Episode 033: Dunkleosteus, Helicoprion, and their weird-toothed friends

This week we’ll learn about some terrifying extinct fish, the armored dunkleosteus and the spiral-toothed helicoprion, plus a few friends of theirs who could TEAR YOU UP.

Dunkleosteus did not even need teeth:

Helicoprion had teeth like crazy in a buzzsaw-like tooth whorl:

Helicoprion’s living relatives, chimaeras (or ghost sharks) are a lot less impressive than they sound:

Helicoprion probably looked something like this:

But helicoprion has been described in all sorts of wacky ways over the years:

So what are the odds this rendition of edestus is correct? hmm

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’ve got a listener suggestion! Will B. suggested placoderms, which were armored fish that lived hundreds of millions of years ago. He especially recommended Dunkleosteus. I looked it up and went, “Oh holy crap,” so you bet we’re going to learn about it today. I’m also pairing that terrifying fish with a really weird shark relation called Helicoprion. And we might even take a look at a few other fishes while we’re at it. Creepy extinct fish for everyone! Oh, and Will asked that I include more metric conversions. [heavy sigh] okay I guess

If you had happened to live around 350 million years ago when Dunkleosteus was alive, you would be a fish. Well, you would probably be a fish. I don’t know for sure. That was during the Late Devonian period, and the Devonian is remembered as the “age of fish” by undergraduate geology and palaeo students everywhere. While land plants were evolving like crazy, developing true roots and seeds, fish were even crazier. Ray-finned fish evolved during the Devonian and so did lobe-finned fish like coelacanths. The first amphibious critters developed in shallow lakes and started to spend time on land, and in the ocean there were early sharks, lots of trilobites, and a whole lot of armored fish. Including, eventually, dunkleosteus.

Dunkleosteus terrelli was the biggest species of placoderm. It probably grew over 30 feet long OR TEN METERS, WILL, which made it bigger than a great white shark. But dunkleosteus didn’t have teeth. And before you think, oh, it must have been a filter feeder or something, oh no. It didn’t need teeth. Instead it had bony plates like a gigantic beak. It could open and close its jaws incredibly fast—something like one 50th of a second—and could bite through armor and bone no problem. One article referred to its jaws as sheet-metal cutters. Scientists think its bite was as powerful as that of a T rex, although it didn’t quite match that of megalodon, but since T rex and megalodon both lived many millions of years later than Dunkleosteus, it’s useless to speculate who would win in a fight. But my money’s on Dunkleosteus.

Dunkleosteus wasn’t a fast swimmer. Its head was covered in heavy armor that probably served two main purposes. One, the armor plates gave its massive jaw muscles something substantial to attach to, and two, it kept its head safe from the bites of other placoderms. That’s right. Dunkleosteus was a cannibal.

We actually don’t know exactly how long Dunkleosteus was or what most of its body looked like. The only fossils we’ve found were of the head armor. We do have complete fossils and body impressions of other, much smaller placoderms, so since all placoderms seemed to have the same body plan we can make good guesses as to what Dunkleosteus looked like.

One surprising thing we do have associated with Dunkleosteus fossils are some remains of its meals. These are called fish boluses, and they’re basically just wads of partially-digested pieces of fish that either get horked up by whatever ate them or pass through the digestive tract without being fully digested. From the fish boluses, we know that Dunkleosteus probably preferred the soft parts of its prey and didn’t digest bones very well.

In 2013, a fossil fish over 400 million years old was described that combines features of a placoderm skeleton with the jaw structure that most bony fishes and four-footed animals share. Some other early bony fishes discovered recently also show some features of placoderm skeletons. What does that mean? Well, until these discoveries, researchers had thought bony fishes weren’t very closely related to placoderms. Now it looks like they were. And that means that placoderm jaws, those fearsome cutting machines, were actually the basis of our own jaws and those of most animals alive today. Only, in our case they’re no longer designed to shear through armor and bone. Maybe through Nutter Butters and ham sandwiches instead.

So what happened to dunkleosteus? Around 375 million years ago something happened in the oceans—not precisely an extinction event, but from our perspective it looks like one. Even without human help species do go extinct naturally every so often, and when that happens other species evolve to fill their ecological niches. But during the late Devonian, when species went extinct in the ocean… nothing took their place.

We don’t know what exactly was going on, but researchers have theories. One suggestion is that, since sea levels were rising, marine environments that were once separated by land got joined together. Species that had evolved in one area suddenly had access to a much bigger area. They acted like invasive species do today, driving native species to extinction and breeding prolifically. They kept new species from developing, and caused a breakdown in the biodiversity of their new territories. This only happened in the oceans, not on land, which adds credence to the theory.

It took a long, long time for the oceans to fully recover. For example, coral reefs disappeared from the fossil record for 100 million years as corals almost died out completely. But the animals that had already started evolving to take advantage of life on land survived and thrived—and that led to us, eventually. Us and our little unarmored jaws.

From Dunkleosteus and its sheet-metal cutter beak let’s go to another fish that looked like a shark but had teeth that are so bizarre I can’t even understand it. Helicoprion and its tooth whorl have baffled scientists for over a century.

The various species of Helicoprion lived around 290 million years ago. Like sharks, only its teeth are bony. The rest of its skeleton is made of cartilage, which doesn’t preserve very well.

So what’s a tooth whorl? It resembles a spiral shell, like a snail’s, only made of teeth. I’m not even making this up. Originally people actually thought they were some kind of weird spiky ammonite shell, in fact. Then someone pointed out that they were made of teeth, but no one could figure out what earthly use a circular saw would be if you were a fish and just wanted to eat other fish. Where would you even keep a circular saw of teeth?

Various suggestions included putting the tooth whorl at the very end of the lower jaw, just sort of stuck out there doing nothing; putting the tooth whorl way in the back of the throat where I guess it would cut up fish as they went down; on the snout, on the back, or even on the tail, which are not places where teeth typically do much good. Originally researchers thought the tooth whorl was probably a defensive trait, but now it’s accepted that it was used the way the rest of us use our teeth, which is to eat things with.

The smallest teeth in a tooth whorl are on the inside curls and the biggest are on the outside. Eventually researchers realized the small teeth were from when the individual was a baby fish and had little teeth. Like sharks, helicoprion kept growing teeth throughout its life. Unlike sharks, it didn’t lose its old teeth when the new ones grew in. The older, smaller teeth were just pushed forward along the curve of the whorl and eventually were buried within the animal’s jaw, with only the biggest, newest teeth actually being used.

In 1950 a crushed tooth whorl was found with some cranial cartilage, so scientists knew that the whorl was associated with the head and wasn’t, for instance, on the dorsal fin. That fossil was found in Idaho and consisted of 117 teeth. The whorl was 23 cm in diameter, or about 9 inches across, although slightly larger ones have been found. In 2011 the fossil was examined with a state-of-the-art CT scanner and a 3D computer model generated of the animal’s skull.

Researchers think they have a pretty good idea of what a living helicoprion’s head and jaws looked like. The tooth whorl was fused with and extended the full length of the lower jaw. It grew inside the mouth roughly where the tongue would be if it had a tongue, which it did not. Helicoprion didn’t have teeth in its upper jaw, so the tooth whorl acted less like chompers than like a meat slicing machine. When it closed its mouth, the tooth whorl was pushed back a little and would therefore slice through any soft-bodied prey in the mouth and also force its prey deeper into its mouth. Helicoprion probably ate small fish, cephalopods, and other soft-bodied organisms.

Since we don’t have any fossils or impressions of helicoprion’s body, we don’t know for sure what it looked like, but researchers estimate it probably grew to around 13 feet or 4 meters, but may have possibly exceeded 24 feet or 7.5 meters.

For a long time researchers thought helicoprion was a shark, but it’s now classified as a type of chimaera, which are small weird-looking shark-like fish known also as ghost sharks, spookfish, ratfish, and rabbit fish. I’m going to call them ghost sharks because that’s awesome. They’re not that closely related to sharks although they do have cartilaginous skeletons, and most species like the ocean depths. Ghost sharks have been spotted at depths of 8,500 feet, or 2,600 meters. The longest any species grows is around 5 feet, or 150 cm. Unlike helicoprion, they don’t have exciting teeth. They don’t really have teeth at all, just three pairs of tooth plates that grind together. Some species have a venomous spine in front of the dorsal fin.

While we’re talking about shark-like fish with weird teeth, let’s discuss Edestus, a genus of shark-like fish with weird teeth that lived around 300 million years ago, around the same time as dunkleosteus. It was related to helicoprion but it didn’t have a tooth whorl. Instead it had one curved bracket of teeth on the lower jaw and one on the upper jaw that meshed together like pinking shears. You know what pinking shears are even if you don’t recognize the name. Pinking shears are scissors that have a zigzag pattern instead of a straight edge, so you can cut a zigzag into cloth but not paper because do not dare use my pinking shears for anything but cloth. It dulls them.

Anyway, like helicoprion Edestus didn’t shed its teeth but it did grow new ones throughout its life, so like helicoprion it had a bunch of teeth it no longer needed. In Edestus’s case we don’t have any bits of skull or jaw cartilage to give us a clue as to how its teeth sat in its jaw. A lot of scientific art of Edestus shows a shark with a pointy mouth, where the upper point curves upward and the lower point curves downward with teeth sticking out from the middle. Sort of like an open zipper, if the zipper part was teeth and the non-zipper side was a shark’s mouth. To me that looks sort of ridiculous, and I suspect in reality Edestus looked a lot more like helicoprion. The downward and upward curved parts of the tooth arc was probably buried within its jaw, not sticking out. But that’s just a guess based on about 30 minutes of research.

Researchers estimate that the largest species of Edestus probably grew to about 20 feet long, or 6 meters. No one’s sure how or what it ate, but one suggestion is that if its teeth did project out of its mouth, it might have slashed at prey with its teeth sort of like a swordfish slashes prey with its elongated beak. Hopefully scientists will find a well preserved specimen one day that will give us some clues as to what Edestus looked like, at which point I bet the drawings we have now will look as silly as helicoprion with a tooth whorl perched on its nose.

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave us a rating and review on iTunes or whatever platform you listen on. We also have a Patreon if you’d like to support us that way. Rewards include stickers and twice-monthly bonus episodes.

Thanks for listening!

Episode 016: Jellyfish

If you look at this episode and think, “Oh, ho hum, think I’ll skip this one because snore, jellyfish,” you are so wrong! Jellies are fascinating, creepy, and often beautiful. Come learn all about our squishy friends in the sea!

A Portuguese man o’war. Creepy as heck:

A lion’s mane jelly. You do not want this guy on your ship. Incidentally, a lot of the photos you find of divers with enormous lion’s mane jellies are fakes that make the jellies look gigantic.

The cosmic jelly, a deep-sea creature:

The creepy Stygiomedusa gigantea, guardian of the underworld:

A newly discovered golden jelly.

Further reading:

Jelly Biologist (I’ve been enjoying browsing this site)

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s episode is about jellyfish—also called jellies, which is more accurate since they’re not fish at all.

Originally, I was going to focus on the Portuguese man o’war, another in the ongoing feature of “animals that scared me as a kid” and technically not even a jelly. But there’s so much to learn about jellies that we’re going to cover a whole lot more than that.

Jellies are interesting animals, to say the least. Their bodies have radial symmetry, meaning they’re the same in all directions. While the body shape varies, most jellies have a bell-like shape. The bell is generally rather thin, made up of an external covering, an internal covering, and an elastic gel-like material in between. Inside, the jelly has a digestive cavity with four to eight oral arms surrounding the mouth and long tentacles hanging beneath. The jelly also has a simple nerve net that can detect light and react to other stimuli, and which takes the place of a brain.

Jellies don’t have brains. They don’t have hearts, specialized sensory organs, or much of anything else. But they’ve been around for some 650 million years, possibly much longer, so clearly it all works.

The jelly’s life cycle is pretty weird. Most start out as polyps that stick to rocks or shells and use their little tentacles to catch microscopic organisms. A polyp can bud, producing new polyps that are clones of the original. Eventually, a polyp will constrict its body and develop into a stack of larvae. Each larva develops into a tiny jelly, which separates from the stack and swims away.

Once it’s grown, a jelly reproduces by releasing sperm, if it’s male, which the water carries to the female to fertilize her eggs. Some female jellies have brood pouches on the oral arms, some just carry the fertilized eggs inside the body while they develop. The embryos develop into swimming larvae called planula, which leave the female and attack themselves to something firm, where they transform into polyps.

This seems needlessly complicated, but again, it works for the jelly.

Polyps can live for years, while adult jellies, which I’m delighted to report are called medusas, usually only live a few months. The immortal jellyfish throws another step into this process. It can transform back into a polyp from any stage of its life if it needs to. As a polyp, the immortal jellyfish is tiny, only about a millimeter long. As a full-grown medusa it’s not all that much bigger, less than four millimeters in diameter. Because it can transform back into a polyp as many times as it needs to, apparently without any kind of degradation or injury, the immortal jellyfish is effectively, well, immortal.

Before you get too excited, though, keep in mind that there’s not a whole lot of research into the immortal jellyfish yet. It’s not even known if they will transform back into polyps in the wild, since it’s only ever been observed in captivity.

Almost all jellies have stinging cells, usually concentrated on the tentacles or oral arms, which they use to stun and kill prey. The stinging cells contain venom-filled nematocysts, which are coiled structures that uncoil and sting when touched. Humans are not jelly prey, but jelly stings can still be uncomfortable—and sometimes fatal—to humans.

You’ve probably heard of the infamous box jellyfish, the most dangerous species of which is common around Australia. Unlike most jellies, box jellyfish have true eyes and a relatively well-developed nervous system. They’re active, hard for humans to detect while swimming since they’re nearly transparent, and in the case of Chironex fleckeri, their venom can kill a human in as little as two minutes. Most fatalities occur in children, but most stings don’t result in death.

Another vicious and occasionally fatal stinger is the Portuguese man o’war, although it isn’t actually a jelly. It’s not even a single animal, it’s a colony. One member is the float, another the feeding polyps, and so forth. The man o’war takes its name from a type of ship, which the float somewhat resembles. The float is bluish or purplish, generally under a foot long [30 cm], and filled with gas. Underneath the float are feeding polyps from which hang purple tentacles, typically around 30 feet long [9 m] but sometimes up to 200 feet long [61 m]. If something attacks the man o’war, it can vent some of the gas in its bladder and submerge temporarily.

When I was a kid, my family occasionally went to the beach in North Carolina. Man o’wars are tropical animals but they do occasionally drift farther north. I was fully aware of this as a kid and did not want to get in the water farther than my waist. My grandfather and one of my aunts reassured me that they’d both been stung by a man o’war once, and it wasn’t any more painful than a wasp sting.

That did not make me feel any better. In fact, it made me even more scared because then I KNEW there were man o’wars out there. I wasn’t afraid of being stung, I was afraid of touching those creepy tentacles.

As it happens, my grandfather and Aunt Barbara probably had not encountered a Portuguese man o’war but a smaller animal called a by-the-wind sailor, which is now my favorite name of anything. It has a blue bladder float like the man o’war, but its sting is much milder, A man o’war sting is incredibly painful, more of a shock, that can lead to intense muscle and joint pain, open wounds on the skin at the sting site, headache, chills and fever, nausea, and can cause victims to faint and drown. Occasionally the venom travels to the lymph nodes and causes even more serious symptoms, including swelling of the larynx, an inability to breathe, and cardiac distress. Even a dead man o’war can sting if you touch its tentacles. Why would you touch its tentacles.

I’m not the only one who feels this way about man o’wars, clearly, because one of its other names if the floating terror. That sounds like the title of a pulp science fiction novel.

The bluebottle is a smaller related species found in the Indian and Pacific Oceans. The man o’war is found in those oceans and the Atlantic. A few weeks ago, in early May 2017, hundreds of man o’wars washed ashore in Georgia and South Carolina. Man o’wars are pretty common around Florida, especially in winter, and occasionally they wash ashore in the thousands.

The man o’war eats fish and other organisms that get caught in the stinging tentacles, but there are some fish that live among the tentacles, even feeding on them, like the man o’war fish and the clownfish. Not a lot of things eat Portuguese man o’wars, but the loggerhead turtle and ocean sunfish do. I like them both. The blanket octopus is immune to the man o’war’s venom and may carry broken-off tentacles to deter predators.

If you’re stung by a man o’war, treat the sting the same way you’d treat other jelly stings. Rinse with vinegar to remove any remaining bits of tentacle or nematocysts, then apply heat for 45 minutes, either with a hot pack or by immersing in hot water. Don’t rinse with urine or vodka; it can make the stings worse—and definitely don’t rinse with fresh water. If you don’t have vinegar, rinse with sea water, but keep in mind that you may be pouring nematocysts back onto the patient with the water. This treatment is from a very recent study conducted by researchers at the University of Hawaii at Manoa, released only a few weeks ago as this episode goes live, so if you’ve heard differing advice for jelly stings, it may be out of date.

Jellies are related to some surprising things: coral, sea anemones, a rare parasitic worm, the freshwater hydra—a ten mm long tubular animal with stinging tentacles at one end that it can stretch four or five times the length of the body to catch its tiny prey. Like jellies, the hydra can regenerate parts of its body if they’re injured or bitten off. And the hydra doesn’t appear to age, making it biologically immortal, although in a different way than the immortal jellyfish.

So what’s the largest jelly known, not counting ridiculously long tentacles like the man o’war’s? That would be the lion’s mane jellyfish. Its bell can have a diameter of over seven feet [2 m] and it has pretty darn long tentacles, too—sometimes over 120 feet long [36.5 m]. It likes cold water and the biggest individuals live where it’s coldest. While small individuals are brown or tan in color, the big ones are usually red or purple. The sting of a lion’s mane jellyfish isn’t usually that bad, but it has a lot of tentacles, so it can inflict thousands of stings upon contact.

In 1973, the Australian ship Kuranda collided with a huge jelly in the South Pacific while traveling through a storm on her way to the Fiji Islands. The jelly was so enormous that the deck was covered in jellyfish goo and tentacles up to two feet deep [61 cm]. One crew member died after getting stung. The weight of the jelly was so great, an estimated 20 tons [18 metric tons] that it started to push the ship nose-down and the captain, Langley Smith, sent out an SOS. The salvage tug Hercules arrived and sprayed the Kuranda’s deck with a high-pressure hose, dislodging the jelly. Samples were sent to Sydney and tentatively identified as a lion’s mane jelly.

But remember, lion’s mane jellies don’t live in the warm waters near Fiji and Australia. There are other reports of lion’s mane jellies seen in the area, though, so it’s possible there’s a gargantuan warm-water variety that hasn’t been discovered yet.

Most jellies live near the surface of the ocean, but there are some deep-sea species known, with more being discovered every year. A gorgeous jelly, dubbed the cosmic jellyfish by the press, was spotted 9,800 feet [2987 m] below the surface near American Samoa this February. It has an umbrella-like bell with short tentacles that point both downward and upward. You may have seen it in the news described as looking like a flying saucer, which it does. A similar jelly was discovered in the Mariana Trench in 2016, almost two and a half miles underwater [4 km]. These are lovely jellies with translucent bells and glowing red and yellow innards, but there are less lovely ones down there.

The big red jellyfish discovered in 2002 is an ugly cuss. It lives in waters up to 4900 feet deep [1493 m] and is over a foot in diameter [30 cm]. It’s dull red in color and doesn’t have tentacles, just thick oral arms.

Stygiomedusa gigantea, also known as the guardian of the underworld by at least one website, and now by me, isn’t so much ugly as horrifying. Its bell is some three feet across [1 m], and while it doesn’t have tentacles or even stinging cells, it does have four 30-foot-long [9 m] oral arms that resemble dark brown or reddish strips of cloth that drift in the ocean currents.

Some deep-sea jellies don’t have tentacles or oral arms. Deepstaria enigmatica, a rare jelly described in 1967, basically just looks like a big mesh bag. Its close relative, Deepstaria reticulum, is very similar, but it’s reddish instead of whitish. The Deepstaria hangs motionless in the deep with its three-foot-wide [1 m] bell open, waiting for something to swim into it. When it does, the bell contracts like a bag, the fish or other organism is stung by nematocysts lining the bell, and the jelly pushes its stunned prey into its mouth with tiny cilia inside the bell.

Isopods, which are small crustaceans, frequently hitch rides inside Deepstaria bells. It’s not known if they’re parasites or confer some benefits to the jellies, but they don’t seem to be affected by the stings.

There are plenty of mysteries associated with enormous jellies, although the two most famous ones I dug into started to seem less and less likely once I got closer to the primary sources. According to Eric Frank Russell in his 1957 book Great World Mysteries, in 1953 a diver testing a new type of deep-sea diving suit in the South Pacific saw an enormous jelly-like monster kill a shark. The diver had been testing how deep he could dive in the suit and noticed a fifteen-foot [4.6 m] shark following him down. I’m going to quote the relevant section instead of paraphrasing, because it’s pretty amazing.

“The shark was still hanging around some 30 feet [9 m] from me and about 20 feet [6 m] higher, when I reached a ledge below which was a great black chasm of enormous depth. It being dangerous to venture farther, I stood looking into the chasm while the shark waited for my next move. Suddenly the water became distinctly colder. While the temperature continued to drop with surprising rapidity, I saw a black mass rising from the darkness of the chasm. It floated upwards very slowly. As at last light reached it I could see that it was of a dull brown color and tremendous size, a flat ragged-edged thing about one acre in extent. It pulsated sluggishly and I knew that it was alive despite its lack of visible limbs or eyes. Still pulsating, this frightful vision floated past my level, by which time the coldness had become most intense. The shark now hung completely motionless, paralyzed either by cold or fear. While I watched fascinated, the enormous brown thing reached the shark, contacted it with its upper surface. The shark gave a convulsive shiver and was drawn unresisting into the substance of the monster. I stood perfectly still, not daring to move while the brown thing sank back into the chasm as slowly as it had emerged. Darkness swallowed it and the water started to regain some warmth.”

I am skeptical, I admit. Eric Frank Russell was primarily a science fiction writer and this sounds like something from a novel, probably one called The Floating Terror. If he described the monster as 20 feet across or even 30 or 40 [6, 9, 12 m], I’d be going, “Hmm, but hey, the deep sea is full of amazing things.” But an acre? That’s 208 feet 9 inches across. 43,450 square feet. A lot of meters [4,046 square meters]. It’s three times the size of my yard, which takes me like an hour to mow. It’s just too big to believe, not without corroborating details—like a first-hand account of the actual diver. We don’t even know his name. And what about the diver’s buddy? Divers don’t go down alone, although maybe they did back in 1953. The whole story is just too thin, too fantastical to be believed.

The other promising mystery I looked into is a supposed legend from Chile, a sea monster that resembles a cow hide stretched flat but with eyes all around the edges and four big eyes in the middle. It rises to the ocean’s surface and swallows animals it encounters.

At first glance this sounds ridiculous, until you realize that many jellies have semi- or fully transparent bells and their internal organs, such as they are, may resemble eye-like blobs in the center of their bodies. Some jellies do have light-sensitive eye spots near their edges too. But the research I did to follow up this story, which I took from Karl Shuker’s blog, but which is originally from Jorge Luis Borges’ 1969 book called The Book of Imaginary Beings, indicated that the actual legend is much different and much less jelly-like.

El Cuero is a cowhide monster called Threquelhuecuvu among the Mapuche of Patagonia. It lives in rivers, lakes, and the ocean. It’s nearly circular, has claws around its edges, and one pair of red eyes. It also has tentacles on its head and a mouth in its middle, which it uses to suck bodily fluids from its prey. It’s supposed to come out of the water and come on land, and when an animal steps on it, it wraps its body around the animal and suffocates it. Then it drags its prey into the water to eat it. The only way to kill it is to throw cacti into the water. When the monster grabs the cacti, it’s pierced through with spines and dies.

It’s generally supposed that the monster is based on freshwater stingrays, although they’re not known to live in Patagonia. But in 1976, after a bus full of tourists ended up on the bottom of Lake Moreno, divers who retrieved the drowned victims reported enormous rays in the depths.

There is a freshwater stingray species in South America which has thorn-like denticles on its body and a closely related species, also with denticles, sometimes travels upriver from the ocean off the Chilean Patagonian coast. That might be the source of the cowhide monster.

So those two mysteries are almost certainly bust. But don’t feel discouraged. Not only was that 20-ton ship-sinking 1973 lion’s mane jelly a real, documented thing that happened [note from episode 248: sorry, it turns out it wasn’t real], there are lots of jelly species being discovered all the time.

Not all are deep-sea species. In 2013, a fisherman in northeast Italy hauled up a net full of golden jellies he’d never seen before. He contacted the local university, and a researcher came out and determined that the lovely golden jellies were completely unknown to science. In 2015, a 9-year-old boy caught a new species of box jelly that’s only around an inch long [3 cm].

There are freshwater jellies too, but not a lot is known about them. To add to the confusing and complex life cycle of marine jellies, many freshwater jellies also have a dormant stage where they basically turn into tiny jelly seeds, tough and capable of surviving even if dried out.

And back in the Cambrian era, some 500 million years ago, some jellies actually had skeletons. Fossil impressions show plates, spines, and spokes from comb jellies, which today are completely soft-bodied. Comb jellies are different from the kind of jellies I’ve mostly talked about in this episode, and not even closely related to them. I’d dig into them next, but we’re already pushing 20 minutes and there’s a limit to how much jellyfish information I can expect my listeners to tolerate in one sitting. We’ll save the comb jellies for another episode.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 015: Hammerhead shark and Megalodon!

This week’s episode is all about some awesome sharks: the hammerhead shark, which used to scare the poop out of me when I was a kid, and the unbelievably huge but fortunately for all the whales extinct megalodon! Thanks to Zenger from Zeng This! for recommending such a great topic!

The great hammerhead, a huge and freaky-looking shark.

A ray leaping out of the water to escape a hammerhead. The article I pulled this from is here.

A guy with a teeny adorable bonnethead, a newly discovered species of hammerhead.

Hello there. I am a great white shark.

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week’s episode was suggested by Zenger from the fun pop culture podcast Zeng This!, which I recommend if you don’t already subscribe. He suggested megalodon as a topic, so since I was already researching hammerhead sharks, I decided to put together a shark episode.

We’ll start with the hammerhead shark, because hammerheads scared the crap out of me as a kid. They just look so weird! You know what else scared me as a kid? Skeletons. It’s a good thing no one ever showed me the skeleton of a hammerhead shark.

There are a lot of species of hammerhead shark, some of them small like the new species of bonnethead discovered earlier this year that’s only about as long as your forearm, and some of them huge, like the great hammerhead, which can grow up to 20 feet long [6 meters]. One of the biggest sharks ever caught was a great hammerhead. At fourteen feet long [4.2 meters], it wasn’t the longest shark ever, but it weighed 1,280 pounds [580 kg]. It was caught in 2006 off the coast of Florida.

If it weren’t for its weird head shape, the hammerhead wouldn’t seem all that interesting. It’s mostly plain gray in color, hardly ever attack humans, and is common all over the world. But they’ve got that head! The shape is called cephalofoil, and not only are the shark’s eyes on the end of the stalks, the head is flattened.

Researchers think the shape serves two purposes. A hammerhead shark can see really well since its eyes are so far apart, and the shape actually provides a certain amount of lift when water flows over it, like an airplane’s wing, which helps the shark maneuver. Plus, of course, a wide head allows for even more electroreceptor cells so the shark can sense prey better.

Hammerheads have relatively small mouths compared to many other sharks. They do a lot of feeding on the ocean floor, snapping up rays, fish, crustaceans, octopus, even other sharks. Oh yeah, and a hammerhead will actually use its head as a weapon. Hammerheads like eating stingrays and will pin one to the ocean floor with its head to keep it from escaping until the shark can bite it. In February of 2017, tourists surfing near Panama saw a spotted eagle ray escape a hammerhead shark by leaping out of the water like a bird. The stingray actually beached itself on an island, too far up the beach for the shark to reach. After it gave up, the ray managed to catch a wave that carried it back out to sea. That’s pretty epic.

Hammerhead sharks are considered a delicacy in many countries, but since their fins are the most valuable part of the fish, fishermen sometimes catch a shark, cut its fins off, and toss the still-living shark back in the ocean. It always dies, because it can’t swim without fins. The practice is horrific and banned in many countries. Overfishing has also threatened many hammerhead species. Researchers estimate that the great hammerhead in particular has decreased in numbers some 80% in the last 25 years.

Ironically, recent studies have found repeatedly that shark fins and meat contain high levels of mercury and a neurotoxin called BMAA, which is linked to neurodegenerative diseases in humans. The frequent eating of shark fin soup and other dishes made of shark meat, and cartilage pills which some people take as a diet supplement, may increase the risk of developing diseases like Alzheimer’s and Lou Gehrig’s disease. (I ate shark once, a shark steak. It was terrible.)

You may think a 20-foot hammerhead is a really big shark, and it is. Great white sharks aren’t much bigger. But before the great white and the hammerhead, a 60 foot [18 meter] shark ruled the oceans. Megalodon is first found in the fossil record around 23 million years ago, and died out about 2 ½ million years ago. Because shark skeletons are made of cartilage instead of bone, they don’t fossilize well. We have a whole lot of megalodon teeth, but except for some vertebrae we don’t know much about the rest of the shark.

Researchers generally compare megalodon with the great white, since while they’re not necessarily closely related, they occupy the same ecological niche. We do know how the teeth were arranged, since associated teeth in formation as they had been in the jaw, although the jaw itself wasn’t preserved, have been discovered in North Carolina and Japan.

At a rough estimate, megalodon probably grew 60 or even 70 feet long [18 to 21 m]. Its jaws were over six feet across [1.8 meters] with some 276 teeth in five rows. Due to the size of its teeth and jaws, it probably mostly preyed on large whales, and was probably a lot blockier looking than the great white. If the great white is a racecar, megalodon was that bus from Speed.

Some researchers want to classify megalodon as a close relative of the great white shark, which has serrated teeth like megalodon’s. But others argue the great white is more closely related to the mako shark, which does not have serrated teeth. For a long time the megalodon hypothesis was more accepted, but a study published in the March 12, 2009 issue of Journal of Vertebrate Paleontology concluded that mako sharks and great whites probably share a recently discovered fossilized ancestor some 4 to 5 million years old. Its teeth have coarse serrations, which researchers think are a transitional point between no serrations and the serrations in modern great white shark teeth. The similarities between the great white and megalodon are due to convergent evolution.

This points to something many people don’t understand about science. It’s messy. It’s incomplete. Our collective body of knowledge is being added to, adjusted, reinterpreted, and hopefully corrected all the time. From the outside it can look like people arguing over ridiculous minutiae, or a bunch of eggheads who can’t make up their minds. In reality, as new information is added to what we know, what we used to think was true has to be changed to fit new facts. It’s exciting!

For a long time researchers though megalodon died out around the beginning of the Pleistocene because the world grew colder as the world entered into the ice ages. New findings suggest that climate change didn’t push the megalodon into extinction, other sharks did. Newcomers like the great white and the orca, which of course isn’t a shark but a whale, starting expanding into new territory, out-competing megalodon around the same time that a lot of marine mammals were also going extinct. Megalodon needed a lot of food to survive—more than the much smaller upstarts.

Back when megalodon was king, though, there was plenty of food to go around. It wasn’t even the only mega-predator hunting the oceans. In 2008, fossils of an ancestor of today’s sperm whale were discovered in Miocene beds dated to around 12 or 13 million years ago. The whale has been dubbed Livyatan melvillei and estimates of its length, from the partial skull, lower jaw, and teeth that were found is around 57 feet [17 meters]. Since modern sperm whales are frequently some 60 feet long [18 m] and 80-foot [24 m] monster males were reported in the past, it’s possible the newly discovered Leviathan could attain similar lengths. Its biggest teeth were two feet long [61 cm] compared to modern sperm whales’ 8-inch teeth [20.5 cm]. It also apparently had teeth in its upper jaw as well as its lower. The sperm whale only has teeth in its lower jaw, and since it mostly eats squid, it doesn’t really need teeth at all. Individuals who have lost their teeth survive just fine.

The Leviathan, though, used its teeth. Like megalodon, it may have preyed on baleen whales. Megalodon teeth were found in the same fossil deposits where the Leviathan was discovered. I bet they battled sometimes.

So how do we know Megalodon isn’t still around, cruising the oceans in search of whales? After all the megamouth shark was only discovered in 1976 and it’s almost 20 feet long [6 m]. Well, we have two big clues that there isn’t a population of Megalodon sharks still living. Both involve its teeth.

Sharks have a lot of teeth, and they lose them all the time as new teeth grow in. Shark teeth are among the most common fossils around, and any dedicated beachcomber can find shark teeth washed up on shore. If megalodon still lived, we’d be finding its teeth. We’d also probably be finding whales and other large marine animals with scars from shark attacks, the way we find scars on sperm whales from giant squid suckers.

Wait, you may be saying, no one was talking about megamouth shark teeth found on beaches before it was discovered. Well, megamouth sharks have tiny, tiny teeth that they don’t even use. They gather food with gill rakes that filter krill from the water. Megalodon teeth can be seven inches long [18 cm]. Great white teeth are only two inches long [5 cm]. Occasionally a fossilized megalodon tooth washes up on shore, and when it does, it makes the news.

So okay, you might be saying, you fractious person you, what if megalodon survived into modern times but has died out now. Well, we’d probably still know. Not only would the non-fossilized teeth still be found, since nothing is going to eat them and they don’t decay readily, but a lot of cultures have incorporated shark teeth into weapons over the centuries. A seven-inch serrated tooth is a weapon worth having.

Consider the Gilbert Islands in the Pacific. Sharks were important in the Kiribati culture there, and the people crafted amazing weapons with shark teeth. Anthropologists studying the weapons discovered that some of the teeth used in older weapons come from sharks that are now extinct in the area.

So no, I’m going to insist that whatever you saw on Shark Week, megalodon is not out there and hasn’t been for a couple of million years. But what about other mystery sharks?

There aren’t very many reports, surprisingly. Even Karl Shuker comes up empty, with just one mention of a reportedly hundred-foot [30 m] shark called the Lord of the Deep by Polynesian fishermen, but I can’t find any additional information about it.

That doesn’t mean there aren’t mystery sharks out there, of course, just that they’re probably not gigantic or radically different from known shark species. In fact, new sharks are discovered all the time. In just the last few months, a three-foot [1 m] ghost shark with rabbit-like teeth, and a tiny hammerhead called a bonnethead have been described. And yeah, I’d love to be wrong about the megalodon’s existence.

Researchers are studying the genetics of sharks’ rapid healing, which could have important medical applications for humans. A recent study published in the January 2017 BMC Genomics Journal provides evidence that the genes linked to the immune system in sharks and rays have evolved in ways that their counterparts in humans have not. One gene is involved in killing cells after a certain amount of time, which is something cancer cells manage to avoid. It’s possible that as researchers learn more, new therapies for treating cancer in humans could be developed.

So maybe we should stop eating so many sharks. Shark meat isn’t good for you anyway.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes for as little as one dollar a month.

Thanks for listening!

Episode 010: Electric Animals

This week’s episode is about electric animals! There are so many of them that I could only touch on the highlights.

We start with the electric eel. It’s not actually an eel but it is most definitely electric. This one has just read some disturbing fanfic:

The oriental hornet is a living solar panel:

The platypus’s bill is packed with electricity sensors. I couldn’t make this stuff up if I tried:

Amphisbaenids are not electric AS FAR AS WE KNOW. Bzzt.

Thanks for listening! We now have a Patreon if you’d like to subscribe! Rewards include patron-only episodes and stickers!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re looking at electric animals! You’ve probably heard of the electric eel, but you may not know there are a lot of fish, insects, and even a few mammals that can sense or generate electric impulses. This is a re-record of the original episode with some updated information.

All animals generate electric fields in their nerves and the contracting of muscles. Animals that can sense these fields are called electroreceptive. An electroreceptive animal can find hidden prey without using its other senses.

To take that a step further, many electroreceptive animals can also generate weak electrical fields, usually less than a single volt—small electrical pulses or a sort of wave, depending on the species, that can give them information about their environment. Like a dolphin using echolocation, a fish using electro-location can sense where potential prey is, where predators, plants, and rocks are, and can even communicate with other fish of its same species. Of course, those same electric pulses can also attract electroreceptive predators. It’s hard being a fish.

But in some cases, the animal can generate an electric shock so strong it can stun or kill other animals. The most famous is the electric eel, so let’s start with that one.

The electric eel isn’t actually an eel. It’s a type of knife-fish related to carp and catfish. Some other species of knife-fish generate electric fields, but the electric eel is the only one that uses it as a weapon.

The electric eel is a weird fish even without the electric part. It can grow over eight feet long, or 2.5 m, lives in freshwater in South America, and gets most of its oxygen by breathing air at the surface of the water instead of through its gills. It has to surface for air about every ten minutes or it will drown. That’s a weird habit for a fish, but it makes sense when you consider that many electric eels live in shallow streams or floodplains with a tendency to dry up between rains. Oh, and electric eels frequently swim backwards.

A male electric eel makes a foam nest for females with his spit, and the female lays her eggs in it—as many as 17,000 eggs, although 1,200 is more common. The male defends the nest and hatchlings until the rainy season starts and the young electric eels can swim off on their own.

The electric eel has rows of some 6,000 specialized cells, called electrocytes, that act like batteries to store energy. When all the electrocytes discharge at the same time, the resulting shock can be as much as 860 volts, although it’s only delivered at about one amp. I have no idea what that means because I don’t understand electricity.

Since the electrocytes are all found in the animal’s tail, and electric eels are mostly tail, the fish will sometimes curl up and hold its prey against its tail to increase the shock it receives. This honestly sounds like something a villain from a superhero movie would do. The electric eel will also sometimes leap out of the water to shock an animal it perceives as a threat.

You do not want to be in the water when an electric eel discharges. It probably won’t kill you unless you have a heart problem, but it could stun you long enough that you drown. And if more than one electric eel discharges at the same time, the danger increases. There’s a River Monsters episode about electric eels that shows a whole bunch of them in water so shallow that they’re barely covered. Walking through that pond would probably be deadly. I also really love that show.

How does the electric eel not shock itself? Well, it probably does. All of its vital organs are in the front fifth of its body, and well insulated by thick skin and a layer of fat. But its discharges are extremely fast. Think taser, not sticking a fork in a wall socket, which by the way is something you should not do. The charge naturally travels away from its tail and into the nearest object, usually its prey.

There are three known species of electric eel, all of which live in the Amazon basin in South America. Two of the three species were only identified in 2019 after DNA studies of 107 specimens. One of the new species, Electrophorus voltai, can discharge up to 860 volts of electricity, higher than the well-known E. electricus. Researchers think E. voltai has evolved to generate higher jolts because it lives in the highlands of the Brazilian Shield, where the water is clear and doesn’t conduct electricity as well as the mineral-rich water in other electric eel habitats.

One last thing about the electric eel. It can shock people who touch it up to eight hours after it dies.

Most electric animals are fish since water conducts electricity well. Some other notable electric fish are the stargazer, a venomous bottom-dwelling ocean fish that generates shocks from modified eye muscles; the paddlefish; the electric catfish; and of course sharks.

Sharks are the kings of electroreceptive animals. Some sharks can sense voltage fluctuations of ten millionths of a volt. Sharks only sense electricity; they can’t generate it. But some of their cousins, the electric rays, can generate an electric shock equivalent to dropping a toaster in a bathtub, which by the way is another thing you shouldn’t do although why would you even have a toaster in the bathroom?

Scientists are only just discovering electric use in insects. It’s probably more widely spread than we suspect, and it’s used in ways that are very different from fish. The oriental hornet, for instance, converts sunlight into energy like a tiny flying solar panel. Researchers think the hornet uses that extra energy for digging its underground nests.

Flying insects generate a positive charge from the movement of air molecules, which is basically what static electricity is. It also happens to moving vehicles, and which is why you should touch the metal of your car to discharge any static electricity before pumping gasoline so you don’t spark a fire. This episode is full of safety tips. In the case of bees, this static charge helps pollen adhere to their bodies. You know, like tiny yellow socks stuck to a shirt you’ve just taken out of the dryer. When a bee lands on a flower, its charge also temporarily changes the electrical status of the flower. Other bees can sense this change and don’t visit the flower since its nectar has already been taken.

Spiderwebs are statoelectrically charged too, which actually draws insects into the web, along with pollen and other tiny air particles. This helps clean the air really effectively, in fact, so if you have allergies you should thank spiders for helping keep the pollen levels down. The webs only become electrically charged because the spider combs and pulls at the thread during the spinning process.

Only three living mammals are known to be electroreceptive. The South American Guiana dolphin has a row of electroreceptors along its beak, visible dots called vibrissal crypts. They’re basically pores where whiskers would have grown, except that marine mammals no longer grow whiskers. The vibrissal crypts are surrounded by nerve endings and contain some specialized cells and proteins. Researchers think the dolphins use electroreception to find fish and other prey animals in murky water when the animals are so close that echolocation isn’t very effective. A lot of toothed whales, including other dolphins, show these dots, and it’s possible that the Guiana dolphin isn’t the only species that is electroreceptive.

The platypus and its cousin the echidna are the other two electric-sensing mammals. These two are both such odd animals that they’re getting their own episode one day—and that episode is # 45! They are weird way beyond being the mammals that lay eggs deal. So I’ll just mention that their bills are packed with electroreceptors. The platypus in particular uses electroreception as its primary means of finding prey in the mud at the bottom of ponds.

There are undoubtedly more animals out there that make use of electrical fields in one way or another. One possible addition to the list, if it exists at all, is called the Mongolian death worm.

Nomadic tribes in the Gobi Desert describe a sausage-like worm over a foot long, or 30 cm, and the thickness of a man’s arm. Its smooth skin is dark red and it has no visible features, not even a mouth, which makes it hard to tell which end is the head and which is the tail. It squirms or rolls to move. It spends most of its life hidden in the sand, but in June and July it emerges, usually after rain, and can kill people and animals at a distance.

In his book The Search for the Last Undiscovered Animals, zoologist Karl Shuker discusses the death worm at length, including the possibility that it might be able to give electric shocks under the right conditions. Among the reports he recounts are some that sound very interesting in this regard, including that of a visiting geologist poking an iron rod into the sand, who dropped dead with no warning. A death worm emerged from the place where the geologist had been prodding the sand. I’m going to add “don’t poke an iron rod into the sand of the Gobi Desert” to my list of warnings.

The Gobi is a cold desert and has bitter winters, but it’s still a desert, which means it’s arid, which means the death worm probably isn’t a type of earthworm or amphibian—nothing that needs a lot of moisture to stay alive. On the other hand, two types of earthworms have recently been discovered in the Gobi, and there are a few amphibians, especially frogs, that have evolved to live in areas that don’t receive much rain. In episode 156, about some animals of Mongolia, we talk about the Mongolian death worm again if you want to know a little more. Some parts of the Gobi get more moisture than others and may be where the death worm lives.

Shuker suggests it might be a kind of amphisbaenid. Amphisbaenids are legless lizards that look more like worms than snakes. They move more like worms than snakes too, and spend a lot of their lives burrowing in search of worms or insects. No known species of amphisbaenid can generate electric shocks, but then again, only one of the over 2,000 known species of catfish generates electricity.

It’s not completely out of the realm of possibility that electrogenesis might develop in a reptile, assuming that’s what the death worm is. Sand isn’t a good conductor of electricity, but wet sand is. The death worm might ordinarily use weak electrical pulses to stun its small prey, but if it emerges after rain because its tunnels are temporarily flooded, it might feel vulnerable above ground and be more likely to discharge electrically as a warning when approached.

Of course, as always, until we have a body—until we know for sure that the Mongolian death worm is a real animal and not a folktale, we can’t do more than speculate. But it is interesting to think about.

As far as I can find, no living reptiles or birds show any electrical abilities akin to those in fish and other aquatic animals. But electroreceptors in fish were only discovered in the 1950s. There’s a lot we still don’t know. Always another mystery to solve!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 006: Sea Monsters

This week’s episode is all about sea monsters: mysterious sightings, possible solutions, and definitely discovered monsters of the world’s oceans!

The giant oarfish! Try to convince me that’s not a sea serpent, I dare you.

The megamouth shark. Watch out, krill and jellyfish!

The frilled shark. Watch out, everything else including other sharks!

A giant isopod. Why are you touching it? Stop touching it!

Sorry, it’s just a rotting basking shark:

Recommended reading:

In the Wake of Bernard Heuvelmans by Michael A. Woodley

In the Wake of the Sea-Serpents by Bernard Heuvelmans

The Search for the Last Undiscovered Animals by Karl P.N. Shuker