Episode 159: Sky Animals

To celebrate my new book, Skyway, this week let’s learn about sky animals! They’re fictitious, but could they really exist? And what animals are really found in the high atmosphere?

You can order a copy of Skyway today on Kindle or other ebook formats! It’s a collection of short stories published by Mannison Press, with the same characters and setting from my novel Skytown (also available)!

Further reading:

“The Horror of the Heights” by Arthur Conan Doyle (and you can even listen to a nice audio version at this link too!)

Charles Fort’s books are online (and in the public domain) if not in an especially readable format

Further Listening:

unlocked Patreon episode The Birds That Never Land

Rüppell’s vulture:

The bar-headed goose:

The common crane:

Bombus impetuosus, an Alpine bumblebee that lives on Mount Everest:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’ve got something a little different. Usually I save the weirder topics for Patreon bonus episodes, and in fact I had originally planned this as a Patreon episode. But I have a new book coming out called Skyway, so in honor of my new book, let’s learn about some sky animals!

Skyway is a collection of short stories about the same characters in my other book Skytown, so if you’ve read Skytown and liked it, you can buy Skyway as of tomorrow, if you’re listening on the day this episode goes live. I’ll put links to both books in the show notes so you can buy a copy if you like. The books have some adult language but are appropriate for teens although they’re not actually young adult books.

Anyway, the reason I say this episode is a little different is because first we’re going to learn about some interesting sky animals that are literary rather than real. Then we’ll learn about some animals that are real, but also interesting—specifically, animals that fly the highest.

Back before airplanes and other flying machines were invented, people literally weren’t sure what was up high in the sky. They thought the sky continued at least to the moon and maybe beyond, with perfectly breathable air and possibly with strange unknown animals floating around up there, too far away to see from the ground.

People weren’t even sure if the sky was safe for land animals. When hot-air balloons big enough to carry weight were invented in the late 18th century, inventors tried an important experiment before letting anyone get in one. In 1783 in France, a sheep, a duck, and a rooster were sent aloft in a balloon to see what effects the trip would have on them. The team behind the flight assumed that the duck would be fine, since ducks can fly quite high, so it was included as a sort of control. They weren’t sure about the rooster, since chickens aren’t very good flyers and never fly very high, and they were most nervous about the sheep, since it was most like a person. The balloon traveled about two miles in ten minutes, or 3 km, and landed safely. All three animals were fine.

After that, people started riding in balloons and it became a huge fad, especially in France. By 1852 balloons were better designed to hold more weight and be easier to control, and that year a woman dressed as the goddess Europa and a bull dressed as Zeus ascended in a balloon over London. But the bull was obviously so frightened by the balloon ride that the people watching the spectacle complained to the police, who charged the man who arranged the balloon ride with animal cruelty. The bull was okay, though, and no one made him get in a balloon again.

After airplanes were invented and became reliable, if not especially safe, the world went nuts about flying all over again. In 1922 Arthur Conan Doyle published a story called “The Horror of the Heights,” about a pilot who flew high into the sky and came across sky animals. You can tell from the story’s title that things did not go well for the main character.

The story is written as though it’s an excerpt from a journal kept by the main character, named Joyce-Armstrong. Early on, Joyce-Armstrong is talking about height records achieved by pilots and that no one has had any trouble that high in the sky. He says,

“The thirty-thousand-foot level has been reached time after time with no discomfort beyond cold and asthma. What does this prove? A visitor might descend upon this planet a thousand times and never see a tiger. Yet tigers exist, and if he chanced to come down into a jungle he might be devoured. There are jungles of the upper air, and there are worse things than tigers which inhabit them.”

After that are some really lovely descriptions of the pilot’s ascent into the sky, trying for both a height record and to see the so-called jungle of the upper air. In the story, he climbs to over 41,000 feet in an open cockpit monoplane without any special equipment. He’s wearing, like, a nice warm hat and wool socks. In actuality, at 40,000 feet, or 12,000 meters, the temperature can be as low as -70 degrees F, or -57 Celsius.

Anyway, Joyce-Armstrong writes in his journal, “Suddenly I was aware of something new. The air in front of me had lost its crystal clearness. It was full of long, ragged wisps of something which I can only compare to very fine cigarette smoke. It hung about in wreaths and coils, turning and twisting slowly in the sunlight. As the monoplane shot through it, I was aware of a faint taste of oil upon my lips, and there was a greasy scum upon the woodwork of the machine. Some infinitely fine organic matter appeared to be suspended in the atmosphere. There was no life there. It was inchoate and diffuse, extending for many square acres and then fringing off into the void. No, it was not life. But might it not be the remains of life? …The thought was in my mind when my eyes looked upwards and I saw the most wonderful vision that ever man has seen. …Conceive a jelly-fish such as sails in our summer seas, bell-shaped and of enormous size—far larger, I should judge, than the dome of St. Paul’s. It was of a light pink colour veined with a delicate green, but the whole huge fabric so tenuous that it was but a fairy outline against the dark blue sky. It pulsated with a delicate and regular rhythm. From it there depended two long, drooping, green tentacles, which swayed slowly backwards and forwards. This gorgeous vision passed gently with noiseless dignity over my head, as light and fragile as a soap-bubble…”

After that, Joyce-Armstrong sees more of the sky jellyfish and some long smoke-like creatures that he calls the serpents of the outer air. And then he’s attacked by a huge purplish creature sort of like a sky octopus with sticky tentacles. He escapes and flies home, writes his journal entry, and says he’s going back to capture one of the smaller sky jellyfish and bring it back to show everyone. And after that, the journal ends except for a terrible addendum scrawled in pencil on the last page. It’s a fun story that you can read for free online, since it’s in the public domain. I’ll put a link in the show notes.

Arthur Conan Doyle is the same author who invented Sherlock Holmes, if the name sounds familiar. But he wasn’t the first one to imagine strange high-altitude sky animals. He was influenced by the writings of a man named Charles Fort. Fort liked to collect the accounts of weird happenings reported in newspaper articles and magazines, and he published his first book in 1919. If you’re a Patreon subscriber you may remember Fort from a bonus episode last October where I talked about a few of his animal-related cases. I’d unlock the episode for anyone to listen to except that I just re-listened to it myself, and at the end I talk about my recent eye surgery in really way too much detail. So I won’t unlock it, but I will say that Fort had a weird writing style that can be hard to follow. He likes to present outlandish theories as though he’s deadly serious, then claim that he’s only joking, then say, “Well, maybe I’m not joking.” His main goal is to make readers think about things that would never have occurred to them.

Fort was especially interested in falls of fish and frogs and other things, which we talked about in episode 140 last October. In his first book he suggested there are places in the sky where items collect, and that occasionally things fall out of those places. He called this the Super-Sargasso Sea, after the Sargasso Sea that’s supposed to be a becalmed area of the ocean where sailing ships get caught because there’s no wind or currents. The Sargasso Sea is a real place in the North Atlantic Ocean that has clear blue water and which is full of a type of seaweed called Sargassum. It’s also full of plastic, unfortunately, since that’s where the North Atlantic garbage patch is.

But Fort described his Super-Sargasso Sea as something between another dimension and an alien world that just brushes up against the earth’s atmosphere. He pointed out that this theory made as much sense as any other explanation for falling frogs and other things, which of course is why he suggested it. He didn’t actually believe it.

This is how Fort describes the super-Sargasso Sea: “I think of a region somewhere above this earth’s surface in which gravitation is inoperative…. I think that things raised from this earth’s surface to that region have been held there until shaken down by storms…. [T]hings raised by this earth’s cyclones: horses and barns and elephants and flies and dodoes, moas, and pterodactyls; leaves from modern trees and leaves of the Carboniferous era…. [F]ishes dried and hard, there a short time; others there long enough to putrefy…. [O]r living fishes, also—ponds of fresh water: oceans of salt water.

“But is it a part of this earth, and does it revolve with and over this earth—

“Or does it flatly overlie this earth…?

“I shall have to accept that, floating in the sky of this earth, there often are fields of ice as extensive as those on the Arctic Ocean—volumes of water in which are many fishes and frogs—tracts of lands covered with caterpillars—

“Aviators of the future. They fly up and up. Then they get out and walk. The fishing’s good: the bait’s right there. … Sometime I shall write a guide book to the Super-Sargasso Sea, for aviators, but just at present there wouldn’t be much call for it.”

That quote is actually cobbled together from pages 90-91, 179, and 182 of my copy of The Complete Books of Charles Fort, because one thing Fort is not good at is a straightforward, clear narrative. Reading his books is like experiencing someone else’s fever dream. But you can definitely see where Conan Doyle got his inspiration for “The Horror of the Heights.”

These days we know a lot more about the sky—or, more technically, about the atmosphere that surrounds the Earth. Researchers have labeled different parts of the atmosphere since the different layers have different properties. The layer closest to the earth, the one that we breathe and live in, is the troposphere. That’s where weather happens, that’s where most clouds are, and that’s where 99% of the water vapor in the entire atmosphere is located. The troposphere extends about 6 miles above the earth, or 10 km, or 33,000 feet. Mount Everest is 29,000 feet high, by the way, or 8,850 meters. Above the troposphere is the stratosphere, which extends to about 31 miles above the earth, or 50 km.

The jet stream, a steady wind that commercial jet planes use to help them cross oceans and continents faster, occurs roughly where the troposphere becomes the stratosphere. Above the jet stream, there’s hardly any turbulence. There are no updrafts, basically no weather, just increasingly thin air. Weather balloons and spy planes ascend into the stratosphere and that’s also where the ozone layer is, but there’s basically not much up that high.

Above the stratosphere is the mesosphere, where the air is too thin for any animal known to breathe, plus the air pressure is only about 1% of the pressure found at sea level. There just aren’t very many air molecules in the mesosphere. This is where meteors typically burn up, and the only vehicles that fly there are rockets. It extends to about 53 miles above the earth, or 85 km, and above that is the thermosphere, the exosphere, and then empty space, although it’s hard to know exactly where the thermosphere and exosphere end and space begins. It’s so far away from the earth’s surface that some satellites orbit within the thermosphere, and that’s where the northern and southern lights are generated as charged particles from the sun bounce against molecules.

But let’s return to the troposphere, our comfortable air-filled home. As far as we know, there aren’t any animals that live exclusively in the air and never land. Even the common swift, which lives almost its entire life in the air, catching insects and sleeping on the wing, has to land to lay eggs and take care of its babies. But what animals fly the highest?

As far as we know, the highest-flying bird is Rüppell’s vulture, an endangered bird that lives in central Africa. It’s been recorded flying as high as 37,000 feet, or 11,300 meters, and we know it was flying at 37,000 feet because, unfortunately, it was sucked into a jet engine and killed. There’s so little oxygen at that height that a human would pass out pretty much instantly, but the vulture’s blood contains a variant type of hemoglobin that is more efficient at carrying oxygen so that it gets more oxygen with every breath. It has a wingspan of 8 ½ feet, or 2.6 meters, and is brown or black with a lighter belly and a white ruff around the neck. Its tongue is spiky to help it pull meat off the bones of the dead animals it eats, but if there’s no meat left on a carcass, it will eat the hide and even bones. The more I learn about vultures, the more I like them.

Any bird that migrates above the Himalayas has to be able to fly incredibly high, since that’s where Mount Everest is and many other mountains that reach nearly into the stratosphere. The bar-headed goose has been recorded flying at 29,000 feet, or 8,800 meters, and in fact, mountaineers climbing Mount Everest have claimed to see and hear the geese flying overhead. The bar-headed goose has the same variant hemoglobin that Rüppell’s vulture has so it absorbs more oxygen with every breath.

The bar-headed goose is pale gray with black and white markings, especially black stripes on its head. It’s not an especially big goose, with a wingspan of about five feet, or 160 cm. It nests in China and Mongolia during the summer, then migrates to India and surrounding areas for the winter, and it generally crosses the Himalayas at night when winds aren’t as high.

The common crane is another high-flying bird, which has been recorded flying at 33,000 feet, or 10,000 meters, above the Himalayas. It’s a large bird with long legs and a wingspan of nearly 8 feet, or 2.4 meters. It’s gray with a red crown on its head and a white streak down its neck, and a tail that’s not so much a tail as just a bunch of floofy feathers stuck to its butt. Supposedly it flies so high to avoid eagles, but it’s a strong bird with a stabby beak that has been observed fighting eagles that attack it. It nests in Russia and Scandinavia but flies to many different wintering sites across Europe, Africa, and Asia.

So those are the three highest-flying birds known, but what about insects? How high can an insect fly?

Most insects can’t fly if the air is too cold, typically if it’s below 50 degrees Fahrenheit, or 10 degrees Celsius. Since the air is that cold just a few thousand feet above ground, that means most insects don’t fly very high, especially small ones. But not all of them.

Because insects are so small and lightweight, they’re often carried by the wind even if they aren’t technically flying, an activity called kiting. In 1961 during a study of insect migrations, an insect trap installed on an airplane caught a single winged termite at 19,000 feet, or 5.8 kilometers above sea level. An insect trap on a weather balloon collected a small spider at 16,000 feet, or 5 km. If you’re wondering how the spider got in the air in the first place, many small spider species travel to new habitats by ballooning, which in this case has nothing to do with a balloon. The spider lifts its abdomen until it feels a breeze, and then it spins a short piece of silk. The breeze lifts the silk and therefore the spider and carries it sometimes long distances.

Some bumblebee species live and fly just fine at high altitudes. The bumblebee Bombus impetuosus lives on Mount Everest, although not at its very top because nothing grows that high. It lives at around 10,600 feet, or 3,250 meters, and studies of how it flies show that it actually beats its wings in a different way from other bumblebees in order to fly at high altitudes where the air is thin.

So maybe there aren’t weird jellyfish-like creatures floating around in the stratosphere, but there are certainly other animals that occasionally reach incredible heights. So I guess the only thing the fictional pilot Joyce-Armstrong really had to worry about was freezing to death.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes for as little as one dollar a month.

Thanks for listening!

 

Episode 158: Legless Lizards and Other Not-Snakes

What’s the difference between a snake and a legless lizard? Find out this week and learn about all kinds of interesting reptiles without legs that aren’t actually snakes!

The slow-worm. Not a snake:

Burton’s legless lizard. Not a snake:

The excitable delma. Not a snake:

The Mexican mole lizard. Not a snake or a worm:

The red worm lizard (Amphisbaena alba). Also not a snake or a worm, but honestly, it looks a lot like I imagine the Mongolian death worm to look:

The giant legless skink. Not a snake:

Stacy’s bachia. Not a snake:

Further reading (and this is where I got the Stacy’s bachia picture above):

Bachia lizards–look, no hands!

An Explosive Enigma from Kalmykia—the ‘Other’ Mongolian Death Worm?

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

A couple of weeks ago we discussed the Mongolian death worm and the possibility that it was an animal called an amphisbaenian, which is a reptile without legs that’s not a snake. But there are lots of other legless reptiles that aren’t snakes. So this week we’re going to learn about legless lizards and their friends.

Researchers have determined that leglessness evolved in reptiles many different times in species that aren’t related, often in species that spend at least part of their time underground. If the legs get in the way of burrowing or other movement, over time individuals born without legs or with much smaller legs end up finding more food than those with legs. That means they’re more likely to reproduce, and their offspring may inherit the trait of no legs or smaller legs.

Some legless lizards look so much like snakes at first glance that it can be hard to tell them apart. The common slow-worm, for instance, lives throughout most of Europe and part of Asia. It grows to about a foot and a half long, or 50 cm, and is brown. It mostly eats slugs and worms so it spends most of its time in damp places or underground. But while it looks superficially like a snake, it’s not a snake. It’s a lizard with no legs. Like some other lizard species, including many legless lizards, it can even drop its tail if it’s threatened and then regrows a little tail stump.

So how can you tell the difference between a legless lizard and a snake? The one big clue is if the reptile blinks. Snakes don’t have eyelids; instead, their eyes are protected by a transparent scale that covers the eye completely. Lizards have eyelids and blink. Legless lizards have a different head shape from snakes too, usually more blocky and less flattened. The tongue is not so much forked as just notched, and shorter and less slender than a snake’s tongue.

Species of one family of legless lizards do sometimes have legs. Honestly, this is almost as confusing as the whole deer and antelope mix-up from episode 116. The family is Pygopodidae and they’re actually most closely related to geckos although they don’t look much like geckos. They look like snakes, and to make things even more complicated, geckos and Pygopodids don’t have eyelids. I know I know, I just said lizards have eyelids but geckos are an exception. Pygopodids don’t have front legs at all, but some do have vestigial hind legs that look more like little flaps than actual legs. They’re sometimes called flap-footed lizards as a result. They live in Australia and New Guinea.

One Pygopodid is Burton’s legless lizard, which does actually have vestigial hind legs. It lives in parts of Australia and Papua New Guinea and is kind of a chunky reptile with a pointed nose. It’s brown or gray, sometimes with long stripes, and can grow to more than three feet long, or one meter. It eats other lizards, especially skinks, but will also sometimes eat small snakes.

Burton’s legless lizard mostly stays in leaf litter in forests. Sometimes it will twitch the end of its tail to attract a lizard, which it then grabs by the neck. It will swallow small lizards whole, but if it’s too big to swallow, it will just hold onto its neck until the lizard suffocates or just gives up out of exhaustion. It can also retract its eyes so they’re less likely to be injured if its prey fights back.

The excitable delma is another pygopodid, this one without any legs at all. It lives in many parts of Australia and can grow nearly two feet long, or 54 cm, but almost half that length is tail. It’s shy and nocturnal, so even though it’s very common, it’s seldom seen. It’s brown or grayish with darker stripes on its head. The reason it’s called the excitable delma is because it uses its long tail to jump, twisting and changing directions as it jumps repeatedly up to six inches off the ground, or 15 cm. It does this to escape from predators but it also sometimes just jumps around for the heck of it, according to observations of excitable delmas in captivity. It can also make a squeaky sound. It likes dry, rocky areas and eats insects.

There are other reptiles that look like snakes but aren’t, in addition to the legless lizards. We talked about the amphisbaenians in the Mongolian animals episode a few weeks ago, and also in episode 10. Amphisbaenians are sometimes called worm lizards because they look less like snakes than they do worms. They’re related to both legless lizards and snakes but lost their legs independently.

The amphisbaenian moves like a worm, not a snake. Its skin is loosely attached to its body so that it can move freely, and it bunches up its skin the way a worm bunches up its body, then extends it to move forward or backward. This kind of action is called peristalsis, by the way. Unlike worms, the amphisbaenian has scales because it’s a reptile, but the scales are often arranged in rings that make it look even more like an earthworm. Many amphisbaenians are pink like many earthworms, too.

Most amphisbaenians live underground their entire lives, hunting worms, insect grubs, and other small animals. In most cases they only come to the surface at night or after a heavy rain. Most have no legs at all, but one family consisting of four species, all of them native to Mexico, has little front legs. One of these species is the Mexican mole lizard, which can grow over a foot long, or more than 30 cm. It mostly eats soft-bodied animals like worms and termites, but it will occasionally eat small lizards. It’s pink and has little black dots for eyes and is actually really cute, but don’t let that fool you. If you are a worm, the Mexican mole lizard is a murder machine. It has sharp little teeth that it uses to bite pieces from its prey instead of swallowing them whole.

All the other known amphisbaenians have no legs at all, and for most species we know very little about them. The red worm lizard, for instance, lives throughout much of western South America and appears to be common, but it lives underground and is hardly ever seen. It’s the largest amphisbaenian known and can grow nearly three feet long, or 85 cm, although it’s only a few inches thick, or around 6 cm. It’s brown, reddish, or yellowish in color with a white belly and has tiny eyes that are barely visible. Its tail is blunt and rounded like other amphisbaenian tails, but its tail is tough enough to withstand bites from predators without being injured. If the red worm lizard feels threatened, it raises its head and tail and bends itself into a U shape so that it looks like it has two heads.

That’s why the amphisbaenian has that name, by the way. In ancient mythology, the amphisbaena was a serpent with a head on each end of its body. It was said to mostly eat ants, and that’s actually a good observation of the real amphisbaenian, which often eats ants, termites, and other insects.

Legless skinks are another group of lizards that either have no legs at all or just little flaps instead of hind legs. The males are the ones with the hind leg flaps, which they use to hold onto the female while mating. Most legless skinks look sort of like amphisbaenians, with a blunt-ended tail that’s sometimes hard to tell from the head, but more snakey than wormy for the most part.

One example is the giant legless skink, which is dark gray or black with no legs, and which lives in South Africa. It grows almost a foot and a half long, or 42 cm, and is a little bit of a chonk. We still don’t know much about it but it probably eats insects and other invertebrates like most legless skinks do.

A while back, Llewelly sent me a link to an article about Stacy’s bachia, a lizard that lives in the tropics of South America. It’s a member of the spectacled lizards, which all have lower eyelids that are transparent. That way the lizard can see even if its eyes are closed. I put a link to the article in the show notes if you want to read it.

Stacy’s bachia usually has no hind legs, although it may have little stubby ones, but it hatches with small front legs. But it spends most of its life burrowing in soil and in leaf litter as it hunts termites, ants, and other small animals, and eventually all its legs wear away to nothing.

Let’s finish with a mystery animal. Kalmykia is a small region of Russia, and the native people of the area are called Kalmyks. The Kalmyks report that there’s an animal that lives in both the steppes and in sand dunes in the desert that looks like a snake but isn’t a snake, which they actually call the short gray snake. It grows around 20 inches long, or 50 cm, and has smooth skin and a tail that’s short and rounded at the end. It has no legs. This report is from zoologist Karl Shuker’s blog, and check the show notes for a link. The person who told him about this animal also says it’s about six to eight inches thick, or up to 20 cm, so if that’s correct it’s even more of a chonk than the giant legless skink.

Kalmykia is west of Kazakhstan, which is west of Mongolia, so there’s always the possibility that this legless animal is related to or the same animal as the Mongolian death worm that we talked about in episode 156. But Kalmykia is actually pretty far away from Mongolia, and the short gray snake is different from the death worm in two important ways. One, reports say it has no bones. If this is true, it must be some kind of invertebrate, not a reptile. It’s also supposed to move like a worm, although remember that the amphisbaenian does too and it’s a reptile.

But the other thing reported about the short gray snake is much weirder than having no bones. Apparently if someone hits the animal in a particular place on its back—presumably with a stick—it EXPLODES. It explodes into goo that spreads for several feet in every direction, or about a meter, leaving nothing else behind.

It’s possible this isn’t a real animal but a folktale, something like American tall tales about the hoop snake that’s supposed to grab its tail in its mouth and roll itself along like a hoop. The hoop snake is not a real animal, in case you were wondering. There’s no way of telling whether the exploding boneless short gray snake is a real animal, a folktale, or reports of more than one real animal that have gotten mixed up in translation. Hopefully someone who lives in Kalmykia will investigate and find out more. In the meantime, don’t hit any animals with sticks. For one thing, that’s mean. For another, it might explode and leave you covered in goo.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 157: Rodents of Unusual Size

Uh, yeah, not the legless lizard episode. But just as interesting! This week let’s learn about the largest rodents in the world! Hint: way bigger than a rat.

Further reading:

Rodents of Uncertain Systematics

The mellow and photogenic capybara:

Oh to be a capybara in an open bath with an orange on its head:

Hey, pacarana:

Oh to be a paca with half an orange:

Oh to be a chevrotain with a piece of orange. (The chevrotain is not a rodent. It has hooves. Episode 116 explains this creature):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Yes, I know, last week I said we might have an episode this week about legless lizards and other snakey things that aren’t snakes, but I got this episode ready first so instead, this week we’re going to learn about some rodents of unusual size!

Rodents are mammals in the order Rodentia, and there are thousands of them throughout the world. Mice and rats are rodents, of course, but so are chipmunks and squirrels, hamsters and gerbils, prairie dogs and guinea pigs, and many others. But you may notice that all the animals I just mentioned are pretty small. That’s because most rodents are on the small side. But not all of them.

The biggest rodent alive today may be one you’ve heard of, the capybara. It’s native to much of South America and lives in forests, rainforests, and other areas, but always near water. It really likes water and eats a lot of aquatic plants, although it also eats grass, fruit, tree bark, and other plants. Like other rodents, its teeth grow throughout its life but constantly wear down as it eats tough plants.

So how big is the capybara? It grows to about two feet tall, or 62 cm, and four feet long, or 1.3 meters. Females are usually a little larger than males. Basically they’re the size of a big dog, but a big dog with webbed toes, small ears, big blunt muzzle, basically no tail, and a calm outlook on life. Because unlike many rodents who tend to be nervous and quick-moving, the capybara is pretty chill.

The capybara is semiaquatic and likes to hang out in the water, often in social groups. It can hold its breath underwater for up to five minutes, and can even sleep while submerged with just its nose above water. That’s why its nose, eyes, and ears are close to the top of its head, so it can be alert to predators while remaining safely underwater.

The capybara has a scent gland on its nose called a morillo. The female has a morillo but the male’s is bigger since he scent marks more often by rubbing the gland on plants, trees, rocks, other capybaras, and so on. During mating season, the female capybara attracts a male by whistling through her nose, because who doesn’t like a lady who can whistle through her nose? The capybara will only mate in water, so if a female decides she doesn’t like a male, she just gets out of the water and walks away from him.

The female usually gives birth to four or five babies in one litter. If the female is a member of a group of capybaras, all the babies stay together in the middle of the group and all the females care for them. In most mammals, the female will only let her own babies drink her milk, but a female capybara will suckle any babies in the group who are hungry. Like I said, they’re pretty chill.

There are actually two species of capybara, but some people consider the lesser capybara to be a subspecies of capybara and anyway, we don’t know much about it. Other than that, though, the capybara is most closely related to the guinea pig. Like the guinea pig and like humans, the capybara can’t synthesize vitamin C in its body and has to get it through its diet. That means if a capybara in captivity doesn’t receive fruit and other plant material containing vitamin C, eventually it will show symptoms of scurvy.

The capybara is killed for its meat and hide, but it’s also sometimes kept as a pet. It’s not a domesticated animal and it’s as heavy as a full-grown human, so while the capybara isn’t specifically dangerous it’s not really a good pet. Also, it will eat your garden and wallow in mud and if you don’t have a pool it’s going to wander around until it finds one. It’s probably better to get a dog.

While the capybara is a strong swimmer, it can move fast on land when it wants to. It can run up to 22 miles per hour, or 35 km/hour. This is what a capybara sounds like.

[capybara sounds]

Big as the capybara is, even bigger rodents used to live in South America. Around 8 million years ago a rodent called Phoberomys pattersoni [foe-barommis] lived in what is now Venezuela and nearby areas, especially around the Orinoco River. It was discovered in 2000 when an almost complete skeleton was found, and it was really big. We’re talking nine feet long, or 2.75 meters, and that doesn’t even include its tail. It stood over four feet tall, or 1.3 meters. It was described in 2003 and is a relative of guinea pig and the capybara.

But since then, paleontologists have found fossils of rodents that are estimated to be even bigger. Around 3 million years ago an animal called the giant pacarana grew to an estimated five feet tall, or 1.5 meters, with a body ten feet long, or 3 m. But we don’t know for sure if it was bigger or smaller than that estimate, since so far all we have is a fossilized skull discovered in 1987 and described in 2008. Another closely related rodent is only known from some teeth. Some researchers think it used its massive teeth like elephants use their tusks, to fend off predators and fight each other.

So if there was once a giant pacarana, what’s a regular pacarana? It’s another South American rodent, and while it’s not exactly capybara size it’s much larger than a mouse. It grows more than 3 ½ feet long, or 100 cm, and is shaped sort of like a capybara with a tail, although its head is more rodent-like. It’s dark brown-gray with rows of white spots down its sides and a thick tail covered with fur. It’s the only living member of the family Dinomyidae and it has many unusual features compared to other rodents. I’d tell you what they are but they’re all things like “it has a flatter sternum,” which wouldn’t mean a whole lot to most of us. Shout-out to any rodent experts listening, though.

The pacarana was discovered by scientists in 1873 when a Polish nobleman traveling in Peru shot one and sent its skin and skeleton home, where it was studied by the director of the Berlin Zoo. But after that one specimen was killed, the pacarana seemed to vanish. Then in 1904 someone sent two pacaranas to a museum in Brazil. The museum’s director gave them to the local zoo where they could be taken care of, although the female died after giving birth shortly afterwards.

It turns out that the pacarana isn’t all that rare, but it’s shy and hard to spot in its habitat, forested mountains in South America. But because it’s seldom seen, not very many zoos have them, but zookeepers all report that pacaranas are docile and friendly. I can confirm that they are very, very cute although I haven’t seen one in person.

The pacarana is named after another rodent called the paca, which looks similar but has a shorter tail and is smaller than the pacarana, although still a pretty big rodent. The paca grows up to about two and a half feet long, or 77 cm, not counting its 9-inch tail, or 23 cm, and is dark brown with rows of white spots on each side. It looks kind of like a chevrotain, which as you may remember from episode 116 is also called the mouse deer even though it’s not a mouse or a deer. The paca lives in a burrow that can be ten feet long, or 3 meters, usually with two entrances that it covers with leaves to hide it. It likes fruit, leaves, flowers, fungi, and other plant material, but it will also eat insects.

The paca likes to swim and can stay underwater even longer than the capybara, as much as 15 minutes. It usually mates in the water too. It’s mostly nocturnal, although some populations may be crepuscular, and it lives in much of Central and South America, although it’s also present in southern Mexico.

After her babies are born, the mother paca tucks her babies in a hole she digs that’s too small for predators to enter. But the hole is also too small for her to enter. To let the babies know it’s safe to come out, she calls to them in a low trill. The paca, in fact, makes a lot of sounds, and its voice is way louder than you’d think. It has resonating chambers in its cheeks to make its voice even louder.

Here are some sounds that a paca makes:

[paca calls]

Ages ago, Llewelly sent me a link to an article about some interesting rodents of South America. I’ve included a link to it in the show notes in case you want to learn more about South American rodents that aren’t quite as big as the ones we’ve covered today, but which are just as interesting.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening! Oh, and this is what a baby capybara sounds like.

Episode 156: Animals of Mongolia

In honor of my new favorite band, The Hu, let’s learn about some animals from their country, Mongolia! (You can also watch the “Wolf Totem” video with English lyrics.)

The Hu. Oh my heart:

If you need the podcast’s feed URL, it’s https://strangeanimalspodcast.blubrry.net/feed/podcast/

A handsome prize-winning domesticated yak and rider (photo taken from this site):

The saiga, an antelope with a serious snoot:

A Bactrian camel (photo by *squints* Brent Huffman, looks like):

The taimen, a fish that would swallow you whole if it could:

Further watching:

A clip from the TV show Beast Man showing how moist the soil is in parts of the Gobi

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Recently, podcaster Moxie recommended a band she liked on her excellent podcast Your Brain on Facts. The band is called The Hu, spelled H-U, and she mentioned they were from Mongolia. I checked the band out and FELL IN LOVE WITH THEM OH MY GOSH, so not only have I been recommending them to everyone, I also want to learn more about their country. So let’s learn about some interesting animals from Mongolia.

But first, a quick note. About six months ago I had to migrate the site to an actual podcasting host, since I’d run out of memory on my own site. Well, there doesn’t seem to be any point to keep the old site open anymore since all the podcasting apps I checked appear to have the new feed and everything is on the new website. So in another week or two, the old site will close. If you suddenly stop receiving new episodes, please email me at strangeanimalspodcast@gmail.com and let me know what app you use for podcast listening, so I can get it updated. In the meantime, if your app gives you the option of entering a podcast feed manually, I’ve made a new page on the website, strangeanimalspodcast.blubrry.net, where you can copy and paste the feed URL. It’s also in the show notes. Feel free to contact me if you have any questions or if something isn’t working. Now, back to Mongolia and its animals.

Mongolia is located in Asia, north of China and south of Russia, with the Gobi Desert to the south and various mountain ranges to the north and west. You actually probably know some Mongolian history without realizing it. You’ve heard of the Great Wall of China, right? Well, it was built to keep out the Mongols, who would ride their horses into China and raid villages. Genghis Khan was the most famous Mongol in history, a fearsome warrior who conquered most of Eurasia in the early 13th century.

While you’re thinking about that, here’s a short clip of my favorite Hu song, called “Wolf Totem.” There’s a link in the show notes if you want to watch the official video.

Oh my gosh I love that song.

Anyway, Mongolia has short summers but long, bitterly cold winters. Many people are still nomadic, a traditional culture that’s horse-based. A lot of Mongolia is grassland referred to as the steppes, which isn’t very good for farming, but which is great for horses. Domesticated animals include horses, goats, and a bovid called the yak. Let’s start with that one.

The yak is closely related to both domestic cattle and to bison, and is a common domesticated animal in much of Asia. The wild yak is native to the Himalaya Mountains in Eurasia. It’s a different species from the domesticated yak and is larger, with a big bull wild yak standing up to 7.2 feet at the shoulder, or 2.2 meters. A big bull domesticated yak is closer to 4 ½ feet high at the shoulder, or almost 1.4 meters. The wild yak is usually black or brown, but domesticated yaks may be other colors and have white markings. Occasionally a wild yak is born that has golden fur.

Both male and female yaks have horns, although the males usually have larger horns with a broader spread than the females. The male also has a larger shoulder hump than the female, much like bison, and males are also larger and heavier. The reason the domesticated yak is so popular in the mountains and in areas where winters are long and cold, like Mongolia, is that it has long, dense hair with a soft undercoat that keeps it warm. It’s also naturally adapted to high altitudes where there’s less oxygen, with large lungs and heart. As a result, it doesn’t do well in lower altitudes and can even die of heat if it gets too warm, since it can’t sweat.

The yak is domesticated for its meat and milk, to pull plows, as a riding animal, and for its soft undercoat which is combed out in spring and used to make yarn. Even the yak’s droppings are useful, since they’re mostly undigested plant fibers that burn really well once they’re dry, so they can be used instead of wood to build fires.

In Mongolia, yak milk is used to make butter, cheese, and yogurt. And vodka. Yak races and yak festivals are increasingly popular as tourist attractions, but yak herding is a tradition dating back thousands of years.

The wild yak is a protected species where it still lives, mostly in China, India, and Tibet, but it’s still threatened by poaching and habitat loss due to domesticated yak herds pushing out their wild cousins. In the wild, the yak prefers to live in elevations too high for trees to grow. It eats grass and other plant material and can survive on a diet too poor to sustain cattle. This is because it has a larger rumen and the plants it eats can stay in its digestive tract for longer to extract as many nutrients as possible.

It’s rare for a domesticated animal to also be endangered, but yak herding in Mongolia is in steep decline, with 70% fewer yaks raised now than there were twenty years ago. There are a number of reasons for the decline. More people are moving to cities in Mongolia since they can make more money there instead of farming. Some farmers have started raising cattle or yak-cattle hybrids instead of yaks, since cattle and cattle hybrids produce more milk and meat even though they eat considerably more than yaks do. Worse, cloth made of sheep’s wool and other fibers is being exported by Chinese farmers labeled as Mongolian yak wool, which has caused the market for actual yak wool to crash. Yak wool is as soft and warm as cashmere, which comes from goats, but yaks are much better for the fragile mountain environment in Mongolia than goats are. Hopefully, increased tourism, including yak festivals, will help farmers make money from their traditional ways of life.

Instead of mooing like a cow, the yak grunts, although wild yak are usually silent. This is what a domesticated yak sounds like:

[yak grunting]

Another bovid, this one found only in Mongolia, is the Mongolian saiga. Some researchers consider it a subspecies of the saiga that was once found throughout Eurasia while others consider it a separate species. It’s critically endangered, possibly with as few as 5,000 animals left in the wild, threatened by poaching and competition with livestock. But the saiga frequently has twins instead of just one baby at a time, which helps its numbers increase quickly as long as people stop shooting the males for their horns. Some people think have medicinal qualities. They don’t, of course. The saiga almost went extinct back in the 1920s, but it recovered, so it can recover again as long as people leave it alone.

The saiga stands nearly three feet tall at the shoulder, or 81 cm, and its coat is usually a sandy pale brown in color. In winter it grows a long coat to keep warm. It’s also rather stocky in shape compared to other antelopes, which helps keep it warm too. But the main adaptation it has for cold weather is its nose. The saiga has a remarkable snoot. It almost looks like it has a little trunk. Its muzzle is considerably enlarged to make plenty of room for large nasal passages, which warms air before it reaches the lungs and also filters dust from the air. The nostrils point downward. The males have pale-colored horns that can grow nearly nine inches long, or 22 cm, although the closely related Russian saiga has horns that are almost twice that long. The horns grow upward and slightly back. The saiga migrates across the steppes and lives in herds that are sometimes quite large.

Another animal that’s domesticated but still lives wild in some parts of southern Mongolia and northern China is the Bactrian camel. That’s the camel that has two humps instead of just one. Like the yak, the domesticated and wild Bactrian camels are different species although they’re closely related. The wild Bactrian camel is smaller with a flatter head. A domesticated Bactrian camel can stand up to 7 ½ feet high at the shoulder, or 2.3 meters.

The wild Bactrian camel is critically endangered due to poaching and habitat loss, although it’s protected in both Mongolia and China. There may be only 1,000 of them left in the wild, and some of those are hybrids of wild and feral domesticated Bactrian camels. Since they’re different species, offspring of wild and domesticated Bactrian camels are often infertile. A wild Bactrian captive breeding program in Mongolia is underway and has been successful so far.

When you think of a camel, you probably think of a hot desert. Camels of all kinds are well adapted to desert life. The one-hump camel is a dromedary, which is a domesticated animal native to the Sahara Desert in northern Africa and other arid regions. But the two-humped Bactrian camel is adapted to a different kind of desert, the cold desert. Although it can get hot in the Gobi Desert in summer, winters are long and very cold, but mainly a desert just doesn’t get much rain. In the case of the Gobi, what little moisture it receives in winter is mainly from snow and frost, although it also gets an average of almost 8 inches of rain in the summer, or 19 cm.

The wild Bactrian camel, therefore, has to be able to survive without a lot of water. Some people think camels store water in their humps, but the humps are actually made up of fat. Fat is full of water, though, and when the camel can’t find any food or water, its body will reabsorb the fat to keep itself alive. If you see a camel with floppy or skinny humps, you know it’s not had much to eat recently and has had to use up its fat stores.

The wild Bactrian camel grows thick fur in winter to keep it warm in temperatures that can drop to -27 degrees Fahrenheit in winter, or -32.8 Celsius, but it sheds a lot of this heavy coat in summer when temperatures can soar to 99 F, or 37 C. Unlike most animals, it can safely eat snow without risking hypothermia, where the body core temperature falls to dangerous levels. It can also safely drink water that’s even saltier than the ocean. It lives in small herds that travel across the desert from one water source to another, since if it stayed in one area it would soon eat all the food available. It eats any plants it can find.

Mongolia has several rivers and lakes, so naturally it has some interesting water animals too. The taimen [TIE-min] is a large fish sometimes called the Eurasian river trout or Siberian giant trout, but it’s actually more closely related to the salmon. It lives in parts of Mongolia and Russia but is threatened by overfishing and water pollution. Until recently in Mongolia, people didn’t eat much fish, plus the taimen was considered the offspring of an ancient river spirit so was left alone. These days, unfortunately, not only are more people eating fish in Mongolia, sport fishing has become a big tourist draw. Conservationists are encouraging anglers to practice catch and release to save the remaining population.

The taimen grows up to six feet long, or two meters, and is a vicious predator. It will eat anything it can catch, including smaller taimen, and in fact will occasionally try to swallow a fish that’s too big, and will suffocate and die as a result. It lives in swift-moving water but is sometimes found in lakes. It grows slowly and lives a long time, and there are rumors of it hunting in packs. As a result, it’s sometimes called the river wolf. Stay away from anything called the river wolf, that’s my advice.

It wouldn’t be an episode about Mongolian animals if we didn’t talk about a mystery animal called the Mongolian death worm. We talked about it once before way back in episode ten, about electric animals, but that was a long time ago so let’s look at it again now.

The story goes that a huge wormlike creature lives in the western or southern Gobi Desert, and most of the time it stays below ground. During the rains of June and July it sometimes comes to the surface. It’s generally described as looking like a sausage or an intestine, red or reddish in color, as thick as a person’s arm, and as long as three or four feet, or up to about 1.5 meters. Its head and tail look alike, sort of like a giant fat earthworm, although some reports say it has some pointy bristles or spines at one end. Touching a death worm is supposed to lead to a quick, painful death, because why would you name something a death worm if it didn’t kill you? Some people report that it can even spit venom or emit an electrical shock that can kill people or animals at a distance.

The National Geographic Channel has a show called Beast Man, or used to, I don’t know, but in 2018 it aired an episode about the Mongolian death worm. I didn’t watch the whole episode, just clips, and while they didn’t actually find one, it was interesting. One lady they interviewed, who saw a death worm when she was a little girl, said it was about two feet long, or 60 cm, reddish in color, and its head and tail looked the same. This matches up with what other people have reported. In one clip, the show’s host tests the soil moisture content in the southern Gobi and is surprised that underneath the dry surface, the ground is actually quite moist. I’ll put a link to that one in the show notes.

There are actually earthworms that live in parts of the Gobi, including two species described in 2013. The earthworms don’t resemble reports of the Mongolian death worm, but if an earthworm can survive, other soft-bodied creatures can too. That’s assuming that the death worm is actually a worm and not a reptile or amphibian of some kind.

The best suggestion for what the death worm might be is an animal called the amphisbaenian. It’s sometimes also called the worm lizard, and while it’s not any kind of lizard, it is a reptile. Amphisbaenians live in many parts of the world, including most of South America and parts of North America, parts of Africa, southern Europe, and the Middle East. But since amphisbaenians live almost all of their lives underground, it’s very likely that species unknown to science live in other places. And much of Mongolia is extremely remote and probably not very well explored by scientists.

Amphisbaenians resemble snakes but they also resemble worms. The eyes are tiny and can be hard to spot, and the head and tail look very similar as a result. Many species are pink or reddish in color, although some are blue or other colors, including spotted, and many have scales that grow in a ringed pattern that make it look even more like an earthworm. But they’re not big animals, generally around six inches long, or 15 cm. Also, they’re slender like an earthworm, not as big around as someone’s arm. And they’re completely harmless to humans and large animals.

That doesn’t mean there can’t be a big amphisbaenian living in the remote parts of the Gobi, rarely seen even by the people who live there. Or, of course, the Mongolian death worm might be a completely different kind of animal, one totally unknown to science—maybe one that’s related to the amphisbaenian but radically different in appearance. Or it might be a mythical monster, although there are enough plausible-sounding witness sightings to think there’s something in the Gobi that looks like a big fat red horrible worm, even if it’s not actually dangerous.

What worries me, though, is that there don’t seem to be any sightings from recent times. Only old people report having seen a death worm back when they were young. Considering that so many Mongolian animals are endangered, it could be that the death worm is also declining in numbers so that fewer of them are around to be seen. Let’s hope Mongolian scientists are out there looking for the death worm and that they figure out what it is so it can be protected and studied in its natural habitat.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at Patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 155: Extreme Sexual Dimorphism

Many animals have differences between males and females, but some species have EXTREME differences!

The elephant seal male and female are very different sizes:

The huia female (bottom) had a beak very different from the male (top):

The eclectus parrot male (left) looks totally different from the female (right):

The triplewart seadevil, an anglerfish. On the drawing, you can see the male labeled in very small letters:

The female argonaut, also called the paper nautilus, makes a delicate see-through shell:

The male argonaut has no shell and is much smaller than the female (photo by Ryo Minemizu):

Lamprologus callipterus males are much larger than females:

The female green spoonworm. Male not pictured because he’s only a few millimeters long:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I still have a lot of listener suggestions to get to, and don’t worry, I’ve got them all on the list. But I have other topics I want to cover first, like this week’s subject of extreme sexual dimorphism!

Sexual dimorphism is when the male of a species looks much different from the female. Not all animals show sexual dimorphism and most that do have relatively small differences. A lot of male birds are more brightly colored than females, for instance. The peacock is probably the most spectacular example, with the males having a brightly colored, iridescent fan of a tail to show off for the hens, which are mostly brown and gray, although they do have iridescent green neck feathers too.

But eclectus parrot males and females don’t even look like the same bird. The male is mostly green while the female is mostly red and purple. In fact, the first scientists to see them thought they were different species.

Males of some species are larger than females, while females of some species are larger than males. In the case of the elephant seal, the males are much larger than females. We talked about the northern elephant seal briefly last week, but only how big the male is. A male southern elephant seal can grow up to 20 feet long, or 6 meters, and can weigh up to 8,800 pounds, or 4,000 kg. The female usually only grows to about half that length and weight. The difference in this case is because males are fiercely territorial and fight each other, so a big male has an advantage over other males and reproduces more often. But the female doesn’t fight, so her smaller size means she doesn’t need to eat as much.

Another major size difference happens in spiders, but in this case the female is far larger than the male in many species. For instance, the body of the female western black widow spider, which lives throughout western North America, is about half an inch in length, or 16 mm, although of course that doesn’t count the legs. But the male is only half this length at most. Not only that, the male is skinny where the female has a large rounded abdomen, and the male is brown with pale markings, while the female is glossy black with a red hourglass marking on her abdomen. Female western widows can be dangerous since their venom is strong enough to kill many animals, although usually their bite is only painful and not deadly to humans and other mammals. But while the male does have venom, he can only inject a tiny amount with a bite so isn’t considered very dangerous in comparison.

The reason many male spiders are so much smaller than females is that the females of some species of spider will eat the male after or even during mating if she’s hungry. The smaller the male is, the less of a meal he would be and the less likely the female will bother to eat him. In the case of the western black widow, the male prefers to mate with females who are in good condition. In other words, he doesn’t want to spend time with a hungry female.

If you remember episode 139, about skunks and other stinky animals, we talked about the woodhoopoe and mentioned the bill differences between males and females. The male woodhoopoe has a longer, more curved bill than the female because males and females eat a slightly different diet of insects so they won’t compete for the same food sources.

But a bird called the huia took beak differences to the extreme. The huia lived in New Zealand, although it officially went extinct in 1907. It was a wattlebird, which gets its name from the brightly colored patch of skin on either side of the face, called wattles. In the case of the huia, the wattles were orange, while the feathers over most of the body were glossy black. It also had a strip of white at the tip of the long tail. The male’s beak was fairly long and pointy, although it also curved down slightly. But the female’s beak was much longer and more slender, curving downward in an arc.

The huia lived in forests in New Zealand, where it ate insects, especially beetle grubs that live in rotting logs. People used to think that a mated pair worked together to get at grubs and other insects. The male would use his shorter, stouter bill to break away pieces of rotting wood until the grub’s tunnel was exposed, and then the female would use her longer, more slender bill to fish the grub out of the tunnel. But actual observations of the huia before it went extinct indicate that it actually didn’t do this. Like the woodhoopoe, males and females preyed on different kinds of insects. The male did break open rotting wood with its beak in a way that’s very different from woodpeckers, though. Instead of hammering at the wood, it would wedge its bill into a crevice of the wood and open its beak, and the muscles and other structures it used to do so were so strong that it could easily break pieces of wood off. This action is known as gaping and other birds do it too, but the huia was probably better at it than any other bird known.

The huia went extinct partly due to habitat loss as European settlers cleared forests to make way for farming, and partly due to overhunting. Museums wanted stuffed huias for display, and the feathers were in demand to decorate hats. And as a result, we don’t have any huias left.

Sometimes the size difference between males and females reaches extreme proportions. We’ve talked about the anglerfish several times in different episodes, and it’s a good example. It’s a deep-sea fish with a bioluminescent lure on its head that it uses to attract prey. Different species grow to different sizes, but let’s just talk about one this time, the triplewart seadevil.

The triplewart seadevil is found throughout much of the world’s oceans, preferably in medium deep water but sometimes in shallow water and sometimes as deep as 13,000 feet, or 4000 meters. The female grows to about a foot long, or 30 cm. It’s black in color, although young fish are brown. Its body is covered with short spines and it has a lure on its head like other anglerfish. The lure is called an illicium, and it’s a highly modified dorsal spine that the fish can move around, including extending and retracting it. At the end of the illicium is a little bulb that contains bioluminescent bacteria. Whatever animals are attracted to the glowing illicium, the fish gulps down with its great big mouth.

But that’s the female triplewart seadevil. The male is tiny, only 30 mm long at the most. The male doesn’t have an illicium; instead, his jaws and teeth are specialized for one thing: to bite onto the female and never let go. When a male finds a female, he chooses a spot on her underside to latch on, and once he does, his mouth and one side of his body actually fuse to the female’s body. Their circulatory and digestive systems fuse too. Before the male finds a female, he has great big eyes, but once he fuses with a female his eyes degenerate because he no longer needs them. He’s fully dependent on the female, and in return she always has a male around to fertilize her eggs. But this attachment is actually pretty rare, because it’s hard for deep-sea fish to find each other.

Another sea creature where the females are much larger and very different from the males is the argonaut, or paper nautilus. The argonaut is an octopus that lives in the open ocean in tropical and subtropical waters. Instead of living on the bottom of the ocean, though, the paper nautilus lives near the surface, and while the female looks superficially similar to a nautilus, it’s only distantly related.

The female argonaut generally grows to about 4 inches long, or 10 cm, although the shell she makes can be up to a foot across, or 30 cm. In contrast, males are barely half an inch long, or 13 mm. The female’s eight arms are long because she uses them to catch prey, with two of her arms being larger than the others. She grabs small animals like sea slugs, crustaceans, and small fish and bites it with her beak, and like other octopuses she can inject venom at that point too. But the male has tiny little short arms except for one, which is slightly larger.

Like other cephalopods, the male uses one of his arms to transfer sperm to the female so she can fertilize her eggs. In most cephalopods that means an actual little packet of sperm that the male places inside the female’s mantle for her to use later. But in the argonaut, the male’s larger modified arm is called a hectocotylus, and it has little grooves that hold sperm. The male inserts the hectocotylus into the female’s mantle, then detaches it and leaves the arm inside her. Then he leaves and regrows the arm, as far as researchers know. We don’t actually know for sure since it’s never been observed, but octopuses do have the ability to regenerate lost arms. The female usually keeps the hectocotylus and sometimes ends up with several.

At that point the female creates a shell by secreting calcite from the tips of her two larger arms. The shell is delicate, papery, and white, and it resembles the shell of the ammonite, which we talked about in episode 86. The female lays her eggs inside the shell, then squeezes inside too, although she can come and go as she likes.

There’s still a lot we don’t know about the argonaut, but we know more than we used to. In the olden days people thought the female used her two larger arms as sails at the surface of the water. Eventually scientists figured out that was wrong, but they were still confused as to why there only seemed to be female argonauts. They didn’t know that the males were so small and so different, and in fact when early researchers found hectocotyluses inside the females, they assumed they were parasitic worms of some kind. Eventually they worked that part out too.

But still, for a very long time researchers thought the argonaut’s shell was just for protecting the eggs, but it turns out that the female uses the shell as a flotation device. She can control how much air the shell contains, which allows her to control how close to the surface she stays. In a 2010 study of argonauts rescued from fishing nets and released into a harbor, if the shell doesn’t contain enough air, the argonaut will jet to the surface and stick the top of its shell above the water. The shell has small openings at this point so air can get in, and once the argonaut decides it’s enough, she seals the holes by covering them with two of her arms. Then she jets downward again until she’s deep enough below the surface that the pressure compresses the air inside the shell and cancels out the weight of the shell. This means the argonaut won’t bob to the surface but she also won’t sink, and instead she can just swim normally by shooting water from her funnel like other octopuses.

A species of cichlid fish from Lake Tanganyika in Africa, Lamprologus callipterus, also differs in size due to a shell, but not like the argonaut. Instead, the male is much larger than the female. The male can be up to five inches long, or nearly 13 cm, while the female is less than two inches long, or 4 ½ cm. The females lay their eggs in shells, but not shells they make. The shells come from snails, so the male needs to be larger so he can pick up and carry a big empty shell. The female, though, still needs to be small enough to fit inside the shell.

A moth called the rusty tussock moth is also sexually dimorphic. Its caterpillar grows around 1 to 1.5 inches long, or 3 to 4 cm, with females being a little larger than male caterpillars but otherwise very similar. But after the caterpillars pupate, they’re much different. The male moth has orangey or reddish-brown wings and a wingspan of about 1.5 inches, or almost 4 cm. The female doesn’t have wings at all. She emerges from her cocoon and perches next to it, and releases pheromones that attract a male. After the female mates, she lays her eggs on her old cocoon and dies, as does the male.

Let’s finish up with an animal you may never have heard of, the green spoonworm. It’s a marine worm that lives throughout much of the Mediterranean and the northeastern Atlantic Ocean. It lives on the sea floor in shallow water, partly buried in gravel and sand. The female grows up to about six inches long, or 15 cm, and sort of looks like a mostly deflated dark green balloon, although it may also look kind of lumpy. It also has a feeding proboscis that it can extend several feet, or about a meter.

As a larva, the green spoonworm floats around in the water, but whether it becomes male or female depends on where it settles. If it lands on the seafloor it transforms into a female and starts secreting a toxin called bonellin. Bonellin is what gives the green spoonworm its dark green color. The bonellin is mostly concentrated in the feeding proboscis and allows the spoonworm to paralyze and kill the tiny animals it eats.

But if the larva happens to land on a female green spoonworm, contact with the bonellin causes it to become a male. And the male is only a few mm long, doesn’t produce bonellin, and can’t even survive on its own. The female sucks the male into her body through the feeding proboscis, but instead of digesting him, he lives inside her and fertilizes her eggs. In return she provides him with all the nutrients he needs. A female may have more than one male living inside her, making sure that her eggs will always be fertilized.

There are lots more animals that show extreme sexual dimorphism, of course, but that at least gives you an idea of how different animals evolve to fit different environmental pressures. Weird as they seem to us, to the animals in question, it’s just normal–and it’s our appearance and how we do things that would seem weird to them. Perspective is everything.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or whatever platform you listen on. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 154: Some Australian animals and how to help

This week let’s learn about some lesser-known Australian animals. A heat wave and dry conditions have led to many terrible bush fires in Australia, with many animals and people left hurt, killed, and homeless. Fortunately, there are ways you can help!

Check out the Animal Rescue Craft Guild for patterns and other information about crafting pouches, beds, and other items needed for injured and orphaned animals, and where to send the items you make.

Animals to the Max has a great episode about the fires and a long list of places where you can donate money where it’s needed most.

Some rescued joeys chilling in their donated pouches:

An Eastern banded bandicoot:

A bilby:

A long-nosed potoroo:

The woylie, or brush-tailed bettong:

The numbat:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

As you’ve probably heard, there are terrible fires sweeping through many parts of Australia right now amid a record-breaking heat wave. Both the fires and the heat have killed an estimated half a billion animals in the last few months. This week we’re going to learn about some lesser-known Australian animals and also talk about ways you can help the people in Australia who are helping animals, even if you don’t have any money to spare.

A Facebook group called the Animal Rescue Craft Guild is the resource for anyone who wants to make needed items for injured or orphaned animals. I’ll put a link in the show notes. The group shares what items are needed, patterns to make them, information about what fabrics and what fibers are appropriate for which items, and where to send them.

In the last week I’ve been knitting and crocheting nests for small animals, and this weekend my aunt Janice and I will be sewing pouches for larger animals. Well, Janice will be doing the sewing, I’ll cut out the cloth pieces for her to use. Many of the animals rescued from the fires are young marsupials, called joeys, whose mothers died, so the pouches are for joeys to live in until they’re old enough to be on their own. Being in a pouch makes the joey feel safe because it feels like being in its mother’s pouch. Rescue groups in Australia need all sizes and kinds of pouches, because there are so many different species of marsupial animals in Australia. So let’s learn about a few you may not have heard of.

One Australian marsupial that a lot of people don’t know much about is the bandicoot. There are a number of different species that live in parts of Australia and New Guinea. Some are exclusively herbivorous while some are omnivores. For instance, the Eastern barred bandicoot lives on the island of Tasmania and has recently been reintroduced into its historic range in Victoria in southeastern Australia. It’s still quite rare and threatened by introduced predators like foxes and by diseases. It’s an active animal and a fast runner, and makes a happy grunting noise when it finds food.

The Eastern barred bandicoot is about the size and shape of a rabbit but with shorter ears and a long nose that it uses to probe into the soil to find worms and other small animals that it then digs up. You can tell where one has been because it leaves a series of little holes in the ground called snout pokes. It’s light brown with darker and lighter stripes on its rounded rump, and has a short mouse-like tail. The Western barred bandicoot is a little smaller than the eastern but looks and acts very similar. Both are nocturnal and solitary, and spend the day sleeping in a nest lined with grass and leaves. When it rains, the bandicoot pushes dirt over its nest to help keep it dry. It eats plant material like seeds and roots as well as small animals like insects, worms, and snails. If something startles it, it will give a big jump, and as soon as it comes down it digs a burrow to hide in. Its pouch faces backwards so dirt won’t get into it when it digs.

Scientists are still working out what other animals the bandicoot is closely related to and how the different species are related to each other. It doesn’t help that many bandicoot species are already extinct. We do know that the bandicoot is most closely related to an animal called the bilby.

The bilby looks even more like a rabbit than the bandicoot does, and in fact sometimes it’s called the rabbit-bandicoot or the rabbit-eared bandicoot. Its fur is silky and slate gray on the back with white underneath, and it has a long nose, long ears, little pink paws, and a long tail. It grows to about 22 inches long, or 55 cm, not counting the tail, which is another 11 inches long, or 29 cm. Males are generally considerably larger than females. It even hops sort of like a hare.

There used to be two species of bilby, but the lesser bilby went extinct in the mid-20th century. The greater bilby is vulnerable due to habitat loss and introduced animals likes foxes and cats, but conservation efforts are underway with captive breeding programs and reintroduction of bilbies into areas where they used to live. There’s also a push to educate people about the bilby, and instead of chocolate Easter bunnies, a lot of people in Australia have started giving each other chocolate Easter bilbies.

The bilby is an omnivore and eats seeds, fruit, plant bulbs, insects, worms, and other small animals. Its large ears contain lots of blood vessels close to the surface. As blood travels through the ears, it radiates heat and returns to the heart much cooler than before, which helps cool the whole body.

The bilby sleeps in a burrow during the day, usually alone or with a few other bilbies, and it digs tunnels to connect different burrows throughout its territory. Like the bandicoot, its pouch faces backwards so dirt won’t get in it. Some bilbies may have a dozen burrows and will dig a new one every few weeks, which is helpful to other species of animal too since other animals may move into old bilby burrows.

The potoroo is another animal that people outside of Australia may not know about. It’s related to kangaroos and wallabies, but looks more like a rodent with a long, thin snout that curves downward. It’s brown with small ears and a thin tapering tail, and its hind legs are longer than its front legs so that it hops like a little kangaroo with its front feet tucked to its chest.

All species of potoroo are endangered even though when European settlers first arrived, it was a common animal all over Australia. Gilbert’s potoroo is so critically threatened that it’s estimated that only 70 are still alive today. In fact, it was suspected to be extinct until a small population was discovered in 1994. The long-footed potoroo was only discovered when one was caught in a trap in 1967. The long-nosed potoroo is less endangered than the other two species, but it’s still threatened by habitat loss, fires, and introduced predators like foxes, cats, and dogs.

The long-nosed potoroo grows to about 15 inches long at most, or 38 cm, with a tail about nine inches long, or 24 cm. Like the bandicoot and bilby, it’s nocturnal, solitary, omnivorous, and digs for a lot of its food. When it’s foraging, it sniffs the ground while moving its head side to side, and when it smells something it wants to eat, it digs to find it. It eats seeds, fruit, flowers, some leaves, and insects and other invertebrates, but it especially likes fungi like mushrooms.

Another little-known Australian marsupial is the bettong, also called the rat kangaroo. It’s related to potoroos and therefore to kangaroos, and looks similar. There are five species, all of them about the size of a rabbit. It hops on its hind legs and has a tail about the length of its body, specifically up to 15 inches, or 38 cm. Its fur is grey or brown, sometimes reddish. It’s nocturnal and solitary and sleeps in a nest during the day, much like the bandicoot. But since it has a prehensile tail, it actually carries its nesting material to the nest with its tail. Since it often lives in desert areas, it digs a warren of burrows and tunnels to stay out of the heat. Like the potoroo, it especially likes to eat mushrooms, but it will eat a lot of plant materials as well as invertebrates.

The woylie, or brush-tailed bettong, is one of the rarest species. It sometimes collects seeds of the Australian sandalwood tree to eat later, burying them in shallow holes. Like squirrels burying acorns, sometimes the woylie forgets where it hid the seeds and they germinate to grow into new trees.

Several species of bettong are threatened by habitat loss, fire, and introduced predators, but there are conservation plans in place to protect the bettong and its habitat.

The last animal we’ll learn about today is the numbat, which sounds like a Pokemon but which is a marsupial related to the extinct thylacine. It’s brown, gray, or reddish with white stripes over its back and rump, and a black streak through its eye, which also has a white ring around it. It grows to almost a foot long, or 29 cm long, with a long bushy tail that adds another eight inches to its length, or 21 cm.

The numbat eats termites and only termites. Termites are soft, so although the numbat has lots of little peg teeth—fifty of them, although sometimes less—it doesn’t need them. Its jaw is weak as a result but it has a long tongue with sticky saliva to lick up termites, and the roof of its mouth is ridged to scrape the termites off its tongue. Then it just swallows them.

The numbat needs to eat up to 20,000 termites every single day. Most marsupials are nocturnal, but the numbat is active during the day since it needs to be awake when the termites are active. It has good eyesight too, unlike many marsupials. It hunts termites by both sight and smell, and digs into the shallow tunnels termites dig outside of their nests. A termite’s nest is too tough for the numbat’s small claws to damage, but the tunnels leading away from the nest are easy for it to uncover.

At night the numbat sleeps in a burrow or sometimes in a hollow tree. Its burrow is usually a long tunnel that ends in a cozy round nesting chamber that it lines with grass, leaves, feathers, flowers, and other soft items. Its rump is protected by especially thick skin, and if a predator tries to get into its burrow, it will block the entrance with its rump. It can also climb trees with its sharp claws.

Male numbats have a scent gland on the chest that starts exuding a smelly oil during the summer, which it uses to mark its territory. The smell attracts females and warns other males away. Babies stay in their mother’s pouch for six months or so, until they’re so big the mother can’t walk properly. At that point she dumps them in the nest although she continues to nurse them. A few months after that the babies start to eat termites instead of just milk.

Like the other animals we’ve talked about today, the numbat is threatened by habitat loss and introduced predators, especially foxes and cats. But conservation programs have helped its numbers increase, and it’s been reintroduced into areas where it once lived.

Australia cares about all its animals, little and big, and I know that you care about animals too, or you wouldn’t be listening to this podcast. It’s easy to feel helpless when you hear the news about so many animals dying in fires. But there are ways you can help. Even if you don’t know how to sew, knit, crochet, or do woodworking, you probably know someone who does. Just ask them to teach you how. You’d be surprised at how easy it is to learn, and the patterns posted on the Facebook group I link to in the show notes are all quite simple. For the lining of most pouches, you can use old flannel sheets or even cotton t-shirts, as long as it’s clean, soft, and has no frayed or pilled areas. The outer layer of the pouches can usually be ordinary cloth, and some of the outer pouches can be knitted from regular old acrylic yarn.

If you aren’t able to craft, or you don’t have access to craft materials, you can raise money to donate to wildlife rescue groups in Australia. Check with any groups you may already belong to, like your place of worship, book clubs, gaming groups, your school or college, even your employer. Many groups may be interested in holding a bake sale or yard sale, or just gather donations from members to send to Australia. Last week’s episode of the great podcast Animals to the Max had an interview with an Australian wildlife expert, so I’ve linked to it in the show notes so you can listen if you haven’t already, and because that episode’s show notes have lots of great links where you can send donations.

Whatever you do to help, the people and animals of Australia appreciate it! Even if all you can do is learn about Australian animals so you can share that knowledge with other people, everything helps.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 153: The White River Monster

Let’s start out the new year with a bona fide mystery animal, the White River Monster from Arkansas! Is it a real animal? If so, is it a known animal or something new to science? If it’s a known animal, what could it be? Lots of questions, maybe a few answers! Happy new year!

Further listening:

MonsterTalk

The not exactly useful picture supposedly of the White River Monster, taken in 1971:

A northern elephant seal, AKA Mr. Blobby:

A Florida manatee:

A bull shark:

Two bottlenose dolphins:

An alligator gar (below) and a human (above):

Alligator gar WEIRD FISH FACE:

Gulf sturgeon:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

If you’ve listened to the final episode of 2019 last week, you’ll remember it was about some mystery water animals of various kinds. Well, I’ve got another water mystery for you today to start off the new year, the White River monster. I heard about this one in a recent episode of MonsterTalk, which is a great podcast I recommend if you don’t already listen to it.

The White River is in North America, originating in the mountains in northwestern Arkansas and flowing from there through Missouri, then back into Arkansas where it joins the Mississippi River. In 1915 a man near the small town of Newport, in the central Ozarks region of Arkansas, saw an enormous animal with gray skin in the river.

A few other people saw it too, but it wasn’t until July of 1937 that things really heated up. The monster returned, and this time a lot of people saw it. News of it hit the local papers and spread throughout the country, and people started showing up to look for it. Some people came prepared to kill or catch it while others just wanted to see it.

Estimates of the monster’s size varied quite a bit. A man named Bramlett Bateman, who owned a lot of the farmland along that stretch of the river, was quoted in several newspaper articles. He described the monster as being the length of three cars in one article, but in another his estimate was smaller, only 12 feet long, or 3.7 m, and four or five feet wide, or 1.2 to 1.5 meters. But it doesn’t seem that he or anyone else got a really good look at it.

It was described by numerous people as being gray-skinned. Bateman said it had “the skin of an elephant…with the face of a catfish.” I dug into as many original newspaper articles as I could find without actually paying for access to them, and very few of them have a real description of the animal. The only description given in a New York Times article from July 23, 1937 is this:

“Half a dozen eye-witnesses…reported seeing a great creature rise to the surface at rare intervals, float silently for a few minutes and then submerge, making its presence known only by occasional snorts that bubbled up from the bottom.”

Another article quotes Bateman as saying he saw the monster “lolling on the surface of the water.”

Bateman decided he was going to blow the monster up with dynamite. What is it about people whose go-to solution to seeing an unidentified animal is to throw dynamite in the water? The local authorities said, uh no, you cannot just throw dynamite into the river, but other people brought machine guns and other weapons and patrolled the river looking for the monster. A plan to make a giant net and catch the monster petered out when people found out that making and deploying a net that big is expensive and difficult.

The monster was mostly reported in an eddy of the river that stretched for about a mile and was unusually deep, about 60 feet deep, or 18 meters. The river is about 75 feet wide at that point, or 23 meters. The Newport Chamber of Commerce hired a diver from Memphis named Charles B. Brown, who brought an eight-foot harpoon with him when he descended into the river. He didn’t find anything, but the tourists had fun.

Suggestions as to what the monster might be ranged from a sunken boat that sometimes bobbed briefly to the surface to a monstrous catfish. Many people were convinced it was a huge fish of some kind, especially an alligator gar.

Eventually sightings tapered off and the excitement died down until June of 1971, when it started being seen again. Again the size estimates were all over the place, with one witness saying it was the size of a boxcar, which would be about 50 feet long, or 15 meters, and 9 feet wide, or 2.8 meters. Another witness said it was only 20 feet long, or 6 meters. Some witnesses said it had smooth skin that looked like it was peeling all over, had a bone sticking out of its forehead, and it made sounds that one witness described as similar to both a horse’s neigh and a cow’s moo. On July 5, 1971, three-toed tracks 14 inches long, or 36 cm, were also found on an island together with crushed plants that showed a huge animal had come out of the water.

This time, at least, no one tried to dynamite or even net the monster. Instead, in 1973 Arkansas passed a law creating the White River Monster Refuge along that section of the river, to protect the monster. But no one has seen it since.

There is a photo of the monster taken in 1971, but it’s a blurry Polaroid that was reproduced in a newspaper and the original lost. The photo was taken by a man named Cloyce Warren, who was out fishing with two friends. Warren said it had “a spiny ridged backbone and [was] splashing all around.”

So what could the White River Monster be? Is it a misidentified known animal, a completely unknown animal, or just a hoax?

Obviously people are seeing something in that part of the White River. But it’s reportedly so big that if there was a population living anywhere in the river, it would be spotted all the time. So maybe it’s an animal that only sometimes strays into the White River and actually lives in the much larger Mississippi River—or even in the Gulf of Mexico, where it sometimes swims upriver.

Cryptozoologists and other interested people have made suggestions over the years. One suggestion is that it’s an elephant seal. The northern elephant seal is an enormous animal, although it’s nowhere near 50 feet long. The male is much larger than the female, up to 16 feet long, or 4.8 meters, and bulky with blubber that keeps it warm when diving deeply for food in the Pacific Ocean where it lives.

But wait, the Pacific Ocean? You mean it doesn’t live in the Gulf of Mexico?

Nope, the endangered elephant seal only lives in the Pacific. And the Pacific Ocean is separated from the Gulf of Mexico by a whole lot of the North American continent.

A man named Joe Nickell, who’s a paranormal investigator and who was interviewed on MonsterTalk episode 204, has suggested the White River Monster is a manatee—specifically the Florida manatee, which is a subspecies of West Indian manatee. In the winter it mostly lives around Florida but in summer many individuals travel widely. It’s sometimes found as far north as Massachusetts along the Atlantic coast, and as far west as Texas in the Gulf of Mexico.

The manatee is large, up to 15 feet long, or 4.6 meters, with females being somewhat larger than males. Its skin is gray but since it moves slowly, it can look mottled in color due to algae growing on its skin, and it sometimes also has barnacles stuck to it the way some whales do. It has a pair of front flippers with three or four toenails, no hind legs, and a paddle-like tail. It eats plants and only plants, and is completely harmless to humans, fish, and other animals. Also because it moves slowly and spends a lot of time at the surface, since it’s a mammal and has to breathe air, it’s vulnerable to being injured by boats.

In the 1970s there were only a few hundred manatees alive and it nearly went extinct. It was listed as an endangered species and after a lot of effort by a lot of different conservation groups, it’s now only considered threatened. So while people might recognize a manatee these days, back in the 1970s it was practically unknown everywhere except southern Florida since it was so rare. And in the decades before 1971, people didn’t travel as much and didn’t know much about increasingly rare animals that didn’t live in their particular part of the world.

In other words, it’s completely possible that people from Arkansas would see a manatee in 1915, 1937, and 1971 and not know what it was. But could a manatee really travel that far from the ocean and survive?

The Mississippi River empties into the Gulf of Mexico in Louisiana in the United States. Texas is to the west of Louisiana, then Mississippi, Alabama, and Florida to the east. In other words, it’s well within the known range of the Florida manatee. Manatees are known to sometimes travel up the Mississippi. This happened most recently in October of 2016 when a manatee traveled as far as Memphis, Tennessee before it was found dead in a small lake connected to the river. That’s a distance of 720 miles, or 1,158 km, and that was with wildlife officials trying to capture it to return it to the Gulf. That same year a manatee also traveled as far as Rhode Island along the Atlantic coast. Memphis is actually much farther up the Mississippi than the White River is, so if the manatee had branched off into the White River it might have led to new sightings of the White River Monster.

The manatee can live in fresh water perfectly well. One species, the Amazonian manatee, is a fully freshwater animal that never leaves the South American rivers where it lives. But despite its size, the manatee doesn’t have a lot of blubber or fat to keep it warm. The farther away it travels from warm water, the more likely it is to die of cold.

But while an errant manatee might explain some White River Monster sightings, it doesn’t fit with all of them. Other animals from the Gulf of Mexico sometimes find their way up the Mississippi too. It’s a huge river, and since an ocean animal doesn’t understand what a river is, it doesn’t know it’s never going to reach the ocean again unless it turns around. Most marine animals can’t survive for long in fresh water, but some animals, like the manatee, can tolerate fresh water much better. That’s also the case for the bull shark.

In 1937, the same year the White River Monster was spotted for the second time, a five-foot bull shark, or 1.5 meters, was caught in Illinois, which is even farther upstream from the Gulf of Mexico than Tennessee and Arkansas. Bull sharks live throughout much of the world’s oceans in warmer water near coasts and are often found in rivers and lakes, although they don’t live as long in fresh water as they do in salt water. The largest bull shark ever measured was 13 feet long, or 4 meters, so a large one is about the size of a manatee.

Occasionally a dolphin travels up the Mississippi River, but marine dolphins can’t survive for long in fresh water and will die soon if they can’t make their way back to the ocean. A dolphin in fresh water starts to develop skin lesions and then the skin begins to peel, leading to bacterial infection and death. Remember that some witnesses in 1971 described the White River Monster as a gray animal with peeling skin.

Nine different species of dolphin and many species of whale live in the Gulf of Mexico. Of those, only the bottlenose dolphin lives close to the coast and is usually the species that accidentally travels into fresh water and can’t find its way out. The bottlenose dolphin isn’t any larger than the manatee, up to about 13 feet long, or 4 meters.

1971 was an active hurricane year, including the category 5 Hurricane Edith that killed 37 people in mid-September. Marine animals that can travel quickly, like dolphins and sharks, will flee to calmer waters when a hurricane approaches, and while that usually means out to sea, it wouldn’t be out of the question for a frightened dolphin or other large marine animal to make its way into the Mississippi by accident ahead of a hurricane, especially a hurricane as big as Edith.

Another possible identity for the White River Monster is one that was suggested in 1937, the alligator gar. It’s a freshwater fish that lives throughout the Mississippi River and other rivers and lakes in the southern United States and parts of northern Mexico. The alligator gar gets its name because of its toothy jaws, which do resemble an alligator’s, and it can grow up to ten feet long, or 3 meters. It’s a really weird fish and eventually I’ll probably do a full episode on it and its relatives, just as I have a full episode planned about the manatee. It has gills like other fish, but it can also breathe air through its swim bladder, which is lined with lots of blood vessels that absorb oxygen. Every so often an alligator gar will come to the surface and gulp air to replenish the oxygen in its swim bladder, so it would be seen at the surface briefly but periodically as was described by many witnesses. This is also the case for the manatee and dolphin, who breathe air.

The alligator gar is an ambush predator, which means it waits in the water without moving much at all until an animal approaches. Then it shoots forward and grabs it. It mostly eats small fish, invertebrates of various kinds, and waterfowl like ducks.

The final possibility of the White River Monster’s identity is the gulf sturgeon. It’s a subspecies of the Atlantic sturgeon that lives in the Gulf of Mexico, although it’s also known from various rivers in the southeastern United States. The reason it’s found in rivers is that the gulf sturgeon is anadromous [a-NADro-mus], the term for a fish that migrates from the ocean into fresh water to spawn. The salmon is the most famous anadromous fish, which fights its way upriver to spawn and then die. In the case of the gulf sturgeon, it hatches in fresh water and lives there for the first two years or so of its life before making its way downstream to the ocean. Then it returns to freshwater to spawn every spring, usually the same river where it was hatched, and goes back to the ocean in autumn.

The gulf sturgeon fits a lot of the descriptions of the White River Monster sightings. It’s covered with five rows of scutes that project from the back and sides in a sort of low sawtooth pattern, which fits the “spiny ridged backbone” that Cloyce Warren reported seeing in 1971, and its elongated snout has sensory barbels like a catfish, which matches Bramlett Bateman’s 1937 description of the monster having the face of a catfish. It’s gray, gray-green, or brownish in color with a lighter belly, and it can grow up to 15 feet long, or 4.5 meters, although most are about half that length.

The gulf sturgeon usually migrates in groups, but occasionally one can get separated from its group and find its way into a stretch of water by itself. It also doesn’t eat much during the summer when it’s in freshwater. In the winter it lives just off the coast in shallow water, where it’s a bottom feeder. It sucks up invertebrates from the sea floor, feeling for them with their barbels. It gains lots of weight during the winter and then loses it all in the summer. Sturgeons do sometimes jump out of the water, especially in summer–as much as fix feet out of the water. No one’s sure why. Also during the summer, the sturgeon makes a sound like a creaky hinge.

I think it’s probable that the White River Monster sightings are of more than one type of animal, and while we can make an educated guess as to which animals might have been spotted and misidentified, we can’t know for sure. So while at least some of the sightings may have been of a manatee or a gulf sturgeon or another of the animals we talked about today, there’s also the possibility that something else occasionally swims up the Mississippi from the Gulf and into the White River. Hopefully, next time the White River Monster appears, someone gets a really good look at it and some good pictures so we know for sure.

This is what a sturgeon sounds like, by the way:

[sturgeon creaky sound]

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 152: The Freshwater Seahorse and Other Mystery Water Animals

This week let’s look at some (mostly) smaller mystery animals associated with water! Thanks to Richard J., Janice, and Simon for the suggestions!

Further reading:

What Was the Montauk Monster?

The black-striped pipefish. Also, that guy has REALLY BIG FINGERTIPS:

The Pondicherry shark, not looking very happy:

A ratfish. What BIG EYES you have!

The hoodwinker sunfish, weird and serene:

The Montauk monster, looking very sad and dead:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Let’s finish off the year with an episode about a few mystery animals, specifically a few mystery animals associated with water. Thanks to Richard, Janice, and Simon for the suggestions!

We’ll start off with a mystery suggested by Richard J, but not the Richard J. who is my brother. A different Richard J. Apparently half the people who listen to my podcast are named Richard, and that’s just fine with me.

Richard wanted to know if there are there such things as freshwater seahorses. We’ve talked about seahorses before in episode 130, but seahorses are definitely marine animals. That means they only live in the ocean. But Richard said he’d heard about a population of seahorses native to Lake Titicaca in Bolivia, which is in South America. I put it on my suggestions list, but Richard was on the case. He sent me a link to an article looking into the mystery, which got me really intrigued, so I bumped it to the top of my list. Because I can do that. It’s my podcast.

Freshwater seahorses are supposedly known in the Mekong River and in Lake Titicaca, and sometimes you’ll see reference to the scientific name Hippocampus titicacanesis. But that’s actually not an official scientific name. There’s no type specimen and no published description. Hippocampus is the generic name for many seahorse species, but like I said, they’re all marine animals and there’s no evidence that any live in freshwater at all. Another scientific name supposedly used for the Mekong freshwater seahorse is Hippocampus aimei, but that’s a rejected name for a seahorse named Hippocampus spinosissimus, the hedgehog seahorse. It does live in parts of the Indo-Pacific Ocean, including around Australia, especially in coral reefs, and sometimes in the brackish water at the Mekong River’s mouth, but not in fresh water.

On the other hand, there’s no reason why a seahorse couldn’t adapt to freshwater living. A few of its close relatives have. There are a few species of freshwater pipefish, and in the world of aquarium enthusiasts they are actually sometimes called freshwater seahorses. The pipefish looks like a seahorse that’s been straightened out, and most of them are marine animals. But some have adapted to freshwater habitats.

This includes the black-striped pipefish, which is found off the coasts of much of Europe but which also lives in the mouths of rivers. At some point it got introduced into the Volga River and liked it so much it has started to expand into other freshwater lakes and rivers in Europe.

The pipefish is closely related to the seahorse, but while it does have bony plates like a seahorse, it’s a flexible fish. It swims more like a snake than a fish, and it can anchor itself to vegetation just like a seahorse by wrapping its tail around it. It mostly eats tiny crustaceans and newly hatched fish, since it swallows its food whole. It usually hides in vegetation until a tiny animal swims near, and then it uses its tube-shaped mouth like a straw to suck in water along with the animal. Just like the seahorse, the male pipefish has a brooding pouch and takes care of the eggs after the female deposits them in his pouch.

So where did the rumor that seahorses live in the Mekong come from? The Mekong is a river in southeast Asia that runs through at least six countries, including China, Thailand, Cambodia, and Vietnam. Parts of it are hard to navigate due to waterfalls and rapids, but it’s used as a shipping route and there are lots of people who live along the river. Like all rivers, it’s home to many interesting animals, including a type of giant softshell turtle that can grow up to six feet long, or 1.8 meters, a type of otter, a bunch of enormous fish, including three species of catfish that can grow up to almost ten feet long, or 3 meters, and a giant freshwater stingray that can grow up to 16 feet long, or 5 meters, and of course lots more animals that aren’t as big or as impressive, but which are still important to the river’s biodiversity. But there’s no evidence of seahorses anywhere throughout the Mekong’s 2700 mile length, or 4,350 km.

But there is a hint about where the rumor of a Mekong seahorse could have come from. One researcher named Heiko Bleher chased down the type specimens of the supposed Mekong seahorse in a Paris museum, which were collected in the early 20th century by a man named Roule. Roule got them in Laos from a fisherman who had nailed the dried seahorses to his fishing hut. The fisherman told Roule the seahorses were from the Mekong, but when they were further studied in 1999 Roule’s specimens were discovered to actually be specimens of Hippocampus spinosissimus and Hippocampus barbouri. Both are marine fish but do sometimes live in brackish water at the mouth of the Mekong. So the fisherman wasn’t lying, but Roule misunderstood what he meant.

As for the freshwater seahorse supposedly found in Lake Titicaca, that one’s less easy to explain. Titicaca is a freshwater lake in South America, specifically in the Andes Mountains on the border of Bolivia and Peru. It’s the largest lake in South America and is far, far above the ocean’s surface—12,507 feet above sea level, in fact, or 3,812 meters. It’s also extremely deep, 932 feet deep in some areas, or 284 meters. It’s home to many species of animal that live nowhere else in the world. Why couldn’t it be home to a freshwater seahorse too?

Titicaca was formed when a massive earthquake some 25 million years ago essentially shoved two mountains apart, leaving a gap—although technically it’s two gaps connected with a narrow strait. Over the centuries rainwater, snowmelt, and streams gradually filled the gaps, and these days five rivers and many streams from higher in the mountains feed water into the lake. Water leaves the lake by the River Desaguadero and flows into two other lakes, but those lakes aren’t connected to the sea. Sometimes they dry up completely. So Titicaca isn’t connected to the ocean and never was, and even if it was, seahorses are weak swimmers and would never be able to venture up a river 12,000 feet above sea level. Some 90% of all fish in the lake are found nowhere else in the world. There’s just simply no way a population of seahorses could have gotten into the lake in the first place, even if they could survive there.

That doesn’t mean there aren’t any freshwater seahorses out there ready to be discovered, of course. But I don’t think you’re going to find any in Lake Titicaca. And I have no idea how the rumor got started that any live there.

From a tiny seahorse let’s move on to a small shark, another topic suggested by Richard J. The Pondicherry shark grows to about 3.3 feet, or 1 meter, and once lived throughout the Indo-Pacific, especially in coastal waters. It’s considered critically endangered, but it’s so rare these days that we hardly know anything about it except that it’s harmless to humans, eats small fish and other small animals, and was once common. But until the mid-2010s, scientists were starting to worry it was already extinct. Then in 2016 two different Pondicherry sharks were photographed in two different places—and not where anyone had expected to find it. Some tourists took a photo of one in a river called the Menik and a freshwater fish survey camera caught a photo of one in the Kumbuk River. Both rivers are in Sri Lanka. Since then researchers have spotted a few more. The shark is protected, and hopefully the excitement around the shark’s rediscovery has helped people in the area learn about it so they know not to bother it. Some sharks tolerate fresh water and brackish water quite well, so it’s not surprising that the Pondicherry shark has moved into the rivers where it has less competition from commercial fishing boats.

Our next water mystery is actually not really a mystery, just a really strange-looking fish related to sharks. This one was suggested by my aunt Janice who doesn’t actually listen to the podcast but who likes to send me links to strange animal articles that she comes across on the internet. This one is called Chimaera Monstrosa, sometimes called the rat fish.

The rat fish mostly lives in the deep sea, although it’s sometimes seen in shallower water, and can grow up to 5 feet long, or 1.5 meters. It’s mostly brown but has white markings. Its body looks more or less like a regular plump shark-like fish, but it has great big round green eyes, relatively long pectoral fins, and a very long tail that tapers to a point. The tail gives it its common name, since it kind of resembles a rat’s tail. It eats whatever it can catch on the ocean floor, including crustaceans and echinoderms.

Ratfish, and other chimaeriformes, are most closely related to sharks, and like sharks they have skeletons that are made of cartilage instead of bone. Since they’re rarely seen and look really weird, every so often someone catches one and posts about it online, and then my aunt sends me a link. They are really interesting fish, though.

Simon also sent me an article about an interesting fish a while back, the hoodwinker sunfish. We talked about the sunfish, or mola mola, in episode 96. The hoodwinker sunfish, or mola tecta, was only discovered in 2017 despite its large size. So far it’s known to live in the South Pacific around New Zealand, Australia, South Africa, and Chile, but only off the southernmost parts of those countries. But in early 2019 one washed up in Southern California.

The mystery sunfish was measured at almost 7 feet long, or 2.1 meters. An intern at the University of California at Santa Barbara found it, but didn’t know what it was. But once photos of the fish were posted online, two experts from Australia recognized it immediately—but because it showed up so far out of its known range, they were cautious about IDing it from just a photo. That’s despite the fact that one of the experts, Marianne Nyegaard, was actually the person who named the species. She asked for samples and more photos, and when she got the results, it really was a hoodwinker sunfish. But what was it doing in the warm waters of the northern Pacific instead of the cold southern waters? No one knows except the sunfish.

Let’s finish with another mystery animal you may have heard of. On July 12 or 13, 2008, depending on which source you consult, three friends visited Ditch Plains Beach, two miles away from the little town of Montauk in New York state in eastern North America. It was a hot day and the beach was crowded, and when the three noticed people gathered around something, they went to look too. There they saw a weird dead animal that had obviously washed ashore. One of the three took a picture of it, which appeared in the local papers and then the local TV news along with an interview with the three. From there it went viral and was dubbed the Montauk monster.

The monster was about the size of a cat, but with shorter legs and a chunkier body, and a relatively short tail. It didn’t have much hair but it did have sharp teeth, and the front part of its skull was exposed so that it almost looked like it had a beak. Its front paws were elongated with long fingers, almost like little hands.

So what was the monster? People all over the world made guesses, everything from a sea turtle without a shell to a diseased dog or just a hoax. Some people thought it was a mutant animal that had been created in a lab on one of the nearby islands, escaped, and died trying to swim to the mainland.

But while no one knows what happened to the animal’s body, scientists have studied the photo and determined that it was probably a dead raccoon that had been washed into the ocean. The waves had tumbled the animal’s body around through the sand long enough to rub off most of its remaining fur and some of its facial features, and then it washed ashore during the next high tide. It was also somewhat bloated due to gases building up inside during decomposition. It’s the animal’s teeth and paws that made the identification possible, since both match a raccoon’s exactly. Remember that raccoons have clever front paws that help them open locking trash bins, as we learned in episode 138.

So the Montauk monster isn’t actually a mystery, except what happened to it, but don’t be discouraged. There are still lots of genuinely mysterious animals in the ocean, from misplaced sunfish to creatures no one has ever seen yet. Maybe you’ll be the one to discover them.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at Patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 151: Fossils with other fossils inside

Thanks to Pranav who suggested this week’s amazing topic, animals that fossilized with the remains of their last meal inside!

Indrasaurus with a lizard inside. Yum!

Baryonyx:

Rhamphorhynchus (left, with long wing bones) and its Fish of Doom (right):

The fish within a fish fossil is a reminder to chew your food instead of swallowing it alive where it can kill you:

The turducken of fossils! A snake with a lizard inside with a bug inside!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a listener suggestion from Pranav, who has sent me so many amazing suggestions that he has his own page on the ideas spreadsheet. When he emailed me about this one, he just suggested cool fossils, but the links he provided had a really interesting theme that I never would have thought about on my own. This week we’re going to learn about some fossil animals that have fossils of their last meal inside them!

We’ll start with a recent discovery of a new microraptor species, Indrasaurus wangi, which lived about 120 million years ago. It was an interesting animal to start with, because it had arms that were very similar to bird wings, although with claws, but its hind legs also had long feathers that made it almost like a four-winged animal. It was found in 2003 in northeastern China, but when researchers were studying it in 2019 they found something amazing. Not only did it have an entire lizard skeleton where its stomach once was, showing us that it swallowed its prey whole, the lizard itself was a species new to science.

We know what else Indrasaurus ate because more Indrasaurus fossils have been found in the area, many of them so well preserved that its fossilized stomach contents have been preserved too. It ate mammals, birds, lizards, and fish—basically anything it could catch.

Another species that was similar to Indrasaurus, called Anchiornis, also called a four-winged bird-like dinosaur, was found with what appears to be a gastric pellet in its throat. The pellet contains the bones of more than one lizard and was probably ready to be horked up the way many carnivorous birds still regurgitate pellets made up of the indigestible parts of their prey, like bones, scales, and fur.

The fossilized remains of food inside a fossilized organism has a term, of course. It’s called a consumulite. It’s a type of bromalite, which is a broader term for any food or former food found in a fossilized organism’s digestive tract. The term bromalite also includes coprolites, which are fossilized poops.

Naturally, it requires a high degree of preservation for consumulites to form, and a high degree of skill to reveal the often tiny and delicate preserved details. And consumulites are important because they let us know exactly what the animal was eating.

Consumulites aren’t limited to prey animals, either. A small armored dinosaur, a type of ankylosaur, called Kunbarrasaurus, which lived around 115 million years ago in what is now Australia, was a herbivore. The type specimen of the species, which was described in 2015, was incredibly well preserved—almost the entire skeleton, most of its body armor, and the contents of its stomach. Paleontologists can determine not just what kinds of plants it had eaten—which include ferns and seeds—but how it was processing its food. Most herbivorous dinosaurs swallowed leaves and other plant parts whole, then crushed the food in a powerful gizzard or gizzard-like organ along with rocks or grit. The rocks helped break up the plant material, and we have lots of these rocks associated with fossilized dinosaurs. The rocks are called gastroliths and are usually worn smooth. But Kunbarrasaurus didn’t have any gastroliths, and the plant material was so well preserved that researchers could see the cut ends of the plants where Kunbarrasaurus had bitten them. And all the pieces were small. Kunbarrasaurus therefore probably chewed its food, which meant it also probably had lips and cheeks of some kind to help keep the food in its mouth while it was chewing.

Another example of an animal with a consumulite that helped solve a mystery about its diet is Baryonyx. Baryonyx is a type of spinosaurid, a theropod dinosaur that grew at least 33 feet long, or 10 meters. It was discovered in 1983 in Surrey, England, and was described in 1986. It lived around 125 million years ago. It walked on its hind legs and probably used its arms to tear its prey into bite-sized pieces, because its first finger had a huge claw 12 inches long, or 31 cm.

But its skull was the real puzzle. Most theropods are meat-eaters, although a few evolved to eat plants. But Baryonyx had a long, relatively slender snout with a lot of close-growing teeth, and a sort of bulb at the end of its snout called a rosette. It looks more like the skull of a crocodilian called a gharial than a theropod. But as far as anyone knew when Baryonyx was discovered, there were no fish-eating theropods.

Until 1997, that is, when paleontologists studying Baryonyx spotted some overlooked details. In addition to a gastrolith in its belly area, they found some fish scales and teeth that showed evidence of being damaged by digestive acids. It probably hunted by wading through shallow water like a heron, catching fish and other animals with its long toothy snout.

It’s not just dinosaurs that are found with consumulites. Animals of all kinds eat all the time, so as long as the conditions are right to fossilize the remains of an animal, there’s a chance that whatever food was in the digestive tract might fossilize too. For instance, the same part of China that has yielded amazingly well preserved feathered dinosaurs has also produced other animals—including a carnivorous mammal called Repenomamus that grew more than three feet long, or one meter. I think we’ve talked about Repenomamus before, because we have evidence that it actually ate dinosaurs—at least baby ones, or it might have scavenged already dead dinosaurs. Either way, it lived around 125 million years ago and was shaped sort of like a badger with a long tail, although it wasn’t related at all to badgers or any other modern mammal. It probably laid eggs like monotremes still do. The reason we know what Repenomamus ate is because one specimen was found with pieces of a young Psittacosaurus in its stomach.

In at least one case it’s hard to tell which animal should be considered the eater and which should be considered the eaten. A fossil slab found in Southern Germany and described in 2012 contains a Rhamphorhynchus associated with two different fish.

Rhamphorhynchus lived around 150 million years ago and was a type of pterosaur with a long tail. Its wingspan was about six feet across, or 1.8 meters. It mostly ate fish, which it probably caught not by flying down to grab fish out of the water, like eagles do, but by floating like a goose and diving for fish. It had large feet and short legs, which would have helped it take off from the water just like a goose.

A fish that lived at the same time as Rhamphorhynchus was called Aspidorhynchus, and it grew up to two feet long, or 60 cm. It had long jaws filled with teeth, with the upper jaw, or rostrum, extending into a pointy spike.

In the fossil found in Germany, a Rhamphorhynchus has a small fish in its throat that it had probably just caught. While it was still swallowing it, an Aspidorhynchus fish attacked! But things obviously went wrong for everyone involved. Researchers suggest that the fish’s rostrum cut right through the flying membrane of Rhamphorhynchus’s left wing. The fish bit down but its teeth became tangled in the tissue. It started thrashing to free itself and Rhamphorhynchus was thrashing around too trying to get away, which only got them more tangled up together. The fish dived, drowning Rhamphorhynchus, and the weight of its body dragged Aspidorhynchus into deep water where there wasn’t enough oxygen for it to survive. It died too, and its heavier body lay partially across Rhamphorhynchus, holding it down so it wouldn’t drift away. The fossil shows Rhamphorynchus, Aspidorhynchus, and the tiny fish that Rhamphorhynchus never did get to finish swallowing.

Another fish, Cimolichthys, lived around 75 or 80 million years ago and grew a little over six feet long, or two meters. Its body was heavily armored by large scutes and it had several rows of teeth. It may have been related to modern salmon. It lived in what is now North America and Europe, and ate fish and squid. We know it ate fish and squid because, of course, we have the remains of various last meals found with preserved fossil Cimolichthys. For instance, one specimen was found with the internal shell of a cephalopod lodged in its throat. Researchers suspect the fish had tried to swallow a Tusoteuthis that was too big to fit down its throat. The Tusoteuthis got stuck and blocked the flow of water over the fish’s gills, basically drowning it. Tusoteuthis, by the way, could possibly grow up to 36 feet long, or 11 meters, although that depends on whether it had long feeding tentacles like modern squid or not. If it didn’t have long feeding tentacles, it was probably only about 19 feet long, or 6 meters, which is pretty darn big anyway. I wouldn’t want to have to swallow that thing whole. Not even if it was deep-fried first.

Another fish called Xiphactinus, which grew up to 20 feet long, or 6 meters, lived in the late Cretaceous period. It died out at the same time as the non-avian dinosaurs. It had massive fangs and was a terrifying predator, but sometimes that backfires. The fossil of a 13 foot, or 4 meter, Xiphactinus was found with a 6 foot long, or 1.8 meter, fish called Gillicus inside it. Paleontologists think Xiphactinus swallowed its prey whole, which thrashed around so much inside it that it ruptured an organ and killed the predator fish. Both fish sank to the bottom of the shallow Western Interior Seaway in North America until it was discovered in 1952.

Let’s finish with two even more incredible fossils. In 2008 paleontologists found a fossilized freshwater shark they dated to 250 million years ago. Right before it died, it had eaten two animals called temnospondyls. Temnospondyls were common animals, with many species found throughout the world, and researchers still aren’t sure if they were the ancestors of modern amphibians or a similar type of animal that died out without any descendants. One of the temnospondyls that the shark ate had the well digested remains of a spiny fish in its stomach.

But a few years later researchers in Germany found something even better. It’s a fossilized snake called a Palaeopython, related to boas. It was about three feet long, or one meter, and was still young. If it had lived to grow up, it would have doubled in size. It lived in trees but also hunted along the edges of rivers and lakes. About 48 million years ago, this particular snake caught a lizard that’s related to modern basilisk lizards. It swallowed the lizard headfirst. But then the snake died, possibly asphyxiated by a cloud of carbon dioxide from the volcanic lake nearby. We have a lot of incredibly detailed fossils from that lake, known as the Messel Pit.

Researchers aren’t sure how the snake made it into the lake. Maybe it was already in the shallow water when it died, or on the bank, and a wave washed it into the water. Maybe the wave was actually what killed the snake, washing it into the lake where it drowned. However it died, it sank into deep water and was covered in sediment that preserved it. Then, 48 million years later, paleontologists found it.

When the fossil was cleaned and prepared for study, researchers found that the lizard was preserved inside it. But there was another surprise inside the lizard! Right before it had been eaten by the snake, the lizard had eaten an insect. And the insect was so well preserved that researchers could tell it had an iridescent exoskeleton.

If I was fossilized right now, paleontologists from the far future would find a lot of chocolate in my stomach. Happy holidays to everyone, whatever your reason for celebrating at this time of year!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 150: Hamsters, Gerbils, and Ferrets

This week we venture into the land of CUTE to learn about hamsters, ferrets, and some other small domesticated animals. Thanks to Kim and the Angel City Ferret Club for the suggestions!

Hamsters are SO CUTE:

Hamsters have giant cheek pouches to carry food in:

Gerbils are also SO CUTE:

Ferrets are SO CUTE in a totally different way:

The black-footed ferret does not want anything to do with the domestic ferret, thank you:

An extremely complicated but neat way to use your pet’s exercise wheel to generate power:

Hamster-Powered Night Light

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Back in episode 106 we learned about domestication, especially the domestication of dogs and other canids. But recently, Kim suggested an episode about the domestication of other animals, like hamsters and ferrets. Then the Angel City Ferret Club suggested I talk about ferrets too. So this week, let’s learn about hamsters, gerbils, and ferrets.

Hamsters are rodents, and there are lots of different species. The most common domesticated hamster is the golden hamster, also called the Syrian hamster, which is indeed from Syria. A DNA study of domesticated golden hamsters indicate that they’re all descended from a single female captured in Syria in 1930 and kept as a laboratory animal. It wasn’t long before some of her babies became pets, because hamsters are incredibly cute.

The golden hamster is about five inches long, or 13 cm, and is a chunky little rodent with a little nub of a tail, short legs, and rounded ears. And a little pink nose and shiny black eyes. I had a pet hamster named Wembley when I was little. It’s a golden tan in color with lighter fur underneath, and some breeds of domesticated golden hamsters may have white spots on the body or long fur.

Some other hamster species, most of which aren’t kept as pets, can grow much larger than the typical golden hamster. The European hamster, which lives in parts of eastern Europe, can grow up to 14 inches long, or 35 cm. It’s mostly brown with white patches. One of the smallest hamster species is Campbell’s dwarf hamster, which is sometimes kept as a pet but is originally from Mongolia. It grows about three inches long, or 8 cm. It’s brown-gray in color with a darker stripe down the middle of its back and pale gray fur underneath.

All hamsters have cheek pouches that extend down to their shoulders. In the wild, a hamster tucks food into its cheek pouches to carry back to its burrow, where it pushes the food out by pressing its forefeet against its sides and pushing them forward. Campbell’s dwarf hamster has cheek pouches that are big even compared to other hamsters. They extend all the way down the sides of its body.

Hamsters in the wild like warm areas without a lot of rain, like deserts and dry grasslands. They dig well and spend most of their time underground when they’re not out searching for food. They’re most active at dawn and dusk, although they’re nocturnal to some degree also. In cold weather some species hibernate for short periods of time, generally only a few days. A hamster’s burrow can be pretty elaborate, with several entrances, a cozy sleeping burrow, a pantry where the hamster stores food, and even a bathroom where the hamster urinates. Hamsters are hindgut fermenters, and like some other rodents and rabbits, some of the poops they produce aren’t waste material, they’re partially digested food that the hamster eats again to gain as much nutrients from it as possible.

Hamsters are omnivores, eating seeds and other plant material as well as insects and other small animals. Occasionally wild hamsters hunt together to catch insects, although in general the hamster is a solitary animal. In addition to its ordinary diet of hamster food, a pet hamster likes seeds and nuts, green vegetables, root vegetables like carrots, a little bit of fruit, and other plant foods, but shouldn’t be given people food since it can contain too much salt, sugar, or other additives that can harm it. Give your hamster deep bedding that it can burrow into to sleep and dig around in, but cedar shavings can be bad for their lungs. Paper bedding made for small pets is safest. And, of course, your hamster needs to chew to keep its teeth from growing too long, since like other rodents its teeth continue to grow throughout its life. It also needs an exercise wheel and toys designed for hamsters so it can get exercise and have fun. You can find good books about how to care for a hamster in the library. I mean you can find a book on hamster care in the library, not how to turn your hamster into a tiny furry librarian.

Hamsters don’t see very well but have a good sense of smell and hearing, and in fact they communicate mostly in the ultrasonic range—too high-pitched for humans to hear most of their calls. Generally hamsters only call to each other during courtship, when a male and female are trying to decide if they’ve found a good mate.

I tried to find audio of hamster calls, pitched down so humans could hear it, but had no luck. I guess the sound of their calls is a secret only hamsters know.

Gerbils are also closely related to mice and therefore to hamsters, and have a lot in common with the hamster. Both are about the same size but the gerbil is smaller, less chunky, and has a much longer tail. The tail has fur on it and helps the gerbil retain its balance while climbing.

There are a lot of gerbil species, all of them native to dry areas like deserts and grasslands in parts of Asia and Africa. The Mongolian gerbil was domesticated in the late 19th century but wasn’t well known until the 1950s when it became a popular pet. In the wild the Mongolian gerbil is a gray-brown color but pets have been selectively bred to produce colors from white to black with various patterns. Unlike the hamster, the gerbil is a social animal and is healthier when it lives with at least one other gerbil. It also likes to burrow in its bedding and needs to chew to keep its teeth from growing too long. It’s important to get an exercise wheel that’s solid instead of having rungs, since otherwise the gerbil could catch its tail between the rungs and get injured.

In the wild, gerbils live in groups with extensive burrows, sometimes connected with the burrows of other groups. It has a good sense of smell and if a gerbil whose smell it doesn’t recognize approaches, the two will probably fight. The Mongolian gerbil grows about 2 ½ inches long, or 6 cm, not counting its tail, which is about the same length as its body. But the biggest species of gerbil is the great gerbil from central Asia. It grows up to 8 inches long, or 20 cm, not counting its tail. That’s the size of a squirrel.

If a gerbil feels threatened or nervous, it may thump its hind legs on the ground to warn other gerbils. Other gerbils that hear the thumping may also start thumping. Sometimes pet gerbils will start thumping in response to rhythmic sounds in a house, like a washing machine on a spin cycle. This is hilarious, but of course if your pet gerbil is thumping you should look around to see if there’s something near its cage that it finds frightening, like a pet dog or a light that’s too bright. This is what a gerbil sounds like when stamping its tiny feet.

[gerbil thumping sound]

Next, let’s look at the ferret. The ferret isn’t a rodent. It’s a type of weasel called the European polecat, which has been domesticated. Unlike the hamster and gerbil, which are small and somewhat delicate animals, the ferret is much larger and more robust. It grows nearly two feet long, or almost 60 cm, with a long, slender, flexible body, long neck, and short legs.

The ferret is generally a crepuscular animal, meaning it’s most active at dawn and dusk. It’s solitary in the wild, but domesticated ferrets are much more social. It likes to burrow, and in the wild it sleeps in a burrow during the day.

No one is sure when the ferret was domesticated, but it may be descended from animals kept to hunt for rats and rabbits. Like other members of the weasel family, ferrets are carnivores and evolved to be slender and short-legged to fit into burrows of smaller animals. There’s even a term for hunting with a ferret, called ferreting. It was also used to keep mice and rats out of grain stores. Ferret breeders selected for white or albino ferrets because they were easier for their handlers to see, so many pet ferrets are albinos.

The ferret makes a good pet although it’s an intelligent, active animal and will get into all sorts of mischief if it doesn’t have enough to do. It likes to climb, explore, and solve puzzles, and needs lots of exercise and a safe place to play. The ferret can be litter trained like a cat and trained to wear a harness and walk on a leash like a dog. It’s sociable so it’s always better to have more than one ferret if you can.

The ferret needs to eat frequently, so it’s a good idea to keep a feeder full of ferret kibble where your pet can eat whenever it’s hungry even if you’re not home. Since ferrets are carnivores like cats are, your pet’s diet should be high in animal-based protein and fat. If you can’t find ferret food in your area, you can feed high-quality cat kibble, but food formulated just for ferrets is best. For treats, ferrets like cooked eggs, freeze-dried liver treats that you can get for dog training, and small pieces of cooked meat. You shouldn’t feed fruit to your ferret, since it can lead to digestive issues.

Ferrets are illegal to own in some areas because escaped and released ferrets can breed in the wild and cause a lot of problems as an invasive species. This is particularly true in small, fragile ecosystems like islands, so it makes sense that Hawaii doesn’t allow ferrets or many other animals as pets, including gerbils and hamsters.

Ferrets occupy the same ecological niche as the black-footed ferret, and the black-footed ferret is the most endangered mammal in North America. It was even declared extinct in 1979, but a small population was re-discovered in 1981 in Wyoming. Some of these animals were captured for a captive breeding program, so even though the black-footed ferret was declared extinct in the wild in 1996, the breeding program was able to reintroduce ferrets in parts of its original range in the western part of North America. It’s now considered an endangered species, which is still pretty bad but not as bad as extinct.

The black-footed ferret primarily eats prairie dogs, and prairie dogs are also on the decline due to habitat loss, poisoning and killing of them by ranchers and farmers, and disease. So saving the black-footed ferret also means saving the prairie dog. However, pet prairie dogs are legal to own in most states even though they’re not really domesticated animals and they can spread diseases fatal to humans, like bubonic plague. And since prairie dogs don’t breed well in captivity many animals sold as pets were captured in the wild, and many of them die soon after being captured.

But while feral domesticated ferrets are a problem in some areas, there don’t seem to be any feral populations of ferrets in the United States. It looks like ferret owners in North America take good care of their pets and make sure they don’t get out and cause problems for wildlife.

California has a lot of restrictions about what animals can be kept as pets. Ferrets are not allowed. Neither are gerbils, prairie dogs, or hedgehogs. But you can keep hamsters and chinchillas as pets in California, rabbits, camels, wolf-dog hybrids, and most birds including ostriches. The only reason I even mention California’s restrictions on pets is because the Angel City Ferret Club is working to get the ferret ban changed, and they told me all about it.

I don’t live in California so I don’t want to get involved in the debate. But wherever you live and whatever pet you have, always make sure that you know how to take care of it properly and that you only buy your pet from an ethical and reputable breeder. And, of course, never release a pet into the wild if you can’t take care of it anymore. Most of the time your pet will die of cold, starvation, injury, or predation from a wild animal. If you can’t find someone who can take your pet, contact your veterinarian who can give you information about rescue services in your area.

That is a super depressing way to end an episode, so let’s finish up with something cute and interesting. If you’ve ever watched a hamster or other small pet run on an exercise wheel, you may have wondered how much energy the little fuzzball was generating and if it could charge your phone or power a light. Well, other people have wondered the same thing. I found a how-to article at Otherpower.com detailing how they made a working power generator from a hamster wheel. Their pet hamster Skippy was easily able to power a nightlight while running on his wheel. I’ve put a link to the article in the show notes. It looks really complicated but if you’re an engineer type of person you might look at it and think, “Oh, that’s simple and fun! Let’s try it!”

There’s even a new company based in Taiwan that’s marketing exercise equipment that generates energy as people use it. People are a lot bigger and stronger than hamsters, so we can generate a lot more energy by running on a treadmill or working out on a stationary bike, enough to power the lights in the room where the equipment is. Gyms that have installed the equipment report that users feel more motivated to exercise longer and harder when they know they’re generating power. That’s good for the person and helps reduce energy use for the gym. And that’s good for everyone, including our small pets.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!