Episode 215: The Cutest Invertebrates

Thanks to Lorenzo and Page for suggestions used in this week’s episode, and a belated thanks to Ethan for last week’s episode! Let’s learn about some of the cutest invertebrates out there!

Further reading:

Photosynthesis-like process found in insects

Mystery of the Venezuelan Poodle Moth

Further viewing:

Dr. Arthur Anker’s photos from his Venezuela trip, including the poodle moth

The pea aphid, red morph and regular green

So many ladybugs:

The sea bunny is a real animal, but it’s not a real bunny:

A larval sea bunny is SO TINY that fingertip looks like it’s the size of a BUILDING:

The bobtail squid not hiding (left) and hiding (right):

The bobtail squid is SO CUTE I MIGHT DIE:

The Venezuelan poodle moth:

Not a Venezuelan poodle moth–it’s a female muslin moth from Eurasia:

Not a Venezuelan poodle moth–it’s a silkworm moth from Asia:

The dot-lined white moth:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week I promised we’d cover a cute, happy animal to make up for last week’s extinction event episode, but instead of mammals let’s look at some cute invertebrates! One of them is even a mystery animal. Thanks to Page and Lorenzo for suggesting two of the animals we’re going to cover today!

We’ll start with Lorenzo’s suggestion, the pea aphid. Years and years ago I spent a slow day at work making a list of cute foods with a coworker, and peas were at the top of the list. Blueberries were second and I don’t remember the rest of the list. Generally, cuteness depended on how small the food was and how round. Aphids are really small and peas are round, so the pea aphid has to be adorable.

The pea aphid, however, is not round. It’s shaped sort of like a tiny pale-green teardrop with long legs, long antennae, and teeny black dots for eyes. It’s actually kind of big for an aphid, not that that’s saying much since it only grows 4 mm long at most. It’s called the pea aphid because it likes to live on pea plants, although it’s also happy on plants related to peas, such as beans, clover, and alfalfa. Cute as it is, farmers and gardeners do not like the pea aphid because it eats the sap of the plants it lives on, which can weaken the plant and can spread plant diseases.

During most of the year, all pea aphids are females. Each adult produces eggs that don’t need to be fertilized to hatch, but instead of laying her eggs like most insects, they develop inside her and she gives birth to live babies, all of them female. An aphid can have up to 12 babies a day, called nymphs, and the nymphs grow up in about a week or a little longer. Then they too start having babies. Even though lots of other insects and other animals eat aphids, as you can see, they will always be numerous.

As the summer turns to fall and the days become shorter, some of the baby aphids are born with wings. Some are also born male, and sometimes the males also have wings, although they might not have mouths. These males and winged females mate and the females fly off to lay their eggs on clover and alfalfa plants, assuming they aren’t already on clover or alfalfa plants. The eggs don’t hatch until spring, and all the resulting nymphs are female.

Sometimes winged females are born if the plants where the aphids live get too crowded. The winged females can fly away and find new plants.

If you’ve ever had a garden, you’re probably familiar with aphids. They spend most of the time on the undersides of leaves, drinking sap through specialized mouthparts called stylets. You may also have noticed that when you try to smush the aphids, all of them immediately drop to the ground. This protects them not just from being smooshed by a gardener’s thumb, but from being eaten along with the leaves when a deer or other animal browses on the plants where they live.

Sometimes, instead of being leaf green, pea aphids are a pale reddish color. This is called the red morph. Red morph pea aphids are more likely to live on certain plants while the ordinary green pea aphids are more likely to live on others, although many times you can find both varieties on a single plant.

The red coloration of red morph pea aphids is due to larger quantities of a chemical called carotenoid [kerOTenoid] in its body. All pea aphids contain carotenoids, though, and it’s not just used for coloration. Research suggests that the carotenoids absorb sunlight and produce energy that the aphid can use. It’s a limited form of photosynthesis—you know, that thing that only plants do.

Not only that, the pea aphid produces the carotenoids in its body. Every other animal that needs carotenoids absorbs them from plants it eats, with the possible exception of a type of mite. The genetic sequence that allows the pea aphid to make its own carotenoids originally came from fungi. Somehow the aphid captured the genetic material from fungi, probably after eating it, and passed those genes down to its descendants. This is called lateral gene transfer and scientists aren’t sure exactly how it works or how common it is.

Pea aphids also contain beneficial bacteria that produce nutrients it needs that it doesn’t get from the sap it eats. The aphids can’t live without the bacteria, and the bacteria can’t survive outside of the aphids.

Even though the pea aphid is really common just about everywhere these days, it’s actually an invasive species in most places. It’s native to temperate parts of Eurasia but has spread to the rest of the world on cultivated plants. For small infestations of aphids, some people release certain species of ladybugs into their gardens, because many ladybugs love eating aphids.

Ladybugs, of course, are another cute invertebrate, specifically a family of beetles. They’re also small and round, although not as small as aphids. A typical ladybug grows about 10 mm long at most. Depending on the species, a ladybug can be red, orange, yellow, or brown, usually with black spots but sometimes with black stripes, or it may be mostly black with red or yellow spots. Most eat tiny insects and other animals, but some species eat plant material.

The ladybug’s bright coloring warns birds and other predators that it contains a toxin that makes it taste nasty. This even affects humans. I mean, obviously don’t eat ladybugs, but sometimes if there are ladybugs on grapes used to make wine, and the ladybugs end up crushed along with the grapes in a wine press, the whole batch of wine will end up tasting bad. It’s called ladybird taint so winemakers try to make sure any ladybugs are removed from the grapes before they’re crushed.

In many cultures around the world, ladybugs are supposed to bring good luck. In some places, if you see a ladybug you should make a wish. We’ve talked about ladybugs before, most recently in episode 203, so let’s move on to our next cute invertebrate.

This one lives in the ocean. It’s called the sea bunny or sea rabbit, a type of nudribranch [noodi-bronk] that lives along the coastline of the Indian Ocean, especially in tropical waters. Nudibranchs are a type of mollusk that are sometimes called sea slugs. Many are brightly colored with beautiful patterns. Compared to some, the sea bunny is a little on the plain side. It’s white, yellow, or rarely green, with tiny brown or black speckles. It looks fuzzy because it’s covered in little protuberances that it uses to sense the world around it, as well as longer, thinner fibers called spicules. It also has two larger black-tipped protuberances that look for all the world like little bunny ears, although they’re actually chemoreceptors called rhinophores. It really is amazing how much the sea bunny actually resembles a little white bunny with dark speckles, which would make it cute right there, because bunnies are cute, but it’s also really small. It barely grows an inch long, or 2.5 cm.

Like other nudibranchs, the sea bunny is a hermaphrodite, which means it produces both eggs and sperm, although it can’t fertilize its own eggs. When it finds a potential mate, they both perform a little courtship dance to decide if they like each other. After mating, both lay strings of eggs in a spiral pattern. The eggs hatch into larvae that are free-swimming, although the adults crawl along the ocean floor looking for small animals to eat. Some nudibranch larvae have small coiled shells like snails, which they shed when they metamorphose into an adult, but the sea bunny hatches into a teeny-tiny miniature sea bunny.

Cute as it is, don’t pet a sea bunny! It’s toxic! One of the things that sea bunnies especially like to eat are sponges, and many sponges contain toxins. The sea bunny absorbs these toxins to protect it from predators. Even its eggs are toxic.

Next we’ll talk about another intensely cute marine animal, the bobtail squid. It’s only a few inches long, or up to 8 cm at most, with a rounded mantle and short little arms. Small and round, the hallmarks of cuteness. It’s also sometimes called the dumpling squid, which is extra cute and potentially delicious. Basically, it’s no longer than your thumb and smaller around than a golf ball.

The bobtail squid lives along the coast of the Pacific Ocean and parts of the Atlantic and Indian oceans, and it’s not just one species. It’s an entire order containing around 70 species. The oceans are full of adorable little squids.

The bobtail squid has a symbiotic relationship with a type of bacteria, much like the pea aphid and its beneficial bacteria, but in the bobtail squid’s case, the bacteria don’t provide nutrients, they provide light. The bacteria are bioluminescent and help the squid hide from predators. You may be thinking, “Wait a minute, how does it help the squid hide to be lit up from within like a tiny squid-shaped lamp?” but that just proves that you’re a land animal and not a water animal. If you’re a big fish on the hunt for yummy bobtail squid to eat, you’re probably hiding in deep water where the squid can’t see you in the darkness, looking up for the telltale shadowy outline of a squid against the surface of the water. Day or night, the water’s surface is much brighter than the water underneath it because it’s reflecting sun, moon, or starlight, but if the squid is glowing faintly, instead of showing up as a dark shape against the brighter surface, it blends in. The light only shines downward and the squid adjusts it to be brighter or dimmer to match the amount of light shining on the water.

The bobtail squid is mostly nocturnal and will hide in the sand during the day or if it feels threatened, using its arms to pull sand over its body. All squids have large eyes, but the bobtail squid’s eyes are especially large in comparison to its small body, which makes it even cuter. It eats small animals and especially likes shrimp. It can also change colors to blend in with its surroundings and communicate with other squid.

Let’s finish with Page’s suggestion, the Venezuelan poodle moth. I was going to start the episode with this one because it’s so fuzzy and cute, but when I started research I realized that there’s a mystery associated with this insect. I like to end episodes with a mystery if I can. I want to keep everyone guessing.

In late 2008 and early 2009, a zoologist named Arthur Anker was in southeastern Venezuela in South America, and photographed a fuzzy white moth he found. He didn’t know what it was so he labeled it as a poodle moth when he posted the picture online. I’ve put a link in the show notes to all the photos he posted from his trip, including the poodle moth, and they’re absolutely gorgeous. He has a lot of moth photos but the poodle moth was the one that went viral in 2012.

There are other cute, fuzzy moths that sometimes get called poodle moths, such as the silkworm moth. Silkworm moths are native to Asia and are one of the few domesticated insects in the world, together with the honeybee. If you’ve ever had a silk shirt, that silk probably came from the domestic silkworm, which has been raised for at least 5,000 years in China and other places.

Silk comes from the cocoons the silkworm moth larva spins. Each cocoon can contain up to a mile of silk fiber, or 1.6 km, in one long, thin thread. The problem is, to harvest the silk properly, you have to kill the silkworm inside, usually by throwing the cocoon into boiling water. If the silkworm is allowed to mature, it releases enzymes to break down the silk so it can get out of the cocoon, and that weakens any fabric made from the silk. You can get silk made from cocoons of silkworms that weren’t killed, though, sometimes collected from wild moths.

Domestic silkworm moths have been bred so that they don’t produce pigments, since that means the silk won’t have any pigments either and can be dyed more easily. Domestic silkworms differ from their wild relatives in other ways too. Their cocoons are bigger, they no longer have any fear of predators, and they can no longer fly because their wings are too small for their bodies. The moth is covered in short white hairs that make it look fuzzy and cute, with black eyes. The larvae eat the leaves of the white mulberry tree or related trees, but adult moths don’t eat at all and don’t even have functional mouths.

So the silkworm moth is definitely a cute invertebrate, but what’s going on with the Venezuelan poodle moth? What’s the big mystery?

Well, no one knows what species it is. Some people have even accused Dr. Anker of making it up completely. Considering how many thousands of moths live in Venezuela, and how many new moth species are discovered every year, it’s likely that the poodle moth is new to science. The trouble is that no one has seen it since. Anker wasn’t on a collecting trip and he didn’t realize the poodle moth might be something new to science, so he just took a picture of it and left it alone.

The best guess by entomologists who’ve examined the picture is that the poodle moth is a member of the genus Artace, possibly a close relation of the dot-lined white moth. The dot-lined white moth is white and fuzzy with tiny black dots on its wings. It mostly lives in the southeastern United States but there have been sightings in Colombia, which is a country in South America just west of Venezuela.

There are other fuzzy white moths in the world that are known to science, including the muslin moth that’s equally small and cute. Female muslin moths are white and fuzzy with some gray or brownish-gray speckles on the wings, while male muslin moths are dark gray and fuzzy with black speckles on the wings. They live mostly in Eurasia.

Hopefully soon a scientist can find and capture a Venezuelan poodle moth and solve the mystery once and for all. Hopefully that scientist will also take lots of pictures so we can verify that it’s just as cute as it looks in its first picture.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

 

Episode 214: Armored Fish and the Late Devonian Mass Extinctions

It’s the next in our short series of episodes about mass extinctions! Don’t worry, it won’t be boring, because we’re going to learn about a lot of weird ancient fish too.

Further reading:

Titanichthys: Devonian-Period Armored Fish was Suspension Feeder

Behind the Scenes: How Fungi Make Nutrients Available to the World

Dunkleosteus was a beeg feesh with sharp jaw plates that acted as teeth:

Titanichthys was also a beeg feesh, but it wouldn’t have eaten you (picture from the Sci-News article linked above):

Pteraspis: NOSE HORN FISH:

Cephalaspis had no jaws so it couldn’t chomp you:

Bothriolepis kind of looked like a fish in a mech suit:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Here’s the second in our small series of episodes about extinction events, this one the Late Devonian extinction. We’ll also learn about some weird and amazing fish that lived during this time, and a surprising fact about ancient trees.

The Devonian period is often called the Age of Fish because of the diversity of fish lineages that arose during that time. It lasted from roughly 420 million years ago to 359 million years ago. During the Devonian, much of the earth’s landmasses were smushed together into the supercontinent Gondwana, which was mostly in the southern hemisphere, and the smaller continents of Siberia and Laurussia in the northern hemisphere. The world was tropically warm, ocean levels were high, and almost all animal life lived in the oceans. Some animals had adapted to living on land at least part of the time, though, and plants had spread across the continents. The first insects had just evolved too.

Shallow areas of the ocean were home to animals that had survived the late Ordovician extinctions. There were lots of brachiopods, bivalves, crinoids, trilobites, and corals. Eurypterids were still thriving and ammonites lived in deeper water. But while all these animals are interesting, we’re mainly here for the fish.

The fish of the Devonian were very different from modern fish. Most had armor. Way back in episode 33 we talked about the enormous and terrifying dunkleosteus, which lived in the late Devonian. It might have grown up to 33 feet long, or 10 meters. Since we still don’t have any complete specimens, just head plates and jaws, that’s an estimate of its full size. However long it grew, it was definitely big and could have chomped a human in half without any trouble at all. It’s probably a good thing mammals hadn’t evolved yet. Instead of teeth, dunkleosteus had jaw plates with sharp edges and fanglike projections that acted as teeth.

Another huge fish from the Devonian is called titanichthys, which might have grown as long as dunkleosteus or even bigger, but which was probably not an apex predator. Its jaw plates were small and blunt instead of sharp, which suggests it wasn’t biting big things. It might not have been biting anything. Some researchers think titanichthys might have been the earliest known filter feeder, filtering small animals from the water by some mechanism we don’t know about yet. Filter feeders use all sorts of adaptations to separate tiny food from water, from gill rakers to baleen plates to teeth that fit together closely, and many others. A study published in 2020 compared the jaw mechanisms of modern giant filter feeders (baleen whales, manta rays, whale sharks, and basking sharks) to the jaw plates of titanichthys, as well as the jaw plates of other placoderms that were probably predators. Titanichthys’s jaws are much more similar to those of modern filter feeders, which it isn’t related to at all, than to fish that lived at the same time as it did and which it was related to.

Titanichthys and dunkleosteus were both placoderms, a class of armored fish. That wasn’t unusual, actually. In the Devonian, most fish ended up evolving armored plates or thick scales. What was unusual in placoderms were their jaws. Specifically, the fact that they had jaws at all. Placoderms were probably the first fish to evolve jaws.

Pteraspis, for instance, was an armored fish that wasn’t a placoderm. It had no fins at all but it was a good swimmer, streamlined and possibly a predator, although it might have been a plankton feeder at the surface of the ocean. It grew about 8 inches long, or 20 cm. It used its tail to propel itself through the water, and instead of fins it had spines growing from its armor that helped keep it stable. A spine on its back, near the rear of the body armor, acted as a dorsal fin, while spines on the sides of its armor, just over its gills, acted like pectoral fins. It also had some smaller spines along its back and a big spike on its nose. Probably not a good fish to swallow whole.

Cephalaspis lived in the early Devonian, around 400 million years ago in fresh water. It wasn’t very big, maybe a foot long, or 30 cm. Basically, it would have fit nicely on a dinner plate, but it wouldn’t have looked much like a trout other than its size. It wasn’t a placoderm either although it did have armor. It was probably a bottom feeder and was flattened in shape with a broad, roughly triangular head covered in armor plates. Its eyes were at the top of its head and its mouth was underneath. The rest of its body was thinner and tapered to a thin tail. It probably used its head to dig around in the mud and sand to find small invertebrates, which it slurped up and swallowed whole because it had no jaws to bite with.

In comparison, the placoderm bothriolepis was about the same size as cephalaspis and was also a bottom feeder in fresh water, but that’s where the resemblance ends. It lived later, around 375 million years ago, and probably ate decomposing plant material. Like other placoderms, it had armored plates on its head and the front part of its body. The armor at the front of its head had a little opening for its eyes, which were really close together. Its tail wasn’t armored and was probably only covered in skin without scales. Bothriolepis also had long armored pectoral fins that look sort of like spikes. Its head armor was so heavy that it probably used these spike-like fins to help push itself off the bottom. The pectoral fins of some bothriolepis species had an elbow-like joint as well as a joint at the top of the fin, making them more arm-like than fin-like. Basically, bothriolepis looks like a fish wearing a mech suit that doesn’t cover its tail. It looks like an armored box with a fish tail and spikes for arms. It looks weird.

Bothriolepis was really common throughout the world with lots of species known. The largest was B. rex, which grew up to 5 1/2 feet long, or 1.7 meters, and which had thicker armor than other placoderms. Researchers think its heavy armor would have kept it from being swept to the surface by currents. Most bothriolepis species were much smaller, though.

Because it was so common, we know quite a bit about bothriolepis. In addition to the fossilized armor plates, we have some body impressions and even fossilized internal organs. This is really rare, and the reason it’s happened more than once in bothriolepis is that the internal organs were protected by the armor plates long enough for fine sediment to fill the body before the organs decomposed or were eaten by other animals. We know that the digestive system was simple compared to modern fish but the gut was spiral shaped, which allowed more time for the plant material it ate to stay in the body so more nutrients could be extracted from it. The gills were likewise primitive, and it may have also had a pair of primitive lungs. Yes, lungs! Not all palaeontologists agree that the sacs were actually lungs, but those who do think the fish would have gulped air at the surface like a lungfish. Since most, if not all, bothriolepis species seem to have lived in freshwater, it’s possible it needed lungs to breathe air if the water where it lived was low in oxygen. Some researchers think it might even have been able to use its pectoral fins to move around on land, at least enough to move to a new water source if its home dried up. Because bothriolepis remains are sometimes found in marine environments, some researchers also speculate that it may have migrated from or to the ocean to spawn, and that it used its possible land-walking ability to navigate around obstacles while migrating along rivers.

At least some bothriolepis individuals also had a pair of weird frills at the base of the tail. They might have acted as fins but they might have had something to do with mating, like a male shark’s claspers. It’s not clear if all individuals had them or only some.

Placoderms were the first fish to develop jaws, teeth, and pelvic fins. Pelvic fins were important not just because it made the fish more stable in the water, but because they correspond to hind legs in tetrapods. Here’s something to think about: if pelvic fins hadn’t evolved in fish, would land animals have eventually evolved four legs or would all land animals have just two legs and a tail? Would humans look like mermaids and mermen, or weird seals? Would birds have evolved wings even if it meant they had no feet?

Okay, so, back to the Devonian. There were lots more fish than just the placoderms, of course. Coelacanths, lungfish, and early sharks evolved at this time and are still around, as are ray-finned fish that are the most common fish today.

But maybe with all this talk of weird fish, you’ve forgotten this is an episode about an extinction event. Ocean life in the Devonian was chugging along just fine–but then something happened, something that resulted in the same loss of oxygen in the oceans that caused so many extinctions in the late Ordovician. But no one’s sure what that was.

The extinction event actually took place in several waves millions of years apart. Researchers generally think that the same events that caused the late Ordovician extinction events may have caused the late Devonian extinction events. Toward the end of the Devonian the Earth did appear to go through several rapid temperature changes, and some researchers think the cause of these temperature changes might have been trees.

At the beginning of the Devonian, there were lots of plants on land, but they were all small. You could walk from one side of a continent to another and never encounter a plant taller than knee-high. But plants were evolving rapidly, and before long the first trees appeared. They were related to ferns, club moss, and a type of plant called horsetails, which wouldn’t have looked much like trees to us. The progymnosperms also evolved during this time, and they were ancestors of modern gymnosperms, a group which includes conifers, gingkos, and cycads. Some of these early trees didn’t even have leaves, while some had what looked like fern fronds. Some grew almost 100 feet tall, or 30 meters.

Tall trees need strong roots, and roots loosened the soil and underlying rocks to great depths. This made it more likely that heavy rains would wash soil into the water, potentially causing microbial blooms. All these trees also absorbed enormous quantities of carbon dioxide and released oxygen into the atmosphere. This sounds great, because animals need oxygen to breathe! But as trees spread across the land, growing bigger and taller, they absorbed as much as 90% of the available carbon dioxide, so much that it actually caused the earth to cool enough to cause glaciers to form.

One interesting thing about trees. Trees and other plants contain complex polymers called lignin that harden the cells. Lignin is why trees have bark and wood. Lignin is also really resistant to decay, which is why it takes so long for a fallen tree to rot down into nothing. There are specialized bacteria and fungi that can break down lignin, but most bacteria and fungi can’t affect it at all.

Plants first evolved lignin around 400 million years ago, and early trees contained a lot of it, way more than modern trees have. It took bacteria and fungi a long time to evolve ways to break that lignin down to extract nutrients from it—around 100 million years, in fact. So for 100 million years, whenever a storm knocked over a tree and it died, its trunk just…stayed there forever–or at least for a really long time, becoming more and more buried over the centuries. Lignin isn’t water soluble either, so even trees that fell into a lake didn’t rot, or at least the lignin in the trunks didn’t rot. All those tree trunks were eventually compressed by the weight of the soil above them into coal beds.

Anyway, the peak of this cycle of trees absorbing carbon dioxide and releasing oxygen actually happened in the Carboniferous period, which occurred just after the final wave of the Devonian extinctions. That’s why insects could grow so incredibly large during the Carboniferous, because the atmosphere contained so much oxygen.

But in the build-up to the late Devonian extinction events, there were periods of colder and warmer climate worldwide, possibly caused by trees, possibly by other factors, most likely by a combination of many factors. Glaciers would form and melt rapidly, possibly leading to the same issues that caused the late Ordovician extinction events.

I’ll quote a bit from episode 205 to remind you what scientists think happened in the Ordovician when a whole lot of glaciers suddenly melted:

As the glaciers melted, cold fresh water flowed into the ocean and may have caused deep ocean water to rise to the surface. The deep ocean water brought nutrients with it that then spread across the ocean’s surface, and this would have set off a massive microbial bloom.

Microbial blooms happen when algae or bacteria that feed on certain nutrients suddenly have a whole lot of food, and they reproduce as fast as possible to take advantage of it. The microbes use up oxygen, so much of it that the water can become depleted.

Rivers were also a major source of nutrients flowing into the ocean, as tree roots continued to break up rock and soil, which made its way into the water.

Whatever the cause or causes, the result was that the ocean lost most or all of its oxygen, especially in the deep sea. Oxygen, of course, is what animals breathe. Fish push water over their gills and absorb oxygen from it by a chemical process the same way we absorb oxygen from the air with our lungs. The air contains a lot of other gases in addition to oxygen, but it’s the oxygen we need.

The first wave of extinctions in the Devonian is called the Taghanic Event. A lot of brachiopods and corals went extinct then, among many other animals. About the time life started to rebound from that wave, the Kellwasser Event killed off more brachiopods and corals, a lot of trilobites, and jawless fish. Finally, the biggest and worst wave of all was the Hangenberg Event.

The Hangenberg Event was really bad. Really, really bad. In the late Ordovician extinction event, some researchers think it took three million years for the oceans to recover from their lack of oxygen. In the late Devonian extinction event, it may have taken 15 million years for the oceans to fully recover. Some researchers think that in addition to everything else going on in the world, a nearby star may have gone supernova and damaged the ozone layer that protects the earth, which would have damaged plants and animals that lived on land.

The end result of the late Devonian extinction event was that 97% of all vertebrate species went extinct, especially those that lived in shallow water, and 75% of all animal species. All placoderms went extinct and almost all corals went extinct.

Most people think that oil—you know, the stuff we use to make gasoline and plastic—came from dead dinosaurs, but that’s not the case. A lot of oil actually formed from the animals that died in the Devonian extinction events. Fish and other animals suffocated as the water lost oxygen, and the lack of oxygen at the bottom of the ocean meant that all those bodies that sank into the depths didn’t rot. They were buried by sediment and as the years and then centuries and millennia passed, more and more sediment piled up, causing pressure and heat that transformed the organic remains into a substance called kerogen. Kerogen is still an organic material and if it’s exposed to oxygen it will oxidize and decay, but if it remains deep underground for millions of years the heat and pressure will eventually transform it chemically into hydrocarbons that make up oil. Don’t ask me to explain this in any more detail than that. My mind is still blown about tree trunks not decomposing for 100 million years; there’s really no room left in my brain to wonder about how oil forms.

Anyway, luckily for us, by the time of the late Devonian extinction events, the first land vertebrates had already evolved and they survived. They spread throughout the world and thrived for 110 million years until the next major extinction event, which was so profound it’s called “the great dying” by palaeontologists. We’ll learn about that one in a few months. Next week I promise we’ll have a light, happy episode where nothing goes extinct!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 213: More Honeybees, But Stingless

Thanks to Nicholas for this week’s suggestion! Let’s learn about the Australian stingless bee and its relatives!

Listen to BewilderBeasts if you want more fun, family-friendly animal facts!

Further reading/watching:

Australian Stingless Bees

Women Work to Save Native Bees of Mexico (I really recommend the short video embedded on this page! It’s utterly charming!)

House of the Royal Lady Bee: Maya revive native bees and ancient beekeeping

A Maya beekeeper’s hut and some Central/South American stingless bees (pictures from the last link, above):

Stingless bees build their combs in a spiral shape:

An Australian stingless bee collecting nectar and pollen:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Last year Nicholas emailed me with a correction to episode 183 and a suggestion. In that episode I said that only honeybees make honey, but Nicholas pointed out that the Australian stingless bee also makes honey. In fact, he keeps some of these bees himself! So let’s learn about Tetragonula carbonaria and its close relations, as well as some other interesting bee information!

Stingless bees don’t just live in Australia. Different species live in parts of Australia, Africa, Asia, and Central and South America. Most produce honey, although not very much of it compared to the European honeybee. They don’t sting but some species will bite.

Stingless bees are much smaller than European honeybees. Some look more like a flying ant than a bee unless you look closely. A stingless bee worker only grows around 4 mm long, while a European honeybee worker grows about 15 mm long. Different species have different markings, but Tetragonula carbonaria, which is sometimes called the sugarbag bee, is black all over.

Stingless bees have a lot in common with honeybees, which makes sense because they’re closely related. The stingless bee lives in a social colony with a caste structure of the queen who stays home and lays eggs, male drones that mate with new queens, and infertile female workers. Young worker bees keep the hive clean and take care of the brood, or developing larvae, while older worker bees are the ones who fly out and forage for pollen and nectar. While stingless bees only have one queen laying eggs at any given time, some species will have a few backup queens in case of an emergency. These backup queens don’t produce eggs because they only mate with the drones if the reigning queen dies.

In a few species of stingless bee, there’s actually another caste in addition to the ordinary queen, drone, and worker. It’s the soldier caste. Soldier bee larvae get extra food, and they grow to be larger and stronger than other bees to help them guard the colony, especially the hive entrance. Before the stingless bee soldier castes were discovered, no one realized that any bees ever had soldiers, although some ant and termite species have them.

The stingless bee builds a nest in tree cavities, preferably in the tops of large trees because that keeps the hive warm and protected. It’s a tropical bee so it needs to stay warm. If any insect or other small animal gets into the hive, the bees can’t sting it because as their name implies, they don’t have working stingers. Instead, they swarm the intruder and attempt to smother it with anything they can find, including wax, resin, and mud.

The stingless bee builds honeycombs, but they’re spiral shaped. They’re made from beeswax mixed with resin that the worker bees collect from certain plants. The combs can be yellow like ordinary honeycombs, or they can be black, brown, or reddish. The word honeycomb isn’t actually accurate because it’s not where the bees store honey. The honey is stored in large chambers in the nest called honeypots. The combs are properly called brood combs because they’re used for baby bees. Worker bees fill the cells about three-quarters full of honey and pollen and the queen lays one egg in each cell. The workers then cap the cell. When the egg hatches, the bee larva has plenty of nutritious honey and pollen to eat. Once the larva has metamorphosed into an adult bee, it chews a hole through the cell’s cap and emerges.

If you’re wondering whether you can eat the honey of the sugarbag bee, yes! It’s runnier than ordinary honey but it smells wonderful and according to Nicholas, it has a tangy citrusy flavor. It sounds really good. Stingless bees don’t produce nearly as much honey as European honeybees, though, which makes sense since honeybees have been selectively bred over centuries to produce more honey than the hive could possibly need. The beekeeper takes the extra to eat, but naturally leaves plenty for the hive to live on.

People in Australia only started keeping stingless bees around the early 1980s, but it’s growing more and more popular. Since the bees are native to Australia, they’re much better for the environment than the European honeybee. They’re also incredibly good at pollinating crops, and if the weather’s warm enough, they’ll happily pollinate year round. A lot of people who keep stingless bees don’t even bother to harvest the honey, just use the bees as pollinators and as weird pets.

Before European honeybees became popular all over the world, many cultures kept stingless bees. This includes the ancient Maya, who kept stingless bees for their honey and wax. There was even a god associated with the bees, and the bees themselves were called “royal lady bees.” They look like tiny honeybees with striped abdomens, but their eyes are blue. It’s a forest bee that will pollinate flowers growing at the tops of tall trees as well as low-growing flowers, which is good for the environment and helps the native trees in particular.

Some modern Maya still keep stingless bees, but so few traditional beekeepers are left that the stingless bees in the Yucatan are endangered. Fortunately, a women’s collective in the area has started teaching local women how to keep the bees. The new beekeepers can sell honey on the gourmet market for extra money, and the bees have help competing with introduced European honeybees. It’s also a source of local pride to have royal lady bees around again.

When a stingless bee worker finds flowers producing a lot of nectar, she marks the area with pheromones. Other bees from her nest detect the pheromones and arrive to help harvest all the nectar and pollen. Pheromones are chemicals that correspond to scents, and although humans can’t detect them, bees have a really sensitive sense of smell. Their sense of smell is so good, in fact, that people in Croatia have trained European honeybees to find a particular scent for a surprising purpose.

Croatia is a country near Italy on the Adriatic Sea, and while it’s an independent country now, its independence only came after a whole lot of fighting. During the war, soldiers hid landmines all over the country and now, decades later, no one remembers where they are. There may be as many as 90,000 mines in the country, and they’re still deadly if a person or animal steps on one.

Obviously, Croatia needs to disarm the landmines—but finding them is the hard part. That’s where the bees come in.

The bees in question are ordinary European honeybees. Scientists train the bees by mixing nectar with tiny traces of the chemical signature of TNT. The bees quickly learn to associate TNT with food, and the scientists follow the bees with drones to see where they go.

I learned about these bomb-sniffing bees from a podcast called BewilderBeasts, which I highly recommend. There’s a promo for it at the end of this episode and I’ll put a link in the show notes. BewilderBeasts’s logo and their first episode both feature the bomb-sniffing bees.

Let’s finish with some interesting folklore associated with honeybees. Many bee-keeping cultures across the world have a superstition that you have to tell the bees about important events in the family. In English it’s literally called “telling the bees.” If you don’t, the bees may swarm and leave you. Some cultures especially stress that the bees must be told about the death of the beekeeper, and that they need to be invited to the funeral too or at least given cake or wine from the service afterwards.

This particular superstition ties into the association with bees and honey with the afterlife. In ancient Egypt and many other cultures across Asia and Europe, honey was a funerary gift for the dead, and tombs were sometimes decorated with images of bees and beehives. Honey isn’t just good to eat, it’s been used as a medicine for millennia and as an ingredient in skin cream and other cosmetics, so it has always been valuable. Every single bee-keeping culture in the world—literally every single one—gives religious significance to honey to some degree or another.

Humans all agree: honey is good, bees are good, and bee-keeping is worth the effort.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 212: The River of Giants

Thanks to Pranav for his suggestion! Let’s find out what the river of giants was and what lived there!

Further reading:

King of the River of Giants

Spinosaurus was a swimming dinosaur and it swam in the River of Giants:

A modern bichir, distant relation to the extinct giants that lived in the River of Giants:

Not actually a pancake crocodile:

A model of Aegisuchus and some modern humans:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

A while back, Pranav suggested we do an episode about the river of giants in the Sahara. I had no idea what that was, but it sounded interesting and I put it on the list. I noticed it recently and looked it up, and oh my gosh. It’s amazing! It’s also from a part of the world where it’s really hot, as a break for those of us in the northern hemisphere who are sick of all this cold weather. I hope everyone affected by the recent winter storms is warm and safe or can get that way soon.

The Sahara is a desert in northern Africa, famous for its harsh climate. Pictures of the Sahara show its huge sand dunes that stretch to the horizon. This wasn’t always the case, though. Only about 5,500 years ago, it was a savanna with at least one lake. Lots of animals lived there and some people too. Before that, around 11,000 years ago, it was full of forests, rivers, lakes, and grasslands. Before that, it was desert again. Before that, it was forests and grasslands again. Before that, desert.

The Sahara goes through periodic changes that last around 20,000 years where it’s sometimes wet, sometimes dry, caused by small differences in the Earth’s tilt which changes the direction of the yearly monsoon rains. When the rains reach the Sahara, it becomes green and welcoming. When it doesn’t, it’s a desert. Don’t worry, we only have 15,000 more years to wait until it’s nice to live in again.

This wet-dry-wet pattern has been repeated for somewhere between 7 and 11 million years, possibly longer. Some 100 million years ago, though, the continents were still in the process of breaking up from the supercontinent Gondwana. Africa and South America were still close together, having only separated around 150 million years ago. The northern part of Africa was only a little north of the equator and still mostly attached to what is now Eurasia.

Near the border of what is now Morocco and Algeria, a huge river flowed through lush countryside. The river was home to giant animals, including some dinosaurs. Their fossilized remains are preserved in a rock formation called the Kem Kem beds, which run for at least 155 miles, or 250 km. A team of paleontologists led by Nizar Ibrahim have been working for years to recover fossils there despite the intense heat. The temperature can reach 125 degrees Fahrenheit there, or 52 Celsius, and it’s remote and difficult to navigate.

For a long time researchers were confused that there were so many fossils of large carnivores associated with the river, more than would be present in an ordinary ecosystem. Now they’ve determined that while it looks like the fossils were deposited at roughly the same time from the same parts of the river, they’re actually from animals that lived sometimes millions of years apart and in much different habitats. Bones or even fossils from one area were sometimes exposed and washed into the river along with newly dead river animals. This gives the impression that the river was swarming with every kind of huge predator, but it was probably not quite so dramatic most of the time.

Then again, there were some really fearsome animals living in and around the river in the late Cretaceous. One of the biggest was spinosaurus, which we talked about in episode 170. Spinosaurus could grow more than 50 feet long, or 15 m, and possibly almost 60 feet long, or 18 m. It’s the only dinosaur known that was aquatic, and we only know it was aquatic because of the fossils found in the Kem Kem beds in the last few years.

Another dinosaur that lived around the river is Deltadromeus, with one incomplete specimen found so far. We don’t have its skull, but we know it had long, slender hind legs that suggests it could run fast. It grew an estimated 26 feet long, or 8 meters, including a really long tail. At the moment, scientists aren’t sure what kind of dinosaur Deltadromeus was and what it was related to. Some paleontologists think it was closely related to a theropod dinosaur called Gualicho, which lived in what is now northern Patagonia in South America. Remember that when these dinosaurs were still alive, the land masses we now call Africa and South America had been right in the middle of a supercontinent for hundreds of millions of years, and only started separating around 150 million years ago. Gualicho looked a lot like a pocket-sized Tyrannosaurus rex. It grew up to 23 feet long, or 7 meters, and had teeny arms. Deltadromeus’s arms are more in proportion to the rest of its body, though.

Some of the biggest dinosaurs found in the Kem Kem beds are the shark-toothed dinosaurs, Carcharodontosaurus, nearly as big as Spinosaurus and probably much heavier. It grew up to 40 or 45 feet long, or 12 to almost 14 meters, and probably stood about 12 feet tall, or 3 ½ meters. It had massive teeth that were flattened with serrations along the edges like steak knives. The teeth were some eight inches long, or 20 cm.

Researchers think that Carcharodontosaurus used it massive teeth to inflict huge wounds on its prey, possibly by ambushing it. The prey would run away but Carcharodontosaurus could take its time catching up, following the blood trail and waiting until its prey was too weak from blood loss to fight back. This is different from other big theropod carnivores like T. rex, which had conical teeth to crush bone.

Dinosaurs weren’t the only big animals that lived in and around the River of Giants, of course. Lots of pterosaur fossils have been found around the river, including one species with an estimated wingspan of as much as 23 feet, or 7 meters. There were turtles large and small, a few lizards, early snakes, frogs and salamanders, and of course fish. Oh my goodness, were there fish.

The river was a large one, possibly similar to the Amazon River. In the rainy season, the Amazon can be 30 miles wide, or 48 km, and even in the dry season it’s still two to six miles wide, or 3 to 9 km. The Amazon is home to enormous fish like the arapaima, which can grow up to 10 feet long, or 3 m. Spinosaurus lived in the River of Giants, and that 50-foot swimming dinosaur was eating something. You better bet there were big fish.

The problem is that most of the fish fossils are incomplete, so paleontologists have to estimate how big the fish was. There were lungfish that might have been six and a half feet long, or 2 meters, a type of freshwater coelacanth that could grow 13 feet long, or 4 meters, and a type of primitive polypterid fish that might have been as big as the modern arapaima. Polypterids are still around today, although they only grow a little over three feet long these days, or 100 cm. It’s a long, thin fish with a pair of lungs as well as gills, and like the lungfish it uses its lungs to breathe air when the water where it lives is low in oxygen. It also has a row of small dorsal fins that make its back look like it has little spikes all the way down. It’s a pretty neat-looking fish, in fact. They’re called bichirs and reedfish and still live in parts of Africa, including the Nile River.

There were even sharks in the river of giants, including a type of mackerel shark although we don’t know how big it grew since all we have of it are some teeth. Another was a type of hybodont shark with no modern descendants, although again, we don’t know how big it was.

The biggest fish that lived in the River of Giants, at least that we know of so far, is a type of ray that looked like a sawfish. It’s called Onchopristis numidus and it could probably grow over 26 feet long, or 8 meters. Its snout, or rostrum, was elongated and spiked on both sides with sharp denticles. It was probably also packed with electroreceptors that allowed it to detect prey even in murky water. When it sensed prey, it would whip its head back and forth, hacking the animal to death with the sharp denticles and possibly even cutting it into pieces. Modern sawfish hunt this way, and although Onchopristis isn’t very closely related to sawfish, it looked so similar due to convergent evolution that it probably had very similar habits.

The modern sawfish mostly swallows its prey whole after injuring or killing it with its rostrum, although it will sometimes eat surprisingly large fish for its size, up to a quarter of its own length. A 26-foot long Onchopristis could probably eat fish over five feet long, or 1.5 meters. It wouldn’t have attacked animals much larger than that, though. It wasn’t eating fully grown Spinosauruses, let’s put it that way, although it might have eaten a baby spinosaurus from time to time. Spinosaurus might have eaten Onchopristis, though, although it would have to be pretty fast to avoid getting injured.

But there was one other type of animal in the River of Giants that could have tangled with a fully grown spinosaurus and come out on top. The river was full of various types of crocodylomorphs, some small, some large, some lightly built, some robust. Kemkemia, for instance, might have grown up to 16 feet long, or 5 meters, but it was lightly built. Laganosuchus might have grown 20 feet long, or 6 meters, but while it was robust, it wasn’t very strong or fast. It’s sometimes called the pancake crocodile because its jaws were long, wide, and flattened like long pancakes. Unlike most pancakes, though, its jaws were lined with lots and lots of small teeth that fit together so closely that when it closed its mouth, the teeth formed a cage that not even the tiniest fish could escape. Researchers think it lay on the bottom of the river with its jaws open, and when a fish swam too close, it snapped it jaws closed and gulped down the fish. But obviously, the pancake crocodile did not worry spinosaurus in the least.

Aegisuchus, on the other hand, was simply enormous. We don’t know exactly how big it is and estimates vary widely, but it probably grew nearly 50 feet long, or 15 meters. It might have been much longer, possibly up to 72 feet long, or 22 meters. It’s sometimes called the shield crocodile because of the shape of its skull.

We don’t have a complete specimen of the shield crocodile, just part of one skull, but that skull is weird. It has a circular raised portion called a boss made of rough bone, and the bone around it shows channels for a number of blood vessels. This is unique among all the crocodilians known, living and extinct, and researchers aren’t sure what it means. One suggestion is that the boss was covered with a sheath that was brightly colored during the mating season, or maybe its shape alone attracted a mate. Modern crocodilians raise their heads up out of the water during mating displays.

The shield crocodile had a flattened head other than this boss, and its eyes may have pointed upward instead of forward. If so, it might have rested on the bottom of the river, looking upward to spot anything that passed overhead. Then again, it might have floated just under the surface of the water near shore, looking up to spot any dinosaurs or other land animals that came down to drink. Watch out, dinosaur! There’s a crocodilian!

Could the shield crocodile really have taken down a fully grown spinosaurus, though? If it was built like modern crocodiles, yes. Spinosaurus was a dinosaur, and dinosaurs had to breathe air. If the shield crocodile hunted like modern crocs, it was some form of ambush predator that could kill large animals by drowning them. You’ve probably seen nature shows where a croc bursts up out of the water, grabs a zebra or something by the nose, and drags it into the water, quick as a blink. The croc can hold its breath for up to an hour, while most land animals have to breathe within a few minutes or die. The shield crocodile and spinosaurus also lived at the same time so undoubtedly would have encountered each other.

Then again, there’s a possibility that the shield crocodile wasn’t actually very fearsome, no matter how big it was. It might have been more lightly built with lots of short teeth like the pancake crocodile’s to trap fish in its broad, flattened snout. Until we have more fossils of Aegisuchus, we can only guess.

Fortunately, palaeontologists are still exploring the Kem Kem beds for more fossils from the river of giants. Hopefully one day soon they’ll find more shield crocodile bones and can answer that all-important question of who would win in a fight, a giant crocodile or a giant swimming dinosaur?

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way and get twice-monthly bonus episodes as well as stickers and things.

Thanks for listening!

Episode 211: The Magnificent Fin Whale

This week let’s venture into the ocean and learn about the fin whale!

Further reading:

The songs of fin whales offer new avenue for seismic studies of the oceanic crust

Fin whales’ big gulp

The fin whale can hold a whole lot of water in its mouth (illustration from the second article linked above):

A fin whale underwater. Look at that massive tail. That’s pure muscle:

A fin whale above water. It’s like a torpedo:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

It’s been too long since we had an episode about whales. Yes, okay, two weeks ago we talked about a couple of newly discovered whales, but I want to really learn about a particular whale. So this week, let’s look at the fin whale.

The fin whale is a baleen whale that’s only a little less enormous than the blue whale. The longest fin whale ever reliably measured was 85 feet long, or just a hair shy of 26 meters, but there are reports of fin whales that are almost 90 feet long, or a bit over 27 meters. An average American school bus is half that length, so a fin whale is as long as two school buses. Even a newborn fin whale calf is enormous, as much as 21 feet long, or 6.5 meters. Females are on average larger than males.

It’s a long, slender whale that’s sometimes called “the greyhound of the sea,” because it’s also really fast. It can swim up to 29 mph, or 46 km/hour, and possibly faster. If that doesn’t sound too fast, consider that the Olympic gold-medal swimmer Michael Phelps topped out at about 4.7 miles per hour, or 7.6 km/h.

Like other baleen whales, the fin whale has a pair of blowholes instead of just one. On its underside, it has up to 100 grooves that extend from its chin down to its belly button. Yes, whales have belly buttons. They’re placental mammals, and all mammals have belly buttons because that’s where the umbilical cord is attached when a developing baby is in its mother’s womb. I don’t know what a whale’s belly button looks like. Also, the proper term for belly button is navel, and if you’re wondering, that’s where navel oranges get their name, because they have that weird thing on one end that looks like a belly button. It’s not, though. I don’t know what it is. You’ll have to find a podcast called Strange Plants to explain it.

Anyway, the grooves on the fin whale’s underside act as pleats, or accordion folds. Other baleen whales have these pleats too. A baleen whale eats tiny animals that it filters out of the water through its baleen plates, which are keratin structures in its mouth that take the place of teeth. The baleen is tough but thin and hangs down from the upper jaw. It’s white and looks sort of like a bunch of bristles at the end of a broom. The whale opens its mouth wide while lunging forward or downward, which fills its huge mouth with astounding amounts of water. As water enters the mouth, the skin stretches to hold even more, until the grooves completely flatten out. The water it can hold in its mouth is about equal to the size of a school bus.

Technically, though, a lot of that water isn’t in the whale’s mouth. It’s in a big pocket between the body wall and the blubber underneath the skin. The ballooning out of the pocket stretches the nerves in the mouth and tongue to more than twice their length, and then the nerves have to fold back up tightly after the water is pushed out. The nerves fold in a complicated double layer to minimize damage during all this stretching.

After the whale fills its mouth with water, it closes its jaws, pushing its enormous tongue up, and forces all that water out through the baleen. Any tiny animals like krill, copepods, small squid, small fish, and so on, get trapped in the baleen. It can then swallow all that food and open its mouth for another big bite. Even more amazing, this whole operation, from opening its mouth to swallowing the food, only takes six to ten seconds.

Because it only eats small animals, the fin whale’s esophagus (which is the inside part of the throat) is actually quite narrow considering what a huge animal it is. In other words, it could not possibly swallow a human, in case you were worried. I was worried. If you did end up in a fin whale’s mouth, it would just spit you back out.

Baleen whales have a sensory organ on the chin that’s found in no other animal. It’s about the size of a grapefruit and situated between the tips of the jaws. It probably helps the whale determine how much potential food is in the water, which saves it from wasting time and energy gulping in water and filtering it out when there’s nothing much to eat.

The fin whale looks a lot like the blue whale and the two species are closely related, so much so that they sometimes interbreed and produce hybrid babies. It usually lives in small groups of up to around 10 individuals and a female fin whale has one baby every two or three years. It probably migrates seasonally to new feeding grounds, but we don’t actually know a whole lot about where it goes and whether all fin whales migrate.

Fin whales have extremely loud vocalizations, but most humans would barely be able to hear them, or wouldn’t be able to hear them at all, because they’re at the very bottom or below the range of sounds that the human ear can detect. The calls can be up to 188 decibels, a measure of loudness, which may be the loudest sounds made by any animal alive today. Technically the blue whale is louder, at 190 decibels, but on average the fin whale is louder. In comparison, a jet plane taking off is measured at 150 decibels. Of course, sound through water is different from sound through air, because water is much denser. A better comparison is with an offshore drill rig at 185 decibels or a supertanker ship at 190 decibels. The fin whale is about as loud as both, although of course the fin whale doesn’t make those noises all the time like drill rigs and ships do. The male fin whale makes short pulses of sound that last a second or two in specific patterns, which he repeats sometimes for days. Since the sounds travel long distances underwater, researchers think a female can hear a male’s calls and follow the sound so she can find him to mate. Of course, this means that females may have trouble finding a male these days since the ocean is full of noise from human-made things like offshore drill rigs and supertanker ships.

The fin whale is not only one of the loudest animals known, its vocalizations are among the lowest in frequency of any animal ever recorded. It turns out that this combination has a surprising benefit to human knowledge in a very specific way.

In an article published in Science just a few days ago as this episode goes live in February of 2021, a team of scientists discovered that fin whale vocalizations can help with seismic imaging of the oceanic crust.

The oceanic crust isn’t just the sea floor but what the earth below the sea floor is made up of. Scientists measure the reflections of a sound wave, and since sound waves travel at different speeds through different materials, and bounce off various types of rocks and other structures at different speeds and angles, the reflections can tell us a lot. Scientists use sensitive seismometers on the ocean floor to read the reflections. The problem is how to get the sound wave in the first place. Researchers usually use a giant air gun to make sound waves, but not only can this be dangerous to ocean life because it’s so loud, it’s also expensive and can’t be used in all areas.

But the fin whale does almost as good a job as an air gun. A pair of researchers studying earthquakes off the Oregon coast in North America noticed that when fin whales were around, their seismometers picked up extra signals. They figured out that the signals were actually from the fin whales’ vocalizations, and were surprised to find that the reflections matched those from the air gun sound waves. As an added benefit, the researchers could pinpoint exactly where each whale was since its signals were picked up by multiple seismometers.

Fin whale vocalizations are at the perfect frequency and strength for sound waves to travel through the ocean floor and be picked up by the seismometers. Best of all, fin whales live throughout almost all of the world’s oceans, including places where air guns can’t be used. Researchers just have to put the seismometers in place and the whales produce as many sound waves as the scientists need.

Because the fin whale makes such low-frequency noises, its hearing is different from other animals’. Big as a fin whale is, the low-frequency vocalizations it makes actually form a sound wave that’s longer than its body, which means the whale actually can’t hear it through its ears. But for a long time, scientists weren’t sure how the fin whale and other big baleen whales could hear those sounds.

Then, in 2003, a fin whale beached in California and died despite attempts to save it. Scientists were allowed to collect the body for research, and they took the head to an X-ray CT scanner designed for rocket motors to get a 3D image they could study. It turns out that the fin whale’s skull has acoustic properties that makes it sensitive to low frequency sounds and actually amplifies the sound waves as the bones of the skull vibrate. So fin whales hear each other with their skull bones instead of their ears.

Absolutely nothing can top that amazing fact, so that’s the end of this episode.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 210: The Mysterious Lightbulb Lizard

Does the Shreve’s lightbulb lizard really emit light? (Hint: sort of.) Let’s find out!

Further reading:

The Lightbulb Lizard of Benjamin Shreve

Shreve’s lightbulb lizard, looking pretty ordinary really:

A web-footed gecko in moonlight:

A Jamaican gray anole showing off his dewlap:

Show Transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week let’s learn about an interesting reptile with a mystery that’s mostly solved, but still really weird. It’s called Shreve’s lightbulb lizard.

The story of this little lizard starts in 1937, when zoologist Ivan Sanderson was collecting freshwater crabs on a mountaintop in Trinidad. They were probably mountain crabs, also called the manicou crab, which is actually a pretty astonishing animal on its own. It’s a freshwater crab that doesn’t need to migrate to the ocean to release its eggs into the water. Instead, the female carries her eggs in a pouch in her abdomen. The eggs hatch into miniature crabs instead of larvae, and they stay in her pouch until they’re old enough to strike out on their own.

The mountains of Trinidad are made of limestone, which means they’re full of caves, and Sanderson was reportedly catching crabs in an underground pool or stream. He noticed a flash of light in the darkness and naturally went to find what had made it. All he found was a little lizard hiding under a ledge. It looked kind of like a brown skink and was pretty boring, but when the lizard turned its head, Sanderson saw a flash of dotted light down both its sides. When he caught the lizard and examined it while it was sitting in his hand, it flashed its lights again.

Sanderson knew he’d found something extraordinary, because lizards don’t bioluminesce. We still don’t know of any terrestrial vertebrate that emits light. Lots and lots of marine animals do, and some terrestrial invertebrates like lightning bugs and glow-worms, but no terrestrial vertebrates.

Sanderson took the lizard back to his camp, where he and his team observed it in different situations to see if it would light up again. They moved it to warmer areas and colder ones, made loud noises nearby, even tickled it, and they did indeed see it light up a few times. The light came from a row of tiny eyespots along its sides, from its neck to its hips. It had one row of these spots on each side, and each spot looked like a tiny white bead. The greenish-yellow flashes of light seemed to shine through the spots, as Sanderson said, like “the portals on a ship.”

Sanderson sent the lizard to The British Museum in London where another zoologist studied it and discovered that it was actually a known species, but apparently very rare. Only two specimens had ever been caught, one a juvenile and one an adult female. The lizard Sanderson caught was male, and it turns out that only adult males have these little eyespots. Sanderson later caught seven more of the lizards.

Let’s jump forward a bit and get a better idea of what these lizards look like. Shreve’s lightbulb lizard grows around 5 inches long at most, or 13 cm, not counting its long tail. It has short legs, a pointy nose, and broad, flat scales on its back and sides. It’s mostly brown in color. It lives in high elevations in the Caribbean island of Trinidad and Tobago, which is just off the coast of Venezuela in South America. It prefers cool climates, unlike most reptiles, and while it turns out that it’s not actually very rare, it’s also hard to study because it lives in such remote areas, so we don’t know much about it. It may be nocturnal and it may be semi-aquatic. It certainly lives along mountain streams, where it eats insects and other small animals.

Now, we have mentioned Ivan Sanderson a number of times in past episodes, and you may remember me sounding pretty skeptical about some of his cryptozoological claims. But Sanderson was a zoologist with a good reputation as a field scientist, and more importantly, he wasn’t the only one who saw the lizard light up.

The British Museum zoologist, H.W. Parker, who studied the first lizard Sanderson found, was actually the scientist who had originally discovered the lizard a few years before. He was very interested in the little portholes along the male lizard’s sides and studied them carefully. But he couldn’t find anything about them that indicated how they lit up. Each tiny eyespot consisted of a transparent center spot with a ring of black skin around it. The eyespots did not contain glowing bacteria, specialized nerve endings, ducts, reflecting structures, or anything else that he could think of that might cause a flash of light.

Other zoologists examined the so-called lightbulb lizard over the next few decades and none of them saw it emit light either. By 1960 no one believed it was bioluminescent.

I’m taking most of my information from a blog post by Dr Karl Shuker, a zoologist who writes a lot about cryptozoological mysteries. If you want to read his article, there’s a link in the show notes. Shuker was the one who got some modern scientists interested in the lightbulb lizard again, and there’ve been some recent studies. The lizard has been reclassified several times recently and its current name is Oreosaurus shrevei. Oreosaurus is spelled Oreo-saurus and it may be pronounced that way, and while I would like to think that the name comes from the white-appearing center of the eyespot with black pigment around it like an Oreo cookie, the name Oreosaurus is older than the cookie and as far as I can tell it means mountain lizard.

Some experiments conducted in the early 2000s finally figured out just what is going on with the lightbulb lizard. Sanderson was right: he and his colleagues really did see light coming from the eyespots. But it’s reflected light, not light emitted by the lizard itself. The white dots in the middle of the eyespots are reflective at some angles. Not only that, but when the lizard feels threatened, the skin around the white dots becomes even darker, which makes the reflection seem brighter. It’s partly optical illusion, partly just optics.

The big question now is why the lightbulb lizard has these reflective spots at all. The female doesn’t have them. That suggests that the male uses them in some way to attract a mate, but we don’t know.

While I was researching this episode, I kept coming across mentions of other lizards named lightbulb lizards. They’re all related to Shreve’s lightbulb lizard and I suspect the name got popular after Sanderson’s findings, which he published in a book of his nature travels called Caribbean Treasure. As far as I can find, none of the other lightbulb lizards have these reflective eyespots. Many are burrowing reptiles and they all have short legs and look a lot like skinks.

Meanwhile, in glowing lizard news, scientists discovered in 2018 that chameleons glow fluorescent under ultraviolet light. Even their bones are fluorescent. A lizard called the web-footed gecko, which lives in the desert in Namibia, Africa, has translucent markings on its sides and around its eyes. In daylight the markings don’t show, but in moonlight they glow neon green due to special pigment cells called iridophores. Iridophores are found in cephalopods and other marine animals, but they’ve never been seen before in land animals. Male Jamaican gray anoles have a colorful throat decoration called a dewlap that they extend to attract a mate, and the skin is translucent so that when sunlight passes through it, the colors glow brightly.

All these findings are only a few years old, so obviously we’re only just learning about all the different ways that lizards use light to their advantage. I wouldn’t be a bit surprised if a genuinely bioluminescent lizard was discovered eventually. So when you’re outside at night, don’t assume that every little flash of light is a firefly.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 209: Animals Discovered in 2020

Here’s a 2020 retrospective episode that looks at the bright side of the year! Thanks to Page for the suggestion! Let’s learn about some animals discovered in 2020 (mostly).

Further reading:

Watch This Giant, Eerie, String-Like Sea Creature Hunt for Food in the Indian Ocean

Rare Iridescent Snake Discovered in Vietnam

An intrusive killer scorpion points the way to six new species in Sri Lanka

What may be the longest (colony) animal in the world, a newly discovered siphonophore:

New whale(s) just dropped:

A newly discovered pygmy seahorse:

A newly discovered pipefish is extremely red:

So tiny, so newly discovered, Jonah’s mouse lemur:

The Popa langur looks surprised to learn that it’s now considered a new species of monkey:

The newly rediscovered devil eyed frog. I love him:

The newly discovered Lilliputian frog looks big in this picture but is about the size of one of your fingernails:

This newly discovered snake from Vietnam is iridescent and shiny:

A new giant scorpion was discovered in Sri Lanka and now lives in our nightmares:

The Gollum snakehead was technically discovered in 2019 but we’re going to let that slide:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Very recently, Page suggested the topic “animals discovered in 2020.” Since I was already thinking of doing something like this, I went ahead and bumped his suggestion to the top of the list and here we go!

You’d think that with so many people in the world, there wouldn’t be too many more new animals to discover, especially not big ones. But new scientific discoveries happen all the time! Many are for small organisms, of course, like frogs and insects, but there are still unknown large animals out there. In fact, 503 new animals were officially discovered in 2020. Every single one is so amazing that I had a hard time deciding which ones to highlight. In most cases we don’t know much about these new animals since studying an animal in the wild takes time, but finding the animal in the first place is a good start.

Many of the newly discovered species live in the ocean, especially the deep sea. In April of 2020, a deep-sea expedition off the coast of western Australia spotted several dozen animals new to science, including what may be the longest organism ever recorded. It’s a type of siphonophore, which isn’t precisely a single animal the way that, say, a blue whale is. It’s a colony of tiny animals, called zooids, all clones although they perform different functions so the whole colony can thrive. Some zooids help the colony swim, while others have tiny tentacles that grab prey, and others digest the food and disperse the nutrients to the zooids around it. Many siphonophores emit bioluminescent light to attract prey.

Some siphonophores are small but some can grow quite large. The Portuguese man o’ war, which looks like a floating jellyfish, and which we talked about way back in episode 16, is actually a type of siphonophore. Its stinging tentacles can be 100 feet long, or 30 m. Other siphonophores are long, transparent, gelatinous strings that float through the depths of the sea, snagging tiny animals with their tiny tentacles, and that’s the kind this newly discovered siphonophore is.

The new siphonophore was spotted at a depth of about 2,000 feet, or 625 meters, and was floating in a spiral shape. The scientists estimated that the spiral was about 49 feet in diameter, or 15 meters, and that the outer ring alone was probably 154 feet long, or 47 meters. The entire organism might have measured 390 feet long, or almost 119 meters. It’s been placed into the genus Apolemia although it hasn’t been formally described yet.

Another 2020 discovery off the coast of Australia was an entire coral reef a third of a mile tall, or 500 meters, and almost a mile across, or 1.5 km. It’s part of the Great Barrier Reef but isn’t near the other reefs. A scientific team mapping the seafloor in the area discovered the reef and undoubtedly did a lot of celebrating. I mean, it’s not every day that you find an entirely new coral reef. They were able to 3D map the reef for study and take video too. Best of all, it’s a healthy reef with lots of other animal life living around it.

Another big animal discovered in 2020 is one Patreon subscribers already know about, because we started out the year with an episode all about it. It’s a new whale! In 2018 scientists recording audio of animal life around Mexico’s San Benito Islands in the Pacific Ocean heard a whale call they didn’t recognize. They thought it probably belonged to a type of beaked whale, probably a little-known species called Perrin’s beaked whale.

In late 2020 a team went back to the area specifically to look for Perrin’s beaked whales. They did see three beaked whales and got audio, video, and photographs of them, but they weren’t Perrin’s beaked whales. The whale specialists on the expedition didn’t know what these whales were. They don’t match any species of known cetacean and appear to be a species new to science.

And speaking of new species of whale, guess what. Don’t say chicken butt. You can say whale butt, though, because the discovery of another new whale species was just announced. This one’s a 2021 discovery but there’s no way I was going to wait until next year to talk about it. It lives in the Gulf of Mexico and can grow over 41 feet long, or more than 12 meters. It’s a baleen whale, not a beaked whale, and it was hiding in plain sight. It looks a lot like the Bryde’s whale and was long thought to be a subspecies, but new genetic testing shows that it’s much different. It’s been named Rice’s whale, and unfortunately it’s extremely rare. There may only be around 100 individuals alive. It’s mostly threatened by pollution, especially oil spills like the 2010 Deepwater Horizon oil spill, and by collisions with ships. Hopefully now that scientists know more about it, it can be further protected.

Let’s move on from new gigantic animal discoveries to a much, much smaller one. A new pygmy seahorse was discovered off the coast of South Africa in May 2020. It’s brownish-yellow with pinkish and white markings and is only 20 mm long at most. A dive instructor who had seen the fish but didn’t know what it was told researchers about it and they organized a team to look for it. Its closest known relation lives in southeast Asia almost 5,000 miles away, or 8,000 km. Like other seahorses, it lives in shallow water and uses its flexible tail to hang onto underwater plants, but the area where it lives is full of huge waves rolling in from the ocean. It’s called the Sodwana Pygmy Seahorse after the bay where it was discovered, and officially named Hippocampus nalu. “Nalu” means “here it is” in the local Zulu and Xhosa languages, and it also happens to mean “surging surf” in Hawaiian, and it also happens to be the middle name of the dive instructor who spotted the fish, Savannah Nalu Olivier. Sometimes fate just says “this is the right name.”

A new species of pipefish, which is closely related to the seahorse, was also described in 2020, Stigmatopora harastii. It lives off the coast of New South Wales, Australia and can grow up to 5 ½ inches long, or 14 cm. It was first spotted by scuba divers in 2002. These divers know their fish. It lives among a type of red algae and is the same color red for camouflage. It’s surprising how long it took for scientists to discover it, because it’s not exactly hard to confuse with anything else. Except, you know, algae.

Not all newly discovered animals live in the ocean. In August of 2020 researchers discovered a new mouse lemur in Madagascar. We talked about a different type of mouse lemur in episode 135, that one discovered in 1992 and only growing to 3.6 inches long, or 9 cm, not counting its long tail. The newly discovered Jonah’s mouse lemur is only a little bigger than that. Mouse lemurs are the smallest members of the primate family. They’re also super cute but endangered due to habitat loss.

Another primate discovered in 2020 is one that researchers already knew about for more than a hundred years, but no one realized it was its own species, just like Rice’s whale. In 2020, genetic analysis finally determined that the Popa langur is a new species. It’s a beautiful fuzzy gray monkey with bright white markings around its eyes like spectacles. It lives on an extinct volcano in Myanmar and is critically endangered, with only an estimated 250 individuals left in the wild.

A 2020 expedition to the Bolivian Andes in South America led to the discovery of twenty new species of plant and animal, plus a few re-discoveries of animals that were thought to be extinct. The rediscoveries include a species of satyr butterfly not seen for 98 years, and a frog seen only once before, twenty years ago. The frog is called the devil-eyed frog because of its coloring. It’s purplish or brownish black with red eyes and only grows about an inch long, or 29 mm.

Another frog the team found is one of the smallest frogs in the world. It’s been identified as a frog in the genus Noblella and it only grows about ten mm long. As one article I read pointed out, that’s the size of an aspirin. It’s a mottled brown and black and it lives in tunnels it digs in the leaf litter and moss on the forest floor. It’s being referred to as the Lilliputian frog because of its small size.

In the summer of 2019, a team of scientists surveying the karst forests in northern Vietnam spotted an unusual snake. It was so unusual, in fact, that they knew it had to be new to science. It was dark in color but its small scales shone an iridescent purplish, and it was about 18 inches long, or almost 46 cm. It belongs to a genus referred to as odd-scaled snakes, and we don’t know much about them because they’re so hard to find. They mostly burrow underground or under leaf litter on the forest floor. The new species was described in late 2020.

A new species of giant scorpion was discovered in Sri Lanka in 2020. It lives in the forests of Yala National Park and is nocturnal. The female is jet black while the male has reddish-brown legs, and a big female can grow up to 4 inches long, or a little over 10 cm. It’s called the Yala giant scorpion after the park and is the sixth new scorpion species discovered in the park.

One thing I should mention is that all these scientific expeditions to various countries are almost always undertaken by both local scientists and experts from other places. Any finds are studied by the whole group, resulting papers are written with all members contributing, and any specimens collected will usually end up displayed or stored in a local museum or university. The local scientists get to collaborate with colleagues they might never have met before, while the visiting scientists get the opportunity to learn about local animals from the people who know them best, who also happen to know the best places to eat. Everybody wins!

Let’s finish with an astonishing fish that was technically discovered in 2018 and described in 2019, but was further studied in 2020 and found to be even more extraordinary than anyone had guessed. In 2018, after a bad flood, a man living in the village of Oorakam in Kerala, South India, spotted a fish in a rice paddy. He’d never seen a fish like it before and posted a picture of it on social media. A fish expert saw the picture, realized it was something new, and sent a team to Oorakam to retrieve it before it died or something ate it. It turned out to be a new type of snakehead fish.

There are lots of snakehead species that live in rivers and streams throughout parts of Africa and Asia. But this snakehead, which has been named the Gollum snakehead, lives underground. Specifically, it lives in an aquifer. An aquifer is a layer of water that occurs underground naturally. When rain soaks into the ground, some of it is absorbed by plant roots, some seeps out into streams, and some evaporates into the air; but some of it soaks deeper into the ground. It collects in gravel or sand or fractured rocks, or in porous rocks like sandstone. Sometimes an aquifer carves underground streams through rock, creating caves that no human has ever seen or could ever see, since there’s no entrance to the surface large enough for a person to get through. In this case, the heavy rain and floods in Oorakam had washed the fish out of the aquifer and into the rice paddy.

The Gollum snakehead resembles an eel in shape and grows abound four inches long, or 10 cm. Unlike fish adapted for life in caves, though, it has both eyes and pigment, and is a pale reddish-brown in color. This may indicate that it doesn’t necessarily spend all of its life underground. Aquifers frequently connect to springs, streams, and other aboveground waterways, so the Gollum snakehead may spend part of its life aboveground and part below ground.

When it was first described, the researchers placed the fish in its own genus, but further study in 2020 has revealed that the fish is so different from other snakeheads that it doesn’t just need its own genus, it needs its own family. Members of the newly created family are referred to as dragonfish.

Other snakeheads can breathe air with a structure known as a suprabranchial organ, which acts sort of like a lung, located in the head above the gills. Not only does the Gollum snakehead not have this organ, there’s no sign that it ever had the organ. That suggests that other snakeheads developed the organ later and that the Gollum snakehead is a more basal species. It also has a small swim bladder compared to other snakeheads.

Researchers think that the dragonfish family may have separated from other snakehead species as much as 130 million years ago, before the supercontinent of Gondwana began breaking up into smaller landmasses. One of the chunks that separated from Gondwana probably contained the ancestor of the Gollum snakehead, and that chunk eventually collided very slowly with Asia and became what we now call India.

The Gollum snakehead isn’t the only thing that lives in the aquifer, of course. Lots of other species do too, but it’s almost impossible to study them because they live underground with only tiny openings to the surface. The only time we can study the animals that live there is when they’re washed out of the aquifers by heavy rain. It turns out, in fact, that there’s a second species of dragonfish in the aquifer, closely related to the Gollum snakehead, with a single specimen found after rain.

So, next time you’re outside, think about what might be under the ground you’re walking on. You might be walking above an aquifer with strange unknown animals swimming around in it, animals which may never be seen by humans.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, or just want a sticker, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 208: The Happiest Animals in Australia

Thanks to Phoebe for suggesting the quokka and the wombat, two of the cutest, happiest-looking animals in Australia!

Further Reading:

Viral stories of wombats sheltering other animals from the bushfires aren’t entirely true

Satellites reveal the underground lifestyle of wombats

Giant Wombat-Like Marsupials Roamed Australia 25 Million Years Ago

Further Listening:

Animals and Ultraviolet Light (unlocked Patreon episode)

The adorable quokka with a nummy leaf and a joey in her pouch:

Quokka (left) and my chonky cat Dracula (right)

Some quokka selfies showing quokka smiles. That second picture really shows how small the quokka actually is:

Wombats!

A wombat and its burrow entrance:

A wombat mom with her joey peeking out of the rear-facing pouch:

Golden wombats. All they need is some Doublemint Gum:

Two (dead, stuffed) wombats glowing under ultraviolet light:

Show Transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going to look at two super-cute animals from Australia, both of them suggestions by Phoebe. Thank you, Phoebe!

Let’s start with the quokka. It’s a marsupial, which as you may recall means that it’s a mammal that gives birth to babies that aren’t fully formed yet, and the babies then finish developing in the mother’s pouch. It’s related to kangaroos and wallabies but is quite small, around the size of an ordinary domestic cat. It’s kind of a chonk, though, which means it’s probably closer in size to my big chonk cat Dracula. It’s shaped roughly like a little wallaby or kangaroo but with a smaller tail and with rounded ears, and it’s grey-brown in color.

You may have seen pictures of the quokka online, because the reason it’s considered so incredibly cute is because it looks like it’s smiling all the time. If you take a picture of a quokka’s face, it looks like it has a happy smile and that, of course, makes the people who look at it happy too. Those are real pictures, by the way. Because of the way its muzzle and mouth are shaped, the quokka really does look like it’s smiling.

This has caused some problems, unfortunately. People who want to take selfies with a quokka sometimes forget that they’re wild animals. While quokkas aren’t very aggressive and are curious animals who aren’t usually afraid of people, they can and will bite when frightened. The Nature Conservancy of Australia recommends that people who want to take a selfie with a quokka arrive early in the morning or late in the evening, since quokkas are mostly nocturnal, and that they let the quokkas approach them instead of following one around. Touching a quokka or giving it food or drink is strictly prohibited, since it’s a protected animal.

The quokka lives on a few small islands off the coast of western Australia and a few small forested areas on the mainland. The largest population lives on Rottnest Island, and in fact the island was named by a Dutch explorer who thought the quokkas were rats. It means rat’s nest. The island’s actual name was Wadjemup and it was a ceremonial area for the local Whadjuk Noongar people.

Only an estimated 14,000 quokkas live in the wild today, with most of those on Rottnest Island. It used to be much more widespread, but once white settlers arrived and introduced predators like dogs, cats, and foxes, its numbers started to decline. It’s also threatened by habitat loss. It reproduces slowly, since a female only raises one baby a year.

A baby quokka is born after only a month, but like other marsupial babies, called joeys, it’s just a little pink squidge when it’s born. It climbs into its mother’s pouch where it stays for the next six months. Once it’s old enough to leave her pouch, it still depends on her milk for a few more months. While she’s raising one baby, though, the mother has other babies still in her womb ready to be born but held in suspended animation. This means that if something happens to her joey and it dies, the mother can give birth to another baby very quickly.

The quokka is most active at night. It sleeps during most of the day, usually hidden in a type of prickly plant that helps keep predators from bothering it. It gets most of its water needs from the plants it eats, and while it mostly hops around like a teensy kangaroo, it can also climb trees.

The wombat is another adorable Australian marsupial. For some reason, I’ve talked about the wombat several times in Patreon episodes but have barely mentioned it in the main feed–but that’s about to change. Mostly because I am going to recycle a lot of the information from the Patreon episodes, but I’ve also added a lot of interesting new details.

The wombat mainly lives in southern and eastern Australia, including Tasmania. It looks a little like a cartoon bear, a little like a cartoon badger, and a little like a cartoon giant hamster. Perhaps you notice a theme here. It has short legs, no tail to speak of, and is about the size of a medium-sized dog but stockier, with a broad face and rounded ears. The female has a rear-facing pouch to keep dirt and debris from getting on her baby while digging. There are three species alive today.

The wombat is mostly nocturnal and sleeps in a burrow during the day, although it will come out during the day when it’s overcast. It eats grass and other plants. It can dig really well and some people in Australia consider it a pest because it digs under fences.

The wombat has a big round rump with tough skin reinforced with cartilage. If a dingo or other animal chases a wombat, it dives into a hole and blocks the hole with its rump. The predator can’t get a purchase on the tough hide and there’s no tail to grab. The wombat isn’t helpless, though. It can kick hard, bite hard, and if the dingo gets its head over the wombat’s back to grab for its neck, the wombat will push upward and crush the dingo’s head against the roof of the tunnel. The wombat takes no prisoners and presents its butt to danger. Also, its poop is square, as you may remember if you listened to the animal poop episode.

The wombat has a very slow metabolism and takes a week or even two weeks to fully digest a meal. It can run fast when it needs to, although it can’t keep up a fast pace for long. Wombats have even been known to knock people down by charging them, which I personally find hilarious. It can also bite ferociously if it feels threatened, and while it mostly uses its long claws for digging, they also make fearsome weapons. So it’s best to leave the wombat alone.

The wombat’s fur can be gray, tan, brown, black, or any variation on those colors, but there are rare reports of wombats with golden fur. In a 1965 letter to The Times, an anonymous writer reported spotting a golden wombat but couldn’t get anyone to believe him. “Of course you were mistaken, my family said. They said it with an irritating sureness… The golden wombat became the subject of family jokes.” And then two years later, the letter-writer saw the golden wombat again. I thought that would be a fine cryptozoological mystery to share, but when I did a search for golden wombat sightings, actual golden wombats in zoos turned up. Golden wombats are a real thing, just extremely rare. The sunshine golden fur is due to a mutation in coat color.

The Cleland Wildlife Park in Adelaide has a pair of golden hairy-nosed wombats that were discovered in 2011 and sent to the park in 2013. Golden wombats don’t survive long in the wild since their coloring makes them stand out to predators. Wombats in general are having trouble in the wild anyway due to habitat loss, introduced predators like domestic dogs, introduced rabbits and other animals that compete with it for food, the mange mite, also introduced to Australia and spread by domestic dogs, and drought.

Last year, during the awful summer bushfires in Australia, there were reports of wombats saving other animals by herding them into their deep burrows when fires approached. It’s a great story, but like many other stories that seem too good to be true, it’s not completely accurate. The wombats didn’t herd other animals into their burrows like little furry firefighters, but lots of animals did take shelter in wombat burrows to escape the fires. A wombat’s burrow isn’t just a little tunnel with a bedroom at the end. It’s way more elaborate than that, with lots of entrances and adjoining tunnels. One wombat’s burrow complex had 28 entrances and almost 295 feet of tunnels, or 90 meters. A wombat usually only sleeps in one particular burrow for a day or two before moving to a different one, and other animals routinely use the other burrows for themselves. As long as the other animal isn’t a threat, the wombat doesn’t seem to mind. So it’s not surprising that lots of animals hide in wombat burrows to escape fire.

In October of 2020 a team of scientists published a paper about ultraviolet fluorescence in the platypus, which glows greenish in ultraviolet light. The discovery was made by accident but prompted scientists throughout the world, and especially Australia, to borrow black lights from other departments to shine on their mammal collections. It turns out that a lot of nocturnal or crepuscular animals have fur that glows various colors under ultraviolet light. This includes the wombat.

There’s more ultraviolet light at dawn and dusk than during full daylight or at night, so some researchers think the glow may be a way for the animals to blend in with the increased ultraviolet light at those times. If this is the case, it’s a new type of camouflage, or rather a very old type since it’s found in animals like the platypus that have been around for a really, really long time.

Ultraviolet light is the wavelength of light beyond purple, which humans can’t see. Most humans, anyway. In April 2019 I released a Patreon episode about animals and ultraviolet light, and I’ve decided to unlock that episode for anyone to listen to. I’ll put a link in the show notes so you can click through and listen. Be aware that I did make a mistake in that episode, where I mentioned that a black light allows humans to see into the ultraviolet spectrum, but actually what people see when they shine a black light around is fluorescence and ordinary violet light.

A relative of the wombat, Diprotodon, is the largest marsupial ever known. It went extinct around 45,000 years ago, not long after the first humans populated Australia, and is also an ancestor of the koala. It and some other of the Australian megafauna may have influenced Aboriginal myths of dreamtime monsters. It stood around 6 ½ feet tall at the shoulder, or two meters, and like the wombat it had a rear-facing pouch and ate plants. Recent analysis of the front teeth, which were large and flat and grew continuously throughout the animal’s life, indicated it might have been migratory. Researchers also think it lived in social groups something like elephants do today. Its feet were flat and toed inward like modern wombat feet, and although it had claws it probably only used them to dig plants up.

A partial fossil found in 1973 in South Australia was finally described in mid-2020 as a wombat relation, although it may not be a direct ancestor to modern wombats. It lived about 25 million years ago and was the size of a bear, and had powerful front legs with claws used for digging up roots. It’s named Mukupirna nambensis and is different enough from other wombat relations that it’s been assigned to a new family of its own.

There have been reports for centuries of giant wombats or wombat-like animals in Australia and even from nearby Papua New Guinea. Some cryptozoologists think the sightings are of a smaller relative of the wombat, Hulitherium tomasetti. Hulitherium lived in the rainforests of New Guinea, and probably went extinct about the same time as Diprotodon, possibly due to hunting from newly arrived humans. It was about three feet high, or one meter, and may have eaten bamboo as a primary part of its diet. Like the panda, it seems to have a number of adaptations to feeding on a bamboo diet, including very mobile front legs, more like an ape’s than a wombat’s. It may have been able to stand on its hind legs like a bear too.

An October 26, 1932 story in The Straits Times, a Singapore newspaper, is interesting in light of the hulitherium’s size and possible appearance. I’ll quote the story, which appears in the 2016 Fortean Zoology Yearbook:

“One of our strangest visits was reserved for this morning, when Mr. Paul Pedrini, wild animal hunter and trainer, arrived leading a curious beast, brown, furry, about two feet high and four feet long and looking like no animal one could call to mind. It was very fat and adorning its neck was a large pink bow. This latter fact was the chief cause of the uneasiness shown by the oldest sub-editor. Mr. Pedrini explained that he found his little pet in Australia eighteen months ago.

“He calls it the ‘What Is It?’ because nobody can give it a name. Described as being something like a wombat, it is certainly not a wombat neither does it belong to any other known family. The ‘What Is It?’ is very tame and friendly and has kind eyes. Its chief diet is bananas and toast. We said good bye to Mr. Pedrini, patted the strange animal and returned, slightly shaken, to the normal round.”

The story isn’t sensational enough to feel like a hoax, but it doesn’t really give enough of a description of the animal to be sure it wasn’t just a larger than usual wombat. After all, the wombat does have kind eyes.

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 207: The Dire Wolf!

This week we’re on the cutting edge of science, learning about the brand new genetic study of dire wolves that rearranges everything we know about the dire wolf and other canids! Also, a bonus turtle update.

Further reading:

Dire Wolves Were Not Really Wolves, Genetic Clues Reveal

An artist’s rendition of dire wolves and grey wolves fighting over a bison carcass (art by Mauricio Anton):

The pig-nosed face of the Hoan Kiem turtle, AKA Yangtze giant softshell turtle, AKA Swinhoe’s softshell turtle:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

You may have heard the news this past week about the new study about dire wolves. I thought it would make a great topic for an episode, and we’ll also have a quick update about a rare turtle that’s been in the news lately too.

Dire wolves show up pretty often in movies and TV shows and video games and books, because as far as anyone knew until very recently, the dire wolf was an extra big wolf that lived in North America during the Pleistocene until it went extinct around 13,000 years ago. Researchers assumed it was a close cousin of the modern grey wolf.

Well, in a brand new study published in Nature literally less than a week ago as this episode goes live, we now have results of a genetic study of dire wolf remains. The results give us surprising new information not just about the dire wolf, but about many other canids.

The study started in 2016, when an archaeologist, Angela Perri, who specializes in the history of human and animal interactions, wanted to learn more about the dire wolf. She went around the United States to visit university collections and museums with dire wolf remains, and took the samples she collected to geneticist Kieren Mitchell. Perri, Mitchell, and their team managed to sequence DNA from five dire wolves that lived between 50,000 and 13,000 years ago.

Then the team compared the dire wolf genome to those of other canids, including the grey wolf and coyote, two species of African wolf, two species of jackal, and the dhole, among others. To their surprise, the dire wolf’s closest relation wasn’t the grey wolf. It was the jackals, both from Africa, but even they weren’t very closely related.

It turns out that 5.7 million years ago, the shared ancestor of dire wolves and many other canids lived in Eurasia. At this point sea levels were low enough that the Bering land bridge, also called Beringia, connected the very eastern part of Asia to the very western part of North America. One population of this canid migrated into North America while the rest of the population stayed in Asia. The two populations evolved separately until the North America population developed into what we now call dire wolves. Meanwhile, the Eurasian population developed into many of the modern species we know today, and eventually migrated into North America too.

By the time the gray wolf populated North America, the dire wolf was so distantly related to it that even when their territories overlapped, they avoided each other and didn’t interbreed. We’ve talked about canids in many previous episodes, including how readily they interbreed with each other, so for the dire wolf to remain genetically isolated, it was obviously not closely related at all to other canids at this point.

The dire wolf looked a lot like a grey wolf, but researchers now think that was due more to convergent evolution than to its relationship with wolves. Both lived in the same habitats: plains, grasslands, and forests. The dire wolf was slightly taller on average than the modern grey wolf, which can grow a little over three feet tall at the shoulder, or 97 cm, but it was much heavier and more solidly built. It wouldn’t have been able to run nearly as fast, but it could attack and kill larger animals. Its head was larger in proportion than the grey wolf’s and it had massive teeth that were adapted to crush bigger bones.

The dire wolf lived throughout North America and even migrated into South America and back into east Asia. It preferred open lowlands and its most important prey animal was probably the horse, although it also ate ground sloths, camels, bison, and many others. It probably also scavenged dead animals and probably hunted as a pack.

Researchers think the dire wolf went extinct due to a combination of factors, including increased competition with grey wolves and maybe with humans, climate change, and the extinction of the megaherbivores that made up its diet. It will probably be reclassified into a different genus, Aenocyon, instead of staying in its current genus, Canis.

Before this study, most researchers thought that the ancestor of North American canids evolved in Eurasia, but had already migrated into North America before developing into dire wolves, grey wolves, coyotes, and other canid species. But now the history of canids has changed a lot. From what we now know, pending further study, the dire wolf was the only canid in North America for millions of years. Grey wolves, coyotes, and their relations are relative newcomers. It’s an exciting time for scientists studying ice age megafauna. Hopefully we’ll learn more soon as more studies are conducted into the dire wolf’s history.

Next, let’s look briefly at a type of turtle that’s been in the news lately too. Swinhoe’s softshell turtle is considered the most endangered turtle in the world. In early 2019 there were only two individuals known, a male and a female, but they had never bred despite being kept together in captivity. Then the female died in April of that year. No females meant no eggs, no baby turtles, no more Swinhoe’s softshell turtle. The species would be extinct.

But in October of 2020, researchers found a female Swinhoe’s softshell turtle in the wild! Not only that, they spotted what they think is a male turtle in the same lake, and found evidence of what may possibly be a third turtle nearby.

Swinhoe’s softshell turtle is also known as the Yangtze giant softshell turtle and used to be found in many lakes and rivers in Asia. Unfortunately, people killed it for its meat and dug up its eggs to eat, and pollution and habitat loss also killed off many of the turtles. This is the same turtle we talked about in episode 68, the Hoan Kiem turtle of Vietnam. It’s probably the largest freshwater turtle in the world, and the largest one ever measured weighed 546 lbs, or 247.5 kg. It can grow over three feet long, or 100 cm.

The newly discovered wild turtles are being monitored carefully to make sure they’re healthy, their environment is clean and safe, and to see if the female lays eggs this spring. The female was captured briefly, just long enough to take blood samples and verify that she was healthy. Then they released her back into the lake. Fingers crossed that she hatches some baby turtles soon!

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 206: The Bowerbird and the Victoria Crowned Pigeon

This week let’s learn about two birds of New Guinea, bowerbirds and the Victoria crowned pigeon! Both are beautiful and the bowerbird is kind of weird. Thanks to M Is for Awesome for the suggestion!

Further Reading:

The Women Who Removed Birds from People’s Hats

Various bowers made by various species of bowerbird:

The golden-fronted bowerbird:

Not a bowerbird but a close relation, a dead bird of paradise from New Guinea, decorating an old-timey lady’s fancy hat. I would not want to put this on my head:

A Victoria crowned pigeon, wearing a built-in fancy hat:

A Victoria crowned pigeon baby. Such miniature floof:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we are finally going to look at some birds of New Guinea, a topic suggested ages ago by M Is for Awesome! There are so many weird and amazing birds in New Guinea that instead of trying to talk about a bunch of them very briefly in one episode, I’m going to make this another ongoing series throughout the year. Every so often we’ll revisit New Guinea (in our minds, anyway) and learn about a few more birds. In this episode we’ll learn some basic information about New Guinea and then learn about two really interesting birds that live there.

New Guinea comes up in lots of episodes because so many animals live there. It’s almost the world’s largest island, second only to Greenland. Australia is considered a continent, not an island. New Guinea is actually pretty close to Australia so there’s a lot of overlap between animals that live in Australia and animals that live in New Guinea.

A big reason New Guinea has so many animals is its geography. It has everything from ridiculously high mountains with glaciers to lowland rainforests, savannas, wetlands, mangrove forests, rivers, lakes, alpine tundra, and coral reefs off the coast. About the only thing it doesn’t have is a desert. Most of the island is warm and humid with lots of rain.

Of course people live in New Guinea too, and have for at least 40,000 years, possibly as long as 60,000 years. Back then, New Guinea was connected to Australia by a land bridge similar to the one that has connected North America with Asia when sea levels were low. Some of the earliest humans to migrate out of Africa settled in New Guinea, and the people there developed agriculture independently of the people who settled in the Middle East. More people arrived much later, only around 3,500 years ago, from parts of Asia. But because the land is so hard to navigate due to the mountains and rivers and so forth, people who moved to a new part of the island were largely isolated from the people in other parts. Some 7,000 languages are spoken on the island right up to the present day, with several hundred more languages once spoken.

Unfortunately, as happens so often, after European explorers discovered the island in the 16th century, they decided they would like to have it for themselves. So they took it, which is just rude. The eastern half of the island is now independent as of 1975, called Papua New Guinea, while the western half, usually just called Papua, is now part of Indonesia. Indonesia is an Asian country and unfortunately, they’re being just as bad to the indigenous people of the area as Europeans were.

There are still lots of places in New Guinea that scientists haven’t explored, mostly in the mountains, and undoubtedly lots and lots of animals and birds that are completely unknown to science. Some of the animals and birds of the mountains may never have been seen by any person at all.

M specifically wanted us to cover bowerbirds, so let’s start with them. Bowerbirds live in Australia and New Guinea along with a few smaller islands, with twenty species known. You may have heard about them before, because a male bowerbird builds what’s called a bower and decorates it with items he selects to attract a female. A bower is a nice little shady area where you’d like to have a picnic, unless you’re a female bowerbird in which case you’d like to examine all the things a male has collected and evaluate his elaborate courtship dance.

Because the female builds a nest and takes care of her eggs and chicks by herself, she’s really picky about who she mates with. She wants the strongest, healthiest male she can find so her babies will be healthy too. She looks for a male who has the energy to build a bower, collect pretty items to decorate it, and then perform an elaborate courtship dance when the female shows up. She will visit numerous bowers before she makes a decision, narrowing them down over the course of several days or even weeks until she chooses between the best candidates.

Researchers think the bowerbird is most closely related to corvids, which as you may remember includes birds like crows, magpies, and jays, but they’re also closely related to birds of paradise. Some bowerbirds are plain black or brown, some are mostly black or brown with green or other colored markings, while some are brightly colored overall. For instance, the male flame bowerbird that lives in rainforests in New Guinea has a bright orangey-red head and shoulders shading to bright yellow body and wings, with a black tail tipped with yellow. The female is more brown but she has a bright yellow belly.

The species most people have heard of is the satin bowerbird, where the male has black feathers that shine iridescent blue in sunlight and who collects almost exclusively blue items to attract a female. The satin bowerbird lives in Australia, not New Guinea. The bowerbirds that live in Australia are more well studied than the ones in New Guinea because it’s easier to find them.

Not all bowerbirds build bowers, though. The catbirds of Australia and New Guinea are mostly green, and instead of the males building bowers to attract a mate who then goes off to lay her eggs and take of the babies herself, both parents take care of the babies.

Let’s talk a little more about these bowers. There are two main types, the maypole bower and the avenue bower, and a particular species of bowerbird will only ever build one or the other. A male who builds a maypole bower chooses a sapling tree or large fern and places sticks against it all around. Some maypole bowers look like little huts. An avenue bower is made of two walls of sticks with a walkway between. These structures can be big, sometimes up to three feet high, or about a meter, although most are smaller. Most bowerbirds are fairly big too, about the size of a jay or magpie.

Once he’s built the bower, the male finds and places items around it that he hopes a female will like. He will spend hours arranging and rearranging them. Some species put light-colored objects down first, then display colored items on top. Some birds will place smaller items in front, larger items in back, so that when the female is inside the bower all the items appear to be about the same size. Different species of bowerbird prefer different colors of item.

The items a male chooses for decoration vary from bird to bird depending on what he can find, or what he can steal from other males, and can include shells, stones, coins, pieces of glass, berries, feathers, bones, flowers, leaves, bottle caps, dead beetles, fungus, moss, snail shells, bark, nuts, and many other things.

Bowerbirds mainly eat fruit, but they also eat insects and some also eat nectar and flowers.

Let’s look into the story of a particular bowerbird before we move on to another type of bird. The male golden-fronted bowerbird is a rusty reddish-brown with a long golden crest, while the female is olive brown. The species was described in 1895 from skins imported to decorate hats.

In the 19th century women wore fancy hats, at least in Europe and America and other places that were influenced by this fancy-hat-wearing trend, and the more well-to-do a woman was, the fancier she wanted her hats. This was before synthetic dyes, so the brightest, fanciest, and most expensive way to decorate a hat was with the feathers of exotic birds. Sometimes it wasn’t just a few feathers or even a lot of feathers, but an entire wing or a bunch of bird wings. As the style grew more and more elaborate, often it was an entire dead bird, stuffed and mounted on a hat. I am not known for my sense of style, but that just seems really gross. But it was the style at the time and it meant hat-makers would pay a lot for exotic birds, especially ones with brightly colored feathers. The demand for feathers was so high, it nearly drove some species to extinction.

When an American woman named Harriet Hemenway heard about the slaughter of birds happening all around the world just so women could have fancier and fancier hats, she and her cousin Minna Hall started spreading the word to all the women they knew: stop buying and wearing hats with dead birds on them. The women attracted more and more supporters, both among hat-wearing ladies and people who just liked birds, and Hemenway and Hall pushed for a boycott of the feather trade. They even started the Massachusetts Audubon Society, the forerunner of the National Audubon Society that’s still around today.

You would think that this would be an obvious law to put into place. I mean, yes, don’t kill millions of rare birds just for hat decorations. But there was a lot of money involved in feather imports back then. People who were getting rich off dead birds called the Audubon Society extremists who wanted to put people out of jobs. Fortunately, the women persisted, and in 1900 the first federal conservation act was put into place in the United States to stop the import of feathers.

But before the feather trade was banned, some scientists made a habit of looking through imports of feathers and bird skins to find new species. That’s how one ornithologist discovered the golden-fronted bower bird, but he didn’t know where it was from. He described the species from the skin and that’s where the story ended for almost a century.

In 1979, a biologist named Jared Diamond was hired to survey New Guinea for the site of a national park. He spent a month hiking through areas where no scientist had ever been before, and returned in 1981 for another few weeks to look for bowerbirds specifically. And as you may have guessed, he saw golden-fronted bowerbirds alive and well in the Foja Mountains. The mountains are steep and inaccessible, which has helped protect the bird from hunters and habitat loss. The first photographs of the bird were only taken in 2005.

Next, let’s look at a pigeon that lives in New Guinea. New Guinea has a whole lot of pigeons and doves, something like 60 species although some are now extinct due to habitat loss and other factors. The Victoria crowned pigeon is a beautiful bird that lives in the lowlands and swampy forests. It’s increasingly threatened in the wild due to habitat loss and hunting, but it’s so pretty that many people keep it in captivity. Unfortunately that also means people trap the wild birds to sell, even though it’s illegal and the birds are hard to take care of properly, although they do tend to be easy to tame. Some zoos let them wander around the grounds the same way peacocks often do.

The Victoria crowned pigeon is indeed a pigeon. It’s a soft blue-grey all over with a reddish patch on its breast, lighter blue wing bars and tail tip, red eyes in a dark blue mask, and a gorgeous spray of feathers on its head that are tipped with white. It’s just lovely. It’s the sort of bird that people would have put on hats in the olden days, but I’m glad they don’t anymore. It’s an especially large bird, too, at least twice as big as ordinary pigeons you see in cities. Basically it’s the size of a big chicken. It mostly eats fruit, especially figs, although it will also eat seeds and small animals like insects, and it doesn’t fly much. It mostly eats fruit that has fallen from trees.

Like all pigeons it’s a sociable bird that usually forages in a small flock or in pairs. It only lays one egg at a time and its baby is blue with white streaks. Both parents feed the baby with crop milk, which we’ve talked about before in various episodes. It’s not actually milk, just a nutritious shed lining of the crop.

During courtship, the male dances for the female to show off his crest, and he also makes a loud booming noise that doesn’t actually sound like a pigeon call. It sounds more like a special effect from a movie set in space. This is what it sounds like:

[pigeon booming]

You can find Strange Animals Podcast at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on Apple Podcasts or just tell a friend. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!