Episode 181: Updates 3 and a lake monster!

It’s our annual updates and corrections episode, with a fun mystery animal at the end!

Thanks to everyone who contributed, including Bob, Richard J. who is my brother, Richard J. who isn’t my brother, Connor, Simon, Sam, Llewelly, Andrew Gable of the excellent Forgotten Darkness Podcast, and probably many others whose names I didn’t write down!

Further reading:

Northern bald ibis (Akh-bird)

Researchers learn more about teen-age T. rex

A squid fossil offers a rare record of pterosaur feeding behavior

The mysterious, legendary giant squid’s genome is revealed

Why giant squid are still mystifying scientists 150 years after they were discovered (excellent photos but you have to turn off your ad-blocker)

We now know the real range of the extinct Carolina parakeet

Platypus on brink of extinction

Discovery at ‘flower burial’ site could unravel mystery of Neanderthal death rites

A Neanderthal woman from Chagyrskyra Cave

The Iraqi Afa – a Middle Eastern mystery lizard

Further watching/listening:

Richard J. sent me a link to the Axolotl song and it’s EPIC

Bob sent me some more rat songs after I mentioned the song “Ben” in the rats episode, including The Naked Mole Rap and Rats in My Room (from 1957!)

The 2012 video purportedly of the Lagarfljótsormurinn monster

A squid fossil with a pterosaur tooth embedded:

A giant squid (not fossilized):

White-throated magpie-jay:

An updated map of the Carolina parakeet’s range:

A still from the video taken of a supposed Lagarfljót worm in 2012:

An even clearer photo of the Lagarfljót worm:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This is our third annual updates and corrections episode, where I bring us up to date about some topics we’ve covered in the past. We’ll also talk about an interesting mystery animal at the end. There are lots of links in the show notes to articles I used in the episode’s research and to some videos you might find interesting.

While I was putting this episode together, I went through all the emails I received in the last year and discovered a few suggestions that never made it onto the list. I’m getting really backed up on suggestions again, with a bunch that are a year old or more, so the next few months will be all suggestion episodes! If you’re waiting to hear an episode about your suggestion, hopefully I’ll get to it soon.

Anyway, let’s start the updates episode with some corrections. In episode 173 about the forest raven, I mentioned that the northern bald ibis was considered sacred by ancient Egyptians. Simon asked me if that was actually the case or if only the sacred ibis was considered sacred. I mean, it’s right there in the name, sacred ibis.

I did a little digging and it turns out that while the sacred ibis was associated with the god Thoth, along with the baboon, the northern bald ibis was often depicted on temple walls. It was associated with the ankh, which ancient Egyptians considered part of the soul. That’s a really simplistic way to put it, but you’ll have to find an ancient history podcast to really do the subject justice. So the northern bald ibis was important to the ancient Egyptians and sort of considered sacred, but in a different way from the actual sacred ibis.

In episode 146 while I was talking about the archerfish, I said something about how I didn’t fully understand how the archerfish actually spits water so that it forms a bullet-like blob. Bob wrote and kindly explained in a very clear way what goes on: “Basically, the fish spits a stream of water, but squeezes it so that the back end of the stream is moving faster than the front. So it bunches up as it flies and hits the target with one big smack. Beyond that, the water bullet would fall apart as the back part moves through the front part of the stream, but the fish can apparently judge the distance just right.” That is really awesome.

In another correction, Sam told me ages ago that the official pronouns for Sue the T rex are they/them, because that’s what Sue has requested on their Twitter profile. I forgot to mention this last time, sorry.

While we’re talking about Tyrannosaurus rex, researchers have IDed two teenaged T rex specimens found in Montana. Originally paleontologists thought the specimens might be a related species that grew to a much smaller size, Nanotyrannus, but the team studying them have determined that they were juvenile T rexes. To learn how old the specimens were and how fast they grew, they cut extremely thin slices from the leg bones and examined them under high magnification.

The study of fossil bone microstructure is called paleohistology and it’s a new field that’s helped us learn a lot about long-extinct animals like dinosaurs. We know from this study that T rex grew as fast as modern warm-blooded animals like birds and mammals, and we know that the specimens were 13 and 15 years old when they died. T rex didn’t reach its adult size until it was about twenty, and there are definite differences in the morphology of the juvenile specimens compared to an adult. The young T rexes were built for speed and had sharper teeth to cut meat instead of crush through heavy bones the way adults could. This suggests that juvenile T rexes needed to outrun both predators and smaller prey.

In other fossil news, Llewelly sent me a link about a pterosaur tooth caught in a squid fossil. We know pterosaurs ate fish because paleontologists have found fossilized fish bones and scales in the stomach area of pterosaur remains, but now we know they also ate squid. The fossil was discovered in Bavaria in 2012 and is remarkably well preserved, especially considering how few squid fossils we have. One of the things preserved in the fossil is a sharp, slender tooth that matches that of a pterosaur. Researchers think the pterosaur misjudged the squid’s size and swooped down to grab it from the water, but the squid was about a foot long, or 30 cm, and would have been too heavy for the pterosaur to pick up. One of its teeth broke off and remained embedded in the squid’s mantle, where it remains to this day 150 million years later.

And speaking of squid, the giant squid’s genome has been sequenced. Researchers want to see if they can pinpoint how the giant squid became so large compared to most other cephalopods, but so far they haven’t figured this out. They’re also looking at ways that the giant squid differs from other cephalopods and from vertebrates, including humans, to better understand how vertebrates evolved. They have discovered a gene that seems to be unique to cephalopods that helps it produce iridescence.

The Richard J. who is my brother sent me an article about giant squid a while back. There’s a link in the show notes. It has some up-to-date photos from the last few years as well as some of the oldest ones known, and lots of interesting information about the discovery of giant squid.

The Richard J. who is not my brother also followed up after the magpies episode and asked about the magpie jay. He said that the white-throated magpie jay is his favorite bird, and now that I’ve looked at pictures of it, I see why.

There are two species of magpie jay, the black-throated and the white-throated, which are so closely related that they sometimes interbreed where their ranges overlap. They live in parts of Mexico and nearby countries. They look a little like blue jays, with blue feathers on the back and tail, white face and belly, and black markings. Both species also have a floofy crest of curved feathers that looks like something a parrot would wear. A stylish parrot. Like other corvids, it’s omnivorous. It’s also a big bird, almost two feet long including the long tail, or 56 cm.

In other bird news, Connor sent me an article about the range of the Carolina parakeet before it was driven to extinction. Researchers have narrowed down and refined the bird’s range by researching diaries, newspaper reports, and other sightings of the bird well back into the 16th century. It turns out that the two subspecies didn’t overlap much at all, and the ranges of both were much smaller than have been assumed. I put a copy of the map in the show notes, along with a link to the article.

One update about an insect comes from Lynnea, who wrote in after episode 160, about a couple of unusual bee species. Lynnea said that some bees do indeed spin cocoons. I’d go into more detail, but I have an entire episode planned about strange and interesting bees. My goal is to release it in August, so it won’t be long!

In mammal news, the platypus is on the brink of extinction now more than ever. Australia’s drought, which caused the horrible wildfires we talked about in January, is also causing problems for the platypus. The platypus is adapted to hunt underwater, and the drought has reduced the amount of water available in streams and rivers. Not only that, damming of waterways, introduced predators like foxes, fish traps that drown platypuses, and farming practices that destroy platypus burrows are making things even worse. If serious conservation efforts aren’t put into place quickly, it could go extinct sooner than estimated. Conservationists are working to get the platypus put on the endangered species list throughout Australia so it can be saved.

A Neandertal skeleton found in a cave in the foothills of Iraqi Kurdistan appears to be a deliberate burial in an area where many other burials were found in the 1950s. The new skeleton is probably more than 70,000 years old and is an older adult. It was overlooked during the 1950s excavation due to its location deep inside a fissure in the cave. The research team is studying the remains and the area where they were found to learn more about how Neandertals buried their dead. They also hope to recover DNA from the specimen.

Another Neandertal skeleton, this one from a woman who died between 60,000 and 80,000 years ago in what is now Siberia, has had her DNA sequenced and compared to other Neandertal DNA. From the genetic differences found, researchers think the Neandertals of the area lived in small groups of less than 60 individuals each. She was also more closely related to Neandertal remains found in Croatia than other remains found in Siberia, which suggests that the local population was replaced by populations that migrated into the area at some point.

Also, I have discovered that I’ve been pronouncing Denisovan wrong all this time. I know, shocker that I’d ever mispronounce a word.

Now for a lizard and a couple of corrections and additions to the recent Sirrush episode. Last year, Richard J. and I wrote back and forth about a few things regarding one of my older episodes. Specifically he asked for details about two lizards that I mentioned in episode 21. I promised to get back to him about them and then TOTALLY FORGOT. I found the email exchange while researching this episode and feel really bad now. But then I updated the episode 21 show notes with links to information about both of those lizards so now I feel slightly less guilty.

Richard specifically mentioned that the word sirrush, or rather mush-khush-shu, may mean something like “the splendor serpent.” I totally forgot to mention this in the episode even though it’s awesome and I love it.

One of the lizards Richard asked about was the afa lizard, which I talked about briefly in episode 21. Reportedly the lizard once lived in the marshes near the Tigris and Euphrates rivers in what is now Iraq. Richard wanted to know more about that lizard because he wondered if it might be related to the sirrush legend, which is how we got to talking about the sirrush in the first place and which led to the sirrush episode. Well, Richard followed up with some information he had learned from a coworker who speaks Arabic. Afa apparently just means snake in Arabic, although of course there are different words for snake, and the word has different pronunciations in different dialects. He also mentioned that it’s not just the water monitor lizard that’s known to swim; other monitors do too, including the Nile monitor. I chased down the original article I used to research the afa and found it on Karl Shuker’s blog, and Shuker suggests also that the mysterious afa might be a species of monitor lizard, possibly one unknown to science. We can’t know for certain if the afa influenced the sirrush legend, but it’s neat to think about.

Next up, in cryptid news, Andrew Gable of the excellent Forgotten Darkness podcast suggested that some sightings of the White River Monster, which we talked about in episode 153, might have been an alligator—especially the discovery of tracks and crushed plants on the bank of a small island. This isn’t something I’d thought about or seen suggested anywhere, but it definitely makes sense. I highly recommend the Forgotten Darkness podcast and put a link in the show notes if you want to check it out.

And that leads us to a lake monster to finish up the episode. The Lagarfljót [LAH-gar-flote] worm is a monster from Iceland, which is said to live in the lake that gives it its name. The lake is a pretty big one, 16 miles long, or 25 km, and about a mile and a half wide at its widest, or 2.5 km. It’s 367 feet deep at its deepest spot, or 112 m. It’s fed by a river with the same name and by other rivers filled with runoff from glaciers, and the water is murky because it’s full of silt.

Sightings of the monster go back centuries, with the first sighting generally thought to be from 1345. Iceland kept a sort of yearbook of important events for centuries, which is pretty neat, so we have a lot of information about events from the 14th century on. An entry in the year 1345 talks about the sighting of a strange thing in the water. The thing looked like small islands or humps, but each hump was separated by hundreds of feet, or uh let’s say at least 60 meters. The same event was recorded in later years too.

There’s an old folktale about how the monster came to be, and I’m going to quote directly from an English translation of the story that was collected in 1862 and published in 1866. “A woman living on the banks of the Lagarfljót [River] once gave her daughter a gold ring; the girl would fain see herself in possession of more gold than this one ring, and asked her mother how she could turn the ornament to the best account. The other answered, ‘Put it under a heath-worm.’ This the damsel forthwith did, placing both worm and ring in her linen-basket, and keeping them there some days. But when she looked at the worm next, she found him so wonderfully grown and swollen out, that her basket was beginning to split to pieces. This frightened her so much that, catching up the basket, worm and ring, she flung them all into the river. After a long time this worm waxed wondrous large, and began to kill men and beasts that forded the river. Sometimes he stretched his head up on to the bank, and spouted forth a filthy and deadly poison from his mouth. No one knew how to put a stop to this calamity, until at last two Finns were induced to try to slay the snake. They flung themselves into the water, but soon came forth again, declaring that they had here a mighty fiend to deal with, and that neither could they kill the snake nor get the gold, for under the latter was a second monster twice as hard to vanquish as the first. But they contrived, however, to bind the snake with two fetters, one behind his breast-fin, the other at his tail; therefore the monster has no further power to do harm to man or beast; but it sometimes happens that he stretches his curved body above the water, which is always a sign of some coming distress, hunger, or hard times.”

The heath worm is a type of black slug, not a worm or snake at all, and it certainly won’t grow into a dragon no matter how much gold you give it. But obviously there’s something going on in the lake because there have been strange sightings right up to the present day. There’s even a video taken of what surely does look like a slow-moving serpentine creature just under the water’s surface. There’s a link in the show notes if you want to watch the video.

So let’s talk about the video. It was taken in February of 2012 by a farmer who lives in the area. Unlike a lot of monster videos it really does look like there’s something swimming under the water. It looks like a slow-moving snake with a bulbous head, but it’s not clear how big it is. A researcher in Finland analyzed the video frame by frame and determined that although the serpentine figure under the water looks like it’s moving forward, it’s actually not. The appearance of forward movement is an optical illusion, and the researcher suggested there was a fish net or rope caught under the water and coated with ice, which was being moved by the current.

So in a way I guess a Finn finally slayed the monster after all.

But, of course, the video isn’t the only evidence of something in the lake. If those widely spaced humps in the water aren’t a monstrous lake serpent of some kind, what could they be?

One suggestion is that huge bubbles of methane occasionally rise from the lake’s bottom and get trapped under the surface ice in winter. The methane pushes against the ice until it breaks through, and since methane refracts light differently from ordinary air, it’s possible that it could cause an optical illusion from shore that makes it appear as though humps were rising out of the water. This actually fits with stories about the monster, which is supposed to spew poison and make the ground shake. Iceland is volcanically and geologically highly active, so earthquakes that cause poisonous methane to bubble up from below the lake are not uncommon.

Unfortunately, if something huge did once live in the lake, it would have died by now. In the early 2000s, several rivers in the area were dammed to produce hydroelectricity, and two glacial rivers were diverted to run into the lake. This initially made the lake deeper than it used to be, but has also increased how silty the water is. As a result, not as much light can penetrate deep into the water, which means not as many plants can live in the water, which means not as many small animals can survive by eating the plants, which means larger animals like fish don’t have enough small animals to eat. Therefore the ecosystem in the lake is starting to collapse. Some conservationists warn that the lake will silt up entirely within a century at the rate sand and dirt is being carried into it by the diverted rivers. I think the takeaway from this and episode 179 is that diverting rivers to flow into established lakes is probably not a good idea.

At the moment, though, the lake does look beautiful on the surface, so if you get a chance to visit, definitely go and take lots of pictures. You probably won’t see the Lagarfljót worm, but you never know.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 172: Temnospondyls

This week let’s go back back back in time to more than 300 million years ago, when amphibian-like animals lived in enormous swamps. Don’t be fooled by the word amphibian: many Temnospondyls were really big!

Further reading:

Palaeos Temnospondyli

Dvinosaurus, three feet long and full of teeth:

And Sclerocephalus, five feet long and full of teeth. This one has a couple of larvae nearby:

Fayella (art by Nix)

Nigerpeton’s astonishing NOSE TEETH:

Mastodonsaurus had nose teeth too and it was way bigger than Nigerpeton, but somehow it just looks goofy instead of cool:

Koolasuchus just looked weird:

The largest Temnospondyl known, Prionosuchus:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we’re going back into the past, way before the dinosaurs, to look at an order of animals that resembled modern amphibians but weren’t precisely amphibians, or reptiles, or fish. Let’s look at the Temnospondyls.

During the early Carboniferous period, which lasted from about 360 to 300 million years ago, the ocean levels were high, the climate across much of the world was humid and tropical, and the continents were in the process of smushing together to form a huge landmass called Pangea. Much of the land was flooded with warm, shallow water that created enormous swampy areas full of plants and newly evolved trees. These swampy areas, full of decomposing leaves, eventually became coal and peat beds. As the Carboniferous period continued, the climate turned milder and the sea levels dropped, but while the huge swamps remained, many life forms evolved to take advantage of the various habitats and ecological niches they provided.

The armored fish of the Devonian went extinct, replaced by more modern-looking fish, including sharks and the first freshwater fish. The first conifer trees appeared, land snails, dragonflies and other insects, and the first animals that could survive on land for part of the time. This included the Temnospondyls, a numerous and successful order of animals whose fossils have been found worldwide and appear in the fossil record for more than 200 million years. But most people have never heard of them.

Temnospondyls are grouped in the class Amphibia alongside Lissamphibia, which is the order all living amphibians and their ancestors belong to. But researchers aren’t sure if Temnospondyls gave rise to lissamphibians or if they all died out.

The first Temnospondyl fossils were discovered in the early 19th century and early paleontologists immediately started debating what exactly these strange animals were. It was originally classified as a reptile, but as more fossils came to light, it became clear that these weren’t reptiles. Finally it was classified as a subclass of amphibian called Labyrinthodontia, where it remains today, at least for now.

Temnospondyls do share many traits with modern amphibians. We know that at least some species had a larval form that was completely aquatic, with fossil evidence of gill arches. Some retained external gills into adulthood the way some salamanders do. But they still had a lot in common with their fish ancestors.

Most Temnospondyls had large heads that were broad and flattened in shape, often with a skull that was roughly triangular. The earliest species had relatively small, weak legs and probably spent most of their time in the water, but it wasn’t long before species with stronger legs developed that probably lived mostly on land.

When you think about amphibian relatives, you probably think these animals were small, maybe the size of a bullfrog. But while some Temnospondyls were small, many grew much larger. Some had smooth skin but many had scales, including some species with scales that grew into armor-like plates. Let’s look at some individual species of Temnospondyl and get an idea of how varied they were.

Let’s start with a group of temnospondyls with one of the most confusing names ever, Dvinosauria. That may not sound too confusing, but it’s spelled just like dinosauria but with a V after the D. It lived in the late Permian around 260 million years ago, and its fossils have been found in parts of Russia. It was named not to mess with people who keep seeing dvinosaur and thinking dinosaur, but after the Northern Dvina River.

Dvinosaurs were either semi-aquatic or fully aquatic, depending on the species. The genus Dvinosaurus was pretty typical for aquatic Temnospondyls. It had external gills and was fully aquatic, with small legs but a powerful tail for swimming. It grew over three feet long, or around a meter, and probably looked like a big salamander with a big triangular head. It probably ate fish and other small animals. Like many Temnospondyls, it had extra teeth growing from the roof of its mouth to help it hold onto fish. Some paleontologists think it lurked at the bottom of rivers and streams until it saw a fish or other animal approach, at which point it shot upward and grabbed it.

A typical land Temnospondyl was Sclerocephalus, which lived around 300 million years ago in what is now Germany. We have a lot of Sclerocephalus fossils, which means it was probably a successful animal. It was also big, around five feet long, or 1.5 meters.

Because we have so many Sclerocephalus fossils, we know a lot more about it than we do other Temnospondyls. Its larval form was aquatic and had a long tail to help it swim. As a juvenile it probably had external gills but as it matured, it spent more and more time on land, using its lungs to breathe. Its tail was shorter as an adult because it didn’t need to swim as often. But it did spend time in the water and retained the lateral line system still found in fish and some amphibians, a sensory organ that detects water movements. It also had a pineal eye that a few animals retain today, notably the reptile Tuatara that we talked about way back in episode three. This third eye was at the top of the skull and was probably only sensitive to light rather than being useful for seeing. As in modern animals that still have a pineal eye, it probably helped regulate behaviors according to the length of days.

We even know exactly what Sclerocephalus ate, because we have fossilized stomach contents in a few cases. It ate fish and amphibians and sometimes smaller Sclerocephaluses, and was probably an opportunistic predator. Like other Temnospondyls it had teeth on its palate, three pairs in its case that grew from the roof of its mouth.

A less typical temnospondyl was the genus Fayella, which lived in what is now Oklahoma in the United States and lived around 270 million years ago, in the early Permian. It grew to about four feet long, or 1.15 meters, and had unusually long legs for a Temnospondyl. It also had a smaller head in proportion to its body compared to most Temnospondyls, and was more lightly built. As a result, it looked more like a reptile or an early synapsid, which as you may remember from episode 119 were proto-mammals that looked like weird reptiles. Researchers think Fayella could run much faster than other Temnospondyls could, which didn’t so much help it catch prey as evade hunting synapsids.

Nigerpeton looked more like your average Temnospondyl, mostly. It lived in what is now the African country of Niger, around 250 million years ago. It was only discovered in the early 2000s and we still don’t have very many fossils so we don’t know exactly how big it was. But its skull was two feet long, or 60 cm, so it was definitely a big animal. It probably looked a lot like a crocodile in many ways, including a long, heavy snout with lots of teeth. Lots of teeth. LOTS of teeth. As with other Temnospondyls, it ate fish and other small, wriggly animals, and to help it catch those fish it had ordinary teeth and extra teeth that grew from the top of the mouth and the lower jaw. Basically it just had a mouthful of teeth. This is true for many Temnospondyls, but Nigerpeton took that one step too far. Two of its extra teeth are referred to as tusks, because they grew upward from the lower jaw, pierced through the roof of the mouth, and emerged from the top of the nose about where you’d expect nostrils to be in a modern animal. Instead of nostrils, NOSE TEETH. Actually, the nostrils were behind the nose teeth. We don’t know enough about Nigerpeton to know what it used these tusks for, but it sure looked cool.

Nigerpeton wasn’t the only Temnospondyl with tusks that emerged from the top of the nose when its mouth was closed. Others had it too, including one of the first Temnospondyls discovered, Mastodonsaurus. Mastodonsaurus was a successful genus of Temnospondyls that lived from about 247 million years ago to 201 million years ago in what is now Europe. Despite its name, Mastodonsaurus was neither a mastodon nor a dinosaur. It was big, though—one species grew up to 20 feet long, or 6 meters. Like other Temnospondyls it had a big head and a somewhat short tail. It also had legs that were small and weak, which suggests it was mostly if not completely aquatic, and it ate fish and other small animals.

The most recently living Temnospondyl, which went extinct around 120 million years ago, lived in what is now Australia. Koolasuchus lived in fast-moving streams and filled the same ecological niche as crocodiles, which eventually replaced it after it went extinct. But it didn’t look anything like a crocodile. It had the typical big head of a Temnospondyl, in this case broad and rounded with a blunt nose, but with what are called tabular horns that projected from the rear of the skull, which gave its head a triangular appearance. Plus, it probably grew up to 16 feet long, or 5 meters. But its body was relatively slender compared to the chonky head, which made it look kind of like a really really big tadpole.

We’ll finish with the largest species of Temnospondyl known, Prionosuchus. It lived between 299 and 272 million years ago in what is now Brazil, and while it didn’t look much like a modern crocodile, it filled the same ecological niche. It had relatively small legs and a big head like most Temnospondyls, but its snout was slender and elongated like a ghavial’s. It was an aquatic animal and was probably an ambush predator that mostly ate fish.

While we don’t know exactly how big Prionosuchus could grow since we don’t have any complete specimens, the largest skull found measured 5.2 feet long, or 1.6 meters. That’s just the skull. Researchers estimate the animal was 30 feet long, or 9 meters, when it was alive.

But although Prionosuchus was amphibious like other temnospondyls, it retained a lot of features from its fish ancestors. Basically, it looked something like the biggest salamander you could imagine, but with jaws and teeth like a ghavial’s, but inside it was more fish than amphibian. It’s no wonder paleontologists have been trying to figure Temnospondyls out for almost two centuries.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or wherever you listen to podcasts. We also have a Patreon at patreon.com/strangeanimalspodcast if you’d like to support us that way.

Thanks for listening!

Episode 157: Rodents of Unusual Size

Uh, yeah, not the legless lizard episode. But just as interesting! This week let’s learn about the largest rodents in the world! Hint: way bigger than a rat.

Further reading:

Rodents of Uncertain Systematics

The mellow and photogenic capybara:

Oh to be a capybara in an open bath with an orange on its head:

Hey, pacarana:

Oh to be a paca with half an orange:

Oh to be a chevrotain with a piece of orange. (The chevrotain is not a rodent. It has hooves. Episode 116 explains this creature):

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Yes, I know, last week I said we might have an episode this week about legless lizards and other snakey things that aren’t snakes, but I got this episode ready first so instead, this week we’re going to learn about some rodents of unusual size!

Rodents are mammals in the order Rodentia, and there are thousands of them throughout the world. Mice and rats are rodents, of course, but so are chipmunks and squirrels, hamsters and gerbils, prairie dogs and guinea pigs, and many others. But you may notice that all the animals I just mentioned are pretty small. That’s because most rodents are on the small side. But not all of them.

The biggest rodent alive today may be one you’ve heard of, the capybara. It’s native to much of South America and lives in forests, rainforests, and other areas, but always near water. It really likes water and eats a lot of aquatic plants, although it also eats grass, fruit, tree bark, and other plants. Like other rodents, its teeth grow throughout its life but constantly wear down as it eats tough plants.

So how big is the capybara? It grows to about two feet tall, or 62 cm, and four feet long, or 1.3 meters. Females are usually a little larger than males. Basically they’re the size of a big dog, but a big dog with webbed toes, small ears, big blunt muzzle, basically no tail, and a calm outlook on life. Because unlike many rodents who tend to be nervous and quick-moving, the capybara is pretty chill.

The capybara is semiaquatic and likes to hang out in the water, often in social groups. It can hold its breath underwater for up to five minutes, and can even sleep while submerged with just its nose above water. That’s why its nose, eyes, and ears are close to the top of its head, so it can be alert to predators while remaining safely underwater.

The capybara has a scent gland on its nose called a morillo. The female has a morillo but the male’s is bigger since he scent marks more often by rubbing the gland on plants, trees, rocks, other capybaras, and so on. During mating season, the female capybara attracts a male by whistling through her nose, because who doesn’t like a lady who can whistle through her nose? The capybara will only mate in water, so if a female decides she doesn’t like a male, she just gets out of the water and walks away from him.

The female usually gives birth to four or five babies in one litter. If the female is a member of a group of capybaras, all the babies stay together in the middle of the group and all the females care for them. In most mammals, the female will only let her own babies drink her milk, but a female capybara will suckle any babies in the group who are hungry. Like I said, they’re pretty chill.

There are actually two species of capybara, but some people consider the lesser capybara to be a subspecies of capybara and anyway, we don’t know much about it. Other than that, though, the capybara is most closely related to the guinea pig. Like the guinea pig and like humans, the capybara can’t synthesize vitamin C in its body and has to get it through its diet. That means if a capybara in captivity doesn’t receive fruit and other plant material containing vitamin C, eventually it will show symptoms of scurvy.

The capybara is killed for its meat and hide, but it’s also sometimes kept as a pet. It’s not a domesticated animal and it’s as heavy as a full-grown human, so while the capybara isn’t specifically dangerous it’s not really a good pet. Also, it will eat your garden and wallow in mud and if you don’t have a pool it’s going to wander around until it finds one. It’s probably better to get a dog.

While the capybara is a strong swimmer, it can move fast on land when it wants to. It can run up to 22 miles per hour, or 35 km/hour. This is what a capybara sounds like.

[capybara sounds]

Big as the capybara is, even bigger rodents used to live in South America. Around 8 million years ago a rodent called Phoberomys pattersoni [foe-barommis] lived in what is now Venezuela and nearby areas, especially around the Orinoco River. It was discovered in 2000 when an almost complete skeleton was found, and it was really big. We’re talking nine feet long, or 2.75 meters, and that doesn’t even include its tail. It stood over four feet tall, or 1.3 meters. It was described in 2003 and is a relative of guinea pig and the capybara.

But since then, paleontologists have found fossils of rodents that are estimated to be even bigger. Around 3 million years ago an animal called the giant pacarana grew to an estimated five feet tall, or 1.5 meters, with a body ten feet long, or 3 m. But we don’t know for sure if it was bigger or smaller than that estimate, since so far all we have is a fossilized skull discovered in 1987 and described in 2008. Another closely related rodent is only known from some teeth. Some researchers think it used its massive teeth like elephants use their tusks, to fend off predators and fight each other.

So if there was once a giant pacarana, what’s a regular pacarana? It’s another South American rodent, and while it’s not exactly capybara size it’s much larger than a mouse. It grows more than 3 ½ feet long, or 100 cm, and is shaped sort of like a capybara with a tail, although its head is more rodent-like. It’s dark brown-gray with rows of white spots down its sides and a thick tail covered with fur. It’s the only living member of the family Dinomyidae and it has many unusual features compared to other rodents. I’d tell you what they are but they’re all things like “it has a flatter sternum,” which wouldn’t mean a whole lot to most of us. Shout-out to any rodent experts listening, though.

The pacarana was discovered by scientists in 1873 when a Polish nobleman traveling in Peru shot one and sent its skin and skeleton home, where it was studied by the director of the Berlin Zoo. But after that one specimen was killed, the pacarana seemed to vanish. Then in 1904 someone sent two pacaranas to a museum in Brazil. The museum’s director gave them to the local zoo where they could be taken care of, although the female died after giving birth shortly afterwards.

It turns out that the pacarana isn’t all that rare, but it’s shy and hard to spot in its habitat, forested mountains in South America. But because it’s seldom seen, not very many zoos have them, but zookeepers all report that pacaranas are docile and friendly. I can confirm that they are very, very cute although I haven’t seen one in person.

The pacarana is named after another rodent called the paca, which looks similar but has a shorter tail and is smaller than the pacarana, although still a pretty big rodent. The paca grows up to about two and a half feet long, or 77 cm, not counting its 9-inch tail, or 23 cm, and is dark brown with rows of white spots on each side. It looks kind of like a chevrotain, which as you may remember from episode 116 is also called the mouse deer even though it’s not a mouse or a deer. The paca lives in a burrow that can be ten feet long, or 3 meters, usually with two entrances that it covers with leaves to hide it. It likes fruit, leaves, flowers, fungi, and other plant material, but it will also eat insects.

The paca likes to swim and can stay underwater even longer than the capybara, as much as 15 minutes. It usually mates in the water too. It’s mostly nocturnal, although some populations may be crepuscular, and it lives in much of Central and South America, although it’s also present in southern Mexico.

After her babies are born, the mother paca tucks her babies in a hole she digs that’s too small for predators to enter. But the hole is also too small for her to enter. To let the babies know it’s safe to come out, she calls to them in a low trill. The paca, in fact, makes a lot of sounds, and its voice is way louder than you’d think. It has resonating chambers in its cheeks to make its voice even louder.

Here are some sounds that a paca makes:

[paca calls]

Ages ago, Llewelly sent me a link to an article about some interesting rodents of South America. I’ve included a link to it in the show notes in case you want to learn more about South American rodents that aren’t quite as big as the ones we’ve covered today, but which are just as interesting.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening! Oh, and this is what a baby capybara sounds like.

Episode 155: Extreme Sexual Dimorphism

Many animals have differences between males and females, but some species have EXTREME differences!

The elephant seal male and female are very different sizes:

The huia female (bottom) had a beak very different from the male (top):

The eclectus parrot male (left) looks totally different from the female (right):

The triplewart seadevil, an anglerfish. On the drawing, you can see the male labeled in very small letters:

The female argonaut, also called the paper nautilus, makes a delicate see-through shell:

The male argonaut has no shell and is much smaller than the female (photo by Ryo Minemizu):

Lamprologus callipterus males are much larger than females:

The female green spoonworm. Male not pictured because he’s only a few millimeters long:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

I still have a lot of listener suggestions to get to, and don’t worry, I’ve got them all on the list. But I have other topics I want to cover first, like this week’s subject of extreme sexual dimorphism!

Sexual dimorphism is when the male of a species looks much different from the female. Not all animals show sexual dimorphism and most that do have relatively small differences. A lot of male birds are more brightly colored than females, for instance. The peacock is probably the most spectacular example, with the males having a brightly colored, iridescent fan of a tail to show off for the hens, which are mostly brown and gray, although they do have iridescent green neck feathers too.

But eclectus parrot males and females don’t even look like the same bird. The male is mostly green while the female is mostly red and purple. In fact, the first scientists to see them thought they were different species.

Males of some species are larger than females, while females of some species are larger than males. In the case of the elephant seal, the males are much larger than females. We talked about the northern elephant seal briefly last week, but only how big the male is. A male southern elephant seal can grow up to 20 feet long, or 6 meters, and can weigh up to 8,800 pounds, or 4,000 kg. The female usually only grows to about half that length and weight. The difference in this case is because males are fiercely territorial and fight each other, so a big male has an advantage over other males and reproduces more often. But the female doesn’t fight, so her smaller size means she doesn’t need to eat as much.

Another major size difference happens in spiders, but in this case the female is far larger than the male in many species. For instance, the body of the female western black widow spider, which lives throughout western North America, is about half an inch in length, or 16 mm, although of course that doesn’t count the legs. But the male is only half this length at most. Not only that, the male is skinny where the female has a large rounded abdomen, and the male is brown with pale markings, while the female is glossy black with a red hourglass marking on her abdomen. Female western widows can be dangerous since their venom is strong enough to kill many animals, although usually their bite is only painful and not deadly to humans and other mammals. But while the male does have venom, he can only inject a tiny amount with a bite so isn’t considered very dangerous in comparison.

The reason many male spiders are so much smaller than females is that the females of some species of spider will eat the male after or even during mating if she’s hungry. The smaller the male is, the less of a meal he would be and the less likely the female will bother to eat him. In the case of the western black widow, the male prefers to mate with females who are in good condition. In other words, he doesn’t want to spend time with a hungry female.

If you remember episode 139, about skunks and other stinky animals, we talked about the woodhoopoe and mentioned the bill differences between males and females. The male woodhoopoe has a longer, more curved bill than the female because males and females eat a slightly different diet of insects so they won’t compete for the same food sources.

But a bird called the huia took beak differences to the extreme. The huia lived in New Zealand, although it officially went extinct in 1907. It was a wattlebird, which gets its name from the brightly colored patch of skin on either side of the face, called wattles. In the case of the huia, the wattles were orange, while the feathers over most of the body were glossy black. It also had a strip of white at the tip of the long tail. The male’s beak was fairly long and pointy, although it also curved down slightly. But the female’s beak was much longer and more slender, curving downward in an arc.

The huia lived in forests in New Zealand, where it ate insects, especially beetle grubs that live in rotting logs. People used to think that a mated pair worked together to get at grubs and other insects. The male would use his shorter, stouter bill to break away pieces of rotting wood until the grub’s tunnel was exposed, and then the female would use her longer, more slender bill to fish the grub out of the tunnel. But actual observations of the huia before it went extinct indicate that it actually didn’t do this. Like the woodhoopoe, males and females preyed on different kinds of insects. The male did break open rotting wood with its beak in a way that’s very different from woodpeckers, though. Instead of hammering at the wood, it would wedge its bill into a crevice of the wood and open its beak, and the muscles and other structures it used to do so were so strong that it could easily break pieces of wood off. This action is known as gaping and other birds do it too, but the huia was probably better at it than any other bird known.

The huia went extinct partly due to habitat loss as European settlers cleared forests to make way for farming, and partly due to overhunting. Museums wanted stuffed huias for display, and the feathers were in demand to decorate hats. And as a result, we don’t have any huias left.

Sometimes the size difference between males and females reaches extreme proportions. We’ve talked about the anglerfish several times in different episodes, and it’s a good example. It’s a deep-sea fish with a bioluminescent lure on its head that it uses to attract prey. Different species grow to different sizes, but let’s just talk about one this time, the triplewart seadevil.

The triplewart seadevil is found throughout much of the world’s oceans, preferably in medium deep water but sometimes in shallow water and sometimes as deep as 13,000 feet, or 4000 meters. The female grows to about a foot long, or 30 cm. It’s black in color, although young fish are brown. Its body is covered with short spines and it has a lure on its head like other anglerfish. The lure is called an illicium, and it’s a highly modified dorsal spine that the fish can move around, including extending and retracting it. At the end of the illicium is a little bulb that contains bioluminescent bacteria. Whatever animals are attracted to the glowing illicium, the fish gulps down with its great big mouth.

But that’s the female triplewart seadevil. The male is tiny, only 30 mm long at the most. The male doesn’t have an illicium; instead, his jaws and teeth are specialized for one thing: to bite onto the female and never let go. When a male finds a female, he chooses a spot on her underside to latch on, and once he does, his mouth and one side of his body actually fuse to the female’s body. Their circulatory and digestive systems fuse too. Before the male finds a female, he has great big eyes, but once he fuses with a female his eyes degenerate because he no longer needs them. He’s fully dependent on the female, and in return she always has a male around to fertilize her eggs. But this attachment is actually pretty rare, because it’s hard for deep-sea fish to find each other.

Another sea creature where the females are much larger and very different from the males is the argonaut, or paper nautilus. The argonaut is an octopus that lives in the open ocean in tropical and subtropical waters. Instead of living on the bottom of the ocean, though, the paper nautilus lives near the surface, and while the female looks superficially similar to a nautilus, it’s only distantly related.

The female argonaut generally grows to about 4 inches long, or 10 cm, although the shell she makes can be up to a foot across, or 30 cm. In contrast, males are barely half an inch long, or 13 mm. The female’s eight arms are long because she uses them to catch prey, with two of her arms being larger than the others. She grabs small animals like sea slugs, crustaceans, and small fish and bites it with her beak, and like other octopuses she can inject venom at that point too. But the male has tiny little short arms except for one, which is slightly larger.

Like other cephalopods, the male uses one of his arms to transfer sperm to the female so she can fertilize her eggs. In most cephalopods that means an actual little packet of sperm that the male places inside the female’s mantle for her to use later. But in the argonaut, the male’s larger modified arm is called a hectocotylus, and it has little grooves that hold sperm. The male inserts the hectocotylus into the female’s mantle, then detaches it and leaves the arm inside her. Then he leaves and regrows the arm, as far as researchers know. We don’t actually know for sure since it’s never been observed, but octopuses do have the ability to regenerate lost arms. The female usually keeps the hectocotylus and sometimes ends up with several.

At that point the female creates a shell by secreting calcite from the tips of her two larger arms. The shell is delicate, papery, and white, and it resembles the shell of the ammonite, which we talked about in episode 86. The female lays her eggs inside the shell, then squeezes inside too, although she can come and go as she likes.

There’s still a lot we don’t know about the argonaut, but we know more than we used to. In the olden days people thought the female used her two larger arms as sails at the surface of the water. Eventually scientists figured out that was wrong, but they were still confused as to why there only seemed to be female argonauts. They didn’t know that the males were so small and so different, and in fact when early researchers found hectocotyluses inside the females, they assumed they were parasitic worms of some kind. Eventually they worked that part out too.

But still, for a very long time researchers thought the argonaut’s shell was just for protecting the eggs, but it turns out that the female uses the shell as a flotation device. She can control how much air the shell contains, which allows her to control how close to the surface she stays. In a 2010 study of argonauts rescued from fishing nets and released into a harbor, if the shell doesn’t contain enough air, the argonaut will jet to the surface and stick the top of its shell above the water. The shell has small openings at this point so air can get in, and once the argonaut decides it’s enough, she seals the holes by covering them with two of her arms. Then she jets downward again until she’s deep enough below the surface that the pressure compresses the air inside the shell and cancels out the weight of the shell. This means the argonaut won’t bob to the surface but she also won’t sink, and instead she can just swim normally by shooting water from her funnel like other octopuses.

A species of cichlid fish from Lake Tanganyika in Africa, Lamprologus callipterus, also differs in size due to a shell, but not like the argonaut. Instead, the male is much larger than the female. The male can be up to five inches long, or nearly 13 cm, while the female is less than two inches long, or 4 ½ cm. The females lay their eggs in shells, but not shells they make. The shells come from snails, so the male needs to be larger so he can pick up and carry a big empty shell. The female, though, still needs to be small enough to fit inside the shell.

A moth called the rusty tussock moth is also sexually dimorphic. Its caterpillar grows around 1 to 1.5 inches long, or 3 to 4 cm, with females being a little larger than male caterpillars but otherwise very similar. But after the caterpillars pupate, they’re much different. The male moth has orangey or reddish-brown wings and a wingspan of about 1.5 inches, or almost 4 cm. The female doesn’t have wings at all. She emerges from her cocoon and perches next to it, and releases pheromones that attract a male. After the female mates, she lays her eggs on her old cocoon and dies, as does the male.

Let’s finish up with an animal you may never have heard of, the green spoonworm. It’s a marine worm that lives throughout much of the Mediterranean and the northeastern Atlantic Ocean. It lives on the sea floor in shallow water, partly buried in gravel and sand. The female grows up to about six inches long, or 15 cm, and sort of looks like a mostly deflated dark green balloon, although it may also look kind of lumpy. It also has a feeding proboscis that it can extend several feet, or about a meter.

As a larva, the green spoonworm floats around in the water, but whether it becomes male or female depends on where it settles. If it lands on the seafloor it transforms into a female and starts secreting a toxin called bonellin. Bonellin is what gives the green spoonworm its dark green color. The bonellin is mostly concentrated in the feeding proboscis and allows the spoonworm to paralyze and kill the tiny animals it eats.

But if the larva happens to land on a female green spoonworm, contact with the bonellin causes it to become a male. And the male is only a few mm long, doesn’t produce bonellin, and can’t even survive on its own. The female sucks the male into her body through the feeding proboscis, but instead of digesting him, he lives inside her and fertilizes her eggs. In return she provides him with all the nutrients he needs. A female may have more than one male living inside her, making sure that her eggs will always be fertilized.

There are lots more animals that show extreme sexual dimorphism, of course, but that at least gives you an idea of how different animals evolve to fit different environmental pressures. Weird as they seem to us, to the animals in question, it’s just normal–and it’s our appearance and how we do things that would seem weird to them. Perspective is everything.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you like the podcast and want to help us out, leave a rating and review on Apple Podcasts or whatever platform you listen on. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 151: Fossils with other fossils inside

Thanks to Pranav who suggested this week’s amazing topic, animals that fossilized with the remains of their last meal inside!

Indrasaurus with a lizard inside. Yum!

Baryonyx:

Rhamphorhynchus (left, with long wing bones) and its Fish of Doom (right):

The fish within a fish fossil is a reminder to chew your food instead of swallowing it alive where it can kill you:

The turducken of fossils! A snake with a lizard inside with a bug inside!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have a listener suggestion from Pranav, who has sent me so many amazing suggestions that he has his own page on the ideas spreadsheet. When he emailed me about this one, he just suggested cool fossils, but the links he provided had a really interesting theme that I never would have thought about on my own. This week we’re going to learn about some fossil animals that have fossils of their last meal inside them!

We’ll start with a recent discovery of a new microraptor species, Indrasaurus wangi, which lived about 120 million years ago. It was an interesting animal to start with, because it had arms that were very similar to bird wings, although with claws, but its hind legs also had long feathers that made it almost like a four-winged animal. It was found in 2003 in northeastern China, but when researchers were studying it in 2019 they found something amazing. Not only did it have an entire lizard skeleton where its stomach once was, showing us that it swallowed its prey whole, the lizard itself was a species new to science.

We know what else Indrasaurus ate because more Indrasaurus fossils have been found in the area, many of them so well preserved that its fossilized stomach contents have been preserved too. It ate mammals, birds, lizards, and fish—basically anything it could catch.

Another species that was similar to Indrasaurus, called Anchiornis, also called a four-winged bird-like dinosaur, was found with what appears to be a gastric pellet in its throat. The pellet contains the bones of more than one lizard and was probably ready to be horked up the way many carnivorous birds still regurgitate pellets made up of the indigestible parts of their prey, like bones, scales, and fur.

The fossilized remains of food inside a fossilized organism has a term, of course. It’s called a consumulite. It’s a type of bromalite, which is a broader term for any food or former food found in a fossilized organism’s digestive tract. The term bromalite also includes coprolites, which are fossilized poops.

Naturally, it requires a high degree of preservation for consumulites to form, and a high degree of skill to reveal the often tiny and delicate preserved details. And consumulites are important because they let us know exactly what the animal was eating.

Consumulites aren’t limited to prey animals, either. A small armored dinosaur, a type of ankylosaur, called Kunbarrasaurus, which lived around 115 million years ago in what is now Australia, was a herbivore. The type specimen of the species, which was described in 2015, was incredibly well preserved—almost the entire skeleton, most of its body armor, and the contents of its stomach. Paleontologists can determine not just what kinds of plants it had eaten—which include ferns and seeds—but how it was processing its food. Most herbivorous dinosaurs swallowed leaves and other plant parts whole, then crushed the food in a powerful gizzard or gizzard-like organ along with rocks or grit. The rocks helped break up the plant material, and we have lots of these rocks associated with fossilized dinosaurs. The rocks are called gastroliths and are usually worn smooth. But Kunbarrasaurus didn’t have any gastroliths, and the plant material was so well preserved that researchers could see the cut ends of the plants where Kunbarrasaurus had bitten them. And all the pieces were small. Kunbarrasaurus therefore probably chewed its food, which meant it also probably had lips and cheeks of some kind to help keep the food in its mouth while it was chewing.

Another example of an animal with a consumulite that helped solve a mystery about its diet is Baryonyx. Baryonyx is a type of spinosaurid, a theropod dinosaur that grew at least 33 feet long, or 10 meters. It was discovered in 1983 in Surrey, England, and was described in 1986. It lived around 125 million years ago. It walked on its hind legs and probably used its arms to tear its prey into bite-sized pieces, because its first finger had a huge claw 12 inches long, or 31 cm.

But its skull was the real puzzle. Most theropods are meat-eaters, although a few evolved to eat plants. But Baryonyx had a long, relatively slender snout with a lot of close-growing teeth, and a sort of bulb at the end of its snout called a rosette. It looks more like the skull of a crocodilian called a gharial than a theropod. But as far as anyone knew when Baryonyx was discovered, there were no fish-eating theropods.

Until 1997, that is, when paleontologists studying Baryonyx spotted some overlooked details. In addition to a gastrolith in its belly area, they found some fish scales and teeth that showed evidence of being damaged by digestive acids. It probably hunted by wading through shallow water like a heron, catching fish and other animals with its long toothy snout.

It’s not just dinosaurs that are found with consumulites. Animals of all kinds eat all the time, so as long as the conditions are right to fossilize the remains of an animal, there’s a chance that whatever food was in the digestive tract might fossilize too. For instance, the same part of China that has yielded amazingly well preserved feathered dinosaurs has also produced other animals—including a carnivorous mammal called Repenomamus that grew more than three feet long, or one meter. I think we’ve talked about Repenomamus before, because we have evidence that it actually ate dinosaurs—at least baby ones, or it might have scavenged already dead dinosaurs. Either way, it lived around 125 million years ago and was shaped sort of like a badger with a long tail, although it wasn’t related at all to badgers or any other modern mammal. It probably laid eggs like monotremes still do. The reason we know what Repenomamus ate is because one specimen was found with pieces of a young Psittacosaurus in its stomach.

In at least one case it’s hard to tell which animal should be considered the eater and which should be considered the eaten. A fossil slab found in Southern Germany and described in 2012 contains a Rhamphorhynchus associated with two different fish.

Rhamphorhynchus lived around 150 million years ago and was a type of pterosaur with a long tail. Its wingspan was about six feet across, or 1.8 meters. It mostly ate fish, which it probably caught not by flying down to grab fish out of the water, like eagles do, but by floating like a goose and diving for fish. It had large feet and short legs, which would have helped it take off from the water just like a goose.

A fish that lived at the same time as Rhamphorhynchus was called Aspidorhynchus, and it grew up to two feet long, or 60 cm. It had long jaws filled with teeth, with the upper jaw, or rostrum, extending into a pointy spike.

In the fossil found in Germany, a Rhamphorhynchus has a small fish in its throat that it had probably just caught. While it was still swallowing it, an Aspidorhynchus fish attacked! But things obviously went wrong for everyone involved. Researchers suggest that the fish’s rostrum cut right through the flying membrane of Rhamphorhynchus’s left wing. The fish bit down but its teeth became tangled in the tissue. It started thrashing to free itself and Rhamphorhynchus was thrashing around too trying to get away, which only got them more tangled up together. The fish dived, drowning Rhamphorhynchus, and the weight of its body dragged Aspidorhynchus into deep water where there wasn’t enough oxygen for it to survive. It died too, and its heavier body lay partially across Rhamphorhynchus, holding it down so it wouldn’t drift away. The fossil shows Rhamphorynchus, Aspidorhynchus, and the tiny fish that Rhamphorhynchus never did get to finish swallowing.

Another fish, Cimolichthys, lived around 75 or 80 million years ago and grew a little over six feet long, or two meters. Its body was heavily armored by large scutes and it had several rows of teeth. It may have been related to modern salmon. It lived in what is now North America and Europe, and ate fish and squid. We know it ate fish and squid because, of course, we have the remains of various last meals found with preserved fossil Cimolichthys. For instance, one specimen was found with the internal shell of a cephalopod lodged in its throat. Researchers suspect the fish had tried to swallow a Tusoteuthis that was too big to fit down its throat. The Tusoteuthis got stuck and blocked the flow of water over the fish’s gills, basically drowning it. Tusoteuthis, by the way, could possibly grow up to 36 feet long, or 11 meters, although that depends on whether it had long feeding tentacles like modern squid or not. If it didn’t have long feeding tentacles, it was probably only about 19 feet long, or 6 meters, which is pretty darn big anyway. I wouldn’t want to have to swallow that thing whole. Not even if it was deep-fried first.

Another fish called Xiphactinus, which grew up to 20 feet long, or 6 meters, lived in the late Cretaceous period. It died out at the same time as the non-avian dinosaurs. It had massive fangs and was a terrifying predator, but sometimes that backfires. The fossil of a 13 foot, or 4 meter, Xiphactinus was found with a 6 foot long, or 1.8 meter, fish called Gillicus inside it. Paleontologists think Xiphactinus swallowed its prey whole, which thrashed around so much inside it that it ruptured an organ and killed the predator fish. Both fish sank to the bottom of the shallow Western Interior Seaway in North America until it was discovered in 1952.

Let’s finish with two even more incredible fossils. In 2008 paleontologists found a fossilized freshwater shark they dated to 250 million years ago. Right before it died, it had eaten two animals called temnospondyls. Temnospondyls were common animals, with many species found throughout the world, and researchers still aren’t sure if they were the ancestors of modern amphibians or a similar type of animal that died out without any descendants. One of the temnospondyls that the shark ate had the well digested remains of a spiny fish in its stomach.

But a few years later researchers in Germany found something even better. It’s a fossilized snake called a Palaeopython, related to boas. It was about three feet long, or one meter, and was still young. If it had lived to grow up, it would have doubled in size. It lived in trees but also hunted along the edges of rivers and lakes. About 48 million years ago, this particular snake caught a lizard that’s related to modern basilisk lizards. It swallowed the lizard headfirst. But then the snake died, possibly asphyxiated by a cloud of carbon dioxide from the volcanic lake nearby. We have a lot of incredibly detailed fossils from that lake, known as the Messel Pit.

Researchers aren’t sure how the snake made it into the lake. Maybe it was already in the shallow water when it died, or on the bank, and a wave washed it into the water. Maybe the wave was actually what killed the snake, washing it into the lake where it drowned. However it died, it sank into deep water and was covered in sediment that preserved it. Then, 48 million years later, paleontologists found it.

When the fossil was cleaned and prepared for study, researchers found that the lizard was preserved inside it. But there was another surprise inside the lizard! Right before it had been eaten by the snake, the lizard had eaten an insect. And the insect was so well preserved that researchers could tell it had an iridescent exoskeleton.

If I was fossilized right now, paleontologists from the far future would find a lot of chocolate in my stomach. Happy holidays to everyone, whatever your reason for celebrating at this time of year!

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us and get twice-monthly bonus episodes.

Thanks for listening!

Episode 148: Gastric Brooding and Other Frogs

Thanks for Merike for suggesting the gastric brooding frog and to Hally for suggesting newly-discovered frogs!!

The Gastric brooding frog:

Darwin’s frog, round boi:

The Surinam toad carries her eggs and tadpoles in the skin of her back:

Kermit the frog and a newly discovered glass frog:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

This week we have another fantastic listener suggestion, about frogs! Merike is a herpetologist from Estonia, who suggested the gastric brooding frog, and another listener, Hally, also wanted to learn about some of the new frog species discovered recently.

The gastric brooding frog is native to eastern Australia, specifically Queensland. There are two species, and both of them live in creeks in separate rainforests. The habitat is specific and small, and unfortunately both species went extinct less than forty years ago. Researchers aren’t sure why they went extinct, but it was probably due to pollution and habitat loss.

The gastric brooding frog was a slender frog, with the northern gastric brooding frog being about three inches long, or about 8 cm, while the southern gastric brooding frog was about half that size. Females were larger than males. It was grey or brown-gray in color with some darker and lighter patches on the back with a lighter belly. During the day it spent most of its time at the water’s edge, hidden in leaf litter or among rocks, although it generally only fully came out of the water when it was raining. It ate insects and may have hibernated in winter.

As you may have guessed from its name, the gastric brooding frog had a unique way of taking care of its eggs. After the eggs were fertilized, the female would actually swallow the eggs and keep them in her stomach while they developed. Even after the eggs hatched into tadpoles, they stayed in the mother’s stomach. As they grew larger, the stomach also grew larger, until it pretty much filled up the mother’s insides, to the point where she couldn’t even use her lungs to breathe. Fortunately many frogs, including the gastric brooding frog, can absorb a certain amount of oxygen through the skin. Finally the tadpoles metamorphosed into little frogs, at which point the mother regurgitated one or a few of them at a time, or sometimes all of them at once if she felt threatened.

So how did the mother keep from digesting her own eggs or tadpoles? How did she eat when her stomach was full of babies? How did the babies eat?

The jelly around the gastric brooding frog’s eggs contained prostaglandin E2, also called PGE2, which causes the stomach to stop producing hydrochloric acid. That’s a digestive acid, so once the eggs were inside the stomach, the stomach basically stopped stomaching. There is some speculation that the first eggs the mother frog swallowed actually got digested, but then the acid production stopped and the rest of the eggs remained. Once the eggs hatched, the tadpoles also produced PGE2 in the mucus in their gills.

The tadpoles continued to live off the yolk sac from their eggs as they developed, and in fact their mouths weren’t even connected to their gut yet. As for the mother, she just didn’t eat until the babies were developed and released into the water on their own, which took about six weeks.

The gastric brooding frog is the only frog known to raise its babies this way, but other frog species have interesting variations of the usual way frogs reproduce. Most female frogs lay their eggs, and then the male fertilizes them. But about a dozen species of frog have developed internal fertilization, where the female retains the eggs in her body until the male fertilizes them. The tailed frog from California in the United States, in North America, gets its name from a structure that looks like a tail, but is actually an extension of the cloaca. That’s the opening used for both excretion and reproduction. Only males have the tail, and it works like a penis to fertilize the female’s eggs without her needing to lay the eggs first. Once they’re fertilized, she can choose just the right spot to lay the eggs.

Another weird way frogs take care of their eggs is something that Darwin’s frog does. Darwin’s frog lives in Chile and Argentina in South America, and grows to a little over an inch long, or 3 cm. It has a pointy snout that gives its head a wedge  shape something like a leaf, which helps keep it camouflaged on the forest floor. The female lays her eggs in damp leaf litter, and after the male fertilizes them he guards them for several weeks. When they start to move as they develop, the male swallows them—but instead of his stomach, he stores them in his vocal sac. That’s the expandable sac in the frog’s throat that males use to make their croaking sounds by filling the sac with air.

The eggs hatch into tadpoles, which the male carries around as they grow. They live off their egg yolks, but they also eat secretions from the lining of the vocal sac. Once the tadpoles metamorphose into little frogs, they hop out of the male’s mouth and are on their own. Until then, the male doesn’t eat.

The Surinam toad is a species of frog. Remember that all toads are frogs but not all frogs are toads. It lives in wetlands and forests in northern South America, and has a radically different way of keeping its eggs safe. The Surinam toad is a flattened, broad toad that can grow up to 8 inches long, or 20 cm, and looks a lot like a dead leaf. It lives in slow-moving water. Unlike other frogs it doesn’t have a tongue, so instead of catching insects with its sticky tongue, it grabs them with its hands. It’s sometimes called the star-fingered toad because its long, thin fingers have tiny star-shaped appendages that help it catch prey. Instead of croaking, male Surinam toads make a clicking noise by moving a small bone in the throat back and forth.

When the female is ready to lay her eggs, a male clasps her around the middle like most frogs do while mating. But instead of just releasing her eggs and letting the male release sperm to fertilize them, the female makes a sort of flipping movement in the water as she releases a few eggs at a time. The male fertilizes them, then presses them onto her back. The skin of the female’s back grows up over the eggs, embedding them in the skin in little pockets. When the tadpoles hatch they stay in these little pockets as they develop. They only leave when they’ve metamorphosed into tiny toads, at which point they emerge and live on their own. The mother then sheds the layer of skin on her back where her babies lived.

A frog described in 2014 that lives in parts of South Asia gives birth to tadpoles instead of laying eggs. It’s a species of fanged frog, which are frogs that do actually have teeth unlike most frogs. Limnonectes larvaepartus grows about 1 ½ inches long, or just under 4 cm. The eggs are fertilized internally, but instead of laying them the female keeps them in her oviducts until they hatch. They remain inside her until they no longer have any yolk left to nourish them, at which point the mother releases them into a slow-moving stream.

Lots of other interesting frogs have been discovered recently. A new frog discovered in southern India in 2018 was recently determined to be a member of its own genus. It’s called the narrow-mouthed frog and had gone unnoticed even though it lives in an area that’s been extensively explored by scientists. It only comes out into the open for less than one week out of the year during the short breeding season, and the rest of the time it hides. Obviously, we don’t know much about it yet.

In 2016 in the same area as the narrow-mouthed frog, researchers discovered a new species of frog with a tadpole that burrows through sand. It’s a member of the Indian dancing frog family, and not only do the tadpoles burrow through wet sand at the bottom of streams, they have ribs that help them move around more easily. Tadpoles are usually just squidges without bones. Dancing frogs get that name because the males wave their feet to attract females during mating season.

There are so many recently discovered frog species that it’s hard to know which ones to highlight. You know, like the new glass frog from Costa Rica described in 2015 that honestly looks just like Kermit the Frog, if Kermit had a translucent belly that showed his organs. Scientists don’t know why glass frogs have no pigmentation at all on their bellies. Or the three tiny frog species discovered in Madagascar and described earlier in 2019, all of them smaller than your thumbnail, that belong to a new genus, Mini. Their scientific names are therefore Mini mum, Mini scule, and Mini ature. The three are related to one of Madagascar’s biggest frogs, which grows over four inches long, or 10.5 cm, as opposed to the Mini frogs which top out at about 15 mm long. Hally sent me an article about eleven new species of frog discovered recently in the Andes, including the multicolored rain frog. It’s sometimes yellow, sometimes brown, sometimes green, speckled, splotched, spotted–so variable that at first scientists thought they were different related species. All eleven of the Andes frogs lay their eggs on land, and instead of hatching into tadpoles the eggs hatch into tiny froglets.

Frogs and other amphibians are sensitive to environmental change, which means a lot of species have either recently gone extinct or are critically endangered. Habitat loss and an amphibian fungal disease that has spread around the world are also making things hard for frogs and their relations. Scientists have been working hard lately to find species that are rare, suspected to be extinct, or are unknown to science, to learn about them while we can and do our best to preserve the species, either in the wild or in captivity. There are even multiple genetic resource banks, or biobanks, to preserve genetic material of frogs and other animals so that future scientists might be able to clone them.

There’s always the possibility that the gastric brooding frog isn’t actually extinct. The southern gastric brooding frog hasn’t been seen since at least 1981 despite extensive searches, though, with the last captive individual dying in 1983. The northern gastric brooding frog was only discovered in 1984 but hasn’t been seen since 1985.

But even if there aren’t any left in the wild, all hope isn’t lost. The gastric brooding frog is a good candidate for de-extinction, and cloning has actually been successful to a limited degree already. In 2013 a living embryo was produced from preserved genetic material, although it didn’t survive. Researchers are still working to clone the frogs and keep them alive. With luck the attempt will be successful, and not only can a population of the frogs be kept in captivity, they can be reintroduced to their former habitat one day.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 133: The mangrove killifish and the unicorn pig

This week’s (short) episode is about two animals that should have been in the strangest small fish and weird pigs episodes, respectively. I left them out by accident but they’re so interesting that they deserve an episode all to themselves anyway. Thanks to Adam for suggesting the mangrove killifish!

Further reading:

25 Years in the Mud: How a Quirky Little Fish Changed My Life

The mangrove killifish just looks normal:

Not a unicorn pig (okay yes technically a unicorn pig):

Unicorn pig skull:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

A few weeks ago we had an episode about strange small fish. Shortly after that episode released, I was going through my disorganized ideas and suggestions file and realized I’d left out one of the best weird small fish ever, a suggestion by Adam. I also discovered I’d missed an extinct pig I’d planned to include in the recent weird pigs episode. So let’s play catch up in a short episode and learn about both this week.

The fish Adam suggests is called the mangrove killifish, also called the mangrove rivulus, which lives in parts of Florida and Mexico, down to Central and South America. It’s technically a marine fish, meaning it lives in salt-water, but it also likes brackish water, that’s less salty than the ocean, and occasionally it even lives in freshwater. It especially likes mangrove swamps. It grows up to 3 inches long, or 7.5 cm and is a mottled brown in color with an eye spot on its tail. It doesn’t look like anything special.

But the mangrove killifish has a lot in common with amphibians, especially the lungless salamanders. Many types of salamander absorb air through the skin instead of through lungs or gills. The mangrove killifish does this too. It often lives in abandoned crab holes, which may not have very high quality water. But that’s okay, because it can absorb air through its skin and can live out of the water for well over a month as long as its skin stays damp. It’s sometimes found in places where you wouldn’t expect to find a fish, like the inside of rotting logs or buried in damp dead leaves.

So how does the killifish get into the rotting logs or the leaf litter or the crab burrows that aren’t connected to waterways? It actually uses its tail to flip itself out of the water and onto land, and then it continues to flip here and there until it finds a place where it wants to live for a while. It can direct this jumping, not just flop around like most fish out of water, and can jump several times its own length.

A lot of times when the tide goes out, fish get trapped in crab holes, dimples in the sand or mud, and other shallow water. That’s okay if the tide comes back in far enough to re-submerge the holes, but if the water doesn’t quite reach, it’s not long before fish start to suffocate as all the oxygen in the water is used up. But the killifish doesn’t have that problem. It just flips itself out of the water. It can also leave the water if it gets too hot.

The killifish is also territorial in water, which requires a lot of energy. When it’s out of the water, or in a little temporary pool or a crab burrow where it doesn’t have to worry about other killifish, it can relax. On the other hand, it loses a lot of weight while it’s out of the water since it doesn’t eat as much. So there are trade-offs.

Even the killifish’s eggs can survive out of water. The fish usually lays its eggs in shallow water, sometimes even on land that’s just near water. The eggs continue to develop just fine, in or out of water, but they delay hatching until they’re submerged.

And that leads us to the most astonishing thing about the mangrove killifish. In most populations, almost all killifish are females, and most of the time they don’t need a male fish to fertilize their eggs. Females produce eggs but they also produce sperm that fertilize the eggs before they’re even laid. The eggs hatch into genetic duplicates of the parent—clones, basically. The term for an organism that produces both eggs and sperm is hermaphrodite, and while it’s common in some invertebrates, the killifish is the only known vertebrate hermaphrodite. Vertebrate, of course, is an animal with a backbone.

But while most killifish are females, there are occasionally males. Male killifish are orangey in color. When a male is around, females suppress their ability to self-fertilize eggs and they lay the eggs for the male to fertilize, just like any other fish. This helps keep the species genetically diverse and able to adapt to external pressures like increased numbers of parasites.

Next, let’s talk about the unicorn pig. Or pigicorn, if you like. It’s called Kubanochoerus [koo-ban-oh-ko-rus] and there were several species. It was related to modern pigs and lived throughout most of Eurasia and parts of Africa around 10 million years ago.

It was big, up to four feet tall at the shoulder, or 1.2 meters, and had tusks like other pigs. It probably looked a lot like a wild boar. But its skull is longer than modern pig skulls and it had horns. Three horns, specifically. Two of the horns were small and grew above the eyes, while a bigger horn grew forward from its forehead. The forehead horn wasn’t very long and was probably blunt. Researchers used to think males used these forehead horns to fight each other, but females had them too so they may also have been used for defense from predators.

That is literally all I can find out about this fascinating animal. I can’t even speculate about the horns since literally no other pig has horns, at least that I can find. Presumably the warty protrusions that many modern pig species have are similar to the horns that Kubanochoerus had. The eyebrow horns might have had the same purpose as the facial protrusions on warthogs and other pigs, as a way to protect the eyes when the pigs fight. The forehead horn, though…well, that’s just weird. It probably wasn’t covered with keratin, but we don’t know. My own guess is that it was something more like an ossicone and was covered with skin and hair. But again, we don’t know. Not until we invent a working time machine and go back to look at one.

That’s it, a very short episode. I’m actually in Dublin, Ireland right now attending WorldCon, so while I’m here I will keep an eye out for leprechauns, fairies, and pigicorns, just in case.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 132: Paleontological Frauds

Ever heard of the Piltdown Man? What about Missourium or Archaeoraptor? They’re all frauds! Let’s learn about them and more this week.

Further reading:

The Chimeric Missourium and Hydrarchos

Investigation of a claim of a late-surviving pterosaur and exposure of a taxidermic hoax: the case of Cornelius Meyer’s dragon

Missourium was literally an extra mastodon:

Hydrarchos (left) was a lot more, um, exciting than its fossil donors, six Basilosauruses (right):

Piltdown man’s suspicious skull:

A lot of people were excited about Archaeoraptor:

Not a pterosaur:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Last week we learned about some mistakes paleontologists made while working out what an extinct animal looked like using only a few fossilized bones. Mistakes are a normal part of the scientific method, no matter how silly they seem once we know more about the animal. But this week we’re going to look at some frauds and hoaxes in the paleontology world.

We really need to start with a man named Albert Koch. He was from Germany but moved to the United States in 1835, and was something of a cut-rate PT Barnum. He called himself Dr. Koch although he hadn’t earned a doctorate. A lot of the so-called curiosities he displayed were fakes.

Back in the mid-19th century, fossils had only recently been recognized as being from animals that lived millions of years before. People were still getting their heads around that concept, and around the idea that animal species could even go extinct. Then the fossils of huge animals started to be discovered—and not just discovered, but displayed in museums where the public could go look at them. Naturally they were big hits.

Sometimes these fossil exhibits weren’t free. For example, the mounted fossil skeleton of a mastodon was exhibited by the naturalist Charles Peale starting in 1802—one of the first fossil exhibits open to the public. Peale and his workers had mounted the skeleton to seem even larger than it really was by putting wooden discs between some of the bones. But the exhibit was primarily meant to educate, not just bring in money. It cost 50 cents to see the mastodon and lots of people wanted to. These days Peale’s mastodon is on display in Germany, without the wooden discs.

Albert Koch knew about Peale’s mastodon, and more to the point he knew how much money Peale had made off his mastodon. Koch wanted one for himself.

In 1840 he heard about a farmer in Missouri who had dug up some huge bones. Koch bought the bones and assembled them into a mastodon. But Koch wasn’t a paleontologist, he didn’t care about educating the public, and when he looked at those fossils, he just saw dollar signs. And he had ended up with bones from more than one mastodon, so, you know, he used them all. And he added wooden discs between the bones to make the animal bigger. A lot bigger. Between the wooden discs and the extra bones, Koch’s skeleton was twice the size of a real mastodon. Plus, he turned the tusks around so that they pointed upward, either because he didn’t know any better or because he thought that looked more exciting.

He called his mastodon Missourium and displayed it at his exhibit hall in St. Louis, Missouri later in 1840. It was a hit, and in 1841 he decided he’d make more money if he took Missourium on the road. He packed the massive skeleton up, sold his exhibit hall, and went on tour with just the mastodon.

Paleontologists spoke out against Koch’s Missourium as being unscientific, but that only gave him free publicity. People thronged to his exhibit for the next two years, until 1843 when he sold it to the British Museum. Needless to say, the experts at the British Museum promptly disassembled Missourium so they could study the fossils properly before remounting them into a mastodon that didn’t contain any extra ribs and vertebrae. Also, they put the tusks on the right way up.

But Koch wasn’t done riding roughshod over paleontology. To learn about what he did next, we have to learn about an animal called Basilosaurus.

Despite its name, Basilosaurus isn’t a dinosaur or even a reptile. It’s a mammal—specifically a whale, although it didn’t look like any whale alive today. It probably grew up to 70 feet long, or over 21 meters, with long jaws full of massive teeth—more like a crocodile or mosasaur than a whale. It had short flipper-like front legs that still had an elbow joint. Modern whales don’t have elbows. It also had little nubby hind legs, but the legs were far too small to support its weight on land. It probably mostly lived at or near the surface of the ocean since its vertebrae were large, hollow, and filled with fluid, which would have made Basilosaurus buoyant. It wouldn’t have been able to dive much at all as a result. It ate sharks and fish as well as smaller whale relatives.

Basilosaurus went extinct around 34 million years ago. Modern whales aren’t related to it very closely, although modern whales did share an ancestor with Basilosaurus. But Basilosaurus was a common animal and its fossils are relatively common as a result. They were so common, in fact, that they were sometimes used as house supports in parts of the American South.

In 1835 a British naturalist named Richard Harlan examined some fossils found in Alabama and decided it was a marine reptile, which he named Basilosaurus, which means king lizard. The mistake was corrected soon after when another paleontologist determined that the animal was a whale-like mammal, but it was too late to change the name due to taxonomic rules in place to minimize confusion. That’s why Basilosaurus is sometimes called Zeuglodon, since that was the name everyone wanted as a replacement for Basilosaurus.

In 1845, Albert Koch got hold of a lot of Basilosaurus fossils and decided this was his next big thing. And again, he didn’t care what Basilosaurus was or what it was called, he just wanted that moolah.

He constructed a mounted skeleton with the Basilosaurus fossils. But just as he did with his mastodon fossils, he didn’t arrange them as they appeared in life. He constructed a sea serpent that was 114 feet long, or almost 35 meters, and contained bones from six Basilosauruses, as well as some ammonite shells to bulk it out even more. He named it Hydrarchos and exhibited it first in New York City, then went on tour throughout the United States and Europe. It was even more popular than Missourium. Heck, I would have paid to see it.

Koch sold Hydrarchos to King Friedrich Wilhelm IV of Prussia, who exhibited it in the Royal Anatomical Museum in Berlin even though the paleontologists there really, really didn’t want it. Kock promptly bought more Basilosaurus bones and built a new fake, a mere 96 feet long this time, or 29 meters. He toured with it and sold it to another flim-flam artist in Chicago, who exhibited it until 1871, when the great Chicago fire destroyed it and most of the rest of Chicago.

Koch wasn’t the only person putting together real bones to make a fake animal back then, but at least he did it for the money. Other fakes were more insidious because we aren’t even sure why the hoaxer did it. That’s the case with the so-called Piltdown Man.

This is how the story goes. A man called Charles Dawson said that a worker at a gravel pit in Piltdown had given him a piece of skull in 1908. Dawson searched the pit and found more pieces, which he gave to a geologist at the British Museum, Arthur Woodward. Woodward and Dawson both returned to the gravel pit in 1912, where they found more pieces of the skull and part of a jawbone. Woodward reconstructed the skull from the pieces and reported that the ape in question must be a so-called missing link between humans and apes.

Just going to mention here that if anyone refers to a fossil as a missing link, you should be suspicious that maybe they don’t actually know what they’re talking about, or that the fossil is a fake.

Not everyone agreed with the reconstruction. In 1913, Woodward, Dawson, and a geologist and priest named Pierre Teilhard de Chardin returned to the gravel pit. Teilhard found an ape-like canine tooth that fit the jaw. But the tooth raised even more controversy, leading to the loss of friendships and colleagues splitting into camps for and against the Piltdown fossil. Teilhard de Chardin washed his hands of the whole thing and moved to France, and later helped discover Homo erectus, one of our direct ancestors.

Piltdown Man, of course, was a fake. Some people had already suspected it was a fake in 1912, and through the years afterwards people repeatedly examined the bones and kept pointing out that it was a fake. Now, of course, it’s easy for researchers to see that the jaw and teeth are from an orangutan while the skull is from a human. But for a long time, no one was sure who was behind the hoax. Was it Dawson, Woodward, Teilhard de Chardin, or all of them together? Or did someone else plant the fakes for those people to find?

In 2008, a team of experts decided to examine the fossil and the circumstances surrounding its so-called discovery. It took them eight years. They determined that the orangutan teeth were all from the same animal while the pieces of skull came from at least two different people and were possibly several hundred years old. The jaw and skull pieces had been treated with putty, paint, and stain to make them look fossilized, with some carving to make the bones match up better. The hoaxer had even crammed pebbles into the natural hollow places inside the bones, then puttied them over, presumably to make the bones weigh more and therefore feel more like fossils.

All these methods were the work of a single person, and experts have seen that person’s work before. Charles Dawson was an amateur geologist, historian, and archaeologist who “discovered” a lot of things, almost all of which have been proven to be hoaxes. But the Piltdown man hoax was the one that got him into the history books, even if only as a cheater.

So why did Dawson do it? It’s possible he wanted Britain to be home to a human ancestor more impressive than Homo heidelbergensis, which was discovered in Germany in 1907 and which was probably the common ancestor of humans and Neandertals. More likely, he just wanted to be part of the excitement of a big discovery, one which would bring him the respect of the professional scientists he envied. His other hoaxes had brought him a certain amount of fame and weren’t discovered during his lifetime, so he just kept making them.

You’d think the days of faked fossils were behind us now that paleontology is so much more sophisticated. But fake fossils are actually more of a problem now than ever, mostly because fossils can be worth so much money. Usually the fakes are obvious to experts, but sometimes they’re much more sophisticated and can fool paleontologists for at least a short time. And that brings us to Archaeoraptor.

In 1999, National Geographic announced the discovery of a feathered dinosaur fossil from China, which was a mixture of elements seen in both dinosaurs and birds. National Geographic called it a missing link between dinosaurs and birds.

Yep, another missing link.

Archaeoraptor looked like a small dinosaur but with feather impressions. This doesn’t sound weird to us now, but in 1999 it was shocking. Dinosaurs with feathers? Who ever heard of such a thing! Supposedly, the farmer who found the fossil had cemented the broken pieces together as best he could before selling it to a dealer. The fossil ended up in the United States where it was bought in early 1999 by The Dinosaur Museum in Utah for $80,000.

The National Geographic Society was interested in publishing an article about it in the magazine after the official description appeared in Nature. But Nature rejected the description. The paleontologists tried the journal Science next but again, Science rejected it. By then, other paleontologists who had examined the fossil reported that it wasn’t one fossilized animal but pieces from at least three different animals glued together to look like one. Albert Koche would be proud.

But National Geographic decided not to pull the article. It appeared in the November 1999 issue and the fossil itself was put on display at the National Geographic Society in Washington DC.

Meanwhile, a paleontologist named Xu Xing who’d seen the Archaeoraptor fossil thought it looked really familiar. He asked around in the area of China where Archaeoraptor was supposedly found, and eventually discovered the fossil of a small dinosaur called dromaeosaur. The tail of Archaeoraptor matched the tail of the Dromaeosaur fossil exactly—like exactly, right down to a yellow ochre stain in the same place. This doesn’t mean it was a fake or a copy, but that the two pieces had once been joined. Quite often fossils leave impressions on both sides of a piece of rock, which are called the slab and counterslab. Once Xing’s information got out, people started calling the fossil the Piltdown bird.

Remember last week when an extinct peccary tooth was misidentified as an ape tooth? People who didn’t believe evolution was real claimed that that one mistake proved they were right and all of science was wrong wrong wrong. Well, the same argument is going on today with people who still don’t believe evolution is real. For some reason they think that because Archaeoraptor was a hoax, evolution is somehow also a hoax—even though we now have plenty of perfectly genuine feathered dinosaur fossils that show how a branch of dinosaurs evolved into modern birds.

There are a lot of hoaxed fossils coming from China, which has some of the world’s most amazing fossil beds and some of the most amazingly well preserved fossils in the world. But because the people finding them are often desperately poor farmers, it’s common for fossils to be sold to dealers for resale. The dealers prepare the fossils and sometimes, to improve the resale value, they add details that aren’t really there to make the fossils seem more valuable. Even worse, the preparation by non-experts and those added details often destroy parts of the fossil that are then lost to science forever. And because the fossils are dug up by non-experts, paleontologists usually don’t know exactly where the fossils were found, which means they can’t properly estimate the fossil’s age and other important information.

Let’s finish with a very old hoax that was started for the best of reasons but took some unusual twists and turns. Way back in the late 17th century, the countryside near Rome in Italy kept getting flooded by rivers. Rumor had it that a dragon-like monster was responsible, that when it moved around too much in the river where it lived, the river overflowed its banks like water out of an overfull bathtub. In actuality the area is in a natural floodplain so of course it was going to flood periodically, but that didn’t make it any easier for the people who lived there.

A Dutch engineer, architect, and engraver named Cornelius Meyer had a solution, though, involving levees to make the River Tiber more navigable and less prone to flooding. He started the project around 1690 but had trouble with his local workers. They expected to come across the dragon at any moment, which made them reluctant to get too near the river.

So Meyer decided to show them that the local dragon was dead. In 1691 he “found” its remains and mounted them to put on display. The workers were satisfied and got to work building the levees that did exactly what Meyer promised, reducing flooding and saving many lives. No one knows what happened to Meyer’s dragon, but we have an engraving he made of it in 1696. You can see it in the show notes. It shows a partially skeletal monster with hind legs, bat-like wings, a long tail, and horns on its skeletal head.

Centuries later, in 1998 and again in 2006, two men saw the engraving reprinted in a book about dragons published in 1979 and decided it was a depiction of a recently killed pterosaur. Wait, what? Pterosaurs disappear from the fossil record at the same time as non-avian dinosaurs, about 66 million years ago. Why would anyone believe Meyer’s dragon was a pterosaur? It didn’t even look like one.

The two men were part of a group called the young-earth creationists, who believe the earth is only about 6,000 years old. In order to shoehorn the entire 4 ½ billion years of earth’s actual history into only 6,000 years, they claim that rocks only take a few years to form and that dinosaurs and other extinct animals either still survive today in remote areas or survived until modern times. I shouldn’t have to point out that their ideas make no sense when you understand geologic processes and other fields like cosmology, the study of the entire universe and how planets form. Young-earth creationists are always on the lookout for anything that fits their theories, like so-called living fossils and cryptids that resemble dinosaurs, like the mokele mbembe we talked about way back in episode two. I’m not sure why they think that finding a living dinosaur would prove that the earth is only 6,000 years old. All it would prove is that that a non-avian dinosaur survived the Cretaceous-Paleogene extinction event 66 million years ago.

Anyway, these two men decided that Meyer’s dragon was a pterosaur, which brought the engraving to the attention of modern scientists, who hadn’t known about it before. Obviously the dragon wasn’t actually a pterosaur. What was it?

The original remains were long gone, but the engraving was of extremely high quality. In 2013 researchers were actually able to determine what animal bones Meyer had used to make his dragon. The skull is from a dog, the jaw is from another dog, the ribs are from a large fish, the hind limbs are actually the front leg bones of a young bear, and so on. The wings, horns, and a few other parts are carvings.

Gradually, historians pieced together the real story behind Meyer’s dragon. We don’t know who actually made the fake dragon, but they did a great job. But it wasn’t a real dragon, and it definitely wasn’t a pterosaur.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 131: Paleontological Mistakes

Part of the scientific method involves making mistakes and correcting them. Here are some interesting and sometimes goofy mistakes made by paleontologists through the years, and how the mistakes were corrected.

Iguanodon did not actually look like this (left). It looked like this (right):

Pterosaur did not actually look like this (left). It looked like this (right):

Elasmosaurus did not actually look like this (left). It looked like this (right):

Apatosaurus/brontosaurus did not actually look like this (left). It looked like this (right):

Stegosaurus did not actually look like this (left). It looked like this (right):

Gastornis did not actually look like this (left). It looked like this (right):

Those are Gastornis’s footprints:

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Paleontology is the study of fossils, and really it’s only been a discipline for a little over a century. Back in the 19th and early 20th centuries, even experts made major mistakes in preparing and assembling fossil skeletons, and dishonest amateurs made deliberate errors so their fossil animals looked bigger or scarier. Many of these mistakes or hoaxes were displayed in museums, sometimes for decades.

I found so many interesting examples during my research that I decided to split the episode into two. This week we’ll learn about some paleontological mistakes and what the fossil animals really looked like when they were alive. Next week we’ll look at the frauds and hoaxes.

We’ll start with Iguanodon, a dinosaur that lived around 125 million years ago in what is now Europe. It ate plants and was fairly common, with a number of species now known to science. The biggest could grow as much as 43 feet long, or 13 meters. It had teeth that resemble an iguana’s, which is how it gets its name, and a beak probably covered in keratin that it used to clip through tough plants. It probably mostly walked on two legs and browsed from trees, but its front legs were long and it might have spent at least some of its time on all fours. But the most interesting thing about Iguanodon was its hands. Its little finger was slender and usually longer than the others and many researchers think it was used for handling food and other objects. The first finger, which is equivalent to a thumb, wasn’t so much a digit as just a big spike. It’s called a thumb spike and no one’s sure what it was for. It might have been used for defense, but it might also have been used to help dig up plants. Maybe it was used for both. But it was the source of an embarrassing mistake that many paleontologists made for years.

Iguanodon came to the attention of science in 1822 when a medical doctor in Sussex, England found some fossilized teeth. No one was sure what kind of animal the teeth belonged to, although guesses ranged from a crocodile to a rhinoceros. In 1824 the doctor, Gideon Mantell, noted the teeth’s resemblance to iguana teeth, but so big that he estimated Iguanodon must have been almost 60 feet long, or 18 meters. He also thought Iguanodon looked like an iguana.

In 1834 more Iguanodon fossils came to light in a quarry and Mantell bought them. This incomplete skeleton included a thumb spike, but Mantell didn’t know where it belonged. He thought it was a horn, so when he made a drawing of the living animal, he placed the thumb spike on the nose.

And there it stayed, despite other fossils found with the thumb spike in place on the hand, and despite other scientists pointing out that they didn’t think Iguanodon had a horn on its nose. It wasn’t until 1882 that the nose horn vanished for good and Iguanodon started looking more like itself.

Similarly, pterosaurs have been misunderstood since the very beginning, with a lot of frankly ridiculous suggestions made about them. To be fair, they are really strange animals and nothing like any animal living today. The first pterosaur was described in 1784 by an Italian naturalist, but he thought it was a swimming animal and that its wing bones were actually flippers. Zoologist Georges Cuvier pointed out it was a flying reptile in 1801, but the swimming hypothesis wasn’t abandoned for decades after that. Even after the flying part was accepted by other researchers and the general public, many people believed they were related to bats for a remarkably long time. In 1843 one scientist suggested pterosaurs were not only bats, but specifically marsupial bats. (There are no marsupial bats. Bats are placental mammals.) The notion that pterosaurs and bats were related hung around a really long time, right up to the 1930s, although experts had more or less figured it out by then.

Elasmosaurus lived around 80 million years ago and was a type of plesiosaur. We talked about Elasmosaurus in episode 92 about marine reptiles. It wasn’t a dinosaur but it lived at the same time as dinosaurs, and could grow up to 34 feet long, or over 10 meters. It had a very long neck containing 72 vertebrae, a short tail, and four paddle-like legs. These days we know that the neck wasn’t very flexible, but for a long time Elasmosaurus and its relatives were depicted with flexible, serpentine necks. But the real mistake came when it was first discovered.

The first Elasmosaurus fossil was found in Kansas in 1867 and given to Edward Cope, a well-known paleontologist who discovered many fossil species found in North America.

The problem was, Cope was the bitter rival of another well-known paleontologist, Othniel Marsh. The two men were so frantic to publish more descriptions of new animals than the other that it sometimes led to sloppy work. That may have been why, when Cope described Elasmosaurus in 1869, he placed its head at the end of its tail so that it looked like it had a short neck and a really long tail instead of the other way around. The bones were all jumbled together and the jaws had ended up at the wrong end of the skeleton when it was covered over with sediment and the fossilization process began.

Another paleontologist pointed out Cope’s mistake only a few months later. Cope tried to buy up all the copies of the article and reissued a corrected version. But Cope’s nemesis Marsh got hold of a copy of the original article and was absolutely gleeful. He never would let Cope forget his mistake, and in fact it was the final straw in the relationship between the two. Cope and Marsh had started out as friends but their friendship soured, and by 1870 they pretty much loathed each other.

But Marsh made his own mistakes. In 1877 he found a dinosaur he named Apatosaurus, although the specimen was missing a skull. He used the skull of a different dinosaur when he prepared the specimen. Then in 1885 his workers found a similar-looking skeleton with a skull. He named it Brontosaurus.

Guess what. They were the same animal. Marsh was so eager to describe a new dinosaur that Cope hadn’t described yet that he didn’t even notice. But for some reason the name Brontosaurus stuck in pop culture, which is why you probably know what a Brontosaurus was and what it looked like, while you may never have heard of Apatosaurus. The mistake has been corrected and the dinosaur’s official scientific name is Apatosaurus, but Marsh’s Apatosaurus skeleton from 1877 didn’t get the right skull until 1979. The skeleton had been on display with the wrong skull for almost a century, but researchers found the correct skull that had been unearthed in 1910 and stored away.

Apatosaurus lived in North America around 150 million years ago and was enormously long, growing on average 75 feet long from head to tail, or 23 meters. It ate plants, and some researchers suggest that it used its incredibly long tail as a whip to scare predators by cracking the whip and making a loud noise. This sounds absurd but the physiology of the tail’s end supports that it could probably withstand the pressures involved in a whip-crack. The neck was also quite long and researchers are still debating how flexible it was. The reason so much old artwork of Apatosaurus/Brontosaurus shows the animal standing in water eating swamp plants is because scientists used to think it was such a heavy animal that it couldn’t even support its own weight out of the water, much like whales. Not true, of course. It had strong, column-like leg bones that had no trouble supporting its weight on dry land, and it lived on what are referred to as fern savannas. Grass hadn’t yet evolved so the main groundcover was made up of ferns.

The name Brontosaurus has been retained for some Apatosaurus relations, fortunately, because it’s a pretty nifty name. It means thunder lizard.

Marsh is also responsible for the notion that some of the larger dinosaurs, specifically Stegosaurus, had a second brain at the base of their tails. This isn’t actually the case at all. Marsh just couldn’t figure out how such a large animal had such a small brain. Then again, Marsh also thought Stegosaurus’s tail spikes, or thagomizer, belonged on its back while its back plates belonged on its tail.

If you want to learn more about the Stegosaurus, check out episode 107 where we learn about it and Ankylosaurus. It’s too bad a paleontologist named Charles Gilmore couldn’t listen to that episode, because in 1914 he decided the back plates were osteoderms that lay flat on its skin. This was an early idea of Marsh’s that he had rejected early on but which Gilmore liked. Gilmore also thought the thagomizer spikes grew between the back plates so that the Stegosaurus was covered in both big plates like armor with spikes in between the plates.

A man named Henry Fairfield Osborn made a couple of mistakes too. He was the guy who named Oviraptor, which means “egg thief.” That was a reasonable assumption, really, since the first specimen was found in 1923 in a nest of Protoceratops eggs…but the Protoceratops eggs were later found to actually be Oviraptor eggs, and Oviraptor was just taking care of its own nest.

In 1922 Osborn was the president of the American Museum of Natural History when a rancher sent him a fossil tooth he’d found in Nebraska in 1917. Paleontologists often have to extrapolate an entire animal from a single fossil, and teeth are especially useful because they tell so much about an animal. So Osborn examined the tooth carefully and published a paper describing the ape that the tooth came from.

If you remember, though, there are no apes native to the Americas, just monkeys. The media found out about the discovery and wrote articles about the missing link between humans and apes, which was a popular topic back before people fully understood how evolution worked and when so little was known about human ancestry. The papers called the fossil ape the Nebraska man.

Then, a few years later, paleontologists went to Nebraska to find the rest of the fossilized ape bones. And while they did find them, they didn’t belong to an ape. The tooth came from a species of extinct peccary. You know, a type of pig relation. Peccaries do evidently have teeth that look a lot like human teeth, which is kind of creepy, plus the fossil tooth was badly weathered. Osborn retracted his identification in 1927.

All this wouldn’t have been a big deal except that people who didn’t believe evolution was real decided that this one relatively small mistake, quickly corrected, meant ALL scientists were ALL wrong FOREVER.

We’ll finish with a bird fossil, a bird you’ve probably never heard of although it’s massive. The first Gastornis fossil was found in the mid-19th century near Paris and described in 1855. More fossils were found soon after, and in the 1870s there were enough Gastornis bones that researchers were able to reconstruct what they thought it looked like, a gigantic crane. They were wrong.

Gastornis was as big as a big moa, over six and a half feet high, or 2 meters. It had a heavy beak and a powerful build that for over a century led many paleontologists to think it was a predator. But these days, we’re pretty sure it only ate tough plant material. Its bill could have crushed nuts but wasn’t the right shape to strip meat from bones, and a carbon isotope study of Gastornis bones indicate that its diet was entirely vegetarian.

Gastornis had vestigial wings that probably weren’t even visible under its body feathers. It was actually related most closely to modern waterfowl like ducks and geese. We have some fossilized Gastornis eggs and they were bigger than ostrich eggs, although they were shaped differently. They were oblong instead of ovoid, about ten inches long, or over 25 cm, but only four inches in diameter, or 10 cm. Only the elephant bird of Madagascar laid bigger eggs. We even have two fossil feather impressions that might be from Gastornis, and some fossil footprints in Washington state that show Gastornis had three toes with blunt claws. The bird went extinct around 40 million years ago.

At about the same time that Gastornis was being described in Europe as a kind of giant wading bird, our old friend Edward Cope found some bird fossils in New Mexico. He described the bird in 1876 as Diatryma gigantea and recognized that it was flightless. Cope’s deadly enemy Othniel Marsh also found a bird’s toe bone and described it as coming from a bird he named Barornis regens in 1894. As more and more fossils were found, however, it became clear that Cope’s and Marsh’s birds were from the same genus, so Barornis was renamed Diatryma.

By then, some paleontologists had already suggested that Diatryma and Gastornis were the same bird. In 1917 a nearly complete skeleton, including the skull, was discovered in Wyoming in the United States, but it didn’t really match up to the 1881 reconstruction of Gastornis.

But in the 1980s, researchers looked at that reconstruction more closely. It turned out that it contained a lot of mistakes. Some of the elements weren’t from birds at all but from fish and reptiles, and some of the broken fossil bones had been lengthened considerably when they were repaired with plaster. A paper published in 1992 highlighted these mistakes, and gradually the use of the term Diatryma was changed over to Gastornis.

So remember, everyone, don’t be afraid to make mistakes. That’s how you get better at things. And for the same reason, don’t make fun of other people who make mistakes. Other people get to learn stuff too. And even if you don’t think you’ve made a mistake, maybe double check to make sure you didn’t accidentally include a fish fossil in your extinct flightless bird reconstruction.

You can find Strange Animals Podcast online at strangeanimalspodcast.blubrry.net. That’s blueberry without any E’s. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!

Episode 125: Triceratops and other ceratopsids

It’s time to learn about some more dinosaurs, ceratopsids, including the well-known Triceratops!

Triceratops:

An artist’s frankly awesome rendition of Sinoceratops. I love it:

A Kosmoceratops skull:

Pachyrhinosaurus had a massive snoot:

Protoceratops:

Fighting dinos!

Show transcript:

Welcome to Strange Animals Podcast. I’m your host, Kate Shaw.

Back in episode 107, about ankylosaurus and stegosaurus, I mentioned that one day I’d do an episode all about triceratops and its relations. Well, that day is today. It’s the ceratopsid episode!

Ceratopsids are a family of dinosaurs with elaborate horns on their faces and frills on the back of their heads. They almost all lived in what is now North America and most of them lived in the late Cretaceous. Triceratops is the most well known, so we’ll start with it.

The name triceratops, of course, means three face horns, and it did indeed have three face horns. It had one on its nose and two on its brow, plus a frill that projected from the back of its skull.

Triceratops was a big animal, around 10 feet high at the shoulder, or 3 meters, and about 30 feet long, or 9 meters. Its body was bulky and heavy, sort of like a rhinoceros but, you know, even bigger and more terrifying.

Like the rhinoceros, triceratops was a herbivore. It had a horny beak something like a turtle’s that it probably used to grab plant material, and it had some 40 teeth on each side of the jaw. These teeth were replaced every so often as the old ones wore down, sort of like crocodilians do. Back when triceratops lived, around 68 million years ago, grass hadn’t developed yet. There were prairies in parts of western North America the same way there are today, but instead of grass, the prairies were covered in ferns. Many researchers think triceratops mostly ate ferns, grazing on them the same way bison graze on grass today.

In fact, the first paleontologist to study a triceratops fossil thought it was an extinct type of bison. This was a man called Othniel Charles Marsh. To his credit, Marsh only had a little piece of a triceratops skull to examine, the piece with the brow horns. And since the brow horns of a triceratops do look a little like the horn cores of a bovid, and since this was 1887 before a lot was known about dinosaurs, and since the fossil was found in Colorado where the buffalo roam, it’s understandable that Marsh would have assumed he was looking at a gigantic fossil bison skull. He figured it out the following year after examining another skull with the nose horn intact, since bovids are not known for their nose horns, and he naturally named it Triceratops.

It’s tempting to assume that Triceratops was a herd animal, but we don’t have any evidence that it lived in groups. It was common and we have lots of fossil triceratops, especially the thick-boned skulls, but it seems to have mostly been a solitary animal.

It’s pretty obvious that the triceratops’ horns must have been for defense. It lived at the same time as Tyrannosaurus rex, which preyed on triceratops often enough that we have a lot of Triceratops fossils with T rex tooth marks in the bones. We also have some triceratops fossils with T rex tooth marks in the bones that show signs of healing, indicating that the triceratops successfully fended off the T rex and lived. But what was the frill for?

Researchers have been trying to figure this out for years. There were a lot of different ceratopsid species, many of which may have overlapped in range and lived at the same time, so some researchers suggest the frill’s size and shape may have helped individuals find mates of the same species. Triceratops has a rather plain frill compared to many ceratopsid species, which had frills decorated with points, spikes, scalloped edges, lobes, and other ornaments.

But the ornamental elements of the frills change rapidly through the generations, which suggests that they weren’t for species recognition. If that was the case, the frills would have stayed about the same to minimize confusion. Instead, they get more and more elaborate, which suggests that they were a way to attract mates who liked fancy head frills. You know, like a snazzy hairstyle.

Of course, the frill could have more than one use. It could be attractive to potential mates and also could have protected the back of the skull from T rex bites, just like a snazzy hairstyle still keeps your head warm in cold weather. Then again, in many species of ceratopsid the frill is thin and rather fragile, so it’s more likely to be just for display. It’s very likely that the frills were brightly colored or patterned.

So what were some of these other ceratopsids with strange shaped frills? I’m SO glad you asked! There were so many ceratopsids, and they all had bodies shaped roughly the same but with head frills and horns that looked very different from each other. Some had no horns, just a frill. Some just had a nose horn, some just had brow horns. The horns were shaped differently in different species, too. Researchers group ceratopsids into two major groups: the chasmosaurines, which have longer frills and usually long brow horns and short nose horns; and the centrosaurines, which typically had larger nose horns and small brow horns, and snouts that were thicker top to bottom.

Almost all the ceratopsids have been found in North America, where they were super common in the Cretaceous. But Sinoceratops was discovered in 2008 in China. It wasn’t as big as Triceratops, topping out at about 6 ½ feet tall, or 2 meters, but what it lacked in bulk it made up in head frill ornamentation. Its frill was relatively short and was edged with small horns that curve forward. Its frill also had knobs along its edge and down the middle, which is unique among all ceratopsids and may have been the base for small keratin horns. Since keratin doesn’t fossilize, we have no way of knowing. It also had two holes in the frill that made it lighter, but they would have been covered with skin (no matter what a certain movie may have led you to believe). Its single nose horn pointed almost straight up, and in front of the nose horn it had a bony knob. It basically had no brow horns, just what may have been bony knobs above its eyes.

Kosmoceratops had probably the most ornamented skull of any known ceratopsid, and maybe any known dinosaur, with 15 horns growing from it. The rear of its frill curled forward like a collar, edged with flat, pointed projections. The frill was scalloped along its sides. Its brow horns were long, pointy, and arched sideways and slightly downward. Kosmoceratops also had a cheek horn under each eye and a flattened nose horn just in front of the brow horns. It lived in what is now Utah, in the United States, some 76 million years ago, and was only described in 2010.

Pachyrhinosaurus had flattened bony nose and brow horns more properly called bosses, since they aren’t actually horns. But Pachyrhinosaurus did have horns on its frill, although the size, shape, and number of the frill horns vary from individual to individual.

These bosses resemble the base of rhinoceros horns, which as you may recall are made of keratin. Some researchers think the bosses found in Pachyrhinosaurus and other ceratopsids may have also had keratin horns growing from them.

Remember how I said Triceratops didn’t appear to be a herd animal? Triceratops is considered a chasmosaurine, and chasmosaurines all seemed to be fairly solitary animals. But the other big group of ceratopsids, centrosaurines, may have been herd animals. Pachyrhinosaurus was a centrosaurine, for instance, and several bonebeds containing dense collections of fossil pachyrhinosaurus have been found where the individuals appear to have died at the same time. The biggest found so far is in Alberta, Canada, where paleontologists have excavated thousands of bones, from full grown adults to babies. Researchers suggest a herd of the animals may have died trying to cross a flooded river. The species of Pachyrhinosaurus found in the Alberta bonebed had both bosses and short brow horns.

Even though only one species of ceratopsid has been discovered in Asia so far, earlier basal forms were common in Asia. Protoceratops, which only stood about two feet tall, or 60 cm, lived in what is now the Gobi Desert in Mongolia around 80 million years ago. Researchers think some of these early species in the genus Protoceratops migrated into North America on the Bering land bridge, where they evolved into ceratopsids.

Protoceratops looked like a mini ceratopsid with a simple neck frill and no horns. We have a lot of Protoceratops fossils and some of them are frankly amazing.

For instance, a Protoceratops fossil found in 1965 was preserved with its own footprint in the ground near it. The fossils of baby protoceratopses have been found together in one nest, which suggests the parents cared for their young. We even have a fossil of a protoceratops and a Velociraptor that both died together while fighting. The velociraptor’s hind leg is extended where it kicked protoceratops with its vicious claws, but the velociraptor’s arm is in protoceratops’s jaws, broken.

Fighting dinosaurs. It’s one of those things that makes life worth living, you know?

You can find Strange Animals Podcast online at strangeanimalspodcast.com. We’re on Twitter at strangebeasties and have a facebook page at facebook.com/strangeanimalspodcast. If you have questions, comments, or suggestions for future episodes, email us at strangeanimalspodcast@gmail.com. We also have a Patreon if you’d like to support us that way.

Thanks for listening!