taken from this site):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some animals that seem to be using names to refer to other individuals or themselves.

Let’s start with bottlenose dolphins, because they’re well-studied and scientists have known about this particular aspect of their society for over a decade. Every bottlenose dolphin has a signature whistle that identifies it to other dolphins. The signature whistles can be complex and the dolphin may add or change details to indicate its mood or other information. It’s not precisely a name in the way humans would think of it, but it is an identifier.

The dolphin creates its own signature whistle when it’s young. Some dolphins pattern their whistles on their mother’s signature whistle, while others mimic their siblings or friends. Some seem to pattern theirs on a distant acquaintance, which sounds to me like they just like something about an unusual whistle and decide to incorporate it into their own whistle. As dolphins grow up, females typically don’t change their whistles, but males often do. Male dolphins often pair up together and remain bonded, and a pair may change their signature whistles to be similar.

When a dolphin is trying to find a friend it can’t see, it will mimic that friend’s signature whistle. If a mother can’t see her calf and is worried, she’ll do the same, and her calf will answer by repeating its signature whistle. A lost calf will imitate its mother’s whistle. But it’s even more complicated than it sounds, because a group of dolphins who get together to forage may choose a shared whistle that the whole group uses. This helps them coordinate their behaviors to work together. Each member of the group uses a slightly different version of the group whistle, which means that each member can identify who’s speaking.

Other cetaceans seem to use a similar kind of name. Sperm whales, for instance, have a unique click sequence that they use to announce themselves when approaching other whales. The signature clicks always appear at the beginning of a sequence and don’t vary.

Bottlenose dolphins and many other cetaceans are extremely social animals. So are parrots. Studies of parrot calls indicate that parrots appear to have signature calls that they use the same way as dolphins do, to identify themselves to other parrots and as a way for other parrots to call for them. A study of wild green-rumped parrotlets in Venezuela discovered that the birds give a unique signature call to each baby while it’s still in the nest, and the baby continues to use its call its whole life, often with small changes.

The study set up video cameras to monitor 16 nests of a large wild population of the parrots. The population has been well studied and is used to using nesting tubes that scientists have set up for them. This makes it easier for the scientists to monitor nesting behaviors. In this case, to test whether the names had something to do with genetics or not, the scientists sneakily moved half of the eggs from one nest to another, so that half the parents unknowingly raised some chicks that weren’t actually related to them.

Despite the egg switcharoo, all the chicks were given names that were similar to the parents’ signature calls. The parents started using a specific signature call soon after the eggs hatched, and the babies started imitating it. Gradually each baby added its own specific flourish to the call that made it their own, so while you can say that the parents named their babies, it’s just as true to say that the babies named themselves. The parrots use the signature calls to announce themselves, but also to call for friends, siblings, and parents.

Elephants are also extremely social animals. Recent studies of African savanna elephant calls indicate that elephants also have an identifying rumble sound that acts as a name. In fact, it acts more like a name as humans use names than the signature sounds made by dolphins and parrots. An elephant will use a specific rumble when addressing another elephant, but the rumble isn’t the speaker’s name, it’s the recipient’s name. It’s the difference between me saying, “Hi, I’m Kate. How are you?” and me saying, “Hi, Kelly, how are you?” when I’m talking to my friend Kelly. Dolphins and parrots seem to be saying something like, “Kate here, I’m swimming this way.”

Marmosets seem to use names the same way that elephants do. Marmosets are a type of small monkey native to Central and South America, which live in treetops and eat fruit and other plant material, and the occasional insect. A 2024 study found that marmosets that know each other address individuals with specific sounds, whether or not they’re related.

All the animals we’ve talked about today are incredibly social, just like humans are. In the case of dolphins, parrots, and marmosets in particular, it’s easy for individuals to travel and forage together but be out of sight of one other. Having a way to track friends and family members when you can’t see them is important to keep a group together.

Studies about animals using names are becoming more common, with both the marmoset study and the elephant study published in 2024. It may not seem like a big deal, but using a specific vocal label for a specific individual is a huge indicator of linguistic intelligence. We haven’t known a lot about it before recently because the recordings of animals communicating was time-consuming and difficult to categorize. Now we have sophisticated computer programs that can compile the information for us, so that scientists can study it more easily. I wouldn’t be a bit surprised if more and more studies start finding animals that use names.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 387: The Link Between Fossils and Folklore

Thanks to Richard from NC for inspiring this episode!

Further reading:

Paleontologists Debunk Popular Claim that Protoceratops Fossils Inspired Legend of Griffin

The Fossil Dragons of Lake Lucerne, Switzerland

The Lindworm statue:

A woolly rhinoceros skull:

A golden collar dated to the 4th century BCE, made by Greek artisans for the Scythians, discovered in Ukraine. The bottom row of figures shows griffins attacking horses:

The Cyclops and a (damaged, polished) elephant skull:

A camahueto statue [photo by De Rjcastillo – Trabajo propio, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=145434346]:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about the link between fossils and folklore, a topic inspired by a conversation I had with Richard from North Carolina.

We know that stories about monsters were sometimes inspired by fossils, and we even have an example from episode 53. That was way back in 2018, so let’s talk about it again.

In Klagenfurt in Austria there’s a statue of a dragon, called the lindorm or lindwurm, that was erected in 1593 to commemorate a local story. The story goes that a dragon lived near the lake and on foggy days would leap out of the fog and attack people. Sometimes people could hear its roaring over the noise of the river. Finally the duke had a tower built and filled it with brave knights. They fastened a barbed chain to a collar on a bull, and when the dragon came and swallowed the bull, the chain caught in its throat and tethered it to the tower. The knights came out and killed the dragon.

The original story probably dates to around the 12th century, but it was given new life in 1335 when a skull was found in a local gravel pit. It was clearly a dragon skull and in fact it’s still on display in a local museum. The monument’s artist based the shape of the dragon’s head on the skull. In 1935 the skull was identified as that of a woolly rhinoceros.

In 1989 a folklorist proposed that the legend of the griffin was inspired by protoceratops fossils. The griffin is a mythological creature that’s been depicted in art, writing, and folklore dating back at least 5,000 years, with early variations on the monster dating back as much as 8,000 years. The griffin these days is depicted as a mixture of a lion and an eagle. It has an eagle’s head, wings, and front legs, and it often has long ears, while the rest of its body is that of a lion.

The griffin isn’t a real animal and never was. It has six limbs, for one thing, four legs and two wings, and it also has a mixture of mammal and bird traits. I can confirm that it’s a lot of fun to draw, though, and lots of great stories and books have been written about it in modern times. Ancient depictions of a griffin-like monster have been found throughout much of eastern Europe, the Middle East, the Mediterranean, northern Africa, and central Asia. Much of what we know about the griffin legend comes from ancient Greek and Roman stories, but they in turn got at least some of their stories from ancient Scythia. That’s important for the hypothesis that the griffin legend was inspired by protoceratops fossils.

Protoceratops lived between 75 and 71 million years ago and its fossils have been found in parts of China and Mongolia. It was a ceratopsian but it didn’t belong to the family Ceratopsidae, which includes Triceratops. It grew up to about 8 feet long, or 2.5 meters, with a big skull and a neck frill, but while that sounds big, it actually was on the small size for a ceratopsian. At most it would have barely stood waist-high to an average human, so while it was heavy and compact, it was probably smaller, if not lighter, than a modern lion. It ate plants and while it had teeth, it also had a beak, sort of like a turtle’s beak.

Folklorist Adrienne Mayor published a number of papers and a book in the 1990s discussing the links between protoceratops fossils and the griffin legend. The fossils are fairly common in parts of Mongolia and China, and Mayor pointed out that the beak combined with four legs would have suggested a four-footed animal with a bird’s head. She suggested that the head frill might have been interpreted as wings.

As for the Scythians, which we talked about a few minutes ago, they were a nomadic people who ruled much of west and central Asia and part of eastern Europe up to about 300 BCE. They were skilled in metalworking and loved gold, so even though they didn’t have a system of writing, we have some of their metal artifacts found by archaeologists. The Scythians were so important to the ancient world that we know a lot about them from other cultures, especially the ancient Greeks, Persians, and Assyrians.

We know the griffin appeared in Scythian mythology because it’s depicted on some decorative metal items. We also have ancient stories about griffins loving gold and either battling people to steal gold, or mining gold that people stole from them, or some other variation. Scythians had elaborate trade routes that connected Asia and Europe, and as I mentioned, they were hugely influential. I mean, we’re still telling versions of monster stories that the Scythians probably came up with originally.

Mayor suggested that the Scythians found protoceratops fossils while prospecting for gold, thought they were the bones of the monster we now call a griffin, and spread stories about them throughout Eurasia. It sounds plausible, so much so that no one really investigated the story until recently.

Just last week as this episode goes live, a new study has been published by a team of paleontologists about the griffin-protoceratops connection. They worked with historians and archaeologists to determine when and where (and if) the Scythians might have discovered protoceratops fossils.

It turns out that they probably wouldn’t have, certainly not while prospecting or mining gold. Gold has never been found anywhere near protoceratops fossils, and in fact the known gold deposits in central Asia occur hundreds of kilometers away from the fossils found so far. Not only that, it would be very rare to find more than a little bit of fossilized bone sticking out of the rock in most cases.

The spread of the griffin in art doesn’t seem to have begun in central Asia, for that matter, and even the earliest artwork doesn’t seem to be very protoceratops-like. The head isn’t huge in comparison to the body, for instance. Early griffins were commonly depicted as lions with an eagle’s head, but sometimes they were depicted as eagles with a lion’s head.

That doesn’t mean that protoceratops fossils didn’t influence griffin mythology at some point, just that it didn’t seem to happen the way Mayor claimed it did.

Another common connection between a fossil and a mythical monster is likewise just speculation. The skulls of elephants and their ancestors have a big opening in the front that looks like a giant eyesocket, but which is where the trunk was located. The eyes are much smaller and more on the sides of the head, and the skull itself does somewhat resemble a really big human skull. The Cyclops, or Cyclopes, was a giant from ancient Greek myth with one eye in the middle of its face instead of the usual two eyes. Is there really a connection between some kind of elephant skull and the Cyclops?

The connection was first suggested in 1914 by a paleontologist named Othenio Abel, who suggested that skulls from dwarf elephants had inspired the myth. Before about 500 BCE, the ancient Greeks didn’t know what elephants were, and the dwarf elephants that once lived in the area went extinct about 20,000 years ago. Sicily and Malta in particular had been home to various species of dwarf elephant for half a million years, so it’s possible that elephant remains were occasionally discovered in the area. Our griffin-protoceratops friend Adrienne Mayor agrees, but there’s no proof either way of this happening.

Stories of dragons living on Mount Pilatus in Switzerland may have been inspired by the pterosaur fossils that are frequently found in the area. In 1649 a man named Christopher Schorer reported seeing a fiery dragon fly from a cave in the side of Mount Pilatus to another mountain, although he admitted that at first he thought it was a meteor. It was probably a meteor, in fact, but he convinced himself it had to be a dragon because they were known to live on the mountain. A so-called dragon skeleton found near the mountain in 1602 had reportedly been crushed flat by rocks during an earthquake, but once science caught up with the finding, it was determined to be a fossilized pterodactyl.

In many parts of the world, especially China, fossilized bones are called dragon bones, but the dragon as a mythological creature probably came first. This is probably the case for a lot of folklore monsters and animals. The story came first, and once fossils were found in the area, they were seen as proof that the story was true.

In Patagonia in South America, there’s a Chilote legend of a monster called the camahueto. When it’s grown it lives in the ocean, but it starts out life living underground. Eventually it picks a stormy night, and it emerges from the ground and rushes toward the ocean, destroying everything in its path. Its single horn may gouge a channel in the ground for a new stream to form, or it may actually live in a river as a young animal and migrate to the ocean as an adult.

An animal named Trigodon once lived in Patagonia. It was a notoungulate, part of an extinct order of hoofed animals that lived throughout South America. It was probably most closely related to rhinoceroses, horses, and other odd-toed ungulates, but it and its relatives are completely extinct with no living descendants.

Trigodon was big and heavy, probably resembling a rhinoceros in many ways, and that includes having a single short horn on its head. On its forehead, in fact, pointing straight forward. It probably wasn’t a true horn but it was a protuberance of the skull. We don’t know if it was covered with skin and hair like an ossicone, a keratin sheath like a true horn, or if it was more like a rhinoceros horn. It might have been something completely different that’s currently unknown among living animals.

Trigodon went extinct around 4 million years ago, as far as we know, but other notoungulates only went extinct around 12,000 years ago. We don’t know very much about most of them, but we do know that at least one other species had a forehead horn like Trigodon’s. It’s always possible that a rhinoceros-like one-horned animal was still alive when humans first settled Patagonia, and that it was so big and scary it inspired stories about the monster Camahueto, a bull with a single horn on its forehead.

Then again, consider the story about the camahueto. It lives underground or in rivers when it’s young, and travels to the sea only during a storm. That might just be a story used to explain earthquakes that open fissures in the ground, and other natural phenomena. Then again, it might have been inspired by fossilized trigodon skulls that are washed out of the ground by torrential rain or rivers. That’s just my theory, though, but it’s fun to speculate.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 329: Manatees and a Surprise Sloth

Thanks to Alexandra and Pranav for their suggestions this week! Let’s learn about manatees and sloths, including a surprising extinct sloth.

Further reading:

Sloths in the Water

A West Indian manatee:

A three-toed sloth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a suggestion from Alexandra and Pranav, who wanted an episode about manatees. We’ll also talk about another marine mammal, a weird extinct one you may never have heard of.

The manatee is also called the sea cow, because it sort of slightly resembles a cow and it grazes on plants that grow underwater. It’s a member of the order Sirenia, which includes the dugong, and sirenians are probably most closely related to the elephant. This sounds ridiculous at first, but there are a lot of physical similarities between the manatee and the elephant. Their teeth are very similar, for instance, even if the manatee doesn’t grow tusks. The elephant has a pair of big chewing teeth on each side of its mouth that look more like the bottoms of running shoes than ordinary teeth. Every so many years, the four molars in an elephant’s mouth start to get pushed out by four new molars. The new teeth grow in at the back of the mouth and start moving forward, pushing the old molars farther forward until they fall out. The manatee has this same type of tooth replacement, although its teeth aren’t as gigantic as the elephant’s teeth. The manatee also has hard ridged pads on the roof of its mouth that help it chew its food.

Female manatees are larger than males on average, and a really big female manatee can grow over 15 feet long, or 4.6 meters. Most manatees are between 9 and 10 feet long, or a little less than 3 meters. Its body is elongated like a whale, but unlike a whale it’s slow, usually only swimming about as fast as a human can swim. Its skin is gray or brown although often it has algae growing on it that helps camouflage it. The end of the manatee’s tail looks like a rounded paddle, and it has front flippers but no rear limbs. Its face is rounded with a prehensile upper lip covered with bristly whiskers, which it uses to find and gather water plants.

Every so often a manatee will eat a little fish, apparently on purpose. Since most herbivorous animals will eat meat every so often, this isn’t unusual. Mostly, though, the manatee spends almost all of its time awake eating plants, often from the bottom of the waterway where it lives. It lives in shallow water and will use its flippers to walk itself along the bottom, and also uses its flippers to dig up plants. Its upper lip is divided in two like the upper lips of many animals, which you can see in a dog or cat as that little line connecting the bottom of the nose to the upper lip. In the manatee, though, both sides of the lips have a lot of muscles and can move independently.

There are three species of manatee alive today: the West Indian manatee that lives in the Gulf of Mexico down to the eastern coast of northern South America, the Amazonian manatee that lives exclusively in fresh water in the Amazon basin, and the West African manatee that lives in brackish and fresh water. Sometimes the West Indian manatee will also move into river systems to find food.

Back in episode 153 we talked about the Florida manatee, which is a subspecies of West Indian manatee. In the winter it mostly lives around Florida but in summer many individuals travel widely. It’s sometimes found as far north as Massachusetts along the Atlantic coast, and as far west as Texas in the Gulf of Mexico, but despite its size, the manatee doesn’t have a lot of blubber or fat to keep it warm. The farther away it travels from warm water, the more likely it is to die of cold.

In the 1970s there were only a few hundred Florida manatees alive and it nearly went extinct. It was listed as an endangered species and after a lot of effort by a lot of different conservation groups, it’s now only considered threatened, but it’s still vulnerable to habitat loss, injuries from boats, and getting tangled in fishing gear and drowning. Occasionally a crocodile will eat a young manatee, but for the most part it’s so big, and lives in such shallow water, that most predators won’t bother it. It basically only has to worry about humans, and unfortunately humans still cause a lot of manatee deaths every year with boats.

A lot of times, a manatee that’s hit by a boat is only injured. There are several rehabilitation centers in the United States, where an injured manatee can be treated by veterinarians until it’s healed and can be reintroduced into the wild.

One other detail that makes the manatee similar to the elephant is its flippers, which is probably not what you expected me to say. Most manatees have toenails on their flippers that closely resemble the nails on elephant feet. The exception is the Amazonian manatee that doesn’t have toenails at all.

A lot of the food the Amazonian manatee eats actually floats on the surface of the rivers where it lives, and it will also eat fruit that drops into the water. Because the Amazon basin is subject to a dry season where there’s not a lot of food, the manatee eats a lot when it can to build up fat reserves for later. During the dry season, it usually moves to the biggest lakes in the area as the rivers and shallower lakes dry up or get too shallow for the manatee to swim in. Since the manatee has a low metabolic rate, it can live off its fat reserves until the dry season is over.

One interesting thing about the manatee is that it only has six vertebrae in its neck. Almost all other mammals have seven, even giraffes. The exception is the two-toed sloth, which also has six, and the three-toed sloth, which has a varying number of neck vertebrae, up to nine in some species!

Pranav also wanted to learn about sloths, so let’s talk about them next. All sloths are native to Central and South America. The sloths living today live in forests, especially rainforests, and spend almost all their time in trees.

A sloth makes the manatee look like a speed demon. It spends most of its time hanging from its long claws beneath branches, eating leaves and other plant material, but when it does move, it does so extremely slowly. This helps it stay camouflaged from predators, because its fur contains algae that makes it look green, so a barely-moving green-furred sloth hanging from a tree just looks like a bunch of leaves. It does move from one tree to another to find fresh leaves, and once a week it climbs down from its tree to defecate and urinate on the ground. Yes, it only relieves itself once a week.

The sloth’s digestive tract is also extremely slow, which allows it to extract as much nutrition as possible from each leaf. It takes about a month for a sloth to fully digest one mouthful of food.

The three-toed sloth is about the size of a large cat while the two-toed sloth is slightly larger, maybe the size of a small to medium-sized dog. The two-toed sloth is nocturnal while the three-toed sloth is mostly diurnal. Even though they look and act very similar, the two types of sloth are not very closely related. Both have long curved claws and strong pulling muscles, although their pushing muscles are weak. This is why a sloth can’t walk like other animals; the muscles that would allow it to do so aren’t strong enough to support its own weight. And yet, it can hang from a branch and walk along it for as long as it needs to. I don’t think I could hang from a branch by my fingers for five minutes without having to let go.

Surprisingly, the sloth can also swim quite well, which allows it to find new trees even if there are streams or rivers in the way. But a few million years ago, a different type of sloth lived off the coast of western South America and did a whole lot of swimming. In fact, later species of Thalassocnus were probably fully marine mammals.

We talked about Thalassocnus briefly way back in episode 22. It was related to the giant ground sloths that were themselves related to the living three-toed sloths. The earliest Thalassocnus fossils are of semi-aquatic animals that grazed in shallow water. Fossils from more recent species show increasing adaptations to deeper water, including increased weight of the skeleton to help it stay underwater instead of bobbing up to the surface.

Thalassocnus eventually evolved a stiff, partially fused spine, which reflects the unusual way it moved around underwater. Instead of swimming the way a whale does, or even the way a dog or person does, it moved more like a hippopotamus. Hippos sort of bounce along underwater, using their feet to push off from the bottom. Thalassocnus probably did this too and used its long tail to help it maneuver.

Thalassocnus was a lot bigger than modern sloths. Even the smallest known species were the size of a big human, and the biggest species grew up to 11 feet long, or 3.3 meters. That biggest species was the one that lived most recently, up to about 1.5 million years ago, and researchers think it was fully aquatic. Its nostrils were on the top of its snout and it had prehensile lips to help it find plants underwater. Some researchers even think it could have had a short trunk something like a tapir. It had seven neck vertebrae, as in most other mammals.

There’s still a lot we don’t know about Thalassocnus, but because we have fossils of five different species that lived at different times, scientists are able to determine a lot about how it developed from a mostly terrestrial animal to a mostly or fully marine animal. The youngest species had smaller, weaker legs than the earlier ones, which suggests it didn’t use its legs to walk on land. It probably lived a lot like modern manatees, finding sea grasses and other plants on the sea floor in shallow water, but not able to swim very fast.

One last thing about the manatee is that it spends about half of its time asleep, and it sleeps underwater. It comes up for a breath every 15 minutes or so. Modern sloths sleep a lot too, around 15 hours a day. Chill sleepy friends.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 320: More Elephants

Thanks to Connor and Pranav who suggested this week’s episode about elephants! It’s been too long since we had an elephant episode and there’s lots more to learn.

Further reading:

Asian elephants could be the maths kings of the jungle

Many wild animals ‘count’

A big difference between Asian and African elephants is diet

Study reveals ancient link between mammoth dung and pumpkin pie

The Asian elephant (left) and the African elephant (right):

The African bush elephant (left) and the African forest elephant (right) [photo taken from this page]:

The osage orange is not an orange and nothing wants to eat it these days:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

We haven’t talked about elephants since episode 200! It’s definitely time for some elephant updates, so thanks to Conner and Pranav for their suggestions!

Conner suggested we learn more about the Asian elephant, which was one we talked about way back in episode 200. The biggest Asian elephant ever reliably measured was a male who stood 11.3 feet tall, or 3.43 meters, although on average a male Asian elephant, also called a bull, stands about 9 feet tall, or 2.75 meters. Females, called cows, are smaller. For comparison, the official height of a basketball hoop is 10 feet, or 3 meters. An elephant could dunk the ball every single time, no problem.

The Asian elephant used to live throughout southern Asia but these days it’s endangered and its range is reduced to fragmented populations in southeast Asia. There are four living subspecies recognized today although there used to be more in ancient times.

Elephants are popular in zoos, but the sad fact is that zoo elephants often don’t live as long as wild elephants, even with the best care. The elephant is adapted to roam enormous areas in a family group, which isn’t possible in captivity. In the wild, though, the elephant is increasingly endangered due to habitat loss and poaching. Even though the Asian elephant is a protected species, people kill elephants because their tusks are valuable as ivory. Tusks are a modified form of really big tooth, and it’s valuable to some people because it can be carved into intricate pieces of art that can sell for a lot of money. That’s it. That’s the main reason why we may not have any elephants left in another hundred years at this rate, because rich people want carvings made in a dead animal’s tooth. People are weird, and not always the good kind of weird.

In happier Asian elephant news, though, a 2018 study conducted in Japan using zoo elephants replicated the results of previous studies that show Asian elephants have numeric competence that’s surprisingly similar to that in humans. That means they understand numbers at least up to ten, and can determine which group of items has more or less items than another group. That sounds simple because humans are really good at this, but most animals can only understand numbers up to three. It goes one, two, three, lots.

Many animals do have a good idea of numbers in a general way even if they can’t specifically count. Gray wolves, for instance, know how many wolves need to join the hunt to successfully bring down different prey animals. Even the humble frog will choose the larger group of food items when two groups are available. But the Asian elephant seems to have an actual grasp of numbers. I specify the Asian elephant because studies with African elephants haven’t found the same numeric ability.

Elephants make a lot of sounds, such as the iconic trumpeting that they make using the trunk. Way back in episode 8 we talked about the infrasonic sounds elephants also make with their vocal folds, sounds that are too low for humans to hear. But the Asian elephant also sometimes makes a high-pitched squeaking sound and until recently, no one was sure how it was produced. It turns out that the elephant makes this sound by buzzing its lips the same way a human does when playing a brass instrument. It’s the first time this particular method of sound production has been found outside of humans.

This is what a squeaking Asian elephant sounds like:

[elephant squeak]

Pranav suggested we learn more about the African forest and bush elephants. Those are the two species of African elephants that are still alive, and they’re also endangered due to habitat loss and poaching. The forest elephant is critically endangered. The forest elephant lives in forests, as you probably guessed, especially rainforests, while the bush elephant lives in grasslands and open forests. It’s sometimes called the savanna elephant since it’s well adapted to life on the savanna.

The forest elephant is only a little larger on average than the Asian elephant, while the bush elephant is much bigger on average. A big bull bush elephant can stand as much as 13 feet tall, or 4 meters, which means it might not dunk the basketball every time because the basketball hoop is awkwardly low.

The bush elephant lives in areas where it’s often extremely hot and dry. Since large animals retain heat, the bush elephant has many adaptations to stay cool. Its ears are really big, for instance, and have lots of blood vessels. This means the blood is close to the surface of the skin where it can shed heat into the air. In hot weather the elephant can flap its ears to help cool its blood faster. But one big adaptation has to do with its skin. The bush elephant’s skin is covered with what look like wrinkles but are actually crevices in the skin only a few micrometers wide. The crevices retain tiny amounts of water that help keep the elephant cool. Since elephants don’t have sweat glands the way people do, they have to bathe in water and mud to get moisture in the crevices in the first place.

Elephants are megaherbivores, meaning they eat mega amounts of plants. This has an impact on forest dynamics, but until recently the only studies on elephant diets and ecological effects were on African elephants. A 2017 study on Asian elephants in Malaysia found that instead of mostly eating sapling trees, the elephants preferred to eat bamboo, grasses, and especially palms.

In comparison, the African bush elephant eats plant parts that other animals can’t chew or digest, including tough stems, bark, and roots. It also eats grass, leaves, and fruit. The African forest elephant eats a lot more fruit and softer plant parts than the bush elephant, and in fact the forest elephant is incredibly important as a seed disperser. Seeds that pass through the forest elephant’s digestive system sprout a lot faster than seeds that don’t, and they also have the added benefit of sprouting in a pile of elephant dung. Instant fertilizer! At least 14 species of tree need the elephant to eat their fruit in order for the seeds to sprout at all. If the forest elephant goes extinct, the trees will too.

Around 11,000 years ago, when the North American mammoths went extinct, something similar happened. Mammoths and other megafauna co-evolved with many plants and trees to disperse their seeds, and in return the animals got to eat some yummy fruit. But when the mammoths went extinct, many plants seeds couldn’t germinate since there were no mammoths to eat the fruit and poop out the seeds. Some of these plants survive but have declined severely, like the osage orange. It produces giant yellowish-green fruits that look like round greenish brains, and although it’s related to the mulberry, you wouldn’t be able to guess that from the fruit. Nothing much eats the fruit these days, but mammoths and other megafauna loved it. The osage orange mostly survives today because the plant can clone itself by sending up fresh sprouts from old roots.

Another plant that nearly went extinct after the mammoth did is a surprising one. Wild ancestors of modern North American squash plants relied on mammoths to disperse their seeds and create the type of habitat where the plants thrived. Mammoths probably behaved a lot like modern elephants, pulling down tree limbs to eat and sometimes pushing entire trees over. This disturbed land is what wild squash plants loved, and if you’ve ever prepared a pumpkin or squash you’ll know that it’s full of seeds. The wild ancestors of these modern cultivated plants didn’t have delicious fruits, though, at least not to human taste buds. The fruit contained toxins that made them bitter, which kept small animals from eating them, because the small animals would chew up the seeds instead of swallowing them whole. But the mammoths weren’t bothered by the toxins and in fact probably couldn’t even taste the bitterness. They thought these wild squash were delicious and they ate a lot of them.

After the mammoth went extinct, the wild squash lost its main seed disperser. As forests grew thicker after mammoths weren’t around to keep the trees open, the squash also lost a lot of its preferred habitat. The main reason why we have pumpkins and summer squash is because of our ancient ancestors. They bred for squash that weren’t bitter, and they planted them and cared for the plants. So even though the main cause of the mammoth’s extinction was probably overhunting by ancient humans, at least we got pumpkin pies out of the whole situation. I mean, I personally would prefer to have both pumpkin pie AND mammoths, but no one asked me.

World Elephant Day is on August 12, and this episode is going live in late March. That means you have a little over four months to get your elephant celebration plans ready!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us for as little as one dollar a month and get monthly bonus episodes.

Thanks for listening!

Episode 225: Talking Animals

Talking animals! It’s not what you’re thinking about. No parrots here, just mammals.

Our new logo is by Susanna King of Flourish Media! If you’d like to JOIN OUR MAILING LIST!, I’ll be sending out a discount code soon for merch with our logo on it–but only for people on the mailing list (and patrons).

Further listening:

The MonsterTalk episode about Gef the Talking Mongoose (this episode has no swearing that I recall but some other episodes may have a little bit of salty language)

Mongolian Throat Singing

Further reading:

‘Talking’ seals mimic sounds from human speech, and validate a Boston legend

How do marine mammals produce sounds?

Elephant communication

Hoover the talking seal:

Janice, a gray seal who learned to mimic human speech and song:

Wikie, the orca who mimics human speech:

Kosik, an elephant who mimics human speech:

Gef the “talking mongoose”:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Before we get started, I have some announcements! First, you may have noticed we have a new logo! It’s by Susanna King of Flourish Media, who did a fantastic job! Susanna is also a listener, which is awesome. I’ve put a link to Flourish Media in the show notes if you have a company or something that needs professional graphic design.

If you’re interested in getting a shirt or mug with the new Strange Animals Podcast logo on it, I’m figuring out the best company to use for merch. If you sign up to our mailing list, as soon as merch is available I’ll be sending an email out about it, and I’ll include a discount code you can use to save some money! I’ve linked to the mailing list in the show notes, and it’s also linked on the website and my social media, but if you can’t find it, just send me a message and I’ll reply with the link.

The final announcement is that my cat Poe is finally home and recovering from a scary illness. He developed what’s called pyothorax, which is an infection in the chest, and in Poe’s case we still don’t know what caused it. After a week in the veterinary intensive care unit, he’s finally home and getting better all the time. That’s why last week’s episode was so short, and if you messaged me this week about something and I seemed impatient when I replied, that’s why. I just haven’t had any mental energy to concentrate on anything but Poe. Thank you to everyone at the Animal Emergency and Specialty Center of Knoxville for taking such good care of him.

We’ve got something fun and a little different this time, inspired by two things. First, I saw a tweet about a captive beluga whale who had apparently learned to mimic human speech and one night told a diver in his pool to get out. Then the awesome podcast BewilderBeasts had a segment about a harbor seal in Maine who was rescued by a fisherman as a pup, which reminded me of a similar situation with another harbor seal in Maine, Hoover the Talking Seal. That’s right, it’s an episode about mammals that can talk, including one of my favorite cryptozoological mysteries ever.

Before we learn about talking animals, we need to learn a little bit about how humans talk. Humans produce most vocal sounds using our larynx, which is sometimes called a voicebox. The human larynx is situated at the top of the throat, and it helps us breathe, helps keep food from going down the wrong tube and into the lungs, and enables us to make sounds. It consists of cartilage, small muscles, and flaps of tissue called vocal folds or vocal cords. There are two kinds of vocal folds: the true vocal folds that are connected to muscles and actually produce sound, and the false vocal folds that don’t have any connected muscles and just help with resonance.

Usually resonance just makes the sound louder, but humans have learned to do amazing things with our voices. Some cultures use the false vocal folds to create a secondary tone. It’s called overtone singing, throat singing, or harmonic singing. I’m still completely in love with the Mongolian folk metal band the Hu and am now delighted that I can mention them again, because they use throat singing in their music. Throat singing produces overtones with various different sounds, depending on the technique used, but it can be hard to pick them out of a song if you’re not sure what you’re hearing. So instead of playing a clip of a Hu song, here’s a clip of a musician demonstrating various kinds of throat singing while also playing along on the morin khuur, or horsehead fiddle. The morin khuur only has two strings so the drone and whistle sounds you’re hearing are not from that instrument, they’re made by the musician’s voice. [Musician is Zagd Ochir AKA Sumiyabazar.]

[clip of throat singing]

When you think of animals that could potentially talk in human language, naturally you’d assume our closest relatives, the great apes, could learn to talk. But while apes have larynxes that are similar to ours, they don’t have the fine control over their vocal cords that humans do. But the larynx isn’t the only part of the body involved in human speech, it’s just the part that makes noise. We use the tongue and lips to form sounds into words, which takes a lot of fine control over very small muscles. Apes don’t have that kind of control of the mouth muscles. More importantly, they don’t have the same language centers in the brain that humans do. Apes can learn to use very simple versions of sign language or indicate words on a computer, but they aren’t able to use speech and language the way we do. In the wild, apes communicate with sounds, but they also communicate a lot more with gestures and body language, so they don’t need to speak words.

In the 1940s and 50s, a human couple who were both primate biologists worked with a young chimpanzee named Viki, trying to teach her spoken language as well as signs. While Viki was a quick learner and showed high intelligence, she only managed to ever speak seven words, and only four of those clearly. Those four words were mama and papa, cup, and up. I found a clip of Viki saying the word ‘cup,’ and while the audio was really bad, I don’t think she was actually vocalizing the word, just making the consonant sounds with her mouth.

But there are other animals that can mimic human speech, even if they don’t necessarily understand what they’re saying. Parrots and some other birds are the prime examples, of course, but we’re talking about talking mammals today.

Back in episode 23 I mentioned Hoover the talking seal and played this clip of his voice, one of only a few recordings we have of him.

[talking seal recording]

That may sound like a gruff man with a strong accent, but it’s a seal. In spring of 1971, in Cundy’s Harbor, Maine, which is in the extreme northeastern United States, a man found a baby harbor seal. He and his brother-in-law George Swallow hunted around for the seal pup’s mother, but sadly they found her dead body. George Swallow decided to take the baby seal home and see if he could keep him alive.

The baby seal ate so fast that Swallow and his wife named him Hoover, after the vacuum cleaner brand. Hoover stayed in a pond in the back of their house, and he not only survived, he did really well. Swallow basically treated Hoover like a dog and the two hung out together all the time. If Swallow had to go somewhere, Hoover rode along in the car. Before long, Hoover started imitating Swallow’s speech.

Finally, though, Hoover got so big and was eating so much fish that the Swallows couldn’t keep him. The New England Aquarium in Boston, Massachusetts agreed to take him in, and there Hoover stayed, happy and healthy until he died in 1985. When Swallow brought Hoover to the aquarium, he mentioned that the seal could talk. No one believed him. I wish I could have seen the keepers’ faces when Hoover first said, “Hello there!” in a voice that sounded just like George Swallow’s.

Here’s another clip of Hoover talking:

But if a chimpanzee can’t manage to speak human words, how can a seal? Seals of all kinds have a larynx that’s very similar to the human larynx, which allows a seal to physically imitate human vowel sounds. It also has the mental drive to imitate sounds and the mental flexibility to do a good job imitating sounds that aren’t normal seal noises. Seals are highly social animals and communicate with each other with a complex range of sounds.

A study published in 2019 focused on a trio of young gray seals, named Janice, Zola, and Gandalf, who learned to imitate vocal tones, even tunes, proving that Hoover’s ability to imitate his caregiver wasn’t just a fluke. The seals were released into the wild after a year. This is a clip of one of them singing in response to a computerized tune:

[clip of seal singing]

It’s not a coincidence that animals learn to imitate human speech while in captivity. Seals and other animals who communicate with sound learn to imitate what they hear most often. In wild animals, that’s almost always the calls of other animals of their own species, but animals in captivity often hear humans most of the time.

In the case of Wikie, an orca, or killer whale, she was taught to imitate human sounds by researchers. Wikie was born in captivity in 2001 and in 2018, researchers reported that they had taught her to imitate several words, including hello.

Whales and other cetaceans have very different anatomy from seals. They make lots of sounds, from clicks and whistles used for communication and navigation, to the incredibly loud, complex songs that some baleen whales use to attract mates. But they don’t always make those sounds with their larynx.

Toothed whales, including dolphins, make a lot of sounds with the blowhole, which is the specialized nostril at the top of the whale’s head that allows it to take a breath without having to stop moving or put its head out of the water. Toothed whales have specialized air sacs near the blowhole that allow a whale to make high-frequency sounds for echolocation, and it uses its larynx to make whistles and other noises. It may also clap its jaws together and slap the water with its tail or flippers to make sounds, especially ones that signal aggression.

Baleen whales have an inflatable pouch called the laryngeal sac that allows a whale to make extremely loud sounds with its larynx. Many animals have something similar to the laryngeal sac, including some primates. If you remember episode 76, where we talked about the siamang, a type of gibbon, it has a throat pouch called a gular sac that increases the resonance and loudness of its voice.

Orcas in particular imitate sounds made by other orcas, so much so that when an orca pod moves into new territory, it will adopt the sounds made by the local orcas. They will also imitate the sounds made by sea lions and bottlenose dolphins. It’s not surprising, then, that Wikie was able to learn to imitate human words. Here’s some audio of Wikie saying hello (sort of):

[orca speech]

Another mammal that can learn to imitate human speech, at least occasionally, is the elephant! One famous talking elephant is Kosik [koh-shik], an Indian elephant in South Korea who has learned to say yes, no, sit, and several other words, in Korean of course. Kosik puts the tip of his trunk in his mouth and exhales while moving his trunk around to produce the sounds.

The elephant does use its larynx to make sounds, but it also has the option to use its trunk as a resonant chamber to make the sounds deeper. Some of the sounds an elephant makes are below the range of human hearing, as are many sounds baleen whales make. The elephant’s larynx is especially flexible too compared to most mammals, and as if its trunk wasn’t enough, it also has a pharyngeal pouch at the base of the tongue that it uses to produce low frequency calls.

This pharyngeal pouch is different from the baleen whale’s laryngeal sac and the siamang’s gular sac, although all three are used for similar purposes. The elephant actually stores water in the pouch, several liters of water. If an elephant can’t find water and is thirsty, it will stick its trunk deep into its mouth and into the pouch, then constrict the muscles around the pouch to push the water up. Then it can drink the water. It’s like having a built-in water bottle that also allows you to make deep noises.

Batyr was another elephant who reportedly learned to imitate some words and phrases, these in Russian and Kazakh. He lived in a zoo in Kazakhstan until his death in 1993. Like Kosik, Batyr produced the words by sticking his trunk in his mouth, with one keeper reporting that he actually moved his tongue into place with his trunk to make the right sounds. It’s possible that’s exactly what he was doing, since an elephant’s trunk is much more dexterous than an elephant’s tongue. He would also sometimes imitate other animals heard in the zoo.

All the animals we’ve discussed so far were only imitating human words. While they may have learned to use the words appropriately, for instance saying the word water when they wanted a drink, there’s no evidence that any of these animals truly understood the meaning of the words they learned to imitate. But there is one talking animal that was supposed to understand every word he said, a strange and elusive animal only seen by a few people but heard by many more. He’s called Gef the talking mongoose, and he’s one of my very favorite cryptids.

Gef’s story starts in 1931 on the Isle of Man, a British island in the Irish Sea. A family lived in a remote farmhouse near the village of Darby: James Irving (who went by Jim), his wife Margaret, and their twelve-year-old daughter Voirrey. They also had a sheepdog named Mona. The house was a big stone one with wood paneling inside, but with a gap between the stone and wood. These days that would be where the insulation would go to keep the house warmer, but this was before modern insulation and as far as I’ve read the gap was empty. The house didn’t have electricity either.

One night in 1931 the family heard an animal rustling and scratching around inside the gap. This probably wasn’t an unusual occurrence, since there are mice and rats on the Isle of Man along with stoats and ferrets. Any of those might decide to investigate the house and make a little home in the gap between the outer and inner walls.

In this case, though, the animal started out making little animal sounds but soon started trying to talk. At first it sounded like a baby babbling, but within a few weeks it was speaking clearly in English.

The family didn’t know what to think. At first they actually tried to poison the animal, but before long they made peace with it and named him Gef. They rarely saw Gef, just talked to him through the walls. Occasionally they’d see a bright eye peering at them through a knothole or see Gef outside, whisking across the fields. He wasn’t very big, only about a foot long, or 30 cm, including his bushy tail. He was yellowish in color with a slender ferret-like body, and his tail had a black tip. But he wasn’t a ferret, and apparently his front feet were shaped more like tiny human hands than like an animal’s paws. Gef described himself as a mongoose, specifically, “a little extra, extra clever mongoose.”

The weird thing is, there were mongooses on the Isle of Man at the time even though the mongoose is native to Africa, southern Asia, and southern Europe—but only where it’s warm most of the time. They certainly don’t live on the Isle of Man ordinarily. A man who owned a neighboring farm had imported some to kill rabbits, since there are no foxes on the island to keep the rabbit population down. There are even occasional sightings of what might be mongooses on the island today. The mongoose resembles mustelids like weasels and ferrets, but isn’t very closely related to them, and some species are yellowish in color. But the mongoose is much larger than Gef and has a more tapered tail. Also, mongooses don’t actually talk.

The meerkat is a type of mongoose, so if you ever watched Meerkat Manor you know a lot about mongooses already.

Anyway, Gef was clearly not actually a mongoose. The question is whether he was a real animal at all. In many ways, he had more in common with supernatural entities like poltergeists and brownies than with ordinary animals. He sometimes seemed to know about things before they happened, he seemed able to vanish when he didn’t want to be seen, and he made fantastic claims about his history. He also sprinkled words and phrases from other languages into his speech.

At the time, most people on the island thought Voirrey had invented Gef for attention, or maybe in an attempt to get her family to move somewhere more comfortable. She didn’t like living on a farm where the nearest neighbor was two miles away. But Voirrey claimed to the very end of her life—and she lived until 2005—that she hadn’t invented Gef and in fact Gef had ruined her life in some ways. She was teased about him in school and hated all the attention surrounding him, so much so that when she grew up and moved away, she actually changed her name to try and avoid any further publicity. She almost never gave interviews about Gef, and her family certainly never made any money off their resident talking animal even though they were very poor.

These days, a lot of suspicion focuses on Voirrey’s father, Jim Irving. Almost all of the information we have about what Gef said and did comes from Jim’s diaries and letters. He wrote a lot about Gef and apparently planned to write a book about the family’s experiences. The famous investigator of mysterious phenomena, Harry Price, told Jim there was no money in a book about Gef—and then promptly published his own book about Gef, which was a mean trick. Harry Price thought Voirrey was speaking as Gef by somehow throwing her voice, probably by using the acoustic properties of the double-walled house.

It’s possible, of course, that Gef was invented by Jim as a way to make Voirrey happier about having little animals scrabbling about in the walls. It might have started as a family joke that got out of control when people outside the family heard about it. Jim sounds like he was a little bit of a showman and had big dreams. He might have decided that his little family in-joke about Gef the talking mongoose would make a good book, and started spreading the story around as though it was real. Before long, people were swarming to his farmhouse to listen for Gef, Voirrey was being teased and blamed for the phenomenon, and people were demanding proof that Gef was real. Jim couldn’t admit he’d made the whole thing up and risk everyone getting angry.

Jim had traveled widely when he was younger and knew a smattering of words from other languages—the same words that Gef sprinkled into his speech. And remember, Jim is the main source of information about Gef. I wonder if Voirrey understood that her father had painted himself into a corner by telling people about Gef, because she tried to help prove the talking mongoose was real. She produced some hairs she said came from Gef, but when analyzed they were found to be identical to Mona the sheepdog’s fur. Voirrey produced some footprints and tooth prints supposedly made by Gef in plasticine, but they look a lot like they were made by someone poking designs into the plasticine with a sharp stick.

Gef became less and less active over the years, disappearing for months at a time, and by 1939 he was pretty much gone. Voirrey was grown by then and probably long tired of the joke. Jim died in 1945.

Whatever or whoever was behind the talking mongoose story, it’s definitely fun to think about. Gef was snarky, clever, sometimes funny, always weird. For instance, when Jim told Gef “We are having a dictaphone to record your voice,” Gef replied, “Who’s we? Is it that spook man Harry Price? Why, I won’t speak into it. I’ll go and smash his windows. I’ll drop a brick on him as he lies in bed. Me, at the age of 83?” Gef claimed he was born in India on June 7, 1852. Sometimes he said he was an earthbound spirit, sometimes he said he was not a spirit, just a mongoose. Once he said, “I am a ghost in the form of a weasel, and I shall haunt you with weird noises and clanking chains.” Mostly, though, he just recounted village gossip and demanded treats. Occasionally he killed a rabbit and left it for Voirrey like a pet cat leaving a mouse for its owner.

If my cats could speak, I’m pretty sure Poe would be complaining nonstop about having to be in the hospital for a whole week. Actually, he is complaining nonstop about it, just not in actual words. But I understand him anyway.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or Podchaser, or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 200: Elephants

This week we’re going to learn about elephants! Thanks to Damian, Pranav, and Richard from NC for the suggestions!

Further Reading:

Dwarf Elephant Facts and Figures

An Asian elephant (left) and an African elephant (right). Note the ear size difference, the easiest way to tell which kind of elephant you’re looking at:

Business end of an Asian elephant’s trunk:

An elephant living the good life:

Can’t quite reach:

Elephant teef:

A dwarf elephant skeleton:

An elephant skull does kind of look like a giant one-eyed human skull:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to learn about some elephants! We’ve talked about elephants many times before, but not recently, and we’ve not really gone into detail about living elephants. Thanks to Damian, Pranav, and Richard from NC for the suggestions. Damian in particular sent this suggestion to me so long ago that he’s probably stopped listening, probably because he’s grown up and graduated from college and started a family and probably his kids are now in college too, it’s been so long. Okay, it hasn’t been that long. It just feels like it. Sorry I took so long to get to your suggestion.

Anyway, Damian wanted to hear about African and Asian elephants, so we’ll start there. Those are the elephants still living today, and honestly, we are so lucky to have them in the world! If you’ve ever wished you could see a live mammoth, as I often have, thank your lucky stars that you can still see an elephant.

Elephants are in the family Elephantidae, which includes both living elephants and their extinct close relations. Living elephants include the Asian elephant and the African elephant, with two subspecies, the African savanna elephant and the African forest elephant. The savanna elephant is the largest.

The tallest elephant ever measured was a male African elephant who stood 13 feet high at the shoulder, or just under 4 meters, which is just ridiculously tall. That’s two Michael Jordans standing on top of each other, and I don’t know how you would clone Michael Jordan or get one of them to balance on the other’s head, but if you did, they would be the same size as this one huge elephant. The largest Asian elephant ever measured was a male who stood 11.3 feet tall, or 3.43 meters. Generally, though, it’s hard to measure how tall or heavy a wild elephant is because first of all they don’t usually want anything to do with humans, and second, where are you going to get a scale big and strong enough to weigh an elephant? Most male African elephants are closer to 11 feet tall, or 3.3 meters, while females are smaller, and the average male Asian elephant is around 9 feet tall, or 2.75 meters, and females are also smaller. Even a small elephant is massive, though.

Because of its size, the elephant can’t jump or run, but it can move pretty darn fast even so, up to 16 mph, or 25 km/h. The fastest human ever measured was Usain Bolt, who can run 28 mph, or 45 km/h, but only for very short distances. A more average running speed for a person in good condition is about 6 mph, or 9.6 km/h, and again, that’s just for short sprints. So the elephant can really hustle. Its big feet are cushioned on the bottoms so that it can actually move almost noiselessly. And I know you’re wondering it, so yes, an elephant could probably be a good ninja if it wanted to. It would have to carry its sword in its trunk, though. The elephant is also a really good swimmer, surprisingly, and it can use its trunk as a snorkel when it’s underwater. It likes to spend time in the water, which keeps it cool, and it will wallow in mud when it can. The mud helps protect it from the sun and from insect bites. Its skin is thick but it’s also sensitive, and it doesn’t have a lot of hair to protect it.

The elephant is a herbivore that only eats plants, but it eats a lot of them. An adult elephant eats several hundred pounds of food a day, or more than 100 kg, and will drink enough water every day to fill a bathtub. It eats grass, leaves, twigs, fruit, and bark, and elephants in captivity also eat hay. And since we’re getting close to the winter holidays, some zoos have an agreement with Christmas tree sellers, who donate any unsold Christmas trees to the zoos for the elephants to eat. They can’t feed used trees because there might be leftover ornaments or ornament hangers on them. The elephant just puts one foot on the tree and rips off the branches with its trunk, which it then eats.

The elephant has a pair of big teeth on each side of its mouth that look more like the bottoms of running shoes than ordinary teeth, which it uses to grind up the tough plants it eats. Elephants technically have 26 teeth, two incisors and 24 molars. The incisors are modified into tusks, which we’ll talk about in a minute. The molars aren’t all in the mouth at once, though. Every so many years, the four molars in an elephant’s mouth start to get pushed out by four new molars. It doesn’t happen the same way you lose your baby teeth, though. Instead of a new tooth pushing up through the gum until the baby tooth gets loose and falls out, the new molars grow in at the back of the mouth and start moving forward, pushing the old molars farther forward until they fall out. This happens six times throughout the elephant’s life, with the last set usually growing in around the early 40s. Since elephants can live much longer than that, well into their sixties, that last set may have to last a long time, since there are no elephant dentists that can make gigantic elephant dentures.

The tusks are much different than the molars, naturally. The tusks start to grow from the upper jaw when the elephant is a little over six months old, and continue growing throughout its life. It uses its tusks for all kinds of activities, including moving obstacles from its path, digging for water, and defending itself. But not all elephants have tusks. Many Asian elephants don’t have tusks at all, or only have very small ones. Because poachers who want the tusks to sell as ivory shoot elephants that have the biggest tusks, many populations now have smaller tusks overall or none, since elephants without them are less likely to be killed.

The elephant’s trunk is strong but sensitive, sort of like a human’s arm and hand but with many more uses (and also no bones). The elephant breathes and smells through its trunk, since it’s an extension of the nose and upper lip, but it also makes noise with its trunk to communicate with other elephants, uses it to gather food and move it into the mouth, sucks up water with the trunk and splooshes it into the mouth to drink or onto its body to wash. It can reach plants that are way up high or it can dig into soft ground for roots or to reach water. It can open nuts with its trunk, scratch an itch, play wrestle with a friend, lift incredibly heavy things out of the way, and all sorts of other things. Elephants probably wonder how humans can function without a trunk. I am starting to wonder how I function without a trunk.

The easiest way to tell an Asian elephant apart from an African elephant is by looking at the ears. African elephants have much larger ears, especially savanna elephants. The ears are full of small blood vessels to help release heat from the body into the atmosphere. An elephant will flap its ears to stay cool on a hot day. Asian elephants are also smaller overall and have a different body shape. Asian elephants have somewhat shorter legs, a bulkier forehead, different numbers of toes on the feet, and even different trunks. The African elephant has two little projections at the tip of the trunk that act as fingers, while the Asian elephant only has one.

Elephants evolved in what is now Africa and are the largest land animals alive today. The earliest elephant ancestors lived around 56 million years ago, not long after the extinction of the non-avian dinosaurs. It was still a small animal then, only about a foot tall at the shoulder, or 30 cm. It probably spent a lot of time in the water, eating plants, and it probably had small ears and a large nose, but not an actual trunk. If you could go back in time and look at it, you’d never guess that it was an ancestral elephant.

By 27 million years ago, though, elephant ancestors were starting to look like elephants. Eritreum was a lot bigger, over four feet tall at the shoulder, or 1.3 meters, and it probably had short tusks and a trunk. If you looked at a living Eritreum, you’d definitely know it was a kind of elephant, even though it would have looked weird compared to modern elephants since its head was long and flattened in shape. Eritreum already had the same tooth system that modern elephants have, where new molars continually grow and replace worn-out older ones.

Eritreum’s descendants spread to Eurasia and then to North America. By about 2.5 million years ago, at the beginning of the Pleistocene, elephants were all over the place–not just the ancestors of modern elephants, but relations from other parts of the elephant family tree. This includes Palaeoloxodon, a suggestion by Richard from NC.

Palaeoloxodon namadicus lived throughout much of Asia, with fossils found in India, Japan, and Sri Lanka, and it was enormous. We don’t have a complete skeleton, but estimates of Palaeoloxodon’s size suggest it was the largest elephant that we’ve ever discovered. An estimate of the largest specimen found so far is 17.1 feet tall at the shoulder, or 5.2 meters. This is about the same height at the shoulder as Paraceratherium, which we talked about in episode 50 about tallest animals, but it might have actually been taller than Paraceratherium. The tallest giraffe ever measured was 19.3 feet tall, or 5.88 meters, but that’s at the top of its head, not its shoulder, and giraffes are much less heavy than elephants. Whichever one was actually tallest doesn’t really matter, though, because they all belong to the Ridiculously Tall Animals Club, also known as the Animals That Could Squish You Flat by Accident Club.

We don’t know much about Palaeoloxodon since so few fossils have been found so far. We mostly just know it was a massive animal that probably went extinct 24,000 years ago. That’s really not that long ago in geologic terms. It was probably a member of the straight-tusked elephants, a group of animals that were mostly quite large even for elephants.

Straight-tusked elephants weren’t actually straight-tusked, just straighter than most elephant tusks. They all also had an unusual feature on the head called a parieto-occipital crest, which was a ridge of bone high up on the forehead above the eyes that jutted out. The crest was barely noticeable in young elephants but grew larger as the elephant matured, and researchers think it was the attachment site for massive neck muscles to hold up the animal’s massive head.

One interesting thing about Palaeoloxodon is that some other members of the genus were dwarf species that lived on some Mediterranean islands. Pranav wanted to learn about these and other pygmy elephants of the Mediterranean Islands. Fossil elephants have been found on many islands, including islands in the Mediterranean, in south Asia, and the Channel Islands off the coast of California, although they weren’t all closely related. I think we’ve talked about insular dwarfism before, but let’s go over it again briefly. When a large animal like an elephant becomes restricted to a small environment, like an island, there aren’t enough resources for a full population of full-grown animals. As a result, only smaller individuals get enough food to thrive well enough to reproduce, which means their babies are more likely to be smaller too. Over time this results in a population of animals that are much smaller than their relations who don’t live in a restricted environment.

The opposite of insular dwarfism is island gigantism, by the way. When species that are small ordinarily, like pigeons, colonize an island where there are plenty of resources and very few or no predators, they evolve into much larger animals, like dodos.

Insular dwarfism isn’t just about mammals. Palaeontologists have identified dwarf species of dinosaur too, including a pocket-sized sauropod. Okay, maybe not pocket-sized since they still grew nearly 20 feet long, or 6 meters, but since their mainland relations could grow 100 feet long, or 30 meters, that’s a big difference.

Anyway, back to dwarf elephants. It’s so easy to get distracted by all this neat information. The elephants that lived in the Mediterranean islands were mostly straight-tusked elephants, although at least one was a type of mammoth. During the Pleistocene, when a lot of the world’s water was frozen in enormous glaciers, the sea levels were much lower. This exposed a lot more land, and of course animals lived on that land. Then, during the interglacial periods when much of the ice melted and sea levels rose, animals moved to higher ground and eventually some were cut off from the mainland and lived on islands. All of these species that survived exhibited insular dwarfism. It’s helpful to remember that the islands we’re talking about are mostly pretty big. I mean, they’re not the size of Gilligan’s Island. People live on many of these islands today and there are cities and towns and farms and national parks and so forth. The island of Crete, for instance, which is a part of Greece, is 3,260 square miles in size, or 8,450 square km.

One dwarf elephant that once lived on Crete may have only grown 3.7 feet tall at the shoulder, or 1.13 meters. That was the mammoth relation, but a species of Palaeoloxodon also lived on Crete, although not necessarily at the same time as the dwarf mammoth. As the sea levels rose and fell over the centuries, different species of elephant and other animals ended up living on the islands at different times.

We don’t know a whole lot about these dwarf elephants, unfortunately, since we don’t have a lot of remains. Mostly we have teeth, which do tell a lot about the elephant but not everything. But we do know roughly when the various species finally went extinct, and you will not be surprised to learn that these dates often coincide with human arrival on the islands. The Tilos Island elephant probably didn’t go extinct until 6,000 years ago. That’s well into the modern era, and humans lived or at least hunted on the island starting around 10,000 years ago. If you are Greek, your ancestors may have hunted Tilos Island dwarf elephants. It grew up to around 5 feet 3 inches tall, or 1.6 meters, which coincidentally is my height.

Many historians think that the bones and fossils of dwarf elephants may have led to the legend of the cyclops in ancient Greece. The skull of an elephant has a big opening in the front for the nasal passages, with relatively small eye sockets on the sides of the skull. If you’re not familiar with living elephants and you see an elephant skull, it really does look like an enormous human skull with one eye socket in the middle of the forehead.

All elephants live in small family groups that consist of a leader, called the matriarch, who is usually the oldest female in the group, and her close relations and their babies, usually her daughters and grandchildren. When a young male elephant grows up, he leaves his family group, but daughters usually stay.

Although elephants live in these small groups, they’re social animals. The family groups interact with each other when they meet, and they may meet up purposefully just to say hi. A family with a lot of babies may meet up with another family for help taking care of the young ones. When a member of the group is in estrus, meaning she can get pregnant, local males will join the group and try to get her attention. But although the males don’t spend all their time with family groups, they make friends with other males and sometimes form small bachelor groups of their own led by an older male. The older male not only teaches the younger ones how to find food and react to danger, he keeps them from running wild and acting up. During the 1990s, a nature reserve in South Africa introduced a lot of young males that were orphaned and had no family–but without an older male to keep them in line, they went on a rampage and killed 36 rhinoceroses. Finally the park introduced an older male and he put a stop to all that. The young elephants straightened up and left the rhinos alone.

Females usually come into estrus during the rainy season, which is in the second half of the year in Asia and parts of Africa. During this time, mature males may enter a condition called musth for at least some of the time. During musth a male is more aggressive and struts around showing off. It’s easy to tell when a bull elephant is in musth because a gland on each side of his face releases fluid that makes his cheeks wet. Females prefer to mate with males in musth, and usually in a group of males only the most dominant male will be in musth.

Elephants these days are all threatened by poaching, especially for their tusks. Elephant tusks are known as ivory, and ivory sales are banned throughout most of the world. Unfortunately, people still kill elephants to sell the ivory on the black market. Elephants are also threatened by habitat loss, since they need a whole lot of land to find enough to eat and people want that land for their domestic animals or crops.

I could go on and on about elephants for hours. There’s so much to learn about them that it’s just not possible to fit into one podcast episode. I haven’t even touched on their intelligence, their use as working animals in Asia and other parts of the world, and many other interesting things. But we’ll finish with this interesting fact: elephants are afraid of bees, so farmers can keep elephants from eating their crops by making a fence out of bee hives.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 123: Linnaeus’s mystery animals

Carolus Linnaeus was a botanist who worked out modern taxonomy and binomial nomenclature, but there are two mystery animals associated with his work. Let’s find out about them!

Rembrandt sketched this elephant whose skeleton is now the type specimen of the Asian elephant:

Linnaeus’s original entry about Furia infernalis:

Further reading:

Ewen Callaway, “Linnaeus’s Asian elephant was wrong species

Karl Shuker, “Linnaeus’s Hellish Fury Worm – The History (and Mystery) of a Non-Existent Micro-Assassin

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn a little something about binomial nomenclature, which is the system for giving organisms scientific names. Then we’ll learn about a couple of mystery animals associated with the guy who invented binomial nomenclature.

That guy was Carlolus Linnaeus, a Swedish botanist who lived in the 18th century. Botany is the study of plants. If you’ve ever tried to figure out what a particular plant is called, you can understand how frustrating it must have been for botanists back then. The same plant can have dozens of common names depending on who you ask.

When I was a kid, the local name for a common plant with edible leaves that tasted deliciously tart was rabbit grass. I’ve never heard anyone anywhere else call it rabbit grass. Maybe you know it as sourgrass or false shamrock or wood sorrel.

There are over a hundred species of that plant throughout the world in the genus Oxalis, so it’s also sometimes just called oxalis. The species that’s most common in East Tennessee where I grew up is Oxalis dellenii, but all species look pretty much the same unless you get down on your stomach and really study the leaves and the flower petals and the stems. So if you were a botanist wanting to talk to another botanist about Oxalis dellenii back in the early 18th century, you couldn’t call it Oxalis dellennii. Not yet. You’d have to say, hey, do you know what rabbit grass is? And the other botanist would say, why no, I have never heard of this no doubt rare and astounding plant; and you’d produce a pot full of this pretty little weed that will grow just about anywhere, and the other botanist would look at it and say, “Oh. You mean sourgrass.” But imagine if you weren’t right by the other botanist and didn’t have the plant to show them. You’d have to draw it and label the drawing and write a paragraph describing it, just so the other botanist would have a clue about which plant you were discussing. Nowadays, all you have to do is say, “Hey, are you familiar with Oxalis dellenii?” and the other botanist will say, “Ah yes, although I myself believe it is the same as Oxalis stricta and that the differences some botanists insist on are not significant.” And then you’d fight. But at least you’d know what plant you were both fighting about.

Before Linnaeus worked out his system, botanists and other scientists tried various different ways of describing plants and animals so that other scientists knew what was being discussed. They gave each plant or animal a name, usually in Latin, that described it as closely as possible. But because the descriptions sometimes had to be really elaborate to indicate differences between closely related species, the names got unwieldy—sometimes nine or ten words long.

Carl Linnaeus sorted this out first by sorting out taxonomy, or how living creatures are related to each other. It seems pretty obvious to us now that a cat and a lion are related in some way, but back in the olden days no one was certain if that was the case and if so, how closely related they were. It’s taken hundreds of years of intensive study by thousands upon thousands of scientists and dedicated amateurs to get where we are today, not to mention lots of technological advances. But Linnaeus was the first to really attempt to codify different types of animals and other organisms depending on how closely they appeared to be related, a practice called taxonomy.

Linnaeus’s system is beautifully simple. Each organism receives a generic name, which indicates what genus it’s in, and a specific name, which indicates the species. This conveys a whole lot of information in just two words. A zoologist who hears the name Stenella longirostris will know that it belongs to the genus Stenella, which means it’s a type of dolphin, which means it’s in the family delphinidae. If they’re familiar with dolphins they’ll also know they’re talking about the spinner dolphin, and in this case they can even get an idea of what it looks like, since the specific name longirostris means ‘long beak.’ To make things even clearer, a subspecies name can be tagged on the end, so Stenella longirostris centroamericana is a subspecies of spinner dolphin that—you guessed it—lives in the ocean around Central America.

Carl Linnaeus was a young man when he started working out his classification system. He was only 25 when he traveled to Lapland on a scientific expedition to find new plants and describe them for science. This was in 1732 so travel was quite difficult. Linnaeus traveled on horseback and on foot, which as you can imagine took a long time and gave him lots of time to think. Within three years he had worked out the system we still use today.

You know what else Linnaeus invented? The index card. He needed index cards to keep track of all the animals and plants he and other scientists named using his binomial nomenclature system.

Linnaeus named a whole lot of plants and animals himself—something like ten thousand of them during his lifetime. And naturally enough, some mistakes crept in that have since been corrected. But a couple of his mistakes have led to mysteries, and those are the ones we’re going to look at today.

In 1753 Linnaeus got to examine a fetal elephant preserved in a jar of alcohol. Back then hardly anyone outside of Asia and Africa had seen an elephant, so Linnaeus was enormously excited about it and wrote to a friend that the specimen was as rare as a diamond.

Linnaeus described the species and named it Elephas maximus, also known as the Asian elephant today. But from records that still survive, the specimen was marked as having come from Africa. A Dutch pharmacist and collector had acquired the specimen around 1736, and after he died it was sold to King Adolf Frederick of Sweden, who let Linnaeus examine it. The auction catalog where it was listed for sale indicates that it was from Africa, but in his official description of the elephant Linnaeus wrote that it was from Ceylon, which is now called Sri Lanka, which is in Asia.

So ever since there’s been a mystery as to whether the elephant specimen was actually an Asian elephant or an African elephant, and if Linnaeus even knew that there were elephants in Africa. Because the specimen is of a fetal elephant—that is, a baby that died before it was fully developed, probably when its mother was killed while she was pregnant—it’s hard to tell just by looking if the specimen is an African or Asian elephant. We do still have the specimen, fortunately, which is held in the Swedish Natural History Museum’s collection.

A mammal expert at the London Natural History Museum, named Anthea Gentry, got curious about the specimen in 1999, when she saw it on a trip to Sweden. Gentry’s husband was a paleontologist who specialized in mammals, and later she showed him a photograph of the specimen and asked what he thought. He said he was pretty sure it was an African elephant, not an Asian elephant. Gentry got permission to do DNA testing on the specimen, but since it had been in alcohol for so long, not even the most advanced technology and the world’s most experienced expert in ancient DNA could get a usable genetic sequence from the tissue.

The world’s most experienced expert in ancient DNA was Tom Gilbert of the University of Copenhagen in Denmark. He did his best and failed, but he couldn’t forget about the little mystery elephant. In 2009 he got an idea for extracting genetic material from the specimen in a new way that might yield results. It took years, but he and his team got it to work. In 2012 the mystery was finally solved. Linnaeus’s little elephant was actually an African elephant.

But that’s not the end of the story. When a scientist describes a new species and gives it its scientific name, the first specimen described is known as the type specimen. Linnaeus’s elephant was the type specimen of the Asian elephant—but since it was proven to be an African elephant, it couldn’t continue to be the type specimen of the Asian elephant. But that meant that there was no official type specimen of the Asian elephant. They needed a specimen that was still available and that had been described by someone who had examined it scientifically.

When an animal is described officially, it’s a formal process. The International Commission on Zoological Nomenclature decides whether a suggested name is acceptable and makes decisions on type specimens and taxonomy. So researchers connected with the Commission started digging around for a new type specimen, preferably one from Linnaeus’s time or earlier.

A type specimen isn’t always a whole animal. A lot of times it’s just a little piece of a skeleton or a partial fossil, although the more complete a specimen is, the better. Linnaeus had described a partial elephant tooth at some point which was still available in a Swedish museum, and taxonomists were considering using that as a type specimen when they got an email from a paleontologist who specialized in elephants. He sent a copy of a travel journal from an amateur naturalist named John Ray, who had visited Florence in 1664 and wrote his observations of an elephant skeleton and skin on display in the duke’s palace.

And, it turned out, the elephant skeleton John Ray had described was in the collection of a museum in Florence. And it was definitely the skeleton of an Asian elephant—in fact, we even have what amounts to a photograph of the elephant when it was alive, because none other than the artist Rembrandt sketched it. So that skeleton was designated as the type specimen of the Asian elephant and all is well.

That brings us to the other mystery associated with Linnaeus, and this one is a lot less cute than a misidentified baby elephant. But before I tell you what the mystery animal is, let me tell you something that happened to Linnaeus before he’d even come up with his system of nomenclature. This happened in 1728, when Linnaeus was a broke college student staying with a professor and spending all his free time collecting botanical specimens in the marshes.

One day Linnaeus was searching for plants he didn’t already have specimens of when something stung him on the neck. Since he was wading around in a marsh, this was not really that unusual. But this wasn’t the usual insect sting or midge bite. Before long Linnaeus’s neck was painfully swollen, and soon one of his arms had swollen up too.

These days we’d recognize this as an allergic reaction, but back in 1728 they didn’t know what allergies were. By the time Linnaeus got home, he was in such bad shape that the doctor they called worried he wouldn’t survive.

Fortunately for Linnaeus and for science and humanity in general, he survived and went on to invent his naming system only eight years later. Some thirty years after he almost died, he published the tenth edition of his book, Systema Naturae, and included a formal description of the animal that had almost killed him. He named it the fury worm, Furia infernalis.

But there was no type specimen of a fury worm. Linnaeus hadn’t seen the one he believed had bitten him, and the only one anyone had shown him was a tiny worm so dried up and old that he couldn’t see any details. But he knew the fury worm existed because it had bitten him, and anyway everyone knew it was a real animal.

The fury worm was supposed to be tiny and slender, so small that it could be picked up by the wind and blown to other places. If it landed on a person or an animal it would immediately bite them with its sharp mouthparts, breaking the skin, then burrow into the flesh through the wound. It would dig in so quickly and so deeply that it was impossible to find, and even if you did find it, it was impossible to get out because of the backward-pointing bristles on its tail that kept it anchored in place. A person or animal bitten by the worm was likely to die within a day, sometimes within half an hour, unless a poultice of cheese or curds was applied to the bite.

Fortunately for most of the world, this horrible worm only lived in swampy areas in northern Sweden and Finland, Russia, and a few other nearby areas. In one year, 1823, some 5,000 reindeer died from fury worm attacks, and the export of reindeer furs was banned so the worm wouldn’t spread.

But. Where. Are. The. Worms??? And why would a parasitic worm kill its host so quickly? A parasite depends on its host staying alive for enough time that the parasite can benefit from whatever it’s getting from the host, whether that’s nutrients or a protected place to develop into its next life stage. This isn’t going to happen in half an hour.

So we have all this anecdotal evidence of the fury worm’s existence, even from such noted a scientist as Linnaeus himself, but no worms. And the symptoms reported from fury worm attacks varied quite a lot from patient to patient.

Doubts about the fury worm’s existence were already common in the 19th century, and even back in the late 18th century Linnaeus started to have doubts. And as technology and scientific knowledge improved, the fury worm started to look less and less like a real animal and more and more like an explanation for things people had once not understood—like allergies, infection, and bacteria. The death of 5,000 reindeer in 1823 was finally traced to a disease called neurocysticercosis [neuro-cyst-iser-kosis], which is actually caused by a parasite, but not a fury worm. It’s caused by tapeworm larvae that only kill its host after the larvae have matured and are ready to infect a new animal, which happens when something eats the meat of the animal that has died.

So was the fury worm ever a real animal? Almost certainly not. I tried to find out if people are still reporting fury worm bites in northern Sweden and Finland, but I didn’t come up with anything. On the other hand, I did check and it doesn’t look like there’s a band named Furia infernalis, so if you were trying to think of a really cool name for your band, I got you.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!